
BACHELOR THESIS

Animated Foliage and Cloth for Mobile
Games

Linus Lindberg
2016

Bachelor of Fine Arts
Computer Graphic Arts

Luleå University of Technology
Department of Arts, Communication and Education

 BACHELOR THESIS

Animated Foliage and Cloth for Mobile

Games
Linus Lindberg

1

Abstract

Problem Summary

Realistic cloth and foliage effects can be very calculation intensive, and therefore they are not

very common in mobile games. Using effects that are both visually appealing and light on

performance could greatly improve the look of mobile games that usually don’t have effects like

these. I chose to limit the scope of the project to these cases.

● Cloth or foliage blowing in the wind

● Foliage reacting to touch, like a player walking through it

● Cloth or foliage reacting to bullets

Is it possible to, instead of using expensive physics calculations to simulate these effects, just

approximate the ‘look’ of it but still base it on reality?

Result

It is helpful to start with a look at physics even when writing simplified, non-physical effects. By

knowing exactly what causes the look you are after it’s much easier to mimic. I discovered that

material stiffness is the most important property to define how a branch, some grass or some

hanging cloth reacts to external forces.

I decided to go with a shader based solution for all three effects, because of the performance

benefits over joints and vertex simulations. The wind shader is a common technique using sine

waves to make an offset to the vertex positions before drawing to the screen. The shader for

foliage reacting to touch builds on this by supplying it with a player position and movement

velocity. This is then used to make additional changes depending on how far away the player is.

The shader reacting to bullets is very similar, but instead of player position it is supplied with

bullet positions along the shooting vector. The vertices are the displaced by how close they are

to this position creating an effect of the cloth stretching and then falling back in the direction of

the shot.

The first two effects worked out well, with good performance and a natural look. The shooting

effect though needs further improvement to be used in a game. Overall I believe shader tricks

like these can be very useful in mobile games that want some extra detail but can’t afford vertex

simulation.

2

Sammanfattning

Problem

Realistiska tyg- och löveffekter kräver mycket processorkraft, och är därför inte särskilt vanligt i

mobilspel. Att använda effekter som både är billiga och snygga skulle höja den visuella kvalitén i

spel som idag inte har några sådana effekter. Jag fokuserar i den här rapporten på att lösa

följande situationer:

● Tyg eller växtlighet som blåser i vinden

● Växt som reagerar när spelaren springer igenom den

● Växt eller tyg som reagerar på skott

Är det möjligt att istället för att använda dyra fysiska algoritmer, bara skapa en effekt som

försöker efterlikna dessa?

Resultat

Det underlättar att först lära sig hur dessa effekter fungerar i verkligheten, även om man gör en

förenklad effekt som inte direkt använder sådan information. Genom att veta vad som bidrar till

effekten du är ute efter är det mycket lättare att försöka återskapa den. Under arbetet upptäckte

jag att ett materials styvhet är den viktigaste variabeln för att definiera hur en gren, gräs eller

hängande tyg reagerar med sin omgivning.

Jag valde att lösa alla tre situationerna med shaders, eftersom de är snabbare än animerade

joints och vertexsimulationer. Vind-shadern är en sinusvåg som lägger till ett värde på vertexen

innan den ritas på skärmen, en vanlig lösning i spel. Shadern för växten som reagerar när

spelaren går igenom den fortsätter bygga på detta genom att räkna in spelarens position och

riktningen den rör sig i, för att göra så att växten rör på sig och böjer sig när spelaren kommer

nära.

Shadern för materialet som reagerar på skott är väldigt likartad, men istället för att läsa

spelarens position får den kulans position och riktning. Vertex-punkterna flyttas med

riktningsvektorn baserat på hur nära kulan är.

De första två effekterna fungerar bra, med bra prestanda och naturlig rörelse. Skotteffekten

behöver dock mer arbete för att kunna användas i ett riktigt spel. Jag tror att shadereffekter som

de här är väldigt användbara i mobilspel som vill ha lite extra visuella detaljer, utan

vertexsimulation.

3

Table of Content

Innehåll
Extract .. 1

Problem Summary ... 1

Result .. 1

Sammanfattning .. 2

Problem ... 2

Resultat ... 2

Table of Content ... 3

Glossary.. 4

1 Introduction .. 5

1.1 Background .. 5

1.2 Purpose ... 5

1.3 Problem ... 5

1.4 Limitations .. 6

2 Theory.. 7

2.1 Examining the real world .. 7

2.2 Limitations of mobile platforms ... 8

2.3 Common solutions in real time graphics ... 9

3 Method ... 11

3.1 Implementation .. 11

4 Result... 14

5 Analysis and Discussion .. 16

References ... 17

4

Glossary

Shader

A shader is a set of instructions that describes how an object should be drawn on the screen

Vertex Program

The vertex program is the most important part of a shader, it’s primary job is to take the input

positions from object space and convert them into screen space so that they can be drawn on

the screen. Cheaper shaders do a lot of lighting calculations here before sending it to the

fragment program.

Fragment Program

The fragment program draws the object on the screen. More advanced shaders do their lighting

here, on a per fragment basis for a smoother more accurate light.

Overdraw

Overdraw is when you draw a pixel more than once due to alpha.

CPU

CPU stands for central processing unit. It does most of the calculations not related to graphics.

GPU

The GPU, or graphics processing unit, is dedicated to doing calculation related to graphics, like

drawing objects on the screen

5

1 Introduction

Nothing breaks the immersion of a game like completely static foliage and cloth. These are light

materials that are largely defined by how they react to outside factors. Imagine a flag that

doesn’t flow with the wind. It looks weird and doesn’t read like cloth to an observer.

Modern console and PC games have started using real time physics simulation to get very

convincing reactions of these materials. For low-end computers and mobile devices this is

simply not an option due to the sheer amount of calculations required for such an effect.

This report will explore different ways of faking these properties, starting with a quick look at how

these materials react in real life and then studying how they can be approximated with a heavy

focus on performance.

1.1 Background

I wrote this thesis while on an internship at Level Eight, a mobile game company in Umeå

Sweden. When they heard I was interested in technical art they asked me if I could explore a

solution of making vegetation and cloth more interesting, as they were completely static. One

crucial part was of course performance, after all this was for a mobile game. After looking into

this I discovered that the subject is not very well documented. Today the focus of studies like this

lies exclusively on simulations of cloth and foliage which are impractical for anything but the

most powerful devices.

There is obviously a need for simplified solutions. This is what I want to look into in this report.

1.2 Purpose

The purpose of this publication is not to find new ways to accurately simulate movement of cloth

in real time but instead to use existing methods to create movement that looks plausible. The

goal is to fool the casual observer that there are physical effects taking place, but not actually

performing complex algorithms needed to simulate physically correct movement.

In mobile games physical realism needs to take a back seat to performance. I will need to figure

out a method that both looks good and works well on these devices.

The key is that the method should look realistic, but in the simplest way possible.

1.3 Problem

The focus of this report is discovering how animated cloth and foliage effects that work well on

mobile devices can be created.

To solve this problem these following questions first need to be answered:

● What properties makes cloth and foliage appear like cloth and foliage? What are

the physics behind this in real life?

6

● What methods are commonly used to simulate these properties in computer

graphics?

● What methods works best for mobile devices and why?

1.4 Limitations

To limit the scope of the report, the problems will focus on the following cases:

● Hanging cloth on static object, or vegetation reacting to wind

● Vegetation, reacting to touch and wind

● Hanging cloth reacting to bullets

7

2 Theory

2.1 Examining the real world

What makes cloth move different from a sheet of hard plastic? The most obvious answer is the

material stiffness, the force needed to bend or deform a material. Most cloth has a very low

bending stiffness, imagine placing a t-shirt over a smaller box. Gravity will force the material to

bend around the box. Lower stiffness will result in more wrinkles and more deformation and is

therefore also key in differentiating the look of jeans and leather from silk or cotton. i

Vegetation have similar properties, but is more defined by its ability to spring back to their

original shape if forced to bend. Creating a deformation requires a force to be applied, this stores

potential energy in the deformed object (say a branch) when the force is removed the object will

return to its original shape. The force needed to make a certain displacement can be calculated

using the shear modulus.

Δx = 1/S F/A L0

F = (Δx A S)/ L0

Where Δx is the displacement from resting position, L is the material's shear modulus constant,

A is the branch thickness and L0 is the branch length. This means that the longer and thinner

the branch is the easier it bends. ii

A simplification of the tree-scenario would be a flagpole blowing in the wind. What is happening

here is that the wind is applying a force to the flagpole. However, because the flagpole is fixed to

the ground it doesn’t move. It instead has an equal force in the opposite direction at the bottom.

This creates a shear force and the pole bends, storing potential energy according to Hooke’s

Law. When the wind either changes direction slightly or reduces a little in speed the pole will

whip back.iii A tree is essentially many poles like this connected, affecting each other.

Gravity is very relevant in the hanging cloth scenario. Gravity will force the cloth that isn’t fixed to

drag down causing wrinkles and tension over the surface. The wind then applies a force to the

fabric, causing it to bend away. In this case the bending stiffness is so low that it isn’t the force

that causes it to go back to its resting position when the wind stops. Instead it is gravity in

relation to the tension from the top that complements the wind force. iv The tension in the cloth is

not evenly distributed and runs in multiple directions. This, together with wind turbulence, causes

the cloth to move unevenly in the wind.

Wind turbulence is the unevenness of the wind direction, and it’s caused when the wind blows

around objects making the wind travel at different speeds. In cities around houses wind

turbulence is very high because there is so much disturbance to the wind (i.e. buildings).v

8

By adding vertices (green lines) you
dramatically decrease the tiles (red) that
needs to consider alpha

2.2 Limitations of mobile platforms

A GPU is created to calculate computer graphics, but can do other kinds of calculations too. The

GPU is optimized for SIMD - Single Instruction Multiple Data, that is doing a very specific task on

many inputs. This can for example be a vertex program in a shader that needs to run once for

every vertex or a fragment program that needs to run once for every fragment.

Due to its structure it’s also able to do very fast vector and matrix math, as it’s built to work with

graphics which is always using colors and transforms.

One thing that really slows down the GPU is complex branching created by using if-statements,

because then it’s no longer running just one instruction. vi

Some modern games use the very specific computation power of the GPU to help relieve the

CPU. This is how for example Nvidia PhysX can do really accurate physics simulations in real

time. The problem with this is that they only work on certain graphics cards, and certainly not

mobile graphics cards!

Mobile CPUs and GPUs are developing

very quickly, and getting better by the

day, but one of the biggest problems in

mobile graphics is the thermal constraints

and power consumption. When sending

data back and forth the device gets hotter

as electricity is converted into heat, and

mobile phones are very cramped and

don’t have room for fans and other

cooling that desktop and laptop

computers has. As the device gets hotter

the clock speed of the GPU will slow

down and your game will start running

very slowly. The main contributor to this

is vertex load and texture look-ups, so on a mobile device you need to keep these to a minimum.
vii

The main goal of the mobile GPU is to keep power consumption to a minimum, because a

mobile phone runs of a battery that needs to last for a long time. The main contributor to power

consumption is the video memory. This is why most mobile graphic cards use a tile-based

architecture, instead of rendering the image in one go it handles it in tiles usually about 16x16

pixels in size, this way it just has to keep one the tile it’s working on in memory. viii ix

Shaders that use transparency is a big slowdown on mobile graphics cards, because of the tile

based architecture and limited memory. The tile based architecture also means that it’s often

much more efficient to use more vertices to closely follow the alpha border of the texture

because this will reduce the amount of tiles that needs to overdraw. x

9

There are two types of alpha shaders, alpha-blended and hard-edge alpha. On most graphics

cards hard edge is faster, because it ignores the alpha areas and discards them, so it doesn’t

have to do all fragment calculations on those fragments.xi One interesting exception is these tile

based GPUs, most notably the line of PowerVR graphics cards which is used in all Apple mobile

devices and many Android devices. xii The PowerVR Performance recommendations has the

following to say about alpha testing/discard:

“When an alpha tested primitive is submitted, early depth testing - such as PowerVR’s Hidden

Surface Removal (HSR) - can discard fragments that are occluded by fragments closer to the

camera. Unlike opaque primitives that would also perform depth writes at this pipeline stage,

alpha tested primitives cannot write data to the depth buffer until the fragment shader has

executed and fragment visibility is known. These deferred depth writes can impact performance,

as subsequent primitives cannot be processed until the depth buffers are updated with the alpha

tested primitive’s values.” and also notes that “For optimal performance, consider alpha

blending instead of alpha test to avoid costly deferred depth write operations.” xiii

You need to keep this in mind when making foliage shaders, which in most cases require

transparency, the best option is to make both the discard and blend shader and switch between

them depending on the device and cases.

2.3 Common solutions in real time graphics

What are the most common solutions to making animated grass and foliage in games?
One solution is simple joint animation. For example to animate a flag or branch by hand to
simulate wind. The downside of this is that it’s not very general and has to be done for every
object that is to be animated this way. On the other extreme is a completely dynamic solution for
everything. In that case everything will be unique, but, this is unrealistic even on the most high
end computer today. A third technique that is very common on foliage is animated shaders, just
by adding a value to the vertex positions before drawing them on the screen.xiv Modern games
usually use all three of these techniques in different places.

2.4 Case Study

The first scenario is an object animated to react to wind. Very impressive simulations of this can

be seen in some games, like the grass in Flower xv or the cloth in Mirror’s Edgexvi but a mobile

device lacks the processing power to do this, and it’s usually too intense for most pc and console

games too. Instead this is commonly done by using some kind of sinus wave to transform

vertices in a shader. The GPU is very effective doing vector math and the vertex program is

already looping through all of the vertices to convert them to screen space and send them to the

fragment program. Before this we can simply add a value to these positions before sending them

down the line. xvii xviii By supplying properties for the material stiffness wind direction and wind

speed a more realistic look can be achieved which correlates more to what actually happens in

nature. A second property of how attached parts of an object is could be supplied through vertex

color, like in the flagpole example earlier, the bottom of the pole is fully attached while the top

moves with the wind.

10

The second scenario relates to vegetation, for example bushes or grass, reacting to touch as the

player walks through them. This is often approximated by using collision detection, and wiggling

it a little using rotation values of the object transform. Another method could be using collision

and a blend shape for when the player is standing in the bush.

One problem with these methods is that you do not want unnecessary collision bodies, and

usually bundle environmental props together into patches of plants instead of single objects, so

you can’t have a script for each object that shakes the object a little in that case.

Completely simulated foliage as particles is certainly possible, but very expensive. xix

CryENGINE uses a simulated joint solution for touch bending of plants, this is costly but a viable

method for bigger plants that aren’t placed very densely. xx

By instead building the bending properties into the shader you wouldn’t need any collision

detection for each individual plant, instead just look at the distance between vertex and player

and scale the bending based on this.

Due to the popularity of the shooter genre in video games, effects relating to shooting has been

thoroughly researched over the years. However, not many games has cloth that reacts to bullets

due to the complexity required to do this. Some titles like Borderlands 2 and Mirror's Edge uses

PhysX for real time cloth simulations that supports tearing by bullets, but this only works with

Nvidia graphics cards.

The effect can be divided into two main components. First the cloth reacts to the bullet by being

forced to move back with the bullet creating a stretching and movement in the cloth. The second

part is that the bullet leaves a little hole and the cloth moves back into resting position as the

force is no longer applied. The second part is the actual tearing where after multiple gunshot the

cloth actually breaks into pieces which falls to the ground or hangs to the side.

If the second part is disregarded we can easily emulate the solution by just supplying a shader

with the vector of the shot and a couple of points along the vector. The shader can displace

vertices close to the bullet position in the direction the bullet is travelling and then fall back as it

passes. For a more complete illusion a particle system could spawn a hit effect and the model

could be swapped for a damaged version.

11

3 Method

3.1 Implementation

I implemented a solution for each of the

cases in Unity, writing the shader code in

Cg. The shader files are included as an

attachment. When writing about the cases

I leave out all unity specific things, and the

information should easily apply to any

game engine and shading language.

3.1.1 Reacting to wind

This is a relatively simple solution, and it can be contained entirely in

shader code. The vertex program takes an input-wind in the form of a vector 4 where the first 3

inputs are the direction vector (with displacement scale as magnitude) and the fourth is the wind

speed. There is another input called stiffness which roughly maps to how a fabric stiffness and

weight affects the way it moves. Higher stiffness means it moves less overall and also has less

small wrinkles in the movement.

The amount of displacement the wind should do on the object is then calculated by multiplying

the wind direction by 1/stiffness. Finally it is multiplied by vertex color representing how loose

that vertex is, for example the area were a bush is anchored to the ground shouldn’t move as

much as the top.

disp = (_WindDir.xyz*(1/_stiffness)*v.color.r;

Now we add that displacement to the vertex position before sending it to the fragment program.

We multiply it by the sine of time offset in y by 0.5 and divided by 2 so it moves between 0 and 1.

What this means is that the displacement changes between no displacement and full

displacement.

pos += disp * (sin(_Time*_WindDir.w + waveOffset).w/0.5+0.5);

The frequency of the waves is scaled by the w component of the wind direction, the wind speed.

A wave offset is added for every vertex. This wave offset ensures that the entire object doesn’t

move as one, there is actually a wave pattern going on, like in the image to the right. The offset

is calculated like this:

waveOffset = (pos.x + pos.y + pos.z)*(2/_stiffness);

12

This means that an object with higher stiffness, like leather, would move with less variation

(bending, wrinkles) than one with lower stiffness.

Finally a pass of more intense, more unpredictable movement is added. It uses vertex

coordinates to offset the time and scale so that it breaks up the movement a lot. It is multiplied

by the green vertex color channel. This Looks best along very loose edges of cloth or around the

edges of leaves. Therefore it’s masked by the green component of the vertex color so the

affected area can be painted individually from the rest of the mesh.

noise = sin(_Time*_WindDir.w*2.372*frac(pos)).z*frac(length(pos))*v.color.r*(1/_stiffness)*v.color.g;
pos += noise;

3.1.2 Reacting to touch

The goal of this is creating grass or bushes that moves and bends slightly as you run past. The

displacement effect is done in the shader much like in the previous case, and can be combined

with wind to make a more interesting shader. The reaction is done by supplying the material with

the velocity and position of the player in an external script attached to the player.

The vertex program first calculates how much the vertex should be affected by the player based

on how far away it is. First it gets the distance between the positions then saturates the max

influence distance. The saturate function returns 0 if the input is less than 0 and 1 if it’s more

than one.

dist = distance(o.pos.xz, _CharacterPosition.xz);
mixFactor = saturate(maxDist-dist);

The touch function the pushes the vertices in the direction of the character movement and

slightly down. This transformation is multiplied by the length of the movement vector. This

means that as the character slows down the vertices will spring back to their original shape.

touch = (_CharacterMovement+ float3(0.0,-1,0.0)*length(_CharacterMovement));
touch = touch * mixFactor *v.color.g *(0.2/_stiffness);

The whole thing is then multiplied by the mixFactor, the green vertex color which masks the

influenced area and a constant divided by stiffness.

This whole thing can easily be built upon the wind shader for a more comprehensive solution.

pos += float4((wind + touch + noise)*v.color.r,0);

3.1.3 Reacting to bullets

This is essentially the same as in the case above.

First the vertex mix factor is calculated to see if the vertex should be affected by the bullet.

13

dist = distance(pos.xz, _ShotPos.xz);
mixFactor = saturate(maxDist-dist);

Next we have to figure out how much displacement should take place. This is based on

displacement value given from the weapon, _ShotVector.w, and the material stiffness. The

position is then offset along the shot vector by the shotDistance and masked by the mixfactor

and the red vertex color.

shotDisp = _ShotVector.w * (1/_stiffness);
pos += float4(_ShotVector.xyz,0.0)*shotDisp*mixFactor*v.color.r;

This can be combined with wind effects and touch effects for a more complete look.

14

4 Result

The key property to defining these materials turns out to be how they react to external forces.

Different materials are defined largely by stiffness. In my shaders I decided to use this property

in most animations for many different functions from how far vertices are displaced to how much

internal variation there is.

Here is my final wind shader. It is quite hard to make out the animation these still frames, but it

can be seen on the left side of the leftmost tent.

Here is an image of the touch reacting, a foliage shader reacting to the player walking through it

by bending down and moving a little in the player walking direction.

And here is an image of the shot reactive shader

15

The final shaders are written in Cg (included as an attachment), ready to be used in unity but

could easily be translated into other shading languages and game engines. A video recording

can be seen on http://www.linuslindberg.com/p/thesis.html.

After looking into the performance constraints, I quickly disregarded any actual vertex

simulations, which are popular in PC and console games as they are too performance heavy for

mobile devices. The choices left were joint animation or a shader solution.

Instead I decided to go with a shader solution. The result was a solid wind shader (though not

very novel), an interesting touch reaction shader and a bullet reaction system with potential.

Here is a comparison with the wind shader (C) and two other common solutions, simple joint

animation(A) and a real-time simulation (B). The test is done on a scene with 160 objects that

require the wind effect, and tested on different devices.

 iPhone 6 iPhone 4s MacBook Pro

(A) Animated Joints -
3 joints

57.1 fps 27.3 fps 54.1 fps

(B) Unity Cloth 25.2 fps 0.4 fps 29.1 fps

(C) Wind Shader 55.1 fps 57.0 fps 54.2 fps

Here we can see that the animated joints with a basic unlit shader are slightly faster on the more

powerful devices, because here the cpu can keep up with the graphics and it’s the rendering

step that causes the slowdown. This means the more complex shader, the wind shader, is going

to take the longest to render. On the older phone however it’s the cpu that limits the framerate,

which will make the wind shader almost twice as fast because it’s very light on the cpu. The

Unity cloth is very slow on the iPhone 4s with a frame every other second. On the iPhone 6 the

performance is much better, at about 25 frames per second, but still to slow for just a wind

effect.

Visually the wind shader has more variation than the animated joints because it ignores the

object rotation, and changes the offset based on position. The cloth simulation has potential for

even greater variation and interesting visuals, because it’s fully simulated.

The difference between my wind shader and my reactive materials in performance is almost

none, It’s just adding a few more instructions in the vertex shader.

http://www.linuslindberg.com/p/thesis.html

16

5 Analysis and Discussion

Looking at the final result, the first two shaders are solid, and almost production ready, but the

shooting example doesn’t really look good enough. To me the shooting solution was an

interesting experiment. There is some potential in it, but there is a lot of additional work required

to use in a real game. One could for example supplement the effect with particle burst to make it

more rich and visually appealing.

One big problem with my solutions for problem b and c is that they only take one character and

one bullet into account, because they only have one vector input. This means that in a

multiplayer game you can only see when you yourself run through grass or shoot at things. You

could add one input for every potential player, but for every added player there would be multiple

lines of shader code added, which all needs to run once for every vertex. This might cause

slowdowns, which need to be tested further to see if the solution is still viable in this case.

For a more natural look a script could be written to dynamically change the wind direction and

intensity over time and supply that value to the material instead of just a static vector. In the real

world the wind never blows in the same direction for very long.

The shaders for wind could easily be improved for little extra cost by using all four channels of

the vertex color for other properties instead of just two, like using the blue for time offset and

alpha for stiffness variation. This would allow for greater control for the artist, and more realistic

looking object in many cases.

A variation on the shot-reactive material with even better performance and slightly nicer looking

movement could perhaps be created by instead of sending multiple positions along the shooting

vector just sending the player position and the shooting vector. The shader would then create a

new vector from the player position and the vertex position. The dot product of this new vector

and the shooting vector would be used to calculate which vertices should be affected by the

shot.

In conclusion I have to say that I like the idea of containing these effects in a shader. The wind

effect is something I’ve seen done many times but providing other input for additional forces, say

the player velocity, does add more of an interactive feel to it at a low cost. As I’ve stated earlier,

the shot reactive material still misses some parts to make it more appealing, and is more of an

early idea than a full implementation. Nevertheless I feel exploring this further is something that

could add a lot of immersion to mobile games especially.

17

References

i
 “Influence of the fabric properties on fabric stiffness for the industrial fabrics” Mehmet Emin Yüksekkaya,
Thomas Howard, Sabit Adanur

ii
 “College Physics” “5.3 Elasticity: Stress and Strain” Dr. Paul Peter Urone Dr. Roger Hinrichs

iii
 “College Physics” “16.1 Hooke’s Law: Stress and Strain Revisited” Dr. Paul Peter Urone Dr. Roger

Hinrichs

iv
 http://www.physicsclassroom.com/class/waves/Lesson-0/Pendulum-Motion (April 21 2016)

v
 http://www.greenrhinoenergy.com/renewable/wind/wind_characteristics.php (April 28 2016)

vi
 “From Shader Code to a Teraflop: How Shader Cores Work” Kayvon Fatahalian, Stanford University,

SIGGRAPH 2008

vii

 The Revolution in Mobile Game Graphics (Presented by ARM) - GDC 2014 -
Marius Bjorge, Sam Martin

viii

 The Revolution in Mobile Game Graphics (Presented by ARM) - GDC 2014 -
Marius Bjorge, Sam Martin

ix
 Broken Age's Approach to Scalability - GDC Europe 2013

x
 Broken Age's Approach to Scalability - GDC Europe 2013

xi
 https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Transparent_Textures (April 22, 2016)

xii

 https://en.wikipedia.org/wiki/Apple_mobile_application_processors (April 22, 2016)

xiii

 http://cdn.imgtec.com/sdk-
documentation/PowerVR+Performance+Recommendations.The+Golden+Rules.pdf section 2.8

xiv

 http://http.developer.nvidia.com/GPUGems3/gpugems3_ch16.html

xv

 http://www.thatgamecompany.com/forum/viewtopic.php?t=2296

xvi

 http://physxinfo.com/wiki/Mirror's_Edge (May 22 2016)

xvii

 “Animated Grass with Pixel and Vertex Shaders” John Isidoro and Drew Card

xviii

 http://www.gamasutra.com/view/feature/132419/sponsored_feature_rendering_grass_.php (March 12
2016)

xix

 “Real-Time Simulation of Interactive Grass Mesh” By Godwill Fameyeh

xx

 http://docs.cryengine.com/display/SDKDOC2/Touch+Bending (March 12 2016)

http://www.physicsclassroom.com/class/waves/Lesson-0/Pendulum-Motion
http://www.greenrhinoenergy.com/renewable/wind/wind_characteristics.php
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Transparent_Textures
https://en.wikipedia.org/wiki/Apple_mobile_application_processors
http://cdn.imgtec.com/sdk-documentation/PowerVR+Performance+Recommendations.The+Golden+Rules.pdf
http://cdn.imgtec.com/sdk-documentation/PowerVR+Performance+Recommendations.The+Golden+Rules.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch16.html
http://www.thatgamecompany.com/forum/viewtopic.php?t=2296
http://physxinfo.com/wiki/Mirror%27s_Edge
http://www.gamasutra.com/view/feature/132419/sponsored_feature_rendering_grass_.php
http://docs.cryengine.com/display/SDKDOC2/Touch+Bending

