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Abstract 

 

Why naturally occurring psychoactive psychedelics, N,N-dimethyltryptamine (DMT), 5-

hydroxy-DMT (Bufotenine, HDMT) and 5-Methoxy-DMT (MDMT) occur naturally in 

the human body has very little understanding at the cellular level, and even less how they 

give rise to hallucinations. This class of serotonergic hallucinogens will be discussed with 

new concepts to explain the chemical pathways and their associated enzymes in the brain. 

Inhibition of the tryptophan hydroxylase-2 (TPH2) enzyme, in forming serotonin (5HT), 

gives rise to the psychedelic metabolites of Tryptamine by activating stored information, 

as visual, auditory, tactile, gustatory or olfactory memories located to their correlating 

areas of the brain (Chaudhury, 2010) via Sigma-1, Serotonin (5HT) and Trace amine-

associated receptors (TAARS). A direct synaptic pathway from the retina to the Dorsal 

Raphe Nucleus (DRN) (Fite, Janusonis, Foote, & Bengston, 1999) has been found. In 

addition, projections from DRN to the Pineal gland (Møler & Hay-Schmidt, 1998) and 

Olfactory Bulb (Steinfeld, Herb, Sprengel, Schaefer, & Fukunaga, 2015) results, which  

also correlates with findings of DMT presence in these areas (Barker, S., Borjigin, J., 

Lomnicka, I., Strassman, R., 2013). DMT accumulates in the cerebral cortex, putamen, 

caudate and amygdaloid nuclei (Yanai et al., 1986) and deactivates the default mode 

network (DMN) (Palhano-Fontes et al., 2015), hence the mind is unable to distinguish 

what is real and what is not (Li, 2014). A summary of these events will highlight the 

journey DMT takes from the intracellular makings to the sensory faking’s renown as 

hallucinations. 
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Metabolites of Tryptamine: Endogenous psychedelic neurotransmitters, and N,N 

dimethyltryptamine (DMT) in explaining a new pathway to produce Serotonin, Melatonin and 

hallucinations. 

Psychedelic chemicals, N,N-dimethyltryptamine (DMT), 5-hydroxy-DMT (Bufotenine, 

HDMT) and 5-Methoxy-DMT (MDMT), have been found in human cerebrospinal fluids – CSF 

(DMT and MDMT), blood (DMT and HDMT), and urine (DMT and HDMT) (Barker, S., Borjigin, 

J., Lomnicka, I., Strassman, R., 2013). HDMT has been found in hospital patients from surgical, 

medical and psychiatric wards, ten times more abundantly in stools than urine readings 

(Karkkainen, 2005) which could mean that excessive HDMT maybe a by-product, excreted 

from serotonergic cells in the gastrointestinal system. More recently psychedelics have been 

found in hair samples (Martin, Schurenkamp, Gasse, Pfeiffer, & Kohler, 2015) and combined 

with current data assessments possibly could find longitudinal data in future studies.  

(Vitale et al., 2011) found labelled DMT is actively transported through the blood brain 

barrier (BBB) ten seconds after injection, and 0.1% was detected in the olfactory bulb 7 days 

later. This lead to the conclusion that DMT possibly is a plasma transporter, an extracellular 

substrate for Serotonin transporter (SERT) and an intracellular vesicle substrate for VMAT2 

(vesicle monoamine transporter2), (Cozzi, N., Gopalakrishnan, A., Anderson, L., Feih, J., 

Shulgin, A., Daley, P., Ruoho, A., 2009) as shown in figure 1c.  

DMT and Tryptamine bind with 5HT2A, 5HT2C, trace amine-associated (TAAR), sigma-

1(σ-1) putative receptors. The methylation enzyme, Indolethylamine N-methyltransferase 

(INMT), has been found in the central nervous system, retina, pineal gland (Cozzi, N., 

Mavlyutov, T.A., Thompson, M.A., Ruoho, A.E. , 2011), (Barker, S., Borjigin, J., Lomnicka, I., 

Strassman, R., 2013) as well as motor neurons in the spinal cord (Mavlyutov et al., 2012) and 

is associated with DMT docking in INMT (Chu et al., 2014). 



Figure 1(c) shows the schematic representation of the Serotonin (5HT) neuron and 

how neurotransmission is propagated. What will be discussed is a completed circuit of 

mechanisms intracellularly from the essential amino acid, Tryptophan (3 in figure 1c), and how 

an alternative Tryptophan to Tryptamine pathway can explain numerous studies with the 

formation of Serotonin (5HT) and Melatonin. 

Serotonergic transmission in (a) the human brain (b) rat brain (c) serotonin neurons 

 

Figure 1. (a) Neuroanatomical diagram of serotonergic projections of the Dorsal Raphe 
Nucleus (DRN). Caudal Raphe Nucleus (CRN) projects down the brainstem to the spinal cord 
and to the Cerebellum (C). Rostral Raphe Nucleus (RRN) projects to the C, Thalamus (Th), 
Amygdala (A), Temporal lobe (TL), Striatum (ST), prefrontal cortex (PFC), occipital cortex (OC) 

(b) Neuroanatomical projections in a rat brain. (c) Serotonergic neuron Tryptophan 
(Tryp), tryptophan hydroxylase (TrpOHase), 5-hydroxytryptophan (5-HTP), L-amino acid 
decarboxylase (L-AADC), serotonin transporter (SERT), monoamine oxidase (MAO), Serotonin 
(5HT) receptors; 5-HT1A, 5-HT1B, 5HT2A,C, etc. at the  pre- and postsynaptic sites. (Cools, 
Roberts, & Robbins, 2008) 
 



Tryptophan to Tryptamine, an alternative pathway 

 

A study, (Christofides et. al, 2006), carried out with Tryptophan depletion/loading, in 

Traumatic Brain Injury (TBI), Huntington's disease (HD) patients and healthy controls, 

proposed there exists an alternative Tryptophan/Tryptamine pathway to Serotonin (5HT) and 

Melatonin production,  from their findings with Tryptophan depletion, (fasting in TBI). 

Serotonin (5HT), the 5HT by-product 5-Hydroxyindoleacetic acid (5HIAA) and Melatonin 

increased significantly compared to the control group. However, no conclusive explanation 

why this resulted was given. 

The main differences in results from healthy controls and TBI could be explained due 

to inhibition of Tryptophan hydroxylase-2 (TPH2), figure 2. TPH2 gene is produced in the 

brainstem and seems likely that damage to this area significantly reduces TPH2 production in 

the traditional hydroxylation step of Tryptophan to 5-hydroxytrypotphan (5HTP). This 

inhibition of TPH2 forces an alternative step of Tryptophan decarboxylating to Tryptamine 

(TA). Instead of a lack of 5HT production, from the absence of TPH2, an alternative pathway 

takes place for more 5HT to be produced and cognition to continue. This process could even 

possibly enhance cognition by activating divergent neurons from other areas, giving rise to 

creative problem solving through deactivating the default mode network (DMN). Studies have 

shown DMT’s effects on consciousness can be likened to the results found with sleeping and 

meditation (Palhano-Fontes et al., 2015) with connections in the posterior and anterior 

cingulate cortex in the DMN, and ability to make distinctions (Li, 2014). This could be one 

reason, people are not able to distinguish what is real and what is not. As each individual neuron 

is activated a highly elaborate collection of information could be likened to a series of 

snapshots, or as a series of holograms, found like in an old flicking movie. With each screen 

(neuron) added, and slight differences of information developing the overall picture. Thus 



appearing very real to the individual seeing it. In the case for smell and auditory, the same 

mechanisms and concepts could be involved, just different states experienced due to the 

location in different areas of activation.  

 

Biosynthesis of Serotonin, Melatonin and the Tryptamine Pathway 

Biosynthesis of Tryptophan (Tryp) has several pathways. The major pathway, (1) 

Kynurenine (Jones, Guillemin, & Brew, 2013),  

(2) Current understanding, the enzyme Tryptophan hydroxylase-2 (TPH2) for the 

brain and TRH1 for the body (Walther et al., 2003), produces 5HT by hydroxylation to 5-

hydroxytryptophan (5HTP). (Nakamura & Hasegawa, 2009)   

(3) Will be explained (figure2), the metabolites from Tryptamine (TA) production.  

 

Decarboxylation, using tryptophan decarboxylase (TDC) (K. Kang, Kang, Lee, Park, & 

Back, 2008), producing Tryptamine (TA) has a very short half-life of around 18-42 seconds 

(Juorio, 1990).  Yuwen, 2013, also proved by bioinformatics, using the aromatic L-amino acid 

(AADC) in vitro gene cloning, that Tryptophan forms Tryptamine.  

Kang, 2007, showed that the enzyme Tryptamine-5-hydroxylase (T5H), converts 

Tryptamine (TA) into Serotonin, by hydroxylation (OH-), in rice seedlings. (Kang, S., Kang, Lee, 

& Back, 2007), figure 2. When this occurs another possible alternative pathway, from TA, 

methylate’s with the enzyme, Indolethylamine-N-methyltransferase INMT (twice)N,N- 

dimethyltryptamine (DMT)  hydroxylated DMT produces 5-OH-DMT (Bufotenine) and 

possibly other naturally occurring psychedelics like, 4-OH-DMT, 5-MeO-DMT, displayed in 

figure 2. (Rosengarten & Friedhoff, 1976), (Gomes et al., 2014), (Szára, 2007).  

 



 

Figure 2. The Tryptophan to Tryptamine neurotransmitter pathway. Biosynthesis model 

collating studies, enzymes and metabolites of Tryptamine. 

Blue represents psychedelic pathway, red highlighting hypothesised pathways and enzymes 

areas for further research, green shows established and accepted Tryptophan 5HTP 

Serotonin  Melatonin pathway.                                                                                                 

HIOMT-hydroxyindole-O-methyltrasferase, INMT-Indolethylamine-N-methyltransferase, 

TPH2-Tryptophan hydroxylase-2, T5H-Tryptamine hydroxylase enzyme, OH- hydroxyl ion, 

TDC- tryptophan decarboxylase, AANAT- aralkylamine N-acetyltransferase,  AcCoA- Acetyl 

coenzyme A, CoASH-coenzyme A, SIRT NAD+-dependent deacetylase - sirtuin (silent mating 



type information regulation 2 homolog). (Axelrod, 1961; Barker, Borjiginb,Lomnicka, 

Strassman, 2013; Baxter, Canavier, Clark, & Byrne, 1999; Beaton & Morris, 1984; Burgess 

Hickman, 1999; Chauhan, 2009; Chilton, Bigwood, & Jensen, 1979; Chu et al., 2014; Cozzi, 

Gopalakrishnan, Anderson, Feih, Shulgin,  Daley, Ruoho, 2009; Cozzi, Mavlyutov, Thompson, 

Ruoho, 2011; Donohue, 1993; Fontanilla et al., 2009; Funakoshi, 2011; Gianesini, Clesse, 

Tosini, Hicks, & Laurent, 2015; Gomes et al., 2014; Juorio, 1990; Kang et al., 2008; Kang et al., 

2007; Karkkainen, 2005; Lipinski, 2011; Mack, Mulvena, & Slaytor, 1988; Mackay et al., 2006; 

Mandel, Ahn, & VandenHeuvel, 1972; Matuszak, Reszka, & Chignell, 1997; Meyer, Gehlhaus, 

Knoth, & Volk, 2007; Nakamura & Hasegawa, 2009; Paredes, 2009; Park et al., 2011; Passie, 

2002; Riba et al., 2003; Rosengarten & Friedhoff, 1976; Schyman, 2010; Sekiduka-Kumano, 

2013; Shen, Jiang, Winter, & Yu, 2010; Shi et al., 2015; Sullivan et al., 1986; Szabo, 2014; 

Takahashi, 1985; Takano, 1977; Takeda, 1994; Tan, 2010; Thomas, Adams, Nessler, Brown, & 

Bohnert, 1995; Thompson et al., 1999; Torrente, Gelenberg, & Vrana, 2012; van der Stelt, 

Broersen, Olivier, & Westenberg, 2004; Vitale et al., 2011; Walther et al., 2003; Yanai, et. al., 

1986; Yang, Fu, Pestell, & Sauve, 2006; Young & Gauthier, 1981; Yuwen et al., 2013) 

 

A study with Traumatic Brain Injury to explain WHY an alternative pathway could exist 

 

Figure 2, inspired by the study, Christofides, 2006, did with trying to find a Tryptophan 

pathway using patients with Huntington’s disease (HD) and Traumatic Brain Injury (TBI). HD 

is a progressive autosomal disorder with neuronal dysfunction and striatal loss (Roze et al., 

2011). Whereas TBI is a rapid neuronal loss, with possible internal bleeding, resulting in 

inflammation and oxidative stress often damaging the brainstem and thus possibly inhibiting 

TPH-2 enzyme formation, however, studies would be needed to confirm this. Christofides, 

comments that the blood results shown in Tryptophan depletion (through fasting over 24 hours 

and using an amino acid depleting solution) found that Serotonin (5HT) levels did not change 

in control and HD subjects but increased with TBI patients. This seems to contradict the 

concept that Serotonin is produced from Tryptophan (Young & Gauthier, 1981). To explain 

these results, Christofides, considered the Kynurenine pathway from previous studies (Stoy et 

al, 2005; Mackay et al, 2006) with Tryptophan but didn’t find any conclusive explanation. 

“Possibly ‘the amino acid concoction’ that was used in the depleting of Tryptophan may have 



led to the results”. This still did not explain the significantly different results HD and controls 

had to TBI patients. What was not proposed to explain these findings is the hypothesis, stored 

endogenous Tryptophan, along with the inhibition of the TPH2 enzyme produces Tryptamine, 

Serotonin and thus ultimately increases Melatonin. 

Further proposals that require validation include, in an abundance of Tryptamine with, 

Tryptamine hydroxylase enzyme (T5H) inhibition, DMT, and by-products are produced. Or if 

INMT is not available, hydroxyindole-O-methyltransferase (HIOMT) could be used from 5HT 

to Bufotenine to 5-Me-O-DMT to Melatonin-based on (Burgess Hickman, 1999). Figure 2. 

The following results in figure 3, found 

from Christofides, 2006, will be referred to with 

an explanation using the Tryptamine pathway 

from figure 2. 

 

 

 

Figure 3. Results displayed as a histogram of 

5HT concentration in (a), (b), (c) versus 

baseline, tryptophan depletion, baseline2 taken 

24 hours after tryptophan depletion and 

Tryptophan loading (5 hours after baseline2).  

5HIAA concentration (d), (e), (f) versus 

tryptophan depletion, baseline 24hours after 

tryptophan depletion and Tryptophan loading, 

(5 hours later), in control, Huntington’s disease 

and traumatic brain injury subjects respectively. 

(Christofides 2006, page 1081).  

 

 

Results of 5HT concentrations observed 

 

The baseline starts around twenty percent higher in TBI patients to start with, which 

suggests TBI patients are generally producing more 5HT. With Tryptophan depletion in 



controls, a minimal increase was observed. With HD patients around twenty percent increase 

and in TBI around a twenty-five percent increase can be calculated. Thus, TBI has more 

increase with Tryptophan depletion and somewhat to a lesser degree for HD and nearly no 

change for controls. These results are interesting as it would have been thought with 

Tryptophan depletion less 5HT production would result and with Tryptophan loading, more 

production of 5HT would be observed. (Young & Gauthier, 1981). However, the results showed 

the reverse in TBI and HD patients. Hence, an alternative pathway was posed to explain the 

increase in 5HT for Tryptophan depletion in all subjects and most significantly observed in TBI 

patients. 

Tryptophan hydroxylase-2 (TPH-2), produced in the brain stem, could possibly have 

been inhibited, ‘switching’ an alternative route to producing Tryptamine using either Aromatic 

L-amino acid decarboxylase (AADC) or tryptophan decarboxylase (TDC ). Since the body was 

depleted of Tryptophan, stored (endogenous) Tryptophan could have been used for this process, 

(pictures 1a,b,c below). For example, Potassium channels, monoamine oxidase A (MAOA) and 

monoamine oxidase B (MAOB), pictures1,2,3, are observed to be composed of Tryptophan 

which could possibly ‘break’ off in the decarboxylation process and pick up a Hydrogen ion 

(H+) to form Tryptamine. HD patients could have fewer neurons, MAOA, MAOB and 

Potassium channels in comparison to TBI patients. Also, TBI may have a greater number of 

free radicals from the rapid onset, possible bleeding, inflammation and oxidative stress thus 

have more hydroxyl ions for reactions with Tryptamine, forming 5HT or methylate’s twice to 

form DMT. It is very difficult to test for Tryptamine with such a short half-life and could be a 

reason why results are hard to record.  

A longitudinal study greater than 2 weeks would be recommended in confirming these 

explanations, in addition to testing with naturally occurring psychedelics.  



 

Picture1a. Potassium channel Picture1b Monoamine Oxidase A (MAOA) Picture1c 

(MAOB)  

Molecular structure from, RCSB Protein Data Bank, for (a) 1BL8, Potassium channel 

(KCSA) from Streptomyces Lividans (b) 2BXS - Human Monoamine Oxidase A, in complex 

with Clorgyline (c) 4A7A Crystal structure of human monoamine oxidase B (MAO B) in 

complex with rosiglitazone. Stored endogenous Tryptophan is purple.(Doyle et al., 1998), 

(De Colibus et al., 2005). 

 

The second baseline for 5HT was taken 24 hours after the first base line. It can be 

observed that in TBI patients, 5HT continued to rise with Tryptophan depletion quite 

significantly whereas both control and HD, 5HT had reduced. This is consistent with the 

explanation that an alternative TA route could exist.  

With Tryptophan loading, 5HT in both control and HD patients increased as expected 

but TBI had no significant increase. This can be explained as 5HT was already being produced 

at significantly higher amounts and 5HT quite likely was also being converted to Melatonin 

with the results seen in figure 4. Also, psychedelic concentrations were not tested which could 

also allow for differences.  



The 5HIAA concentrations initially found in control, HD and TBI were similar. HD 

displaying the most 5HIAA and control displayed least. TBI may have slightly less than HD 

due to higher Melatonin production, and more free radicals to continue reactions utilizing 5HT 

for Melatonin production. 5HIAA being a by-product of 5HT the results are consistent.   

 

Results for 5HIAA concentrations in Tryptophan depletion  

The controls showed around fifty percent decrease, HD around 40% decrease and then 

least decrease with TBI patients. This supports less Tryptophan means less 5HT is produced 

and thus less by-product 5HIAA. However, at the same time TBI 5HT went up significantly 

and 5HIAA decreased. This could possibly be due to Melatonin production. Interestingly, 

fatigue and tiredness often expressed by TBI patients can be explained by these results. Higher 

Melatonin, affecting sleep/wake circadian rhythms. (Brown, 1994). 

  

Figure 4. The 

concentration of 

Melatonin in 

control, HD and 

TBI patients taken 

initially at 

baseline and then 

taken five hours 

after Tryptophan 

loading. 

(Christofides et 

al., 2006). 

 

 

 

 

 

 



 

 

Serotonin, Bufotenine, and Psilocin were found in Amanita species, mushrooms, with 

DMT at low doses. Chilton, 1979 stated, from research done by Nettleship and Slaytor in 1974, 

“oxidation of 5-hydroxyl indole alkaloids (like Bufotenine) was from tryptamine or a 

Tryptamine derivative.” The derivative could possibly have been DMT because in the same 

study, page 66, Udenfriend 1959, confirmed by Gomes, 2011, showed hydroxylation of DMT 

in cultures of mushrooms resulted with Psilocin. The reaction of Bufotenine produced from 

DMT was not proposed at the time and the enzymatic methylator-INMT has since been 

discovered demonstrating DMT can be formed from Tryptamine. (Thompson et al., 1999),(Chu 

et al., 2014). 

 

 

Survival mechanism 

 

In young individuals (15-24 years), with the onset of sleep, visual hallucinations have 

been reported in more than a third of a randomly selected non-institutionalized UK population 

(Ohayon, Priest, Caulet, & Guilleminault, 1996) and showed consistent and significant 

decreases with age. This implies that hallucinations or dreams are a normal healthy 

phenomenon.  

People who experience negative hallucinations, as seen in Schizophrenia, could have 

had various physiological factors that led to significant findings of hydroxylated DMT, 

Bufotenine (Karkkainen, 2005). Injury, genetic differences, heavy metals (creating more free 

radical ions) or with further studies possible mutations on of TPH2 gene, ID: 121278 (found 

on the National Centre for Biotechnology Information-NCBI), chromosome 11p15-p14 and 



12q21, updated on 25-Oct-2015. Since internal injuries can’t be seen this hallucinogenic ‘alert 

system’ is the body’s natural result for self-discovery, emotional learning and cognitive 

mechanisms to continue production of Serotonin and Melatonin hence, survival. With an 

altered view, patients thinking could be assisted to not be fearful but enlightened from 

knowledge they gain thus allowing the experiences to be dignifying and less traumatic for the 

individual. This ultimately benefits them in dealing with and resolving fear responses. No 

thought (deactivating DMN), no fear. 

DMT is difficult to detect, along with Tryptamine, which appears as insignificant 

findings however, the possibility that these substances could act as free radical scavengers 

supports antioxidant studies (Frecska, Szabo, Winkelman, Luna, & McKenna, 2013), (Szabo, 

2015), and possibly could be rapidly converted into significant Serotonin and Melatonin 

concentrations found by Christofides, 2006. 

Increases of synaptic transmission activates neuronal systems from increases in calcium 

ions (Ca++). DMT bound to sigma-1 receptors has been found to modulate voltage-gated 

sodium ions (Na+) channels (Fontanilla et al., 2009). Concentration gradients could also be 

affected from free radical ions, like hydroxyl ions, Hydrogen ions (H+), Nitric Oxide (NO) 

being scavenged by DMT and Tryptamine. Hence, understanding how psychedelics interact 

physiologically is a vital step towards understanding consciousness and subconscious 

mechanisms of how the mind and body works, learns, sleeps, and heals. 

So why the body produces these substances can now be explained as a necessary 

pathway possibly found in fasting, (Mackay et al., 2006) or enzyme inhibition. If this pathway 

was not present it is likely that cognitive processes would cease and the individual would have 

less chance of survival, hence termed the ‘survival mechanism’. 

 

 



Conclusion 

 

The Greek word for psychedelic, psyche-ψυχή, (soul) and dēloun-δηλοῦν, (to make 

visible or reveal), aptly describes research with psychedelics. Increased understanding of the 

mind and body is being revealed through these studies despite the many questions that remain 

unresolved. A few of these questions include why do psychedelic substances like N,N 

dimethyltryptamine and Bufotenine exist in our bodies and throughout nature? What is the 

physiological role they have? A natural conclusion would seem that these psychedelic 

substances, naturally found, are the cause of hallucinations however, what has been discussed 

is that they are a result of necessary pathways required to produce Serotonin and Melatonin, 

vital for cognition, sleep/wake cycles and could be considered the ‘survival mechanisms’.  

Cozzi, 2009, suggests there may exist several mechanisms, at intracellular levels, that 

result from complex interactions giving rise to hallucinations. Naturally occurring 

psychoactive psychedelics, like Ayahuasca (DMT and MAOI beta-carbolines) in South 

America, Peyote (Mescaline) in North America, Magic Mushrooms (Psilocin and Psilocybin) 

in Siberia, were used for thousands of years leading to current studies investigating 

psychedelics as medicinal therapies (McKenna, 2007), (Frecska et al., 2013), (Szabo, 2015). 

The lack of understanding of endogenous mechanisms that produce Serotonin, 

Melatonin and hallucinations have been a major hole in many studies. The model, figure 2, of 

an alternative pathway from Tryptophan to Tryptamine provides an explanation of results 

observed by Christofides, 2006, for significant production of Serotonin and Melatonin in 

fasting Traumatic Brain Injury patients who could have experienced inhibition of Tryptophan 

hydroxylase-2 (TPH2) enzyme. Hallucinations possibly result when neural activation occurs 

amplifying sensory systems and internally stored information to be retrieved either visually, 

auditory, tactile, smelt or even possibly tasted. This then could account for a greater chance for 



survival, if cognitive systems are inhibited like observed in fasting (Christofides, 2006). Other 

studies with; Schizophrenia, Alzheimer's, Delirium, PTSD, ear and eye diseases, Parkinson's,  

Lewy body dementia, Traumatic Brain injuries (TBI), postpartum, drug induced, starvation, 

affective and sleep disorders, like depression and narcolepsy. (Chaudhury, 2010), (Dobry, 

Novakovic, Barkin, & Sundaram, 2014), (Mittal & Khan, 2010), (Strassman, 2000) also 

potentially can be explained. 

One metabolite, DMT, has been found to deactivate the default mode network (Palhano-

Fontes et al., 2015), related to being able to make distinctions (Li, 2014). Through deactivation 

of the DMN, it is possible people are not able to decipher senses in perceiving what is real and 

what is not, hence hallucinate. 

Open for discussion is, how does Tryptamine and DMT hydroxylate to Serotonin and 

Bufotenine? As discussed, Tryptamine has a very short half-life and thus may be questionable 

if an enzyme is needed for hydroxylation to occur. If an enzyme is required further studies into 

Tryptamine hydroxylase (T5H) could be considered to verify. 

Clearly there are significant opportunities for future research with; pharmacology 

(enzyme supplementation/inhibitors, biomarkers, and medicine), hallucinogenic education, 

physiology (DMN), and interdisciplinary molecular studies are examples of the boundless and 

emerging fields in areas of sleep, mental health and immunology.  

Studies with psychedelic neurotransmitter pathways could ultimately assist with 

restructuring drug scheduling policies that would reverse the set-back it has had and advance 

hallucinogenic research for medicinal discoveries that could prove to have significant 

economic, and social benefits in health care and employment. 
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