Sterrenkundige spectroscopie te KSB

Alex Lobel Koninklijke Sterrenwacht van België

In deze lezing

- Spectroscopie met ESA-Gaia: sterparameters en radiële snelheden.
- Onderzoek naar de eigenschappen en structuur van winden van zware sterren: modelisatie van spectra dmv 3-D stralingstransport.
- Lange termijn spectroscopische monitoring van Gele Hyperreuzen en Lichtkrachtige Blauwe Veranderlijken.
- Ontwikkeling van interactieve databank van hoge-resolutie spectrale atlassen voor astrofysisch onderzoek: BRASS.

Spectroscopie met Gaia

- ESA is hoeksteen missie voor onderzoek van de Melkweg
- Astrometrische satelliet; opvolger van Hipparcos 1990-93. Inclusief optische fotometrie tot 20^{ste} mag. & spectroscopie
- 5 jaar waarnemingen met productie van Gaia catalogus
- Astronomen betrokken bij productie van Gaia catalogus
- Wat leert Gaia ons over de vorming structuur en evolutie van ons melkwegstelsel?

Soyuz Sz-013

Inpakking van Gaia voor Kourou

Gaia scant de ganse hemel

Gaia scant bronnen meerdere malen

Kaart van aantallen Gaia waarnemingen aan de hemel gedurende 5 jaar

NSL field transits after 5 years in: Galactic coordinates

- Waarneming van 1,69 miljard sterren elk gem. 70 maal tot G=20 mag.
 Astrometrie en blauw & rood fotometrie van elke bron.
- Astrometrische nauwk. in eind catalogus tot ~20 μ boogsec (G<15 m.)

Positie en helderheid van 1,69 miljard sterren

Kleurenkaart met 1,3 miljard sterren

Gaia's CCD detectoren

Verschillende CCD's voor verschillende soorten waarnemingen

106 CCDs \cong 938 miljoen pixels

Aantal sterren en objecten in Gaia's tweede data uitgave

position & brightness on the sky

1 692 919 135

red colour 1 383 551 713 1 381 964 755

parallax and proper motion

surface temperature

161 497 595

1 331 909 727

The second data release of ESA's Gaia mission is scheduled for publication on 25 April 2018.

radius & luminosity 76 956 778

the line of sight

87 733 672

amount of dust along

European Space Agency

14 099 Solar System objects

> 550 737 variable sources

radial velocity 224 631

www.esa.int

Gaia spectrometer voor nabije IR

Gaia spectrometer voor nabije IR

Spectrale resolutie: R=11500

Spectrale reeksen van sterren rond het Ca II triplet

Effect van temperatuur: A tot M type

Effect van metaalgehalte in G sterren

Doppler effect voor licht

snelheid naar ons toe

spectrale blauwverschuiving

Gemiddelde radiële snelheden van 7,2 miljoen sterren

Rotatie van het melkwegstelsel en de beweging van de Zon tov de sterren

Theoretische RVS spectra voor berekening van Teff, logg, ...

Kaart van atmosferische temperaturen Teff

Gemiddelde meer sterren met Teff boven 5000 K waargenomen boven het Melkweg middenvlak.

Diverse typen pulserende sterren in aantallen

Veranderlijke sterren in het H-R diagram

- Verschillende soorten veranderlijke sterren in het H-R diagram.
- Cyclische veranderingen in G magnitude en kleuren.
- Cepheïden zijn belangrijk voor betrouwbare afstandsbepalingen.

Gaia radiële snelheden vs. RVS magnitude

Cepheïde R TrA Pulsatie periode = 3,389 d.

Hyperreuzen in het H-R diagram

- Zwaarste en meest lichtkrachtige sterren nabij de grens op lichtkracht (F-G la⁺).
- Vertonen sterke spectrale veranderingen en semi-regelmatige V krommen.
- Terugkerende uitbarstingen met sterk verhoogd massaverlies tot ~10⁻³ M_{\odot} /jaar.

LK BLAUWE VERANDERLIJKE P Cygni B1 Ia+ $T_{eff} = 19300 \text{ K}$ Log g = 0.0 $T_{eff} = 3500 \text{ K}$ Log g = -0.5 $R_* = 76 R_{\odot} L_* = 630\ 000\ L_{\odot}$

GELE HYPERREUS Rho Cas F - G la+ $T_{eff} = 7200 \text{ K} \text{ Log } g = 0.5$ $R_* = 400 R_{\odot}$ L* = 100 000 L $_{\odot}$

RODE SUPERREUS Alpha Ori M2 lab $R_* = 700 \ R_{\odot}$ $L_* = 40 \ 000 \ L_{\odot}$

V lichtkrommen van GHRn Rho Cas en HR 5171A

- Kwasi-periodische V variaties over verschillende jaren met $P_{a} = 240 \text{ d} 520 + \text{ d}$.
- V lichtkrommen met amplituden van 0^m,2 to 0^m,5 tgv atmosferische pulsaties.
- V amplituden kunnen toe- of afnemen over jaren en overgaan in een uitbarsting.

Hoge resolutie spectra van Rho Cas en HR 5171A

- Gele Hyperreuzen vertonen ongewoon brede fotosferische absorptielijnen.
- Brede absorptielijnen als gevolg van sterke micro-turbulentie en convectie.
- Absorptielijnen kunnen splitsen in de kern tgv emissielijn spectrum in Rho Cas.

Spectroscopische zustersterren Rho Cas, HR 5171A en HR 8752

• Fotosferische Fe absorptielijnen vertonen dezelfde vorm en breedte in 3 GHRn.

• Spectroscopische zustersterren tijdens perioden van vergelijkbare Teff.

Rustige pulsaties van Rho Cas

- Atmosferische pulsaties vertonen snelheidstratificatie in metaallijnen vs. Hα lijn.
- Pulsaties veroorzaken sterk aangehouden massaverlies van ~10⁻⁵ M_o/jaar.
- Niet-radiële pulsaties tijdens de rustige fasen van veranderingen in V.
- Pulsaties gekoppeld aan convectieve bewegingen maken sterk verbrede lijnen.

Rustige pulsaties van Rho Cas

- Fotosferische metaallijnen vertonen sterke Dopplerverschuivingen.
- V lichtkromme volgt de radiële snelheidskromme na kwart van pulsatieperiode.

Lange termijn spectroscopische monitoring van Rho Cas

- Uitbarsting verbonden met zeer grote amplitude van de radiële snelheid als gevolg van een ongewoon sterke pulsatie.
- Het reguliere massaverlies neemt sterk toe van ~10⁻⁵ M_☉/jaar tot 5,4 10⁻² M_☉/jaar.

Millennium uitbarsting van Gele Hyperreus Rho Cas

Millennium uitbarsting van Gele Hyperreus Rho Cas

Millennium uitbarsting van Rho Cas

- V verzwakt met 1,2 mag. in ca. 200 dagen.
- T_{eff} neemt af van ~7000 K tot beneden 4000 K.
- Gasschil uitgestoten met 35 ± 2 km/s waargenomen in nieuw gevormde TiO banden.
- Totale massa uitgestoten in gasschil is ~5 % van M_{\odot} gemeten met TiO banden en blauwe windvleugels van fotosferische absorptielijnen.

Nieuwe TiO banden in V minimum van de uitbarsting

- TiO banden verschijnen gedurende diepe V minima, maar verdwijnen erna.
- TiO banden worden alleen in M-type sterren waargenomen met Teff < 4000 K.
- Dopplerverschuivingen signaleren toename van massaverlies met factor > 100.
- Belangrijkste massaverliesmechanisme in GHRn tgv uitbarsting om ~20 50 jr.

De lichtkrachtige superreus J Puppis (B0.5 lb)

Lichtkrachtige sterren met straling aangedreven winden

- Straling aangedreven winden met sterk massaverlies van de ster.
- Zeer hoog supersonisch versnelde winden vormen P Cygni wind-lijnen.

Ultraviolet spectra van de ruimtetelescoop IUE

Vorming van P Cygni type lijnprofielen in sterwind

 Absorptie gedeelte van dit profiel is een maat voor de opaciteit van de wind vóór de sterschijf.

Nauwe absorptie componenten in LBV HD 168607

 Smalle componenten worden waargenomen op verschillende snelheden in de sterwind met veranderlijke sterkte.

Si IV λ 1400 doublet lijnen in Xi Per van de IUE

Genormaliseerde flux

Flux verschil

Roterende dichtheidsgolven in de equatoriale wind van een zware hete ster

3-D hydrodynamische simulaties met ZEUS3D code

2-spot model met

$$V_{spot} = V_{rot} / 5$$

 $A_{spot} = 0.2$ & $\Phi_{spot} = 20^{\circ}$
 $A_{spot} = 0.08$ & $\Phi_{spot} = 30^{\circ}$

Dichtheidscontrast:

minimum $\rho / \rho_0 = 0.87$ maximum $\rho / \rho_0 = 1.31$

Twee ongelijke heldere vlekken op het steroppervlak aan haar evenaar

3-D stralingstransport berekeningen met Wind3D code

- Code onder ontwikkeling te KSB sinds 2006.
- Code Accepteert 3-D wind-dichtheidsen snelheid-structuren
- 3-D non-LTE stralingstransport iteraties in spectrale lijnen.
- parallelle code met zeer efficiënte CPU bezetting.

Hete ster met versnelde wind en interne windstructuren als input voor de Wind3D code.

Hydrodynamisch windmodel van J Pup met ZEUS3D

Roterende gasgolven zijn het gevolg van 2 heldere vlekken aan de evenaar die 5 maal trager draaien dan het oppervlak: $P_{rot} = 4,12 d$ $P_{spot} = 20,6 d$

Dynamisch spectrum van de Si IV lijn berekend met Wind3D

 Nauwe componenten versmallen omdat de spreiding van geprojecteerde snelheden in de gasgolven afneemt verder boven het steroppervlak.

Velocity [km s⁻¹]

-985

-760

Tweepolige H α nevel van LBV MWC 314

A. P. Marston and B. McCollum: Extended shells around B[e] stars

Fig. 1. Narrow band H α image of the environments of MWC 314 showing the large east-west bipolar feature 12.5 vertically. For all figures, north is up and east to the left.

197

LBV η Carinae dubbelster P_{orb} = 5,5 jr

Fotosferische absorptielijnen met orbitale fase

• S-golf waargenomen in absorptielijnen met amplitude van ~160 km/s.

• Dopplerverschuivingen tgv orbitale beweging van zware primaire ster.

Monitoring van radiële snelheid in 2009-2011

16 Mercator-HERMES & ESO-FEROS spectra sep 2009 – aug 2011

Beste fits op radiële snelheid- en V-krommen

PHOEBE code <u>gecombineerde best fit</u> op radiële snelheid en *V*

MWC 314 is een zware dubbelster met een LBV ster die haar Roche volume vult.

V-kromme met partiële eclipsen voor $i = 72^{\circ} \pm 13^{\circ}$

Primaire ster:

 $M_1 = 39.6 \pm 4.3 \text{ M}_{\odot}$ $R_1 = 86.8 \text{ R}_{\odot}$

Secundaire ster:

 $M_2 = 26.3 \pm 2.5 M_{\odot}$ $R_2 = 20.4 R_{\odot}$

Primaire LBV ster vult haar Roche volume

- Helderheidsmaximum in kwadratuur met grootste vervorming van primaire ster.
 Beebe overvulling door LBV beefdeter voodt eireumbinging schiif in MWC 2142
- Roche overvulling door LBV hoofdster voedt circumbinaire schijf in MWC 314?

Orbitale veranderingen van P Cyg-type He I lijnen

Alle He I lijnen vertonen sterke orbitale modulatie van absorptie in wind.
Max. windabsorptie φ= 0,65–0,85 bij max. blauwverschuiving van LBV.

Asymmetrisch 3-D wind model van MWC 314

\$3

LBV in apoastron

 β-wet wind model is asymmetrisch omheen gemeenschappelijk zwaartepunt maar wordt meer symmetrisch op grotere afstanden.

Beste fit op orbitale veranderingen van He I lijn met Wind3D

- 3-D wind model produceert sterkere absorptie bij ϕ = 0,65 0,8.
- Beste fit met Wind3D op absorptiegedeelte van P Cygni –type He I lijn.

Wind3D beste fit op orbitale variaties in He I \25876

 3-D beste fit met Wind3D voor model met verhoogde wind dichtheid van factor f = 3,3.

SPECTRA	LINES	DUPLICATED LINES	DOWNLOAD SPECTRA	HELP	CREDITS	THE BELGIAN REPOSITORY OF ATOMIC DATA AND STELLAR SPECTRA © 2018
BRASS D	evelopment C	Credits				
TEAM AND	FUNDING					
			BRA	<u>8</u> 8		
Project						
A descriptio Belgian Re the Royal C Université L PhD progra	n of the object pository of func Ibservatory of ibre de Bruxe m of the Univ.	ives of this research proje damental Atomic data and Belgium, the Univ. of Leuv lles, and the Vereniging vo of Leuven.	ect funded by the Belgian Rese Stellar Spectra (BRASS) is he ren, and the European Souther por Sterrenkunde. The BRASS	arch Action th re. The BRAS n Observator project starte	rough Interdise S project is a i y, with contribu d 15/12/2014 a	ciplinary Networks (BRAIN-be): The networking collaboration project between tions of the University of Antwerp, the and will end 15/09/2019. It also involves a
Website						
02/2018						
Partners						
* **** ****	Royal O of Belgi	bservatory KU I		UNIVERSITÉ LIBRE DE BRUXELLE	s	Antwerpen
brass.sdf.org						

SPECTRA	LINES	DUPLICATED LINES	DOWNLOAD SPECTRA	HELP	CREDITS	THE BELGIAN REP DATA AND STELL	OSITORY OF ATO AR SPECTRA © 2	MIC 018
BRASS Line	s							
QUERY BRASS	атоміс і	INES DATA						
Soo	rob I		tabaca					
Sea		DRASS ud	labase					
_	_							
Element (e	e.g. Fe,	Fe						
Start wave	length	4200						
(A, >4000):							
End wavele	ength (A	4300						
<0000).								
Present as								
Sort by (m	atters fo	r O wavelength ^O sigm	aLoggf					
table prese	entation							
Uniy).		Search lines						
			© BRASS 2018					
Lines			•					

SPECTRA	LINES	DUPLICA	TED LINES	DOWNLOA	D SPECTRA	HELP	CREDITS	THE BELGIAN REPOSITORY OF ATOMIC DATA AND STELLAR SPECTRA © 2018
BRASS Lines	5							
QUERY BRASS	ATOMIC L	INES DATA						
Source	Ele	ment Ion	Wavelength	E_low	E_up Log	(gf) Lower	_level Upper	r_level Reference
BRASS Vald3 NTST	Fe Fe	1 1	4200.0872 4200.0868	3.884 3.8835	6.835 -1. 6.8347 -1.	13 LS 3p 13 LS 3d	5.3d6.(5D).4s.4p 6.(5D).4s.4p.(3P	p.(3P*) z3D* LS 3p6.3d7.(4F).4d f3F [Fuhr, J. R., Martin, G. A., & Wiese, W. L. 1988, J. of Physical and Chemical Ref. Data, Vol. 17, Suppl. 4. 1 P*) z3D* LS 3d7.(4F).4d f3F [J. R. Fuhr, G. A. Martin, and W. L. Wiese. Atomic transition probabilities. Iron through Nickel. Journal of Physica
SpectroWeb CHIANTI SpectrW3	o Fe	1	4200.09 3.88	346 6.83445	-2.26		[SpectroWeb \	v1.0 solar spectrum testing values, 2010]
TIPbase TOPbase	Fe	1	3929.53 3.5	85256	6.751591	-2.43	2 4p z3D* 4d f3	3F [Laverick, M., Lobel, A., Merle, T. et al., The Belgian repository of fundamental atomic data and stellar spectra. I: Cross-matching atomic database:
BRASS Vald3 NIST	Fe Fe	2 2	4200.1613 4200.1613	7.727 7.7271	10.678 -3. 10.6782 -3.	648 LS 3d 648 LS 3d	5.(3H).4p z2G* 5.(3H).4p z2G*	LS 3d6.(5D).4d e4F [Raassen, A. J. J. & Uylings, P. H. M. 1998, A&A 340, 300] LS 3d6.(5D).4d e4F [A. J. J. Raassen and P. H. M. Uylings. On the determination of the solar iron abundance using Fe II lines. A&A, 340:300

Download

 Interactief onderzoek van lijn-identificaties en atomaire gegevens.

SPECTRA LINES		S DOWNLOAD S	PECTRA HELP CREDITS	HE BELGIAN REPOSITORY OF ATOMIC	DATA AND STELLAR SPECTRA © 2018				
BRASS Data Download									
DOWNLOAD PAGES REGISTER TO BRASS CONFIRM REGISTRATION LOGIN									
Please first register via the menu above and next login for accessing BRASS data files in this Table									
Spectral Type	Instrument	Star name	Spectrum	Spectrum	Spectum				
			Observed	Model	Model				
				Unbroadened	Broadened				
К	Hermes	Arcturus	Arcturus_OBS.dat	Arcturus_MUB.dat	Arcturus_MBR.dat				
К	Hermes	Eps Eri	Eps_Eri_OBS.dat	Eps_Eri_MUB.dat	Eps_Eri_MBR.dat				
G	Hermes	70 Oph	70-Oph_OBS.dat	70-Oph_MUB.dat	70-Oph_MBR.dat				
G	Hermes	70 Vir	70-Vir_OBS.dat	70-Vir_MUB.dat	70-Vir_MBR.dat				
G	Hermes	51 Peg	51-Peg_OBS.dat	51-Peg_MUB.dat	51-Peg_MBR.dat				
F	Hermes	10 Tau	10-Tau_OBS.dat	10-Tau_MUB.dat	10-Tau_MBR.dat				
F	Hermes	Beta Com	Bet Com OBS.dat	Bet Com MUB.dat	Bet Com MBR.dat				
F	Hermes	Procyon	Procyon_OBS.dat	Procyon_MUB.dat	Procyon_MBR.dat				
A	Hermes	68 Tau	68-Tau_OBS.dat	68-Tau_MUB.dat	68-Tau_MBR.dat				
В	Hermes	HR 7512	HR_7512_OBS.dat	HR_7512_MUB.dat	HR_7512_MBR.dat				
More to come	Other	Other	Other	Other	Other				

 BRASS benchmark spectra reeds gedeeltelijk online beschikbaar.

 Kwantitatieve beoordeling van de kwaliteit van diverse bronnen van atomaire data.

 Gedetailleerde fits op elke lijn in verschillende benchmark spectra.

SPECTRA LINES DUPLIC	ATED LINES DOWNLOAD SPECTRA HELP CREDITS THE BELGIAN REPOSITORY OF ATOMIC I	DATA AND STELLAR SPECTRA © 2018							
BRASS Spectra and Data Display									
BENCHMARK STARS	LOADED WAVELENGTH REGIONS	ATOMIC DATA SPECTRUM 1							
K-stars HERMES Arcturus	REGION #1 REGION #2 REGION #3 REGION #4 ATOMIC DATA QUALITY GAUSS LINE FIT	Save my list to file: brasslines1.html Clear lines list Clear graded list Clear my list							
HERMES Eps Eri	run top Gauss fit Reset zoom Shift top labels Up O Down Add top fit to my list Refresh	SUN reg119 8797 Fe 1 6750.15 kggf=-2.720							
HERMES 70 Oph	SUN reg119	Het= Spectrowero Elow= 2,4241 eV Rad= 6,690 Stark= -6,130 Lande= 1,500 Cal dente= 0,642							
HERMES 51 Peg O	1 SUN reg119 Single Gauss best fit pams. Line wavel. = 6750.1484 A Bkgr. flux level = 0.9943 Gauss einma = 55 12 mA	SUN reg119 Single Gauss best fit parms. Line wavel = 6750.1484 A Bkgr, flux level = 0.9943							
HERMES 10 Tau	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Gaüss sigma = 55.17 mA Norm. line depth = 0.5316 Eqv. width = 73.51 mA Eqv. width = ror = 0.79 mA							
HERMES Procyon	Tot Used in points - 90 Fit quality = 0.99613 Fit quality = 0.99613	Used fit poits = 98 Fit quality = 0.99613							
A-stars	2 0 6749.8 6750 6750.2 6750.4 0								
REFERENCE STARS	0								
A-stars HERMES Astar TBC	Stellar rest wavelength [A]								
B-stars VLT-UVES Bstar TBC	51-PEG reg119	ATOMIC DATA SPECTRUM 2							
×	1 8783 8787 8787 8786 8796 8796 8796 880 880 880 880 880 880 880 880 880 88	Save my list to file: brasslines2.html Clear lines list Clear graded list Clear my list							
WAVELENGTH REGIONS	E 8784 8801 E 8799								
115 6620-6650 A	Z 0 8797 6745 5755 6760 6765 8811 0								
117 6680-6710 A									
118 6710-6740 A	Stellar rest wavelength [A]								
119 6740-6770 A O									
120 6770-6800 A 🔿	run bottom Gauss fit Reset zoom Shift bottom labels Up O Down Add bottom fit to my list								
	© BRASS 2018								

Dank voor de uitnodiging

