
Amaranthus

Description:

- *Amaranthus* is a cosmopolitan genus of annual or short-lived perennial plants, consisting of approximately 65 species growing in tropical, subtropical and warm conditions (see figure).
- *Amaranthus* plants grow annually as an erect, monoecious herb, up to 100–130 cm tall.
- They are being consumed widely as leafy vegetable or grain across the world due mainly to its lower price and rich source of protein, amino acids (especially lysine), carotenoids, vitamin C, dietary fiber and minerals such as calcium, iron, zinc and magnesium.
- Amaranth compared to other grains has the highest amount of protein, twice the content of essential amino acid lysine, more dietary fiber, and 5 to 20 times the content of calcium and iron.

History of Amaranthus plants:

- The earliest archaeological record of pale-seeded grain amaranth is that of *A. cruentus*, found in Tehuacan Puebla, Mexico, about 4000 BC (Pal and Khoshoo, 1974; Sauer, 1979), making it one of the oldest known food crops. It probably originated in Central and South America (Grubber and van Sloten, 1981).
- Pale-seeded amaranths were also grown in Germany in the 16th century, India and Ceylon in the 18th century, the Himalayas in the early 19th century, and interior China and Eastern Siberia in the late 19th century (Sauer, 1977).
- Amaranth was important food crop in the Aztec, Mayan, and Incan civilizations. Ancient Mexicans made idols
 of a dough from seeds of the crop they called huahtli, which has been identified as grain amaranth (Sauer,
 1950b; Marx, 1977).
- However, its production has declined remarkably, after collapsing of the Central American cultures.
- In the study of U.S. National Academy of Sciences entitled Underexploited Tropical Plants with Promising Economic Value, performed in 1975, amaranth was elected from among 36 of the world's most promising crops and identified as a major potential crop.
- However, very few clinical studies are available and on the following species only: *A. viridis, A. spinosus, A. hybridus, A. lividus and A. graecizans.*

Traditional medicinal uses:

- Amaranthae plants are traditionnally used in the treatment of abdominal pain, chicken pox, dysentry, dysurea, fever, hysteria, malaria, mania infantum, tonsillitis & vomiting.
- A. viridis has also been used in the treatment of kidney diseases in China.
- A. spinosus has been used as antiinflammatory, antimalarial, antibacterial, antidiuretic, antiviral and in hepatic disorders.
- The leaves are used as a **laxative**.
- The root is known as an effective **diuretic**.
- Leaves and roots are applied as emollient poultice to relief bruises, abscesses, burns, wound, inflammation, menorrhagia,gonorrhoea, eczema and inflammatory swelling.

- There are almost no relevant reports about the investigation of the bioactivities of Amaranthus extracts.
- However, lower income people in less developed countries comparatively evaded from cancer diseases, especially prostate and breast cancer, but they live on nothing but else rice and weedy vegetables including Amaranthus.

Chemical composition:

- In species of genus Amaranthus, 16 phenolic acids were identified. The total amount of phenolic acids in A. caudatus grains was 16.8 to 59.7 mg/100 g, whereas the proportion of soluble phenolic acids was 7% to 61%.
- Furthermore, it contains alkaloids, glycosides and/or carbohydrates, flavonoids (rutin and quercetin), terpenoids, sterols, tannins, saponins, betalains (amaranthine and isoamaranthine), sulphates, nitrogen and chlorides.
- Extracts of A. spinosus were found to contain hydroxycinnamates, quercetin (305 mg/100 g) and kaempferol glycosides. In addition α-xylofuranosyl uracil, β-D-ribofuranosyl adenine and β-sitosterol glucoside have also been isolated for the first time from this species.
- The phytochemical investigation of the *n*-butanol fraction of the methanolic extract of the whole plant of *A. spinosus*, lead to the isolation of amaranthoside, a lignan glycoside, amaricin, a coumaroyl adenosine along with stigmasterol glycoside, glycinebetaine and trigonelline.
- The α-spinasterol and hectriacontane were isolated from a petroleum ether extract of leaves and stem of A. Spinosus. αspinasterol was also identified in roots. A saponin mixture was isolated in roots.
- Other constituents were **oleanolic acid**, **D-glucose and D-glucuronic acid**.
- A new aliphatic ester, α-spinasterol octacosanoate and a new saponin, β-D- glucopyranosyl-(1-4)-β-Dglucopyranosyl –(1-4)-β-D-glucuronopyranosyl-(1-3)-oleonolic acid were isolated from the roots of A. spinosus.

Anticancer activity may be the result of lectin activity present in *Amaranthus* plants.

Lectins are a class of glycoprotein present mainly in plant especially in seed in abundant quantity and having carbohydrate binding capacity.

Lectin has been reported to possess remarkable antitumor activity, exerting apoptotic role by preferential binding to cancer cell membranes with subsequent cytotoxicity. Lectin also exhibits growth inhibitory activity by altering the cell cycle and inducing non-apoptotic G1-phase accumulation mechanisms, G2/M phase cell cycle arrest and apoptosis.

Phenolic constituents in different species (table):

Constituent, material	Content	Ref
Phenolic compounds		27
A. cruentus seed: raw flours/high-protein flour	5.16/5.89/3.53/4.46/3.04 to 3.68 g TAE/kg	1
fraction/cooked/popped/germinated (dried at 30, 60, and 90 °C) A. caudatus seed: raw flours/high-protein flour	5.24/6.86/3.96/4.28/3.41 to 4.20 g TAE/kg	1
fraction/cooked/popped/germinated (dried at 30, 60, and 90 °C)	512 / 6667, 5567, 1267, 5117 for 126 g (112) kg	
A. cruentus: treated vegetables	27.4 to 61.8 GAE/100 g fw	2
A. <i>hypondriacus</i> grain: raw/extruded flour Total phenolic acids	56.60/69.50 mg GAE/100 g dw	27
A. cruentus var. Aztec seeds/sprouts light/darkness	464/380.7/370.3 mg/kg dw	3
A. cruentus var. Rawa seeds/sprouts light/darkness	424.6/392.6/396.1 mg/kg dw	3
Gallic acid		
Methanol extract of hydrolised defatted flour	0.55 ± 0.065 mg/100 g dw	4 5
A. <i>paniculatus</i> seeds A. <i>cruentus</i> var. Aztec seeds/sprouts light/darkness	40.64 ± 1.1 μg/g 440/370/360 mg/kg dw	3
A. cruentus var. Rawa seeds/sprouts light/darkness	400/360/350 mg/kg dw	3
Vanilic acid	····· ································	
Methanol extract of hydrolised defatted flour	$0.33 \pm 0.002 \text{mg}/100 \text{g} \text{dw}$	4
A. cruentus var. Aztec seeds A. hypochondriacus seed flour: var. Tulyehualco/DGETA/Gabriela/Nutrisol	13.5 mg/kg dw 1.8/1.7/1.8/1.5 μg/g flour	3
A. ruentus seeds: 7 accessions	109.69-158.43 mg/kg	7
A. seeds: 18 different genotypes	up to 5.2 μ g/g*	8
Syringic acid		
Methanol extract of hydrolised defatted flour	0.49 ± 0.028 mg/100 g dw	4
A. cruentus var. Aztec sprouts light/darkness A. cruentus var. Rawa sprouts light/darkness	6.3/4.2 mg/kg dw 4.3/3.7 mg/kg dw	3
A. hypochondriacus seed flour: var. Tulyehualco/DGETA	$0.8/0.7 \mu g/g$ flour	6
p-Coumaric acid		
Methanol extract of hydrolised defatted flour	$0.27 \pm 0.002 \text{ mg}/100 \text{ g dw}$	3
A. paniculatus/A. caudatus seeds A. cruentus var. Rawa seeds/sprouts light/darkness	43.57 ± 0.9/5.2 ± 0.5 µg/g 3.9/28.3/42.4 mg/kg dw	5
A. cruentus var. Aztec sprouts light/darkness	4.4/6.1 mg/kg dw	3 5 3 9 7
A. hybridus/A. hypondriacus/A. cruentus seeds: methanol extract	$1.2 \pm 0.1/1.2 \pm 0.1/1.4 \pm 0.1 \mu q/q dw$	9
A. cruentus seeds: 7 accessions	8.33 to 11.48 mg/kg	
A. seeds: 18 different genotypes	up to 3.3 µg/g*	8
Ferulic acid Methanol extract of hydrolised defatted flour	0.56 ± 0.054 mg/100 g dw	4
A. paniculatus/caudatus seeds	$40.05 \pm 1.3/18.41 \pm 0.8 \mu q/q$	4 5
A. hybridus/A. hypondriacus/A. cruentus seeds: methanol extract	309.8 ± 26.1/288.5 ± 23.2/345.0 ± 27.2 μg/g dw	9
A. cruentus seeds: 7 accessions	54.30 to 85.80 mg/kg	7
A. caudatus insoluble fiber (cis/trans-ferulic acids) Protocatechuic acid	203/620 µg/g	10
A. paniculatus/A. caudatus seeds	$100.92 \pm 8.7/4.65 \pm 0.4 \mu q/q$	5
A. caudatus seeds/sprouts	$13.6 \pm 9.4/14.0 \pm 2.1 \mu$ mol/100 g dw	11
A. seeds: 18 different genotypes	up to 17.2 μg/g*	8
<i>p-Hydroxybenzoic acid</i> A. paniculatus/A. caudatus seeds	$15.62 \pm 1.3/20.89 \pm 0.8 \mu q/q$	5
A. cruentus seeds: var. Aztec/Rawa	8.5/20.7 mg/kg dw	3
A. hypochondriacus seed flour: var. Tulyehualco/DGETA/Gabriela/Nutrisol	1.7/2.0/2.2/1.9 µg/g flour	3
A. seeds: 18 different genotypes	up to 8.8 µg/g*	8
A. cruentus seeds: 7 accessions Caffeic acid	88.68 to 141.92 mg/kg	7
A. paniculatus / A. caudatus seeds	$51.67 \pm 0.45/55.79 \pm 0.96 \mu$ g/g	5
A. hybridus/A. hypondriacus/A. cruentus seeds: methanol extract A. cruentus seeds: 7 accessions	6.41 ± 0.8/6.49 ± 0.9/6.61 ± 0.7 μg/g dw 3.08 to 5.51 mg/kg	5 9 7
Sinapic acid: A. paniculatus seeds	$0.48 \pm 0.1 \mu g/g$	5
Salicylic acid: A. paniculatus/A. caudatus seeds	$2.65 \pm 0.2/1.92 \pm 0.2 \mu q/q$	5
Caffeoylquinic acids: A. spinosus stems	109.2 ± 15.6/5.5 ± 0.5 mg7100g	12
Cumaroylquinic acids: A. spinosus stems Feruoylquinic acids: A. spinosus stems	54.6 ± 6.0/17.5 ± 2.0 mg/100g 57.4 ± 5.5/6.5 ± 0.2 mg/100g	12

Source: [1] Petras R. Venskutonis and Paulius Kraujalis: Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. *Comprehensive Reviews in Food Science and Food Safety*. Vol.12,2013 .

Phenolic constituents in different species (table):

Table 4–Phenolic constituents in various Amaranthus spp.		
Constituent, material	Content	Ref
Flavonoids		
A. hybridus raw/cooked	16.9 ± 0.8/21.1 ± 0.7 mg QE/100g	13
A. cruentus: treated vegetables	18.6 to 49.4 CE/100 g fw	2
Amaranthus flour	$65 \pm 8 \mu q \text{CE/q dw}$	14
Ethanol extract of hydrolised defatted flour	37.43 ± 2.10 mg RE/100 g dw	4
A. seeds (PI 604671 cultivar)	37.43 ± 0.210 mg RE/100 g dw	15
A. cruentus: dried leaves water extract	$275 \pm 2.8 \ 10^{-2} \ g/kg \ dw$	16
A. hypochondriacus seeds 1.2 M/L HCI in 50% methanol:water	18.66 ± 2.10 mg CE/100 g dw	17
Rutin	i choo 11 211 ching chi, i co g chi	
A. cruentus v. Aztec sprouts light/darkness	690/300 ma/ka dw	3
A. cruentus v. Rawa sprouts light/darkness	620/460mg/kg dw	3
A. hypochondriacus seed flour: Gabriela/Nutrisol/Tulyehualco/DGETA var.	4.0/4.7/10.1/5.8 μg/g flour	6
A. hypochondriacus leaves/stems/flowers/seeds (full flowering)	13950 ± 566/4543 ± 67/11925 ± 180/70 ± 7 mg/kg	18
·····	dw	
A. caudatus leaves/stems/flowers/seeds (full flowering)	12010 ± 658/3505 ± 149/6130 ± 226/55 ± 3 mg/kg dw	18
A. hybrid leaves/stems/flowers/seeds (full flowering)	27500 ± 1626/3723 ± 124/15426 ± 532/99 ± 4 mg/kg dw	18
A. retroflexus leaves/stems/flowers/seeds (full flowering)	$13050 \pm 636/3360 \pm 99/8725 \pm 50/11 \pm 1 \text{ mg/kg dw}$	18
A. tricolor leaves/stems/flowers/seeds (full flowering)	$2385 \pm 203/932 \pm 54/459 \pm 30/7 \pm 1$ mg/kg dw	18
A. seeds: 18 different genotypes	up to 68 µg/g	8
A. spinosus whole plant powder	0.15%	19
A. spinosus stems	36.4 ± 9.8 mg/100g	12
Isoquercetin: A. hypochondriacus seed flour freeze dried methanol:water	0.5/0.5/0.3 μg/g flour	6
extract (70:30): var. Tulyehualco/Nutrisol/DGETA/Gabriela	C9 + 2:CE + E 77 /E1EE + 20E:E7CE + 70 /2092 +	18
Quercetin: total:released from rutin: A. hypochondriacus seeds/flowers/stems/leaves (beginning of growth/harvest time/full	68 ± 3:65 ± 5.77/5155 ± 205:5765 ± 70/3083± 152:3411 ± 76/(6765 ± 191:6531 ± 433/8750±	10
flowering)	$566:7322 \pm 541/7375 \pm 262:7704 \pm 289$) mg/kg dw	
Quercetin: total:released from rutin: A. hybrid/A. caudatus/A.tricolor leaves	15600 ± 424:16913 ± 505/6695 ± 219:7755 ± 685/	18
(full flowering)	1395 ± 78:1217 ± 105 mg/kg dw	
Quercetin diglycoside: A. spinosus stems	1.9 ± 0.3 mg/100g	12
Quercetin-3-O-glucoside: A. spinosus stems	9.0 ± 1.9 mg/100g	12
Nicotiflorin: A. hypochondriacus seed flour: var. Tulyehualco/DGETA/Gabriela/Nutrisol	5.5/5.6/7.2/4.8 μg/g flour	6
Nicotifiorin: A. seeds: 18 different genotypes	up to 6.1 µg/q*	8
Vitexin: A. cruentus v. Rawa seeds	410 mg/kg dw	833
Isovitexin: A. cruentus v. Rawa seeds	266 mg/kg dw	3
Kaempferol diglycoside: A. spinosus stems	7.0 ± 1.8 mg/100g	12
Tannins	0.000 + 0.11 (0.12 + 0.040/ #**	0
A. hypochondriacus/A. cruentus seeds A. caudatus seeds raw/extruded	$0.060 \pm 0.11/0.12 \pm 0.04\%$ dw	9 20
A. cruentus: treated vegetables	1305 ± 0.23/1284 ± 0.52 mg CE/100g 5.4 to 20.4 mg/100 g	20
Amaranthus 8 varieties	0.043 to 0.116% CE	21
Amaranth seeds: dark/light	1.04 to 1.16/0.8 to 1.2 mg/g	22
Amaranthus 10 samples	0.8 to 4.2 mg/g	23
Amaranthus samples	0.4 to 1.2 mg/g	24
Polyphenolics: A. cruentus (4genotypes)/A. hybridus (1)	4.5 to 5.2/4.1 mg tannic acid/g	25
Total anthocyanins: A. cruentus var. Aztec/Rawa seeds Anthocyanins: A. hypochandriacus seeds 1, 2 M/L HCLin EO04 MoOH:W	103.6 ± 10.4/90.83 to 9.2 mg CGE/100 g dw	26
Anthocyanins: A. hypochondriacus seeds 1.2 M/L HCI in 50% MeOH:W	35.33 ± 1.70 mg/100 g dw	
dw, dry weight; fw, fresh weight; W, water; MeOH, methanol; E, extract; t/r from R, total/released from rutin; C	GE, cyanidine-3-glucoside equivalents; CE, catechin equivalents; RE, rutin equivalents; QE	quercetin

Source: [1] Petras R. Venskutonis and Paulius Kraujalis: Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comprehensive Reviews in Food Science and Food Safety. Vol.12,2013.

um, um vergm; im, insen weight; im, water, MeUH, methanol; E, extract; Lr/r from R, total/released from rutin; CGE, cyanidine-3-glucoside equivalents; CE, catechin equivalents; RE, nutin equivalents; QE, quercetin equivalents; TAE, tannic acid equivalents; "Measured from the bars in the provided figures." I Camel and others (2006); Z Adebooye and others (2008); J Pakko and others (2004); Mošovska and others (2001); S Klimiczak and others (2002); 6 Barba de la Rosa and others (2009); 7 Ogrodowska and others (2012); 8 Steffersen and others (2011); 5 Goinstein and others (2008); 10 Burzel and others (2005); 11 Alvarez-Jubete and others (2010); 12 Stimizing and others (2004; 13 Adetegha and Dobh (2011); 14 Chiopicka and others (2012); 14 Notosicka and others (2008); 10 Bob and others (2005); 11 (J); 18 Kalinova and Dadakova (2009); 19 Usynarshi and dethers (2007); 19 Harvers (2007); 11 (J); 18 Kalinova and Dadakova (2009); 19 Suryarshi and others (2007); 12 Surzing and others (2007); 11 (J); 18 Kalinova and Dadakova (2009); 19 Kalinova (2009); 10 Kalinova (2009); 19 Kalinova (2009); 19 Kalinova (2009); 19 Kalinova (2009); 10 Kalinov

Plant composition:

- The total ash, acid insoluble ash, water-soluble ash values and sulfated ash were observed to be 6.33%, 3.60%, 2.44% and 0.80% w/w respectively. Alcohol soluble and water-soluble extracting values of the leaves were observed to be 6.40%, 3.30%, respectively.
- Different extracts from A. viridis L. showed different biological activities. Ethyl acetate extract showed higher free radical scavenging and antiinflammatory activities but no anticancer activity. Ethyl ether extracts showed strong anticancer activities.

•	Leaves are usually higher in their chemical
	constituents than the stems and roots.

- Stem extract has been credited with antimalarial activity.
- Seed extract displays comparative higher antiproliferative outcome over the stem extract.

Table 5: A preliminary phytochemical screening of active constituents of the different organs of Amaranthas species										
	Amaranthus graecizans			Amaranthu	Amaranthus lividus			Amaranthus viridis		
Test	Leaves	Stems	Roots	Leaves	Stems	Roots	Leaves	Stems	Roots	
Alkaloids	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	
Glycosides and/or carbohydrates	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	
Flavonoids	+ve	+ve	+ve	$+\mathbf{vc}$	+ve	+ve	+vc	+ve	+ve	
Sterols	+ve	+ve	+ve	+vc	+ve	+ve	+ve	+ve	+ve	
Tannins	+ve	+ve	-ve	+ve	+ve	+ve	+ve	+ve	ve	
Saponins	-ve	-ve	-ve	+ve	-ve	-ve	+ve	+ve	-ve	
Sulphates	-ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	+ve	
Chlorides	-vc	+ve	-ve	+vc	+ve	+ve	+ve	+ve	+ve	
+we: Present we: Absent										

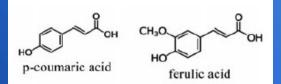
+ve: Present, -ve: Absent

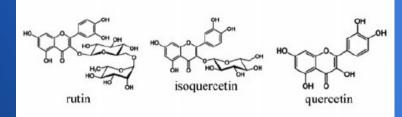
Source: [2] Ziada A, El-Halawany EF, Mashaly IA and Masoud GF: Autecology and Phytochemistry of Genus Amaranthus in the Nile Delta, Egypt. Asian Journal of Plant Sciences 7 (2): 119-129, 2008.

Table 1

Phytochemical screening of various fractions of *A. graecizans* subsp. *silvestris* (Vill.) Brenan.

Test	Methanolic extract	n-Hexane fraction	Chloroform fraction	Ethyl acetate fraction	n-Butanol fraction	Aqueous
Terpenoids	-	++	-	++		-
Flavonoids	++	-	++	+++	+++	+
Tannins	++	-	++	+++	+++	+++
Alkaloids	+++	++++	+++	++	+++	-
Carbohydrates	+++	-	++	-	+++	+++
Sterols	+++	+	++	+		-
Cardiac glycosides	+	-	+++	***		-
Saponins	+	++++	+++	+	-	-
Proteins	-	-	-	-	+++	+


+: Presence; -: Absence.


<u>Source:</u> [3] Ishtiaq S, Ahmad M, Hanif U, Akbar S, Mehjabeen5, Kamran SH: Phytochemical and in vitro antioxidant evaluation of different fractions of *Amaranthus graecizans* subsp. silvestris (Vill.) Brenan. Asian Pac J Trop Med 2014; 7(Suppl 1): S342-S347.

Chemical composition (table and figures):

Table 2: Phyto constituents of Amaranthus spinosus Linn.		
Therapeutic constituents	Plant part	References
Amaranthine, isoamaranthine, hydroxycinnamates, quercetin and	stems	[49]
kaempferol glycosides		
7-p-coumaroyl apigenin 4-O-β-D-glucopyranoside, α-	whole plant	[50]
xylofuranosyl uracil, β -D-ribofuranosyl adenine and β -sitosterol		
glucoside.		
Rutin and quercetin	whole plant	[51, 52]
Amaranthoside- a lignan glycoside	whole plant	[53]
Amaricin- a coumaroyl adenosine		
stigmasterol glycoside		
α-spinasterol	roots	[54]
hectriacontane	leaves and stem	
oleanolic acid, D-glucose and D-glucuronic acid		[cc]
aliphatic ester- α -spinasterol octacosanoate	roots	[55]
saponin-β-D- glucopyranosyl-(1-4)-β-D-glucopyranosyl –(1-4)-β-		
D-glucuronopyranosyl-(1-3)-oleonolic acid		
Saponin I- β-D- glucopyranosyl-(1-2)-β-D-glucopyranosyl –(1-2)-	roots	[56]
β-D-glucupyranosyl-(1-3)-α-spinasterol		
Saponin-II- β-D-glucopyranosyl-(1-4)-β-D-glucopyranosyl-(1-3)-		
a-spinasterol		

<u>Source</u>: [1] Tanmoy G, Arijit M, Tanushree S, Jagadish S, Kumar MT: Pharmacological Actions and Phytoconstituents of *Amaranthus spinosus* Linn: A Review. *International Journal of Pharmacognosy and Phytochemical Research* 2014; 6(2); 405-413.

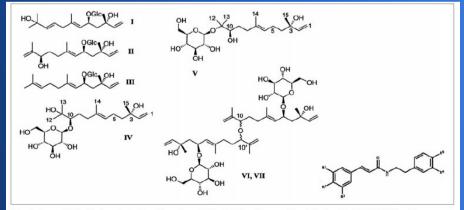


Figure 1–Amarantholidosides from A. retroflexus (Fiorentino and others 2006) and cinnamoylphenethylamines (R = H, OH, OMe) from A. hypochondriacus and A. mantegazzianus (Pedersen and others 2010).

<u>Source:</u> [1] Petras R. Venskutonis and Paulius Kraujalis: Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. *Comprehensive Reviews in Food Science and Food Safety*. Vol.12,2013.

Recent clinical research:

- Methanolic extract of *A. spinosus* demonstrated **potent anti-diabetic**, **anti-hyperglycemic**, **antihyperlipidemic and spermatogenic effects** in alloxaninduced diabetic rats [4].
- The petroleum ether, ethanol extract of whole plant and methanol extract of leaves of *A. spinosus* exhibited dose-dependant antiinflammatory effect in carrageenan induced paw oedema, and produced significant inhibition of acetic acid induced increase in vascular permeability [5]. *A. spinosus* extract also showed a highly specific prostaglandin synthesis inhibitory activity *in-vitro* in an antiinflammatory model test system [6].
- Different Amaranthus species displayed in vivo analgetic activity in mice [7].
- The in vivo antimalarial activity of extracts from A. spinosus was reported in mice [8].
- The extract of *A. spinosus* displayed **diuretic activity, acting as a thiazide-like diuretic.** It increased the Na+, K+, Cl⁻ excretion, caused alkalinization of urine, showed strong saluretic activity and carbonic anhydrase inhibition activity. These effects were observed predominantly at 500 mg/kg dose and there was no dose-response relationship [9].
- A. spinosus extracts exhibited moderate to good antimicrobial activity against a range of gram positive and gram negative bacteria [10].
- The stimulatory effect of wild A. spinosus water extract was investigated on spleen cells from female mice in vitro. The extract significantly stimulated B-lymphocytes in a dose response manner with subsequent T-lymphocytes proliferation, thus showed good immuno-stimulating activity [11].
- Extracts from *A. spinosus, A. hybridus, A. viridis and A. lividus* exhibited **significant antitumor effects** in Ehrlich ascites carcinoma (EAC) bearing mice [12] [14] or in colon and liver cancer cell lines [13].

References

^{4]} Sangameswaran B, Jayakar B. Anti-diabetic, antihyperlipidemic and spermatogenic effects of Amaranthus spinosus Linn. on streptozotocin-induced diabetic rats. J Nat Med 2008; 62: 79-82.

^{5]} Olumayokun AO, Babatunde RO, Temitope OE. Antiinflammatory Properties of Amaranthus spinosus Leaf Extract. Pharm Biol 2004; 42: 521-525.

⁵ Baral M, Chakraborty S, Chakraborty P. Evaluation of anthelmintic and anti-inflammatory activity of Amaranthus spinosus Linn. Int J Current Pharm Res2010; 2: 44-47.

⁷ Kumar BSA, Kuruba L, Jayaveera KN, Murgan CV, Kumar PAA, Kumar RV, et al. Pain management in mice using methanol extracts of three plants belongs to family Amaranthaceae. Asian Pac J Trop Med 2010; 3: 527-530.

^{8]} Hilou A, Nacoulmaa OG, Guiguemdeb TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol 2006; 103: 236-240.

^[9] Amuthan A, Chogtu B, Bairy KL, Sudhakar, Prakash M. Evaluation of diuretic activity of Amaranthus spinosus Linn. aqueous extract in Wistar rats. J Ethnopharmacol 2012; 140: 424-427.

^{10]} Bulbul IJ, Nahar L, Ripa FA, Haque O. Antibacterial, Cytotoxic and Antioxidant Activity of Chloroform, n-hexane and Ethyl Acetate extract of plant Amaranthus spinosus. International Journal of PharmTech Research. Vol.3, No.3, pp 1675-1680, July-Sept 2011.

^[11] Lina BF, Chiangb BL, Lin JY. Amaranthus spinosus water extract directly stimulates proliferation of B lymphocytes in vitro. Int Immunopharmacol 2005; 5: 711-722.

^{12]} Samuel Joshua L, Pal VC, Senthil Kumar KL, Sahu RK, Roy A. Antitumor activity of the ethanol extract of Amaranthus spinosus leaves against EAC bearing Swiss albino mice. Der Pharmacia Lettre 2010; 2: 10-15.

^[13] Shan Jin Y, Xuan , Chen M, Chen J, Jin , Piao J, and Tao J: Antioxidant, Antiinflammatory and Anticancer Activities of Amaranthus viridis L. Extracts. Asian Journal of Chemistry; Vol. 25, No. 16 (2013), 8901-8904.

^{14]} Al-Mamun A, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KMF, Reza A and Ferdousi Z: Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary and Alternative Medicine (2016) 16:157.

Pharmacological activities (table):

Table 1: Pharmacological activities of Amaranthus spinosus Linn.						
Pharmacological activities	Parts use	Extract	Reference			
Hepatoprotective Activity						
against carbon tetrachloride (CCl4) induced hepatic	whole plant	ethanolic extract	[12, 13]			
damage in rats.		a 10	54 A			
against d-galactosamine/ lipopolysaccharide (d-	whole plant	ethanolic extract	[14]			
GalN/LPS) -induced liver injury in rats. against paracetamol-induced liver damage in Wistar rat						
against paracetanior induced river damage in wistar fat	whole Plant	ethanol extract	[15]			
Antioxident activity			[]			
(a) non-enzymatic haemoglycosylation assay	whole Plant	petroleum ether,	[16, 17]			
		chloroform, methanol,				
		and water extract				
(b) DPPH assay	leaves	methanolic extract chloroformn-hexane	[17]			
	ICAVES	and ethyl acetate	[1/]			
	leaves	extract	[20]			
Antigenic and allergenic activity	pollen		[18]			
Anti diabetic activity	•					
Alpha amylase enzyme inhibition by CNPG3 (2-chloro-4-	leaves	methanol extract	[21]			
nitrophenol a-D-maltotrioside)						
Streptozotocin-induced diabetic rats			[22]			
Alloxan-induced diabetic rats	stems	methanol extract methanol extract	[22]			
	stems	methanol extract	[23]			
Anti-inflammatory activity						
carrageenan induced paw oedema	leaves	ethanol extract	[24]			
	whole plant					
	leaves	methanol extract	[26]			
acetic acid induced	whole plant	petroleum ether and	[25]			
		ethanolic extract methanol extract	[27]			
		methanol extract	[27]			

Source: [1] Tanmoy G, Arijit M, Tanushree S, Jagadish S, Kumar MT: Pharmacological Actions and Phytoconstituents of Amaranthus spinosus Linn: A Review. International Journal of Pharmacognosy and Phytochemical Research 2014; 6(2); 405-413.

Pharmacological activities (table):

Table 1: Pharmacological activities of Amaranthus spinosus Linn.						
Pharmacological activities	Parts use	Extract	Reference			
peripheral analgesic activity	leaves		[28]			
Anthelmintic activity Indian earthworms (<i>Pheritima Posthuma & T</i> <i>tubifex</i>)	<i>Tubifex</i> whole plan	nt aqueous ex	tracts [27, 29]			
Anti-malarial activity Plasmodium Berghei	stem	aqueous ex				
Heamatologic activity	leaf whole except roo	ethanol ext plant methanolic ot	[]			
Immunomodulatory activity						
Stimulatory effect on spleen cells from female mice Dexamethasone (DEX)-induced apoptosis in r		water extra	ct [34]			
primary splenocytes. cell-mediated immune response (CMIR)	leaves	water extra pet. ether alcoholic e	r, aqueous,			
	leaves	alcohome e.	[36]			
Gastrointestinal activity charcoal meal method	leaves	2010016 0	[27]			
charcoal meal method	Ieaves	aqueous ex aqueous-m				
Laxative activity	whole plar	•	[38]			
Anti-diarrheal and anti-ulcer activity charcoal meal	whole plar	nt ethanol ext	ract [39]			
Antitumor activity Bring shripp labelity biggsony	leaves	methanol e	[20]			
Brine shrimp lethality bioassay EAC bearing mice	leaves	ethanol ext				

Table 1: Pharmacological activities of Amaranthus spinosus Linn.							
Pharmacological activities	Parts use	Extract	Reference				
Antitumor activity	•	•					
Brine shrimp lethality bioassay	leaves	methanol extract	[20]				
EAC bearing mice	leaves	ethanol extract	[40]				
Antibacterial activity	leaves	chloroform , n-hexane	[20]				
		and ethyl acetate					
		extracts					
		ethanol and aqueous					
		extracts					
	roots	hexane, ethyl	[41]				
		acetate,					
	leaves	dichloromethane and methanol extracts	[42]				
Diuretic activity	whole plant	aqueous extract	[43]				
Other activities							
biochemical role	whole plant	methanolic extract	[44]				
	except root						

Source: [1] Tanmoy G, Arijit M, Tanushree S, Jagadish S, Kumar MT: Pharmacological Actions and Phytoconstituents of Amaranthus spinosus Linn: A Review. International Journal of Pharmacognosy and Phytochemical Research 2014; 6(2); 405-413.

Cytotoxic effect:

- Potent cytotoxic properties of *A. spinosus* were determined on brine shrimp nauplii. The assay was performed using *A. Salina*, after 24 hours of exposure, and vincristine sulphate was used as a positive control [10].
- The LC50 values for standard vincristine sulphate, chloroform, n-hexane and ethyl acetate extract of *A. spinosus* were 7.55µg/ml, 18.15 µg/ml, 29.15°µg/ml, 18.15 µg/ml, respectively (see figure).
- The n-hexane extract showed highest cytotoxic activity (LC50 = 29.15 μg/ml).

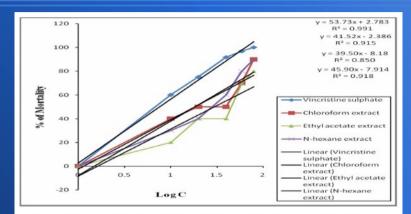


Figure 1: Determination of LC_{50} values for standard and chloroform, n-hexane, ethyl acetate extracts of leaves *Amaranthus spinosus* from linear correlation between logarithms of concentration versus percentage of mortality.

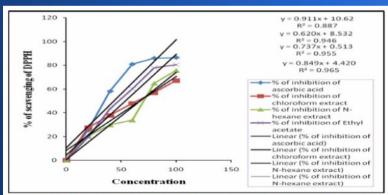


Figure 2: Determination of IC_{\$0} values for standard and chloroform, n-hexane, ethyl acetate extracts of leaves *Amaranthus spinosus* from linear correlation between logarithms of concentration versus percentage of scavenging of DPPH.

Reference:

^[10] Bulbul IJ, Nahar L, Ripa FA, Haque O: Antibacterial, Cytotoxic and Antioxidant Activity of Chloroform, n-hexane and Ethyl Acetate extract of plant Amaranthus spinosus. International Journal of PharmTech Research. Vol.3, No.3, pp 1675-1680, July-Sept 2011.

Anticancer activity:

- Extracts from A. hybridus and A. lividus [14] and the ethanol extract of A. spinosus leaves [12] exhibited significant antitumor effects in Ehrlich ascites carcinoma (EAC) bearing mice.
- In one study, the ethanol extract of its leaves, given orally to EAC-bearing mice at the dose of 100 and 200 mg/kg body weight for 16 days, led to decrease in tumor volume and viable cell count, and increase in mean survival time and non-viable tumor cell count in comparison to the control group [12].
- Restoration of hematological and biochemical parameters towards normal was also observed [12].
- Anticancer activity was dose-dependant.

Treatment	Median Survival time (days)	Percentage Increase in Life Span
EAC Control	23.2±1.32	100
EAC+Ethanol Extract (100 mg/kg)	33.8±2.5	143
EAC+Ethanol Extract (200 mg/kg)	40.3±2.2	175
EAC+5FU 20 mg/kg	48.4±1.5	209

Table 2 Antitumor activity of ethanol extract of A. spinosus leaves on median survival time

 Table 1 Antitumor activity of ethanol extract of A. spinosus leaves on tumor volume, Viable tumor cells count and Non viable tumor cells count

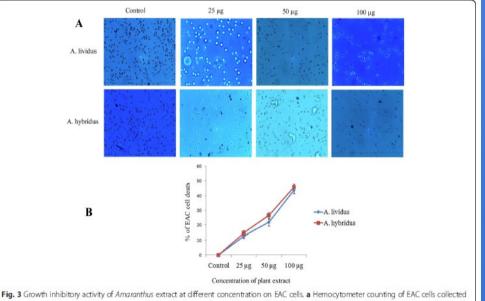
Treatment	Tumor volume (ml)	Viable tumor cells count (10 ⁶ cells/mouse)	Non viable tumor cells count (10 ⁶ cells/mouse)
EAC Control	4.9±0.91	10.2±0.31	0.4±0.03
EAC+Ethanol Extract (100 mg/kg)	3.8±0.83	7.3±0.03	0.7±0.05
EAC+Ethanol Extract (200 mg/kg)	2.8±0.53*	4.8±0.09*	0.5±0.03
EAC+5FU 20 mg/kg	1.9±0.48*	3.1±0.17*	0.9±0.01
	pean + SEM = 6 in	each group, *P<0.001 compa	red to FAC control group

 Table 3 Antitumor activity of ethanol extract of A. spinosus leaves on hematological parameters

	Hb	Total RBC	Total WBC	D	ifferential cou	nt
Treatment	content	cells/ml×10 ⁶	cells/ml×10 ⁶	Lymphocyte (%)	Neutrophils (%)	Monnocytes (%)
EAC Control	13.2±0.9	1.34±0.2	15±1.0	24.0±8.9	73.0±9.8	3±0.9
EAC+Ethanol Extract (100 mg/kg)	14.8±0.6	1.39±1.2	10.3±0.3	42±5.2	51±4.6	3±0.5
EAC+Ethanol Extract (200 mg/kg)	16.4±1*	1.45±0.2*	6.9±1.0*	62±4.6	33±2.1	2±0.8
EAC+5FU 20 mg/kg	16.3±0.7*	1.40±0.09*	6.7±0.5*	68±3.0	30±2.0	2±0.1*
Values are exp	ressed as med	an \pm SEM, n = 6	in each group. *	P<0.001 compa	red to EAC con	trol group.

Reference:

[12] Samuel Joshua L, Pal VC, Senthil Kumar KL, Sahu RK, Roy A. Antitumor activity of the ethanol extract of *Amaranthus spinosus* leaves against EAC bearing Swiss albino mice. *Der Pharmacia Lettre* 2010; 2: 10-15.


[14] Al-Mamun A, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KMF, Reza A and Ferdousi Z: Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary and Alternative Medicine (2016) 16:157.

Anticancer activity:

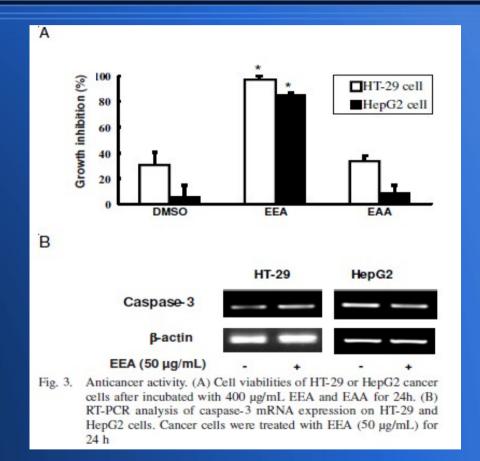
 In another study on two species of Amaranthus, administration of extracts from A. hybridus and A. lividus extract (100 µg/ml) led to 45% and 43% growth inhibition of Ehrlich's ascites carcinoma cells (EAC) [14]. Histological analysis showed marked features of apoptosis including cell shrinkage, condensation of cytoplasm and aggregation of apoptotic bodies [14] (see figure).

$\begin{array}{l} \textbf{Table 2} \mbox{ Half maximal inhibitory concentration (IC_{50}) of the AL} \\ \mbox{ and AH along with BHT standard} \end{array}$		
Samples	IC _{so} values (µg/ml)	
A. lividus	93 ± 2.44	
A. hybridus	28±1.8	
BHT	12±0.5**	
Each value is represented as mean	\pm SD (n = 3), significance was set at P < 0.01	

Each value is represented as mean \pm SD (n = 3), significance was set at P < 0.0(**) with respect to BHT standard

from both control and treated groups was determined using trypan blue dye after six days of EAC cells injection. **b** Percentage of growth inhibition of EAC cells on each concentrations of *Amaranthus* extract (counting the percentage in treated groups by considering zero cell death in control group). Each value represents a mean \pm SD (n = 6)

Plants	Average count of EAC cells per cell of hemocytometer (out of 16 cells)				
	Control	25 µg	50 µg	100 µg	
A. lividus	32 ± 0.52	28 ± 0.56	25±0.38*	18±0.33**	
A. hybridus	32 ± 0.52	27.37±0.5	23.37 ± 0.58*	17.25 ± 0.41**	

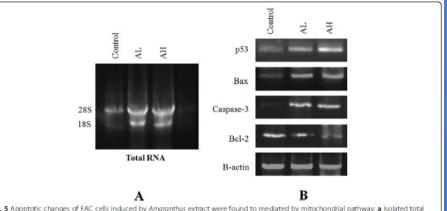

Each value is represented as mean \pm SD (n = 6), significance was set at P < 0.05 (*) and P < 0.01 (**) with respect to control

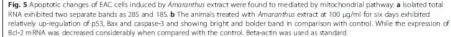
References:

[14] Al-Mamun A, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KMF, Reza A and Ferdousi Z: Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary and Alternative Medicine (2016) 16:157.

Anticancer activity:

- Ethyl ether extract (EEA) from *A. viridis* (400 µg/mL) showed inhibition of tumor growth rate on 24h basis by 96.9 and 85.9% in HT-29 and HepG2 cells [12] (see figure).
- However, ethyl acetate extract (EAA) from *A. viridis* displayed no significant anticancer activity [12].




References:

^[12] Shan Jin Y, Xuan, Chen M, Chen J, Jin, Piao J, and Tao J: Antioxidant, Antiinflammatory and Anticancer Activities of *Amaranthus viridis* L. Extracts. *Asian Journal of Chemistry*; Vol. 25, No. 16 (2013), 8901-8904.

Molecular pathways and targets:

- Gene expression pattern analysis showed that ethyl ether extract (EEA) from *A. viridis* up-regulated the expression of caspase-3 in HT-29 cells, however not in HepG2 cells [13].
- In another study on EAC with A. hybridus and A. lividus, it was established that apoptosis is mitochondria-mediated with down-regulation of Bcl-2 mRNA and up-regulation of p53, Bax and caspase-3 [14].
- It is postulated that the mitochondrial-activated apoptosis pathway is activated by elevated levels of ROS (reactive oxygen species) produced by the phytochemicals (lectins, polyphenols, flavonoids) present in Amaranthus extract.
- It is unknown what bioactive compound played the key anti-proliferative role on EAC cells [14].

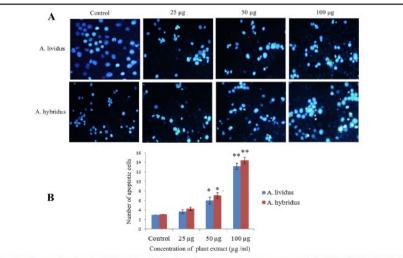


Fig. 4 Detection of apoptotic cells using DAPI staining after six days of treatment. a Treatment was started after 24 h of EAC cells injection, at the concentration of 25, 50 and 100 µg/ml. Marked apoptotic features such as membrane blebbing, cell shrinkage, chromatin condensation, aggregation of apoptotic bodies and brightly stained nucleus under blue fluorescence etc were observed in the treated groups, in contrast to round shaped and less brightly stained control cells. b Number of apoptotic cells per side was estimated by counting apoptotic cells in five different fields. Each value represents as mean ± SD (n = 3). Significance was set at P <0.05 (*) and P <0.01 (**) with respect to control</p>

References:

[13] Shan Jin Y, Xuan , Chen M, Chen J, Jin , Piao J, and Tao J: Antioxidant, Antiinflammatory and Anticancer Activities of *Amaranthus viridis* L. Extracts. *Asian Journal of Chemistry*; Vol. 25, No. 16 (2013), 8901-8904.

[14] Al-Mamun A, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KMF, Reza A and Ferdousi Z: Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. *BMC Complementary and Alternative Medicine* (2016) 16:157.

Toxicity:

- A. spinosus showed no toxicity or mortality up to a dose of 2000 mg/kg body weight in experimental rats [15]. The LD50 of the ethanol bark extract is greater then 2000 mg/kg [15]. The aqueous extract of the bark of A. spinosus has a lower toxicity LD50 value of 1450mg/kg [15].
- *A. spinosus* was reportedly the culprit in cases of spontaneous poisoning of cattle in Brazil during a severe drought. Clinical signs appeared after 30 days in 11 out of 35 adult cows and 8 out of 20 yearling calves which were introduced into a 15 ha maize plantation heavily infested with *A. spinosus*. However, only one calf died within 3-7 days [16].
- The clinical signs of intoxication were: depression, anorexia, marked weight loss, foul smelling diarrhea occasionally tinged with blood, and subcutaneous edema. In post-mortem findings from 5 animals, the mucosa of the digestive system showed necrotic glossitis, oesophagitis and pharyngitis, abomasal hemorrhages and button-like ulcerations in the large intestine. The contents of ileum, colon and rectum were blood stained. Hemorrhagic diathesis was apparent by the presence of intra-abdominal hematomas. Histologically, there was marked tubular nephrosis associated with epithelial regeneration and hyaline intra-tubular casts. The mucosal lesions consisted of large necrotic areas in the epithelium which extended into the lamina propria and were associated with inflammatory reaction with massive infiltrations of mastocytes [16].
- A. spinosus also caused an outbreak of acute poisoning in ewes in southern Brazil. The clinical signs were uremic halitosis, loss of ruminal motility, dispnoea and abortion. The kidneys showed pale red spots, white streaks extending from the cortex to medulla and congestion. Histologically, there was severe acute tubular nephrosis, dispersed foci of coagulative necrosis in the liver, areas of coagulative necrosis in the myocardium and acute incipient interstitial pneumonia and secondary bronchopneumonia. Hyperkalemia secondary to renal insufficiency was the underlying cause of myocardial coagulative necrosis observed in seven sheep [17].

References:

- [16] Cai Y, Sun M, Corke H. Antioxidant activity of betalains from plants of the amaranthaceae. J Agric Food Chem 2003; 51: 2288-2294.
- [17] Sharma S, Kathuria PC, Gupta CK, Nordling K, Ghosh B, Singh AB. Total serum immunoglobulin E levels in a case-control study in asthmatic/allergic patients, their family members, and healthy subjects from India. *Clin Exp Allergy* 2006; 36: 1019-1027.

^[15] D.J. Ecobichon: Fixed Dose Procedure, Guidline 420. The Basis of Toxicity Testing, 2nd edition, (CRC Press, 1997) 43.

Conclusions:

- Data suggest that *Amaranthus* plant extract inhibits the growth of cancer cells by induction of apoptosis.
- However, the complete mechanisms underlying the therapeutic effects such as cytotoxicity need to be investigated as an approach for the development of effective combinational therapy against a range of cancer cell line.

