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Abstract

Automated Market Makers (AMMs) are a class of smart contracts on
Ethereum and other blockchains that ”make markets” autonomously. In
other words, AMMs stand ready to trade with other market participants
that interact with them, at the conditions determined by the AMM. In this
this paper, which relies on the existing and growing corpus of literature avail-
able, we review and present the key mathematical and quantitative finance
aspects that underpin their operations, including the interesting relationship
between AMMs and derivatives pricing and hedging.

This paper is a chapter of The AMM Book (theammbook.org) which
embeds it into a wider and less technical context, including economics, reg-
ulations and a description of the related eco system.
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1 Preface

Automated Market Makers, short AMMs, are smart contracts that autonomously
make markets in tokens on a blockchain, in particular the Ethereum blockchain.
We will in the years to come see a convergence between traditional finance (“TradFi”)
and the emerging decentralized finance (“DeFi”), and whilst it is too early to un-
derstand where it will end up, it is highly likely that AMMs will play a central
role in this convergence.

AMMs, like trading venues in traditional finance, are places where assets change
owners. That means they are in the center of the financial system – without them
the financial system could not exist. They are also highly complex entities, both
in their own right, and in their interaction with other parts of the system. This is
the reason why we are currently working on The AMM Book (theammbook.org)
- it is important for everyone, especially in the TradFi and regulatory community
who have not yet been exposed to the topic, to understand what those AMMs are
and how they work.

The book covers AMM from various different angles – their technical implemen-
tation, their economics, their regulation, and, last but certainly not least, their
internal mechanics. AMMs are following a passive trading strategy: they offer
to trade with everyone who approaches them, on the terms determined by their
internal algorithms. It is well known since Black, Scholes and Merton wrote their
seminal papers [Black Scholes 73, Merton 73] that trading strategies and financial
derivatives are closely related. This suggests – and it turns out this is true – that
the quantitative finance apparatus that underpins modern option pricing theory
is very well suited to study AMMs.

We reserved a chapter in our book describing and reviewing the quantitative fi-
nance aspects of Automated Market Makers. This is a highly specialst topic that
is covered both by industry practitioners and by academics in the world’s lead-
ing universities, with those two groups exhibiting a significant overlap. The pri-
mary vehical for advancing knowledge in that world are peer-reviewed papers. We
therefore decided to publish this chapter independently from the book so that the
community can review it – and to publish it as early as possible so that at the
time the book is ready for publication the paper has undergone a thorough review
and revision process.

Without further ado, please let us thank you for reading this paper and please, do
contact us with any comments, suggestions and in particular errors.

London, January 2022
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Stefan Loesch (stefan@topaze.blue)

2 Introduction

An AMM is an automated agent, specifically a smart contract on a blockchain,
that is holding two or more assets, and that is willing to trade with anyone who
matches the AMM’s price. In this paper, we only consider independent or un-
tethered AMMs, ie AMMs who do not rely on any external information in their
decision making process.

If we place ourselves at a specific point in time, with a specific state of the AMM
(notably, its current asset holdings) then the response of the AMM is determined
only by its response algorithm. There are various ways to specify this algorithm,
but essentially it must allow the AMM, and its users, to determine at which ef-
fective price the AMM is willing to trade for every potential transaction that is
presented to it.

To give an example – and to already introduce some notations we will use through-
out this paper – we assume the AMM contains two tokens, CSH and RSK. CSH is
the numeraire asset, and RSK is the risk asset. Those designations are arbitrary
and could be swapped, but it is one of the inconveniences of mathematical finance
that for most calculation it is necessary to choose a numeraire, and this choice is
often arbitrary.

There are numerous ways how the response algorithm could be structured, de-
pending on the practical application. Example include the following

• Fixed Price Token Distribution Contract. A fixed price token distri-
bution contract is selling RSK at a fixed price against CSH, until it runs out
of RSK tokens. At this point it halts, as it is not buying RSK at any price.

• Increasing Price Token Distribution Contract. An increasing price
contract increases the price with the number of tokens sold. If this price
goes to infinity when the amount of tokens held in the contract goes to zero
then it is possible to ensure that its token supply is never fully depleted.
This contract will also only sell RSK but never buy it.

• Fixed Price Trading Contract. A fixed price trading contract is similar
to the corresponding token distribution contract, except that it is not only
selling RSK, but it is also buying it, at a fixed price against CSH. This
contract stops trading in one direction if runs out of either RSK or CSH. It
does not halt however, it will always trade in at least one direction.
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• Increasing Price Trading Contract. This contract is also similar to its
corresponding distribution contract, except that it is trading both ways. If
the trading price of RSK goes to infinity when the contract runs out of
RSK, and to zero when it runs out of CSH, the contract will never run out
of tokens, and therefore will always be willing to trade in either direction,
albeit possibly at prices that are unattractive when compared to the market.

3 General AMM Mathematics

3.1 Key concepts

We have seen that an AMM requires a response algorithm to handle the trades
proposed to it. There are a number of different yet ultimately equivalent ways to
formalize this algorithm. The first one is the price response function (PRF)
that we denote π(∆x). The PRF associates a price to every quantity of RSK that
someone wants to sell (∆x > 0; AMM buys) or buy (∆x < 0; AMM sells). The
price can formally be zero or infinity respectively if the AMM is not ready to trade.

A market maker is expecting to make money buying and selling, and is generally
doing so by quoting a bid/ask spread or charging a fee. Economically the impact of
both is that the price at which an AMM is buying is higher than the one at which
it is buying. This can be modelled with the bid/ask spread which corresponds to
a discontinuity of the price function at ∆x = 0 with

lim
∆x→0+

π(∆x)− lim
∆x→0−

π(∆x) = s

where s is the bid/ask spread. Also generally prices worsen for the AMM counter-
party when the trade gets bigger, therefore

x1 > x0 ⇒ π(x1) ≤ π(x0)

meaning that π(x) is a decreasing function in the AMM’s current portfolio holdings
of RSK, x.

Another way of determining the response is by providing an indifference curve and
a fee curve. The indifference curve y(x) determines the states x, y (quantity
of RSK, CSH respectively) which, ignoring fees, are accessible by trading with
the AMM. So assume the AMM currently holds x0 of RSK and y0 of CSH, with
y0 = y(x0). Then, ignoring fees, the AMM is willing to trade towards any point
x1, y1 with y1 = y(x1) or better. In other words, the AMM is willing to engage
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into an exchange ∆x = x1 − x0 if and only if ∆y = y(x1)− y(x0) or better. Note
that ∆x and ∆y will always have different signs.

We now need to include fees. One way of doing so is with the fee curve ϕ(x, x′)
– which may simplify to ϕ(∆x) – and which corresponds to the amount of CSH
that anyone trading with the AMM must pay over and beyond what is needed to
stay on the indifference curve. In other words

∆yactual(∆x) = ∆y(∆x)± ϕ(∆x)

where the sign ± is chosen in a manner that it is of benefit to the AMM. A common
choice is ϕ(∆x) ∝ ∆y(∆x), ie charging a percentage fee. The fee can either be
held within the AMM asset pool, in which case the pool moves to a different
indifference curve. Alternatively, the fee can be set aside or distributed, in which
case the indifference curve remains the same.

The price function π(∆x) can be recovered from the indifference and fee curves as

πactual(∆x) =
∆yactual(∆x)

∆x
=

∆y(∆x)± ϕ(∆x)

∆x

We conjecture that the other way works equally well and is well defined and unique,
assuming we define the indifference curve as not extracting any fees.

Another, very popular way to determine the indifference curve is by using a char-
acteristic function f(x, y). In this case the indifference curves yk(x) are implic-
itly determined by the condition

f(x, y) = f(x, yk(x)) = k

where k is a constant that identifies a specific indifference curve within the set of
indifference curves described by f .

Finally, another term that is commonly used within the AMM framework is that of
a bonding curve. Unfortunately the meaning of this term is not always consistent
– it can refer to a PRF (with or without fee component), an indifference curve,
or a characteristic function. In order to not add to this confusion we will not use
the term bonding curve here, but will always use one of the specific terms we have
defined above.

To summarize, above we have introduced three mostly equivalent concepts,
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• the price response function (PRF ) which lends itself best to economic anal-
ysis,

• the indifference curve which lends itself best to actual implementation of
AMMs, and

• the characteristic function which is in many ways the most elegant of those
objects and lends itself best to a mathematical analysis.

3.2 The micro economics of the price response function

3.2.1 Demand and supply curves in microeconomics

The PRF is closely related to the concept of demand and supply curves at the base
of microeconomic analysis. Before we move on we give a very brief review of the
topic for those who may not be familiar with it. For a more thorough discussion,
see any microeconomics textbook, eg [Pyndick Rubinfeld].

The concept of the supply curve is rooted in the cost curves which originated
in commodity markets. The context is that there are many different producers
of a fully interchangeable goods (“commodity goods”), and they produce those
goods at a certain individual cost. The cost curve is the curve that first sorts the
producers by their production cost, and that then plots the produced quantities
on the x axis and the corresponding cost on the y axis. By construction the cost
curve is an upward-sloping step function. In practice it is often approximated with
a continuous function. An example for a cost curve is shown in the graphics below

For simplicity we will ignore fixed costs here and assume all costs are variable.
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Also cost can include a cost of equity, in other words a minimum profit margin.
With this conditions it is reasonable to assume that producers are willing to sell
whenever the price is above their individual cost level, and to be content not selling
whenever the price is below. In other words, the cost curve turns into the market
supply curve. It is a two-way association, but generally it serves to associate a
supply level with a given price, as shown in the chart below

Complementing the supply curve is the demand curve. It is based on the same
mental model and it constructed similarly. The assumption is that there are nu-
merous buyers in the market, that they all are willing to buy below a certain
price, and that they are content not buying above that price. Again, those buyers
are sorted by price, this time in descending price order. The resulting demand
curve is a downward-sloping step function that again is often approximated with
a continuous function.

Combining demand and supply curve in the same diagram allows determininig
the equilibrium price, which is at the price level where the supply and demand
curves meet. All buyers to the left of this point are, by construction, willing to
buy at the equilibrium price or below, and all sellers to the left are willing to sell
at the equilibrium price or above. By construction, the quantity sold matches the
quantity bought, so everyone to the left of the intersection point will transact, and
everyone to the right of it will not, and all transactions will happen at the equilib-
rium price. This price is also sometimes referred to as market clearing price as
this is the price at which the market clears, ie where no possible transactions are
open. A combined supply and demand curve and determination of the associated
clearing price is shown below.
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3.2.2 Supply and demand curves in financial markets

The concept of supply and demand curves is also useful in financial markets,
provided one understands the mental model the underpins it.

Let’s start with an excessively simplistic but nevertheless enlightening view of the
world: we assume that every market participant has a view on every asset in the
market, in the sense that they have a view on its fair price. Moreover we assume
that market participants will act on their views, meaning they will be buyers if the
asset is available below what they consider its fair value, and they will be sellers
if someone is willing to pay more.

In a multi-asset world this can get exceedingly complex, so we take refuge in
our two asset world of RSK can CSH. We can then again assemble the market
participants and sort them by their price assessment of RSK vs CSH. Increasing
or decreasing does not matter in this case, and we choose decreasing. In this
case the curve ressembles a demand curve. We know what the supply curve is:
the supply of RSK is fixed, so the supply curve is a vertical line. The market
clearing price is where the vertical line intersects with the demand-like curve we
have constructed. This relationship is shown in the chart below

10



As stated before, this model is overly simplistic. Most market participants do not
trade that way, and would not even trade that way if there were zero transaction
costs. Most people will hold on to their investments for a while. At best we can
assume that they sell above certain sell threshold to take profits, and buy below a
certain buy threshold if they think that there is sufficient potential. This situation
can be described nicely with a supply and demand curve: the demand curve is
people adding RSK to their portfolio on the downside, and the supply curve is
people selling RSK on the upside.

However, reality is even more complex. For example, if markets fall, market par-
ticipants may want to cut their losses, so they sell on the downside. Similarly,
people may want to buy on the upside for fear of missing out. Those dynamics
do not fit into a simple static supply and demand curve model. At the very least
one needs to assume that the market price dynamics itself feeds back into market
supply and demand curves. This destroys a lot of the simplicity and elegance of
this approach.

3.2.3 Supply and demand curves in market making

We have seen under the previous heading that supply and demand curves can be
applied in markets in general, but that they suffer from some shortcomings. One
area where they work well however is in the analysis of market makers, ie market
participants that stand ready to engage in trades in case other market participants
are willing to meet their price.

The best manifestation of supply and demand curves is in a market’s order book,
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more specifically its limit order book (“buy at this price or below; sell at this
price or above”). Those ordder are supply and demand that will hit the market
when prices move. However, the supply and demand from the order book does
not necessarily correspond to the real short term supply and demand. There are
many participants who monitor the market continously which allows them to add
or cancel orders in reaction to price movements. Therefore the effective market
demand and supply is usually different curve shown in the public order book.

With those caveats out of the way, we remind ourselves of the price response
functions (PRFs) that we discussed above: it turns out that is simply describes a
static order book. When prices increase (decrease) the PRF will trigger a known
amount of sell (buy) orders. In other words:

an AMM effectively is a static order book.

3.2.4 Aggregating PRFs

A market is the superpositon of its participants. In fact, it is a linear superposition,
which allows us to easily aggregate the PRFs of multiple AMMs. Moreover it
allows us to treat every liquidity position as its own individual micro AMM, greatly
simplifying the AMM mathematics.

Supply and demand curves and PRFs are aggregated along the x-axis, not the y-
axis. Practically speaking this corresponds to putting all individual positions into
a single big pool and sorting them anew by price. This will interlace the positions
coming from the underlying curves, placing those with similar prices close to each
other. An example for this is shown in the chart below.
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The continous case is exactly the same: if the have two PRFs π1(x), π2(x) then
those will get aggregated along the x-axis. If we denote π−1 the inverse function π
then the aggregated PRF is the inverse of the sum of the inverse of the constituent
functions. Written as formula this becomes

π(x) =
(
π−1

1 (x) + π−1
2 (x)

)−1

where contrary to elsewhere in this paper, π−1 denotes not 1/π but the inverse
function of π, associating volume with price and not vice versa.

3.2.5 Optimal routing

When there are multiple trading venues, traders have to decide where to route their
trades – this is not different in defi than in traditional finance. The difference is
that trade routing in defi is comparatively easy as all DEXes expose well-defined
APIs, and in many cases they will even expose the same API.

Naively one may think that trade routing is as easy as sending the trade to the
DEX that currently offers the best price, but this is mistaken. The reason for
this is slippage, ie the fact that the price gets worse (and possibly substantially
worse) with an increase in trade size. Therefore it is often beneficial to split a
trade into parts and route those parts to different DEXes thereby generating less
overall slippage as the aggregate liquidity of the system is used.

We now place ourselves in a world where we have a number of otherwise identical
DEXes serving the same trading pair. They are currently in equilibrium at the
same price level, they charge no fees (or the same percentage fees), and gas costs are
negligible when compared to the trade volume. It is easy to verify mathematically
that in this case the optimal (slippage minimizing) routing is to split the trade in
proportion to the liquidity depth in the respective pools.

It is equally easy to see this from the previous discussion on PRFs: the market PRF
is the aggregate PRF of the individual DEXes, and best pricing will be achieved
when the liquidity is used in the order in which it appears in the PRF, best price
to worst. As we’ve seen in the previous chart this will usually involve tapping into
liquidity provided by more than one exchange, and therefore splitting up the trade
and routing it accordingly.

This last algorithm holds more generally. To route trades optimally we can first
create the market PRF, remembering for every slice of liquidity in that PRF where
it comes from, eg by coloring it. From the market PRF we can then see what
price we get at which trade volume, and by looking at the colors of the segments
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covered we know how to route the trade. This algorithm does work in presence
of percentage fees as those can simply be converted into a price adjustment. It
does however not work for per-trade fees or gas costs. In case those are relevant –
usually they are not – it is possible to include them in a numerical optimization
algorithm.

3.3 AMM characteristic functions

The second topic we need to discuss in more detail is that of characteristic func-
tions. As a reminder, a characteristic function f(x, y) determines a series of indif-
ference curves yk(x) with the help of the condition f(x, yk(x)) = k.

3.3.1 Scaling symmetry

The first point to make is that the characteristic functions preserve the symmetry
of the underlying situation, ie there is no numeraire-related symmetry break which
in finance often muddies the waters. For example, if we look at the indifference
function y(x), then we have implicitly designated y as the numeraire asset and x
as the risk asset, and what happens at the upside when the price of the risk asset
goes to infinity looks different to the downside when it goes to zero, even though
because of the underlying symmetry both situations are exactly the same.

To make things more concrete, let’s peek ahead and introduce the most well
known characteristic function we’ll discuss below – the constant product func-
tion f(x, y) = x ∗ y and its indifference function yk(x) = k/x. As before, x
represents the number of RSK tokens, and y the number of CSH tokens, both in
their own native units.

As both x and y use their own native tokens we need to analyze what happens if
they re-denominate. Generally in finance, redenomination applied to everything
should not change anything in the real world. This is not a very deep result –
it simply means that it should not matter if we record prices in dollars, cents, or
millions of dollars.

In particular, if we transform all our denominations the same way – say instead of
using USD and EUR we use USD cents and EUR cents, and we simularly add to
decimals to all other denominations – then nothing should change at all. Again,
this is not deep – it simply means that the price of a EUR in USD terms is the
same as the price of a EUR cent in terms of USD cents.

Mathematically this means we have a representation of the multiplative group of
positive numbers λ ∈ R+ on our state space that acts according to λ : (x, y) →
(λx, λy), and we want to understand the implied action on on our characteristic
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function. Generally, interesting objects in finance transform under this symmetry
in one of two ways

1. They are invariant which means that f(λx, λy) = f(x, y)

2. They transform linearly (or homogenously of order 1 but this is a mouthful)
which means that f(λx, λy) = λf(x, y)

Exchange ratios – ie the price of one asset expressed in terms of another asset – are
an example of invariant objects. Quantities on the other hand are linear objects.
Again, this is not deep: the first statement says that I can look at EUR and USD
or EUR cent and USD cent. The second one says that when I look at cent instead
of EUR and USD all EUR and USD related quantities get multiplied by 100.

When we look at f(x, y) = x ∗ y we see that it is neither linear nor invariant, so
maybe it is not ideal. We will park this point for now and come back to it in a
moment.

3.3.2 Transformations

The second point to make is that, if we are only interested in the indifference
curves yk(x) determined by f(x, y) = k, then our problem is overdetermined, in
the sense that there will be other characteristic functions f̄ that yield the same
set of indifference curves.

Let’s consider a bijective and suitably regular function h : R→ R. It is easy to see
that the yk(x) implied by f(x, y) = k are exactly the same as the yh(k)(x) implied
by h(f(x, y)) = h(k). In other words: if f is a characteristic function, then the
composite function fh = h ◦ f is also a characteristic function. Provided the k are
transformed accordingly it is fully equivalent to f .

Coming back to f(x, y) = x ∗ y we see that if we use h(κ) =
√
κ then f̄(x, y) =

fh(x, y) =
√
x ∗ y. It is easy to verify that in this case our characteristic function

transforms linearly, ie

f̄(λx, λy) = λf̄(x, y)

This in turn suggests that the quantity k̄ with k̄ = f̄(x, y) may be financially
meaningful. It turns out that it is: k̄ is a measure of the pool size that, contrary
to its total monetary value, is invariant under changes in relative prices. In other
words: because k̄ is the pool invariant, if we ignore fees it does not change when
someone is trading against the pool. An increase in k̄ therefore indicates either an
addition of liquidity or a pool profit (eg because of fees earned), and an decrease
either a removal of liquidity of losses due to leakage or exploits.
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3.3.3 Conditions characteristic functions must satisfy

We are now analysing what conditions a function f must satisfy to be a valid
characteristic function. We recall from above that the price response function is
π(x) = −dy/dx. Prices must be positive, therefore we find dy/dx < 0. Moreover,
π(x) must be downward-sloping – the AMM will buy the risk asset when its price
falls, not sell it and vice versa. Therefore we need to have dπ/dx ≥ 0 and hence
d2y/dx2 < 0.

We know that df = ∂xfdx+∂yfdy where ∂ denotes the partial derivative, and that
along the indifference curves we must have df = 0 by construction. Rearranging
those terms yields

−dy
dx

=
∂xf

∂yf
> 0

(note the reversal of x and y). This condition essentially states that the two partial
derivatives of f must have the same sign. In other words, the gradient vector must
either point top-right (between North and East) or bottom-left (between South
and West).

3.4 The mathematics of multi-asset pools

As the name implies, multi-asset pools contain more than two assets, and are
prepared to engage into any cross-trades natively. The alternative to this is a
network of connected two-asset pools. Those can either follow a hub-and-spoke
design with one common central asset, or a point-to-point design where crosses
have their own pools.

3.4.1 Definitions

A multi-asset pool of N + 1 assets is most easily defined by its characteristic
function f(x0, x1, . . . , xN) where the xi are the token amounts in their native de-
nomination. As before we will, for demonstration purposes, look at a specific
characteristic function

f(x0, x1, . . . , xN) = x0 · x1 · · · · · xN

We should note that the better function is the geometric average

f̄(x0, x1, . . . , xN) = N+1
√
x0 · x1 · · · · · xN
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but we know from the symmetry discussion above that the two functions above
are equivalent, and f is easier to deal with than f̄ . We, in this section only, also
adopt the convention that x without an index represents the entire vector

x ≡ (x0, x1, . . . , xN)

which allows us to abbreviate our characteristic function as f(x).

We can choose a numeraire asset if we want – in which case we choose x0 – or
we can treat the whole problem as a symmetrical problem where all assets are
considered risky.

We need exhange ratios πij(x) for each of the pairs xi, xj, and we adopt the con-
vention that the second index (j in this case) is the numeraire. The πij(x) are
determined by partial derivatives.

πij(x) =
∂jf(x)

∂if(x)

where we use the shortcut notation ∂i ≡ ∂/∂xi. Note that the numeraire index is
in the numerator.

For convenience we also define the single-index functions πi ≡ πi0, so if the second
index is missing the numeraire is implied, and we have

πi(x) =
∂0f(x)

∂if(x)

3.4.2 Consistency and geometry

When we have a system of prices, those price systems must be arbitrage free.
Firstly, the price for the reverse exchange must be the inverse of the price, ie

πij =
1

πji

Secondly, the exchange ratio of a direct exchange between xi, xk must be the same
as the exchange going via xj, therefore

πik = πij · πjk
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Both of those conditions can be easily verified going back to the definitions of the
πij. We note that this means that the πi are sufficient to span the entire price
space via the relationship

πij = πi0 · π0j =
πi
πj

This of course is nothing but the well known fact that, in an arbitrage free system,
it is possibly to choose a numeraire, and once all prices in the numeraire are fixed
all cross exchange ratios are fixed as well.

Geometrically we can think of what we called the invariance curve in two dimen-
sions as an invariance hypersurface (technically, a codimension-1 manifold embed-
ded into RN+1). This hypersurface (which from now on we will simply refer to as
indifference “surface”) is defined by

f(x) = k

or, equivalently, by the differential condition

df(x) =
∑

∂if(x)dxi = 0

Like in the two-dimensional case, we need prices to be positive, ie ∂if(x) > 0.
In other words, like in the two-dimensional case, the gradient vector ∇f(x) =
(∂0, ∂1, . . . , ∂N)f(x) must point into the first (“top-right”) quadrant of RN+1, ie
all vector components must be positive (we ignore the all-negative case here; we
can use −f instead of f if need be).

We also have the second-derivative condition ∂2
i f(x) > 0 which we need to ensure

that the lower the price of an asset the more of it the AMM holds and vice versa.
Our conjecture is that a concave surface (together with the “gradient in first quad-
rant” condition) is necessary and sufficient for the function f to be a valid AMM
characteristic function. In a more pedestrian and not coordinate free approach we
can calculate the derivative of πij = ∂jf/∂if and obtain

∂i∂if(x) · ∂jf(x)− ∂if(x) · ∂i∂jf(x) > 0

For our example characteristic function f(x) =
∏

i xi we find that ∂if(x) =
∏

i 6=j xj
which is positive as all xi > 0. Similarly we have all second derivatives ∂i∂jf(x) > 0
as well.
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4 AMMs and financial derivatives

4.1 Black Scholes and derivatives pricing

Before we look at the relationship between AMMs and derivatives, here a brief
reminder of the key elements of derivatives pricing and hedging that will be im-
portant in what follows. For more details see [Hull] or any other option pricing
text book.

We start with the Black Scholes PDE (Black Scholes partial differential equa-
tion) which reads

∂ν

∂t
= −1

2
σ2ξ2∂

2ν

∂ξ2
− (r − d)ξ

∂ν

∂ξ
+ rν

Here ν is the price of the derivative, and ξ is the price of the underlying. We
should point out that the fact that we use the same symbols ν, ξ the we will use in
the forthcoming sections is not by chance. Furtermore, r is the numeraire funding
and deposit rate, and d is the dividend yield (in case of equity derivatives) or the
foreign asset funding and deposit rate (in case of fx derivatives). Finally, σ is the
lognormal volatility of the underlying ξ, and σ2 is the variance.

When working with the Black Scholes equation, and in option pricing more gen-
erally, it is customary to define the Greeks, ie variables that have a standard
meaning. We start with Theta which is defined as

Θ =
∂ν

∂t

Theta is the time decay or, in other words, the fair option premium accruing over
an infinitesimal time period.

Next one up is Delta which is defined as

∆ =
∂ν

∂ξ

Delta is the hedge ratio, ie it determines how much of the underlying needs to be
purchased in a delta hedge. Delta is denominated in units of the risk asset. As ξ
is the price, ξ∆ is the hedge portfolio denominated in the numeraire asset. The
quantity ξ∆ is referred to as Cash Delta.
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Finally we are looking at Gamma which is defined as

Γ =
∂2ν

∂ξ2

The Gamma is the change of Delta with respect to changes in the price, and
therefore indicates how the hedge portfolio must be adjusted when prices change.
Gamma has impractical units, and it is often more intuitive working with the
Cash Gamma which is defined as ξ2Γ and which, as the name implies, is also
denominated in the numeraire asset.

Using those Greeks we can rewrite the Black Scholes PDE as

Θ = −1

2
σ2Γcash − (r − d)∆cash + rν

The operative part of the Black Scholes equation as far as option valuation is
concerned is only the first term

∂ν

∂t
= −1

2
σ2ξ2∂

2ν

∂ξ2

which we can rewrite with the Greeks as follows

Θ = −1

2
σ2Γcash

The second (“Delta”) term (with r − d) is the cost of carrying the hedge, and
the third one is about carrying the premium received. We will ignore those terms
in what follows because (a) they are not particular enlightenting and make the
formulas more complex, (b) funding and deposit rates on crypto asset are a problem
to start with and in any case they are not the same, and (c) we can always place
ourselves at the forward horizon which gets rid of those terms in their entirety.

In other words

The value of an option is the product of the variance and the option
Gamma, and the variance is the cost of carrying Gamma across time.

There are two ways how we can understand the option value. The first one is
by looking at what happens to the value of a hedged position when the spot ξ
moves. The delta hedge has, by design, removed the component that is linear in
ξ, so what is left are the quadratic and higher order terms. Gamma is the second
derivative of the value function, therefore the second order term for a move of size
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σξ happening during a time period dt is σ2ξ2Γ. The option value is simply the
sum (integral) over all those infinitesimal moves.

The second way to understand option value is via the actual hedge. Remember
that Delta is the hedge ratio, and Gamma is the change in Delta when prices
move. If Gamma is positive we buy on the upside and sell on the downside. This
means the hedge loses us money, which means we receive an option premium
to compensate for that. Vice versa, if Gamma is negative we buy low, sell high
which makes us money, so we pay an option premium. This latter description of
the option value will become very important for AMMs which, like some option
strategies, will purchase assets on the upside and sell them on the downside, albeit
with a twist.

4.2 Calls, puts and European profile matching

A European Call Option is the right to buy an asset at a fixed date in the
future T at a pre-determined strike price K. A European Put Option is the
right to sell. It is easy to see that at maturity we have the following payoffs

C = max(ξ −K, 0)

P = max(K − ξ, 0)

A Forward is the right and obligation to buy or sell. We can easily see that
call/put parity holds, meaning that long a call and short a put is equivalent to
being long a forward (all three with the same strike and notional):

C − P = ξ −K = F

Black and Scholes were able to solve the above PDE for calls and puts, the solution
for a call being

C = df × (FN(d+)−KN(d−))

where df = e−rT is the discount factor, F = ξ0 ∗ e(r−d)T is the forward, N is the
cumulative standard Normal distribution,

d+ =
1

σ
√
T

[
ln

(
F

K

)
+

1

2
σ2T

]
is one of the “d”, and
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d− = d+ − σ
√
T

is the other one.

A European profile is a a function ν(ξ) that determines the payoff at time T .
We assume that it is differentiable at least twice for ease of presentation, but
when working with Dirac delta functions and similar constructs this can easily be
extended to functions with a finite number of discontinuities.

We now want to decompose a European profile ν(ξ) into a portfolio of call options.
We denote ν ′′(ξ) the second derivative of ν with respect to ξ (its Gamma) and we
find

ν(ξ) '
∫
CK(ξ) ν ′′(K) dK

We have used a ' symbol here because the above only matches from the second
derivative onwards (proof by deriving twice respect to ξ which transforms the call
profile into a Dirac delta). Technically we can define an equivalence relation '
such that two functions ν1, ν2 are equivalent whenever the only different by an
affine function, ie

ν1 ' ν2 ⇐⇒ ∃a, b ∀ξ : ν1(ξ)− ν2(ξ) = aξ + b

This equivalence class could be called the “(Delta) hedged payoff profiles” because
two profiles that after hedging look the same are in the same class (a is the Delta
and b is the funding). Note that this class is of extreme practical importance when
managing an option book because it abstracts from calls and puts (which, because
of call/put parity are the same once hedged). It is the basis for the so-called “strike
report” which helps a trader to understand the convexity (and therefore Gamma
bleed) of their position.

4.2.1 The strike density function and the Cash Gamma

If we have a European profile ν(ξ) then we define its strike density function
µ(K)

µ̄(K) = ν ′′(K)

It is well-defined on the above equivalence classes, ie if ν1, ν2 are in the same class
then the associated µ̄ = µ̄1 = µ̄2 is the same. The object µ̄ is a density, so it
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usually makes sense to look at the associated differential form µ̄(K)dK. The unit
of ν is CSH. The unit of µ̄(K)dK is RSK which we can either obtain by formal
calculation, or by noting that “1 call” brings exactly one unit of Delta, and Delta
is measured in RSK. Like we have a Cash Delta to complement the Delta we also
have a cash strike density function µ(K) = Kµ̄(K), ie

µ(K) = Kν ′′(K)

Again we look at the differential form µ(K) dK which is now denoted in CSH.
Both µ(K) and µ̄(K) are closely related to the Cash Gamma

Γcash(K) = Kµ(K) = K2µ̄(K)

4.3 Power law profiles under Black Scholes

We now look at a specific class of payoff profiles, the power law profiles, ie
profiles of the form να(ξ) = ξα. Those are particularly easy to deal with under
the Black Scholes equation because they are eigenvectors of the Black Scholes
operator. What this means is the following: the two non-trivial spatial operators
in the Black Scholes equation are ξ ∂

∂ξ
and ξ2 ∂2

∂ξ2
. As a simple calculation shows,

applying those to the να yields

ξ
∂

∂ξ
να = ανα

and

ξ2 ∂
2

∂ξ2
να = α(α− 1)να

so the Black Scholes equation becomes

∂

∂t
να =

(
−1

2
σ2α(α− 1)− (r − d)α + r

)
να

If we denote the term in parantheses on the right ρ(α) = 1/τ(α) then the equation
becomes the well-known equation ∂tνα = να/τ(α), and we know the solution to
this equation is
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να(ξ, t) = et/τ(α)να(ξ, t = 0) = eρ(α) t)να(ξ, t = 0)

ie an exponential growth of the function over time that is preserving its shape. As
shown above, instead of the characteristic period τ we can also use the exponential
growth rath ρ = 1/τ .

If we chose α = 0.5, ie να =
√
x, and we as discussed above assume a vanishing

r, d then

τ0.5 =
8

σ2
, ρ0.5 =

σ2

8

4.4 Analysing the constant product AMM as a financial
derivative

In this section we analyze the constant product AMM within a Black Scholes and
financial derivatives framework. We want this section to be self-contained, so we
may repeat some arguments that we have made elsewhere in this paper.

The first thing to understand is that an AMM is effectively an “investment ve-
hicle” following a particular trading strategy. This strategy is not self-financing
as it “hands over” some of its proceeds to the arbitrageurs. When looking at the
consolidated position of an AMM and its arbitrageurs the trading strategy is self
financing however, and therefore out general quantitative finance frameworks ap-
ply. We simply have to ensure to split the AMM component from the arbitrageur
component at the end.

Assuming efficient markets, the constant product AMM at every point in time will
have 50% of its value locked in the risk asset, and the other 50% in the numeraire
asset. This can be easily shown using its indifference function y = k/x and the
price function π(x) = k/x2: if we multiply those we find that π(x) · x = y, the left
hand side being the value of the risk asset, and the right hand side being that of
the numeraire asset.

We now recall from the previous section that the square root profile retains its
form and grows exponantially with a rate ρ = σ2/8 when going forwards in time.
We can also easily calculate the cash Delta of that profile as

∆cash = ξ
dν

dξ
=

1

2

√
ξ =

1

2
ν(ξ)
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This equation shows that the replication strategy of the square root profile (its
“delta hedge”) keeps 50% of the portfolio value in the risk asset. Therefore 50%
are in the numeraire, therefore they both are of equal value at the same time, and
therefore the constant product AMM strategy corresponds to a square root value
function.

To summarize, we have shown that the particular trading strategy an AMM follows
should lead to the following result when moving forward in time

ν∗(ξ, t) = exp(
σ2

8
t)
√
ξ

In reality however the time evolution is as follows

ν(ξ, t) =
√
ξ

the difference being the funds that are lost to arbitrageurs: When we analyse the
trading strategy of an AMM then we see that if the price moves from ξ0 to ξ1

then the AMM allows arbitrageurs to trade at the geometric average of the prices,√
ξ0ξ1. This price is the same on the way up as it is on the way down, which proves

that, ignoring fees, and AMM hands over all Gamma gains to the arbitrageurs.
That’s what we see above: the factor exp(σ

2

8
t), corresponding to a growth rate of

σ2

8
, is entirely lost for the AMM and handed over to arbitrageurs instead.

We have drawn a few charts that illustrate this evolution. The first one is the
square root profile over time at different vols. The grey line is the initial profile at
t = 0, and the blue and orange lines are the profiles after 1 year, at 75% and 150%
vol respectively. The difference between the grey and the colored lines is what is
being handed over to arbitrageurs (ignoring fees), and we see that for vols beyond
100% this can become substantial.
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Now instead of looking at a cross section at different points in time, we transport
a single point through time The x axis is the time in years, and the y axis is the
growth factor. We see nothing much happening at 50% vol, but at from 100% vol
onwards the growth becomes substantial, and very big beyond 150% vol.

The final chart here gives as a feel for how the vol impacts growth. On the x axis
we have the volatility σ. The blue line (left scale) is τ(σ), the characteristic time
scale in years. The orange line (right scale) is the one year growth rate et/τ − 1.
Again we see that beyond 75% vol, things start heating up, and become outright
violent beyond 150% vol.
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Finally we are looking at a modified weight AMM. Below we are plotting the co-
efficient ρ from the Black Scholes equation above which is

ρ(α;σ) =
1

2
σ2α(1− α)

and which is the exponential growth rate of the ξα profile where α is the weight
factor. Note that the equation it is symmetric around α = 50% so we cut of the
right half. We again see the strong impact of the volatility, and we also see that
the growth rate – and therefore the moneys lost to arbitrageurs – are biggest in
the symmetric case (α = 50%).
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5 Mathematics of specific AMMs

5.1 Constant product (k=x*y)

We now apply the above concepts to the most fundamental of AMMs, the con-
stant product k = x ∗ y AMM. As the name implies, this AMM historically has
the characteristic function we already encountered above, namely

k̄ = f̄(x, y) = x ∗ y

where x, y are the token amounts in their native units respectively. As before, we
consider y the numeraire (asset) CSH, and x the risk asset RSK. We have seen
that there are certain degrees of freedom in choosing a characteristic function, and
we choose an equivalent one which is

k = f(x, y) =
√
x ∗ y

This function satisfies the linearity / homogenity condition, ie f(λx, λy) = λf(x, y).
As a consequence, k serves as a linear measure of the pool size that is invariant
under trading – it only changes when liquidity is added (including via fees) or
removed.

We obtain the indifference curve yk(x) by isolating y

y = yk(x) =
k2

x

and the price response function (PRF) by deriving the indifference curve with
respect to x

π(x) = −dy
dx

=
k2

x2
=
y

x

The price in the PRF is expressed in units of CSH per RSK as one would expect.

Given a quantity x of RSK the AMM holds, its holdings in CSH are y = k2/x.
The value of the RSK holdings, measured in CSH, is x · π(x) = x · k2/x2 = k2/x.
In other words, the value of CSH and RSK holdings is the same. This is a key
result, which is why we repeat it:

In the constant product AMM in equilibrium with the market, the
value of the CSH holdings always equals that of the RSK holdings
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We denote ξ = p/p0 the current price ratio of the pool, ie the ratio of the current
price p divided by p0, the price at the time the pool was seeded (we assume a single
seeding event for simplicity; we can do that because as we discussed previously,
we can consider every position its own little micro AMM, and the actual AMM
being the combination of those). The portfolio value ratio ν(ξ) is

ν(ξ) =
√
ξ

The normalized portfolio value ν here is defined as the ratio of the current portfolio
value and the initial of the portfolio value, ie ν(t = 0) = 1.

We have previously proven the above formula, but we’ll show it again here for ease
of reference. It is easiest to work our way backwards. It is well known that there is
a correspondance between option profiles and hedge portfolios. More specifically,
in order to hedge a payoff profile, the replicating strategy holds Delta units of
the risk asset. The remainder of the portfolio value then is held in the numeraire
asset. The Delta is the derivative of the profile with respect to the price. As this
is in units of the risk asset it must be multiplied with ξ to be converted into the
numeraire. We find that the Cash Delta

∆cash = ξ
d

dξ

√
ξ =

1

2

√
ξ

In other words, half of the value is invested in the risk asset, and therefore the
other half must be invested in the numeraire asset. Going backwards this means
that if we hold at all times the same amount in the numeraire and the risk asset,
our payoff profile will the the square root profile. This concludes our proof.

From the above we can calculate the normalized cash strike density function
which is ξν ′′(ξ), ie

µcash(ξ) = − 1

4
√
ξ

and the normalized cash Gamma is ξ2ν ′′(ξ), ie

Γcash(ξ) = −1

4

√
ξ

To calculate the divergence loss (commonly but mistakenly referred to as imper-
manent loss and defined as the difference between the HODL value of the initial
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portfolio and the value of the AMM porfolio) we note that the initial portfolio
was 50:50 in CSH:RSK. The HODL value of that initial portfolio (ie its value had
the portfolio composition not changed) behaves like 1+ξ

2
, with our normalization

ξ(t = 0) = 1. The divergence loss Λ is therefore

Λ(ξ) =
1 + ξ

2
−
√
ξ

Below we are presenting a few charts. First we draw Λ(ξ) against ξ on a very wide
scale, of up to 40x changes in price. We see that the curve quickly becomes linear
and unbounded on the upside, which is unsurprising as the linear term in ξ −

√
ξ

dominates.

The picture for more realistic changes in value is more interesting: Λ(ξ) is relatively
flat for changes between minus and plus 50% (in this range we have Λ < 5%). Λ
only becomes a significant issue for major divergence. On the downside, Λ is
bounded at 50%. The reason for this is not the limited loss on the AMM portfolio
– it goes to zero when ξ goes to zero. It is rather because the HODL position loses
50% (it is initially invested 50% in the risk asset), and therefore the maximum
possible loss against HODL is 50%.
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Note that the asymmetry in the chart is entirely due to the choice of numeraire.
As shown by the characteristic function, the underlying model is fully symmetric
in RSK and CSH, but any choice of numeraire breaks this symmetry.

In the next chart we show the percentage DL, ie HODL−AMM
HODL

. By construction
this is bounded at unity, and we reach those bounds towards both ends. However
– on the upside it takes a while to get there, as after 10-15x the curve flattens
considerably.

Below we show the same chart on a smaller scale showing that on the upside the
DL is acceptable for moderate moves, but it becomes painful for say 4x where it
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is beyond 20%

5.2 Constant sum (k=x+y)

Before moving on to variations of the constant product AMM we want to make a
quick detour via the constant sum AMM with the characteristic function

fp(x, y) = p ∗ x+ y

It is easy to see that this AMM has a linear indifference curve that crosses the
axis at (0, k) and (k/p, 0). The price response function πp(x) is the constant
function

πp(x) = p

meaning that, ignoring fees, the AMM always buys and sells at the same price p.
Of course the AMM can run out of either CSH or RSK in which case it will be stuck
at the boundary until someone is willing to trade with it in the right direction.
Within the range this AMM has neither slippage nor Gamma and therefore it does
not offer arbitrageurs an incentive to bring it back into equilibrium. An unmodified
constant sum AMM will generally be stuck at one of its boundaries most of the
time.

The portfolio value function of the constant sum AMM is
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ν(ξ) = min(ξ, 1)

This is because it will always be 100% invested in the underperforming asset, ie
in CSH on the upside, and in RSK on the downside. Note that the above profile
is a short option profile with a strike at ξ = 1.

The strike density function is

µ(ξ) = δ(ξ − 1)

where δ is the Kronecker delta function, ie a “function” (in the physicist sense
of the word) that has surface one, is infinity at ξ = 0, and zero everywhere else.
Because the strike is at 1, the cash strike density function is the same as the
strike density function because the ξ in front of the δ can be replaced with 1.
However, we choose to not make this replacement at that time because this is
idiosyncratic to our normalization choices.

µcash(ξ) = ξδ(ξ − 1)

The cash Gamma, where we’ve made the same choice with respect to the ξ2

term, is below

Γcash(ξ) = ξ2δ(ξ − 1)

Finally, note that if we prefer a soft border rather than an AMM that gets stuck
at a boundary, we can choose a modified indifference curve like for example

fp;ε = max(p ∗ x+ y, ε ∗ x ∗ y)

that in the boundary regions x→ 0 and x ≥ k/p behaves like a constant product
AMM and therefore never runs out of collateral. In this case the AMM experiences
DL etc just like the constant product AMM whilst it is in the boundary region.
This is very similar to the way the stableswap algorithm works that we’ll discuss
below.

5.3 Concentrated, range-bound and levered liquidity

We will now discuss the concepts of concentrated, range-bound and levered liquid-
ity. Those concepts are closely related by they are not exactly the same:
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• Range-bound liquidity. Range-bound liquidity is liquidity that is only
available to make markets in a certain price range; typically the range is
limited at both sides but that does not have to be the case.

• Levered liquidity. Levered liquidity is liquidity that is amplified, for ex-
ample in a concentrated liquidity setting where excess liquidity is removed
from a range bound AMM.

• Concentrated liquidity. Concentrated liquidity is a range-bound liquidity
where all excess collateral (ie collateral that can never level the pool) is
removed; this means that outside the range the AMM only holds one of the
two assets

5.3.1 Range-bound liquidity

As defined just above, range-bound liquidity is liquidity that is only available to
make markets in a certain range. We have already seen and extreme example
of this type above, when we looked at the constant sum AMM. Another easy
application of this concept is a constant product AMM where some collateral is
removed without adusting the indifference curve. Instead, when the AMM runs
out of collateral it stops trading. More precisely, when it runs out of one token it
will no longer sell it – it simply cannot as it can’t deliver. It however stands ready
to buy that token, provided the price is right.

As an example we have a standard RSK / CSH constant product AMM, and we
remove some CSH. The AMM sells CSH and buys RSK when the RSK price goes
down. This means that when a certain price ξ0 is reached, the AMM runs out of
CSH and can therefore no longer buy RSK. If the drop of RSK continues and the
price ξ < ξ0 is outside the range, the AMM simply pauses. However, as soon as
the price ξ > ξ0 moves back into the range, the AMM starts buying CSH again
and is back in the game.

In this example the range was implied by the removed liquidity. In practical ap-
plications users arguably prefer to specify a price range where to provide liquidity.
We have seen above that the price is directly linked to the collateral outflow, but
there is a catch: this only works on a specific indifference curve. If the AMM
moves curves, eg because liquidity is added or removed or it earns fees, the range
changes (wider with more liquidity and vice versa). There are two solutions to
this conundrum:

1. Do not pay fees into the pool but keep them separate; this reduces collateral
efficiency, but it ensures that the AMM remains on the same indifference
curve
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2. Adjust the pool constant k such that the apparent liquidity is bigger, and
that therefore the AMM will run out of tokens at exactly the same price
point.

The former solution may be more practical within the high gas cost environment –
and this is for example the way Uniswap v3 does it – but we want to briefly discuss
the alternative here, at the example of a constant product AMM. We recall that
y = k/x and the price π = k/x2. We know want to keep the price constant and
solve for k. An easy calculation yields

x(k) =

√
k

π
, y(k) =

√
kπ

where x(k), y(k) is a paramterised boundary curve. This curve is a straight line
going through the origin. We have drawn an example in the chart below. Here
the blue, orange and grey curves are indifference curves at various values of k, and
the yellow line is the cutoff point at a unity price. So if the AMM wants to remain
above unity price it can only use the parts of the curves that are above the yellow
line, and if it wants to trade below unity price it must remain on the parts of the
curves below the yellow line.

In practice it may be easier for range-restricted AMMs to operate based on an
unrestricted characteristic function and then explicitly impose the boundary
constraints at the level of the indifference curve. However, there may be situations
where operating at the characteristic function level to start with is more suitable.
Below we’ll sketch a process for creating a restriced characteristic function from
an unrestricted one and a boundary condition.
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We are looking specifically at a lower bound for the amount of RSK held, and we
call this boundary x0. The intuition behind this contstruction is that, once we get
close (or slightly beyond) x0, we are transported on the fast track to x = 0. We do
this by defining a function x̂ε(x) which is described in the chart below: for x > x0,
ie in the desired range, we have x̂ε(x) = x. For x < x0 the turbo kicks in however,
and the function is

x < x0 ⇒ xε(x) = x0 −
x− x0

ε

For ε = 1 we simply have x̂1(x) = x. The magic happens for ε → 0: the smaller
ε, the faster x̂ε(x) is at zero.

So instead of using f(x, y) = k we use

f(x̂∗ε(x), ŷ∗ε(y)) = k

where the x∗ε(x), y∗ε(y) are defining a suitable range, and ε is very small but not zero.
The asterisk denotes that additionally we are using a convolution

∫
n(x−k)x̂∗ε(k)dk

with a suitable Gaussian kernel n(x) to make the function C∞. This may be
overkill however, and the initial C0 solution x̂ε(x) may just work fine.

5.3.2 Concentrated and levered liquidity

Once we have restricted the range, and therefore limited the outflow of one or both
tokens from the restricted AMM, we can apply leverage by simply removing those
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tokens, or never even contributing them in the first place. Whilst inside the range,
the AMM will behave as if the liquidity had not been removed. So everything else
being equal, the fees earned per unit of liquidity contributed will be higher, but
so will be the divergence loss. Ultimately Miller-Modigliani applies (figuratively,
not actually) in the sense that leverage does not economically matter in efficient
markets, and whilst this leverage increase the returns it also increases the risk, so
the risk-adjusted returns remain the same.

We are now looking at details for the levered constant product AMM, ie the
Uniswap v3 model. As before, ξ is our normalized price ratio, and ξ0, ξ1 is the
liquidity range, using the same normalization. To understand this intuitively, ξ
will start at 100%, and ξ0, ξ1 = 80%, 120% means a range that is 20% up and down
from the starting price. We have also added a portfolio notional factor n0 here
that we can use to normalize our portfolio value ν however we want. The AMM
portfolio value ν below / in / above the range respectively is given by the three
equations below (see eg [Lambert21])

ν(ξ) = n0 · ξ ∀ξ < ξ0

ν(ξ) = n0 ·
(√

ξ0ξ1 ·
√
ξ −
√
ξ0√

ξ1 −
√
ξ0

+
√
ξ0ξ ·

√
ξ1 −

√
ξ√

ξ1 −
√
ξ0

)
∀ξ0 < ξ < ξ1

ν(ξ) = n0 ·
√
ξ0ξ1 ∀ξ > ξ1

Note that in the limit ξ0 → 0, ξ1 → ∞ we find ν(ξ) =
√
ξ, provided we set

n0 = (
√
ξ1−
√
ξ0)/
√
ξ0ξ1 to account for the different normalization in this formula

compared to the standard one.

It is interesting to look at the portfolio composition. The holdings of risk asset
RSK corresponding to the aforementioned valuation formula are

Nr(ξ) = n0 · 1 ∀ξ < ξ0

Nr(ξ) = n0 ·

√
ξ0

ξ
·
√
ξ1 −

√
ξ√

ξ1 −
√
ξ0

∀ξ0 < ξ < ξ1

Nr(ξ) = 0 ∀ξ > ξ1
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and we see that the normalization of those formulas is such that for n0 = 1, we hold
exactly 1 unit of RSK below the range. This is why we cannot simply set ξ0 = 0
in the formula above but we need to adjust n0 to have the correct normalization.
Above the range we hold no RSK but only CSH.

For the numeraire asset CSH we find

Nn(ξ) = 0 ∀ξ < ξ0

Nn(ξ) = n0 ·
√
ξ0ξ1 ·

√
ξ −
√
ξ0√

ξ1 −
√
ξ0

∀ξ0 < ξ < ξ1

Nn(ξ) = n0 ·
√
ξ0ξ1 ∀ξ > ξ1

so below the range we hold no CSH, and above we hold everything in CSH, con-
verted at a rate of

√
ξ0ξ1 which is the effective conversion price (geometric average

of the range boundaries) when moving through the range.

Below we have graphed the AMM portfolio value ν(ξ) against ξ for a number of
different ranges. Those ranges are symmetric, in a geometric average sense, around
ξ = 100. Starting with the yellow curve, the widest of the ranges, we see that we
get close to the square root profile. We however start with a finite slope at ξ = 0
where the square root profile starts vertically.

Asymptotically all profiles start linear (100% investment in the risk asset on the
risk asset downside) and end up flat (100% investment in the numeraire on the
upside; they all end up at the same level). Within the range there is an arc
connecting the two asymptotics and unsurprisingly, the wider the range the further
this arc deviates from the asymptotics.
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5.3.3 Divergence loss with concentrated liquidity

Divergence loss within a concentrated, leveraged liquidity is somewhat complex.
This is not so much for technical reasons, but for reasons of interpretation. In the
frameworks we have discussed so far, and those that we will discuss below, the
liquidity pool composition was fixed at either 1:1 for the constant product pool,
or at α : 1 − α for the modified weights pools. A concentrated pool however by
design has a time-varying pool composition – 100% in one of the assets outside
the range, and shifting from one asset to the other within.

The issue with this is that it is not entirely clear what the reference portfolio
against which the DL is computed should be. Another problem that already arises
in other scenarios, and that comes back here on steroids is how to calculate DL for
(a) positions withdrawn in the past, and (b) a position that have been adjusted
during their lifetime. Also we need to decide (c) whether we only account for DL
within the range when the position earns fees, or also outside of it.

A good candidate for DL computation is use whatever the portfolio was when the
position was created (and, as a corrolary: whenever the position was adjusted, treat
it as if it was withdrawn and recreated). Let’s do some calculations here and go
through that step by step

1. The position is initialised at 1 RSK = 150 CSH at inception, and the range is
from 95 to about 105, with the geomtric center at exactly 100; the portfolio
is 100% in CSH, holding 150 CSH

2. The price drops to just above the range; the portfolio is still the original
portfolio (and in any case, 100% CSH), therefore no DL
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3. The price drops to just below 95; now the portfolio is 100% in RSK, ex-
changed at a price of 100; in other words it holds 1.5 RSK which, at a price
of 95, are worth 142.5 CSH. This is a DL of 7.5 CSH.

4. The price drops to 50. The portfolio does not change (and does not earn
fees) so it still holds 1.5 RSK, worth 75 CSH. The DL is now 75 CSH.

5. Scenario A: the position is unwound; Scenario B: the position remains.

6. RSK recovers to its original value of 150 CSH. In Scenario A, DL disappears
and is exactly zero. Scenario B is complex:

1. If the DL was crystallized CSH at 75 it remains at 75 CSH

2. If the DL was crystallized in CSH at 7.5 (because beyond that the
positions was de facto inactive) it remains at 7.5 CSH

3. If the losses are translated into RSK at the then prevailing exchange
ratio, which is 1.5 RSK or 0.15 RSK respectively, and then crystallized,
the DL is 225 or 22.5 CSH respectively

4. If the position is carried forward as 1.5 RSK the DL becomes a gain of
0.5 RSK, or 75 CSH

The distinction between in-range and out-of-range DL depens on the purpose of
the calculation. Once the range has been crossed the position no longer earns fees,
which distorts measures like a fee / DL ratio – for those optimal behaviour of the
LPs may be a good working assumption. To compute actual LP returns however,
DL outside the range should probably be taken into account.

The other choices however all correspond to genuine alternative trading strategies,
and with the DL being an opportunity loss, all of them are in theory acceptable.
There is one caveat however which is that the Divergence Loss should not really
become a gain, so if the last of those definitions is used the measure should probably
be renamed.

In our view, the most useful DL measures are the one that crystallyze either into
CSH, or into a joint numeraire when running a multi-pool analysis which is the one
we used in [Loesch21]. Whether to use in-range for full IL numbers is a question
of judgement; in our view the in-range IL number is the one better suited for
theoretical fee/IL ratios, and the full number is better for estimating at actual
opportunity losses incurred.
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5.4 Modified weights

The modified weights AMM is very similar to the constant product AMM, with the
crucial difference that now the two assets may have different weights, which as we
will see leads to a different portfolio composition. The characteristic function
of the modified weights AMM is

k = f(x, y) = xα ∗ y1−α

with some parameter α ∈ (0, 1). It is easy to see that we find the constant product
AMM when we set α = 1/2, and also that the characteristic function above scales
linearly.

We now define η(α) which helps us to simplify some of the formulas that will
follow.

η =
α

1− α
⇒ α =

η

1 + η
,

1

1− α
= 1 + η

The two charts that follow show the relationship between η and α.

Using our newly defined η we can write the indifference curve of the modified
weight AMM as follows

yk,α(x) =

(
k

xα

) 1
1−α

Alternatively,

yk,η(x) =
k1+η

xη

The price response function in the modified weight case becomes
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πk,α(x) =
α

1− α

(
k

x

) 1
1−α

=
α

1− α
y

x

Alternatively,

πk,η(x) = η

(
k

x

)η+1

= η
y

x

It is easy to verify that in this case the ratio of the value of the risk asset and the
numeraire asset in the pool is η = α

1−α . So if α > 1
2

and therefore η > 1 we have
more risk asset in the pool than numeraire asset and vice versa.

The portfolio value ν in this case becomes

ν = ξα = ξ
η

1+η

The proof is mostly the same as the one in the unweighted constant product
case, except that the calculation of Delta (= ν ′) shows that the proportion of the
portfolio in the risk asset is α and therefore 1−α in the numeraire. In other words,
the ratio between risk asset and numeraire is η as it should be.

The cash strike density function is easily calcluated as

µcash(ξ) = −α(1− α)

ξ1−α

and Cash Gamma is

Γcash(ξ) = −α(1− α)ξα

The divergence loss in the modified weight case becomes

Λα(ξ) = 1− α + αξ − ξα

and we find our well known formula for the constant product AMM if we set α = 1
2
.

Below we have plotted the DL for different values of α: the blue line is for the
constant product AMM with α = 1

2
, the grey line is for α = 0.9 (risk asset to

numeraire is 9:1, ie risk asset prevails), and the orange line is α = 0.1 (risk asset
to numeraire is 1:9, ie numeraire asset prevails). When looking at this analysis we
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need to remind ourselves however that, even though the situation is now some-
what asymmetric to start with, our choice of numeraire does introduce additional
asymmetries.

The first chart shows the DL with the risk asset appreciating up to 5x against
the numeraire (from this point onwards the curves continue mostly linearly to the
right). We see that the α = 0.5 (constant product) curve shows a significantly
higher DL than the two other curves. This makes sense as on the one hand the
α = 0.9 (risk asset dominant) portfolio predominently holds the risk asset and
therefore does not lag that much if it rallies. The α = 0.1 (numeraire dominant)
curve on the other hand measure the DL against a porfolio that has very little of
the risk asset to start with, so again the relative losses are less.

One the risk asset downside, the terminal value is entirely driven by the HODL
portfolio: the AMM portfolio goes to zero in all three cases. Therefore the more
the HODL portfolio loses the lower the DL.

In the next chart we show the percentage DL, ie that DL relative to HODL, defined
as HODL−AMM

HODL
. By construction, this number must be less or equal 1.0 aka 100%.

This chart shows a very wide range on the upside, with up to 60x appreciation of
the risk asset versus the numeraire. Again the constant product AMM shows the
biggest losses initially, but the numeraire-dominant AMM (α = 0.1) catches up and
even exceeds it eventually. The risk-asset-dominant AMM (α = 0.9) consistently
shows significantly a lower lower percentage DL than the two others.
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The final chart here is the same chart as the previous one, but we are zooming
into ξ ∈ (0, 1) to look at the risk asset downside. We see that again the constant
product AMM performs worst in percentage DL, even though ultimately the risk-
asset dominant AMM (α = 0.9) catches up or even slightly exceeds the losses in
relative terms. The numeraire-dominant AMM (α = 0.1) does consistently better
here.
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5.5 Modified curve aka (2 token) stableswap

When discussing the constant sum (k = x + y) AMM which provides liquidity
at one specific price only we already alluded to two different options what could
happen at the boundary

• Option 1: no special treatment at the boundaries x = 0, y = 0, the AMM
simply stops trading; that is also the model that Uniswap v3 is running at
the boundaries of the range

• Option 2: the curve is modified towards the boundary x → 0, y → 0 such
that the characteristic functions always become tangent to the axis’ and
therefore the AMM never runs out of assets

The stableswap model, introduced by [Egorov19], chooses Option 2, albeit in a
multi-token environment. We here go with the reduced two-token formula de-
scribed in [Niemerg20]. In this case, the characteristic function is

fχ;k = χk(x+ y) + xy

where χ is a mixing parameter: for χ = 0 the AMM is a constant product AMM,
and in the limit χ → ∞ it becomes a constant sum AMM. Note that the k is
now part of the characteristic function – as we’ll see in a moment it is there for
dimensional reasons (note that the above characteristic function does not have our
usual scaling properties; it scales quadratically).

The indifference curves are now defined by the equation

fχ;k(x, y) = χk(x+ y) + xy = k∗(χ, k) = χk2 +
k2

4

where for the time being we consider χ as previously as a model parameter. As
before, for χ = 0 we recover the constant product formula, for χ→∞ the constant
sum, and the x, y, k all scale linearly under the scale symmetry we previously
discussed, as per the design goals in [Egorov19].

The key difference here when compared to the other AMMs we have discussed so
far is that k is now part of the characteristic function and therefore also part if
the indifference curve, ie it appears on the right hand side of the equation. For a
single indifference curve (k fixed) this does not matter. However, if k changes, eg
when assets are contributed to or withdrawn from the pool, then the characteristic
function changes as well. Therefore a pair x, y no longer necessarily determines
the state of the AMM – we may need to specify k in addition to x, y as there

45



may be multiple, or even an infinite number of k that lead to the same portfolio
composition.

This chart from [Egorov19] shows the shape of the above curve compared to con-
stant product and constant sum:

5.5.1 Dynamic Chi

As described briefly in [Egorov19] and in more detail in [Feito] the constant χ (also
called χ in those papers, but our k is their D) is not a constant but it is dynamic.
The idea is that the ideal state of the pool is to have the same number of both
tokens (and therefore the same value, as their natural price ratio is unity). The
curve as shown above has very little convexity in the middle, and therefore very
little slippage. There is very little incentive for arbitrageurs to rebalance the pool,
and it may remain off kilter for a long time.

The stableswap mechanism therefore makes χ dynamic: the further the token ratio
is away from unity, the smaller the χ, therefore the closer the curve is to constant
product, therefore the higher the convexity, therefore the higher the slippage, and
finally therefore the higher the incentive for arbitrageurs to step in and balance
the pool.

As χ now depends on x in an implicit manner we can no longer analytically
calculate the price response function and the other objects. However, intuitively
we know how they look:

• the price response function π places most of the volume around unity
price; however, when it gets close to the x axis it suddenly falls to zero, and
when it gets to the right boundary it goes to infinity

46



• the portfolio value function ν is similar to that of the constant sum AMM,
ie it ressembles an short put option profile that has been shifted upwards to
go through the origin, with a bit of convexity added on either side

• the strikes and the Gamma are placed away from the unity price point
(not very far in absolute numbers, but very far away in terms of realistic
movements)

5.6 Multi asset

5.6.1 Equal weights

As previously discussed, the characteristic function of a multi-asset AMM is the
product of the token amounts in native currencies. Therefore the constant product
AMM is a specific case of the multi-asset AMM, albeit a rather special one as things
get more complex in in higher dimensions. The most commonly used function is
the straight product

k̄ = f̄(x0, x1, . . . , xN) = x0 · x1 · · · · · xN =
N∏
i=0

xi

As before it makes often sense to use a function that has scales linearly, ie f(λx0, λx1, . . .) =
λf(x0, x1, . . .) because in this case the constant k is a measure of the pool size that
is not impacted by divergence loss. So instead of using the straight product we
are using the geometric average

k = f(x0, x1, . . . , xN) = N+1
√
x0 · x1 · · · · · xN =

(
N∏
i=0

xi

) 1
N+1

The indifference curve is not an curve but a whole indifference surface. We
choose x0 as the numeraire that we refer to as CSH – a choice that is as arbitrary as
choosing y in the x ∗ y case – and the x1 . . . xN are the risk assets RSK1. . . RSKN.
Isolating x0 we find

x0;k(x1, x2, . . . , xN) =
kN+1

x1 · x2 · · ·xN

In order to alleviate the notations we introduce the vector x = (x1, . . . xN), ie the
vector of quantities of the risk assets, but excluding the numeraire asset. Because
we have multiple assets we also now have multiple price response functions
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πi(x) = −∂x0(x)

∂xi
=

kN+1

x1 · · ·x2
i · · ·xN

=
x0

xi

Note that we find the formula π = y/x from the two dimensional case, and again
the unit is CSH per RSKi. In the above formula we find partial derivatives, and
they should not be looked at in isolation. They should be considered a geometric
object, notably the gradient vector corresponding to the indifference surface, ie
the vector that is orthogonal to its tangential plane. This plane has an important
financial interpretation: in the x ∗ y case there is only one direction in which one
can move, so every trade of the risk asset RSK forcibly involved the cash asset
CSH. Now one can move inside this plane without changing “height”, ie without
involving the cash asset. This corresponds to direct trades between two risk assets
RSKi and RSKj, or more complex portfolios thereof when moving along a diagonal
in the tangent plane.

By definition, the AMM holdings of of RSKi are xi, and given the price πi above
we find again that the AMM holds all assets in equal value. In other words

In the unweighted multi-asset AMM in equilibrium with the market,
the monetary value of the CSH and all RSKi holdings is always equal

We are now looking for the normalized portfolio value function ν(ξ) where ξ is
the price ratio of asset RSKi compared to time t = 0, and ν is equally normalized
to ν(t = 0) = 1. We recall that for the constant product AMM we found that was
ν(ξ) =

√
ξ, which we proved by showing the hedging the square root profile keeps

half the value in the risk asset and half in the numeraire asset. It is easy to verify
that the function

ν(ξ1 . . . ξN) = N+1
√
ξ1 · · · ξN

satisfies this requirement. The calculation uses the fact that the cash delta is
calculated with the operator ξi∂i and that ξi∂i(ξ1 · · · ξN)β = β(ξ1 · · · ξN)β whatever
β, so if we choose β = 1

N+1
then each of the N Cash Deltas is equal to 1

N+1
and

together with the value of the numeraire held the portfolio investment is distributed
evenly across all numeraire assets.

The HODL portfolio is initially equally invested in each of the N risk assets as well
as the numeraire, and at t = 0 we have ξi = 1, so the value of the HODL portfolio
is propotional to 1 +

∑
ξi. Propertly normalized the divergence loss is therefore

Λ(ξ1 . . . ξN) =
1 +

∑
ξi

N + 1
− N+1

√
ξ1 · · · ξN
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5.6.2 Variable weights

We have previously looked at the case where all assets in the pool have the same
weight. Like in the two-dimensional case we can achieve variable weights by intro-
ducing a coefficient vector α = α0, . . . , αN . We will assume that

∑
αi = 1 which

ensures the homogenity of the function, ie we get k instead of k̄. The character-
istic function is then

k = f(x) =
N∏
i=0

xαii

Note that our N+1
√

term has been absorbed in the α which in the equally weighted

case are equal to αi = 1
N+1

.

Similarly to the two-asset case we define

ηi =
αi
α0

⇒
∑

ηi =
1− α0

α0

,
1

α0

= 1 +
∑

ηi

The indifference surface becomes

x0;k(x) =

(
k

xα1
1 · · ·x

αN
N

) 1
α0

=
1+

∑
ηi
√
k ·

N∏
i=1

x−ηii

Note the minus sign in front of the exponent: the x are still in the denominator
but the formula becomes hard to read when writing it as a fraction.

The price response functions becomes

πi(x) = −∂x0(x)

∂xi
= ηi ·

x0

xi
=
αi
α0

· x0

xi
=
x0/α0

xi/αi

ie it is adjusted with the relative weights factor ηi. This also implies that ηi is the
relative weight of the assets in the pool. In other words

In the variable weight multi-asset AMM in equilibrium with the market,
the monetary value of the RSKi holding is ηi times the CSH holding
where ηi = αi/α0 is the ratio of the risk asset and numeraire weight
factors

We should point out again that there is nothing special about the numeraire asset,
it was an arbitrary choice. So the above statement can also be reformulated as

49



In the variable-weight multi-asset AMM in equilibrium with the mar-
ket, the relative monetary value of RSKi and RSKj holdings is αi/αj
(higher α means bigger weight)

The normalized portfolio value function in this case is

ν(ξ1 . . . ξN) = ξα1
1 · · · ξ

αN
N =

N∏
i=1

ξαii

It is easy to see that the Cash Delta is ξi∂iν = αiν so indeed the portfolio compo-
sition is in line with the coefficients αi and they sum up to ν.

The HODL portfolio in this case is α0 units for the numeraire asset and
∑
αiξi

for the risk assets, so the divergence loss is

Λ(ξ1 . . . ξN) = α0 +
N∑
i=1

αiξi −
N∏
i=1

ξαii

6 Conclusion

In this paper we have briefly reviewed the theory behind Automated Market Mak-
ers, and we have provided specific formulas (also availble on theammbook.org/formulas
and solutions for a number of the the important models in this space. Those in-
clude the

• Constant Product designs like Bancor or Uniswap v2, and many other
AMMs either on Ethereum or other chains who cover the full range of prices,
which makes them versatile but capital inefficient even for regular tokens,
and fully unsuitable for like-kind tokens (eg USDC vs DAI), the

• Stableswap designs, created and popularized by Curve specifically for like-
kind tokens for which the constant product design is highly inefficient, the

• Variable Weight designs that allow for a different portfolio composition
than 50:50 and that have advantages in some hub/spoke designs or for token
distributors, the

• Multi-Asset Pool designs like Balancer that allow for more capital efficient
pools, variable weights, and one-hop trading across all tokens in the pool,
and finally the
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• Concentrated Liquidity design of Uniswap v3 where liquidity provider
are free to place their liquidity anywhere on the price curve, and where it is
maximally levered, allowing to create arbitrary price response functions.

One class of AMMs we have deliberately excluded are any whose design includes
external data providers and oracles as those are in our view very different designs
that pose very different challenges. We plan to cover those in a subsequent paper.

The world of AMMs is fast moving and we will keep this paper updated with the
important developments in this space. Please check on theammbook.org/paper for
the most recent version or - possibly a bit behind - on Arxiv once we have finished
the initial review cycle.
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8 Appendix

8.1 Website

The website of the book is at theammbook.org. The paper itself can be found on
the website at theammbook.org/paper

8.2 Glossary and technical glossary

A glossary of general terms is at theammbook.org/glossary. A technical (formula)
glossary is at theammbook.org/techglossary

8.3 Formulas

Key AMM-related formulas are are theammbook.org/formulas

8.4 Projects

A list of AMM and AMM-related projects is at theammbook.org/projects

8.5 References

A list of AMM-related references (academic papers, blogs, books) is at theamm-
book.org/references
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