RRB Secunderabad Sr. Section Engineers Exam

(Held on 21-12-2014)

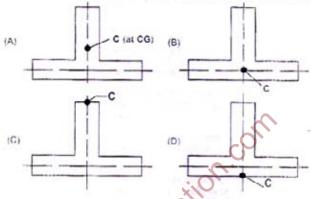
SECTION I ENGLISH VERSION

(B) Transmission line

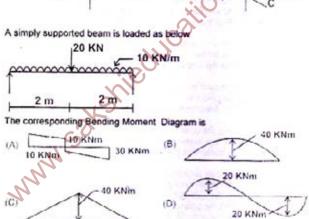
(D) Cascade amplifier

When donor type impurity is added to a semi-conductor material

(A) electrons are generated and material is N-type
 (B) electrons are generated and material is P- type
 (C) holes are generated and material is called P-type
 (D) holes are generated and material is called N-type
 To increase bandwidth, the distributed amplifier utilizes

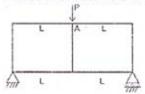

(A) common base configuration

(C) tuned Circuit


TSG001314

3.	A n	n junction diode's dynamic	conductan	ce is directly proportional to
	(A)	the applied voltage	(B)	the temperature
	(C)	its current	(D)	the thermal voltage
	400			X
4.	Kino	closers are related to		
	(A)		(B)	King post truss
	(C)		(D)	Brick Masonry
5.	Sea	soning of timber is required		0.000
	(A)	Soften the timber	(B)	Harden the timber
	(C)	Straighten the timber	(D)	Remove sap from the timber
6.	Bat	ching in concrete refers to	Secretary and the	
	(A)	Controlling the total quant	tity of each	batch
	(B)	Weighing accurately, the	quantity	of each material for a job before
		mixing		
	(C)	Controlling the quantity of	each mat	erial into each batch
	(D)	Adjusting the water to b	be added	in each batch according to the
		moisture content of the m	aterials be	eing mixed in the batch
			25-24 50-12	
7.	Gy	osum is used as an admixtu	re in cem	ent grouts for
	(A)	accelerating the setting ti	me	
	(B)	retarding the setting time		
	(C)	increasing the plasticity	0.00	
	(D)	reducing the grout shrink	age	
8.	The	maximum defection of a f	ixed beam	carrying a central load W is equal
	10.0	other notations standard)		
				WL ³
	(A)	WL3	(B)	
	100	48EI	2.75	96EI
		WL ³		5 WL ³
	(C		(D) —
	10	192El	100	384 EI

9. In a thin-wall T-section, the shear centre C is located at the point shown in



10.

- What is the radius of Mohr's circle in case of bi-axial state of stress ? 11.
 - (A) Half the sum of the two principal stresses
 - (B) Half the difference of the two principal stresses
 - (C) Difference of the two principal stresses
 - (D) Sum of the two principal stresses

12. What is the moment at A for a frame shown below :

Each vertical member has very large Moment of Inertia

 $(A) \frac{PL}{2}$

(B) PL

(C) PL

(D) PL

 A structure has two degree of indeterminacy. The number of plastic hinges that would be formed at complete collapse is

- (A) D
- (B) 1
- (C)
- (D) 3

 For laminar flow between parallel plates separated by a distance 2h, head loss veries

(A) directly as h

(B) inversely as h

(C) directly as h2

Inversely as h³

15. In Surveying, Offsets are

- (A) lateral measurements made with respect to main survey line
- (B) perpendiculars exected from chain lines
- (C) taken to avoid unnecessary walking between stations
- (D) measurements which are not made at right angles to the chain line

16. The true length of a line is known to be 200 m. When this is measured with a 20 m tape, the length is 200.8 m. The correct length of the 20 m tape is

(A) 19.92 m

(B) 19.98 m

(C) 20.04 m

(D) 20.08 m

17. Shear failure of soils takes place when

- (A) the angle of obliquity is maximum
- (B) maximum cohesion is reached in cohesive soils
- (C) ¢ reaches its maximum value in cohesionless soils
- (D) residual strength of the soil is exhausted

	van	at is the process of utilizing of iables known as ? Encoding	(8)		
		Demultiplexing		Multiplexing	
19.	(A) (B)	order to increase the range of a low resistance is connecte a low resistance is connecte	d in par	allel ies	
		a high resistance is connect a high resistance is connect			
20.	(A)	internal resistance of the mill high accuracy	iammete	er must be very low for	
	(C)	high sensitivity minimum effect on the curre maximum voltage drop acro	nt in the	circuit	
21.	in c	order to have fast, steady and	d accura	to responses, the mot	ers should
	hav (A)	Critical damping		.0	
		Under damping		XIO	
		a very high damping coeffici	ent	<u>ም</u>	
	(D)	No damping	1,0		
22.	In c	ase of overdamping, the instr	ament w	ill become	
	(A)	Oscillating	(B)	dead	
	(C)	fast and sensitive	(D)	slow and lethargic	
23.		eference to Acid rain, what is	correct s	tatement.	
		The pH value is below 5.6			100 10
	(0)	It occurs due to presence atmosphere	or suip	nuric acid or nitric a	cid in the
	(C)	Maximum acid is due to stro	ng Carb	onic Acid	
	(D)	Acid rain affects ecosystem			
24.	In G	Johal Warming, the major con	tribution	is due to	
	(A)	Carbon emission		Agriculture	
	(C)	Deforestation		Industry	
25.	Whi	ch of the following mechanism gas streams.	ns is NO	T for removing particul	ate matter
		Gravitational settling	/DV	Contributed Immediate	
	(C)	Electrostatic precipitation	(D)	Centrifugal impaction Burning the particulate	
26.	Whi	ch one of the following is NOT	Biotic e	omnonents of ecolors	
	(A)	Consumers	(B)	Producers	
		Decomposers		Climate	
TSG	00131	4	40		
100	40131	4	18		2003

27.	Mate	ch Col. X (F	Result) and Col. Y	(Cause)	
		Col. X			Col. Y
	(P)	Water poll	ution	1.	Combustion of fossil fuel
		Air pollutio		2.	Decaying of organic matter
		Noise poll		3.	Pesticides
				4	
		Soil polluti			High decibel
		P-2, Q-1,			P-1, Q-2, R-4, S-3
	(C)	P-3, Q-1,	R-2, S-4	(D)	P 1, Q 3, R 2, S 4
28.	Part	of the Corr	puter where data	and inst	ructions are held is
	(A)	Register L	Init	(B)	Accumulator
	(C)	Memory U	Init	(D)	CPU
29.	In a	Computer.	Assembler is		
553				trams into	o memory and prepares them for
	6.7	execution			
	(B)	a program	that automate	the transl	lation of assembly language into
		machine l			
	(C)			rogram w	ritten in a high level language
	(-)		ices an object pro		
	(D)				a a source program if it were
		machine l			
		macinite i	niigooge		
30.	10/bi	ch of the fo	llowing is NOT a	ranietor l	n Computer 3
30.		Accumula		(B)	Stack Pointer
				-	
	(C)	Program (Jounter	(D)	Buffer
31.	Whi	ch Network	protocol is used	to send e	e-mail ?
	(A)	FTP	(B) SSH	(C)	POP 3 (D) SMTP
				- 15	
32.	The	use of a ca	ache in Computer	system i	increases the
	(A)		memory space fo		
	(B)		memory space fo		
	(C)		speed of memory		
	(D)		g range of CPU	400000	
	(0)	audiessiii	y range or or o		
33.	A -6			Umaa -	and 32 data lines. If it uses 10 bits
33.					
			size of its Memor		
	(A)				24 bits
	(C)	32 bits		(D)	14 bits
34.	in a	microproce	essor when a CP	U is intere	rupted, it
			cution of instruct		ST. COLONIAL COLOR
	(B)		dges interrupt an		es off subroutine
	(C)		dges interrupt an		
	(D)				or the next instruction from the
	(0)			u waits it	A the next instruction from the
		interruptin	iu ucvice		

35.		MODEM is	used with a p	ersonal	computer to do v	which of the			
			serial to paralle	and vio	e versa				
	(B)	Convert sign	als between TT	L and RS	3232 C standard an	d vice versa			
	(B) Convert signals between TTL and RS232 C standard and vice versa (C) Convert from digital to analog signals and vice versa								
	(0)	To convert the	he computer to a	long dis	stance communicati	on link			
	(0)	TO CONVERT I	ne computer to e	iong on	plante dominionioni				
36.		erm digitizat							
	(A)	conversion of	of analogue into	digital					
			of digital into ana						
	(C)	use of analo	gue form of elec	tricity					
	(D)	a form of ch	anging physical	quantitie	5				
37.	Whic	h is NOT a V	Vireless Techno	logy.					
• • • •		Blue Tooth		(B)	A conventional tell	phone			
		Wi-fi			Wi-Max				
20		. Commont	o drawing in	double s	stroke Gothic letter	ing which is			
38.			ig drawing, in	donnie s	MUKE CICHIO PERE	nig. Windi to			
	corre		former thin		· (O)				
	(A)	Letters are	arawn unin	A 44 Acres	with a william of latte				
	(B)	The lettering	template is use	a to ara	w the outline of lette	1			
			referred for ink						
	(D)	This is havir	ng non-uniform l	ine width					
39.	Mate	h Col. X (Ca	tegory) and Col	Y (Rec	ommended Scale) is	n reference to			
		ngineering d							
		Col. X			Col. Y				
	P	Enlarging S	cale	1.	1:500				
	Q	Full Scale	(6)	2.	10:1				
	R	Reducing S	cale	3.	1:1				
				4.	1:20				
	(A)	P-4.0-	R-2.P-3	(B)	P-2. Q-3. R-4	R-1			
			R-2.P-4	(D)	P-2. Q-1. R-4	Q-3			
				he she	un an denuina in 7	5 km udat i			
40.				be sno	wn on drawing is 7.	S Kill, What i			
			on drawing?	100	(5)	40			
	(A)	12.5 cm	(B) 8 cm	(C)	45 cm (D)	10 cm			
41.	Ap	arabola can	be constructed (on a drav	ving by the methods	EXCEPT			
3100	(A)	Eccentricity	Method	(B)	Rectangle Method				
			am Method	(D)	Asymptote Method	3			
42.	Mile	ah of the Sta	tements is NOT	correct					
44.	2000		cale is used to d		setric projection				
	(A)	Isometric si	cale is used to d	to dearer	sometric view				
	(D)	isometric s	cale is not used	ole in ion	sorticulo view				
			seen as rectang						
	(D)	A rectangle	is seen as para	melogran	n in isometric				

43.	A particle moves along a circular path with constant speed. What is the nature of its acceleration?
	(A) It is zero (B) It is Uniform
	(C) Its direction changes (D) Its magnitude changes
44.	A body is at rest on the surface of the earth. Which of the following
	Statements is correct ?
	(A) No force is acting on the body
	(B) Only weight of the body acts on it
	(C) Net downward force is equal to net upward force
	(D) None of these is correct
45.	The Specific Heat of the gas in an isothermal process is

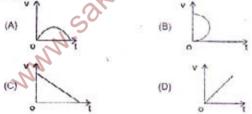
46. In a Simple Harmonic Oscillator, at the mean position

- (A) Kinetic Energy is minimum, Potential Energy is maximum
- (B) Both Kinetic and Potential Energies are maximum
- (C) Kinetic Energy is maximum, Potential Energy is minimum
- (D) Both Kinetic and Potential Energies are minimum
- 47. Mirage is a phenomenon due to

(A) Zero

(C) Negative

- (A) Reflection of light
- (B) Refraction of light


Infinite

Remains constant

(B)

(D)

- (C) Total Internal reflection of light (D) Diffraction of light
- 48. Which of the following carnot be speed-time (v-t) graph of a body in motion?

- 49. Avogadro's number, NA means
 - (A) number of protons in nucleus of an atom
 - (B) number of atoms in one gram atom of an element
 - (C) sum of the number of protons and the neutrons in the nucleus of an atom.
 - (D) number of protons or electrons in one gram of Sodium

TSG	00131	A			22				2003
	(A)	E	(B)	D	(C)	K	(D)	C	
60.	Vita	min need	led for blo	od coagulati	ion is				
	(C)		tophores		(B) (D)	Neuron Lymph o	corpuscie	s	
59.		Osteocy		oody of an a					
**	1501C	Large in	Marie Control		(D)				
58.	(A)	Liver		gans of exc	(B)	Heart	k is supp	lemente	ed by
100	27.								2570
57.	(A)	Decrea	orings about se in react e in activa	ut ion time tion energy	(B)	Increase	e in react	ion time	anerov
67	경기	6	*		(10)	marydi			
		Iron Nitroge	S		(B)	Carbon	ese		
56.			undant ele	ment prese			s :		
	(C)	Eutroph	vication	5	(D)	Worm C	asting		
	(A)	Organio	farming	Million	(B)	Vermico	omposting		
55.	The	process	of increas	ing facility o	of soil b	y earthw	orms is k	nown a	5
	(C)	Coagul	ation	7	(D)	Sedime	ntation		
		Adsorp		•	(8)	Absorpt	ion		
34.	the	practical	application	n of	nicent	ranon of	Oles is a	in iliust	ration of
54.	Ero	th floatst	ion process	s for the co			Oran is -		
		is non-t		compusion		Li _C C			
	(C)	makes does no	the bulb to	give more combustion	ught		Cia		
			r than air		elector.				
53.	Nitr	ogen is t	ised to fill	electric bulb	s beca	iuse it),	
52.	(A)	F ₂	following (B)	halogens is Cl ₂	the be	st oxidisi Br ₂		?	•
220		Zinc At			. ,	lodine			
		Zinc io			(B)		ons		
51.	bei	ng oxidis	od?	Zinc and	lodino	, Zinc lo	dide is fo	ormed.	What is
			nt atomic r						
			atomic manumber of						
			number of						
50.				element hav	e				

- The 1929 session of Indian National Congress is of significance in the 61. history of the Freedom Movement because the (A) attainment of Self-Covernment was declared as the objective of the Congress (B) attainment of Poorna Swarai was adopted as the goal of the
 - (C) Non-Cooperation Movement was launched
 - (D) decision to participate in the Round Table Conference in London was taken
- 62. The movement that came to an abrupt end due to the Chauri Chaura incident was the
 - (A) Wahabi Movement
- (B) Home Rule Movement
- (C) Non-Cooperation Movement (D) Civil Disobedience Mayement

- 63. Match the following:
 - P) C.R. Das
 - Q) Vallabh Bhai Patel
 - R) Abdul Ghaffar Khan
 - S) Maulana Azad
 - (A) P-2, Q-1, R-4, S-3 (C) P-4, Q-1, R-3, S-2
- Bardoli Satyagraha
- Swarajist 2. Khilafatist 3.
- 4 Khudai Khidmatgar
- (B) P 2 Q 4 R-1, S-3 (D) (P+2, Q-1, R-3, S-4
- Money can be spent out of the Consolidated Fund of India 64.
 - (A) with the approval of the President
 - (B) with the approval of the Parliament
 - (C) with the approval of the CAG
 - (D) with the approval of the above authorities
- Which of the following is not a condition for becoming a Citizen of India ? 65.
 - (A) Birth

- (B) Descent
- (C) Acquiring property
- (D) Naturalisation
- The Oath of Office is conducted to the President of India by 66.
 - (A) The Speaker of Lok Sabha (B) The Chief Justice of India

 - (C) The Vice-President of India (D) The Prime-Minister of India
- 67. Dew is caused when
 - (A) humid air condenses on cool surface
 - (B) the sky is overcast at night
 - (C) the air is colder than the earth's surface
 - (D) the wind is too dry to cause rainfall
- Corbett National Park is in 68.
 - (A) Bihar

(B) Madhya Pradesh

(C) Uttarakhand

(D) Himachal Pradesh

69.	Whi	ich crop requires water-logging fo	or its	cultivation?
	(A)	Tea	(8)	Coffee
	(C)	Rice	(D)	Mustard
70.	One	can open a Savings Account in	India	except in
	(A)	A Nationalised Bank	(B)	A Cooperative Bank
	(C)	a Private Bank	(D)	Reserve Bank of India
71.	The	Term "Inside Trading" is related	to	
	(A)	Share Market	(B)	Horse racing
	(C)	Taxation	(D)	Public expenditure
72.	The	term MOM was in news in relati	on to	
	(A)	CAG report	(B)	Asian Games
	(C)	Mangalyaan	(D)	Election Commission
73.	Mer	deka Cup is associated with		-0.
		International Table Tennis	(B)	Badminton
	(C)	Hockey	4	Integrational Football
74.	Rec	ently, referendum for independen	nce w	as held in
	(A)	Hongkong	(B)	Ireland
		Scotland	(D)	Germany
75.	Mat	ch Col. X (Sportsperson) and Co	1 V /	Sporte) :
	*******	Col. X		Col. Y
	P.	Jitu Rai	1.	Badminton
	Q.	- 0. 0 mm 2000	2.	Wrestling
	1000		3.	Shooting
	3.	Yogeshwar Dutt		onoung
	(A)	P-3, Q 3, R-1, S-2	(B)	P-2, Q-3, R-1, S-2
		P-2 Q-2, R-1, S-3		P=3, Q=1, R=1, S=2
76.	Whi	ch of the following celebrities	was	recently appointed as "Bran
0775	Amt	passador of Telengana?		resemp appointed as brain
		Deepika Pallikal	(B)	VVS Laxman
	(C)	Saina Nehwal		Sania Mirza
77.	EBC	DLA is a		
	1757	virus disease confirmed in Wes	Afric	ca
		name of Tsunami		
		Name of anti-terrorist operation	in Ar	ab Country
		volcano in African Hills	340.7.48	
	A 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

78.	BKS	S lyengar, who died recent	ly, was a w	orid renowned
	(A)	Yoga Guru	(B)	Artist
	(C)	Folk Singer	(D)	Film Director
79.	Wh	ich Country has recently la	unched *	Sandhi Inspired Tourist Attraction
	(A)	England	(B)	South Africa
	(C)	USA	(D)	Japan
80.	Wh	o among the following hachch Bharat Abhiyan"	as design	ed the logo and slogan of the
	(A)	Neelam Bhattacharjee	(B)	Anant and Bhagyashree
	(C)	Uday Kumar	(D)	Virman Kohli
81.	The	slogan of Asian Games II	ncheon 201	14 was
	(A)	Green, Clean and Friend	ship	
	(B)	We Cheer, We Share, W	e Win	-O
		Diversity Shines here		
	(D)	The Games of Your Life	90	
			0	
82.		e "Helmand Province" of A	ghanistan	is famous for cultivation of
		Tobacco	(B)	Wheat
	(C)	Collan	(D)	Opium
83.	Maii is_	n objective of newly ann	nounced *	Pradhanmantri Jan-Dhan Yojna"
	(A)	to provide a bank accoun	t to every p	oor
	(B)	to provide a interest free!		
	(C)	to provide financial assist	ance to trib	al communication
	(D)	to provide free medical fa	cility to min	ority people
84.	Con	sider the following pairs :		
	1.	Garba : Gujarat		
	2	Mohiniattam : Odisha		
	3.	Yakshagana : Karnataka		1.0
	Whi	ch of the pairs given above	is/are con	ectly matched ?
	(A)	1 only	(B)	2 and 3 only
	(C)	1 and 3 only	(D)	1, 2 and 3

	(A) ₹19 (C) ₹29					₹336		
					/E3V	₹240		
	expendi	ture of all			money sp	ent by all ti		
92.	Six pen	sons wen	t to a	hotel f	or meals.	Five of the	m spen	t ₹32 each the avera
	(C) 45				(D)	50.5		
	(C) 45					42.5		
	(A) 37		luden	us will i				
91.	school a	and then t	he av	erage in		5. What is		tudents left erage of ma
	(C) 50	19.			(D)	100		
	(A) 25				(8)	45		
90.	twice a	s many of studer	article	s as th	e number	ients of a c of studen	tass. Ea ta in th	ach student at group. T
	50.000			7577				
	(C) 90			16		45 and 15 80 and 40		
	over to But, if	section A 10 studer 1. How ma	the s	strength ift over	of A become from A to	nes three to B, both a sections A	imes the A and B and B	strength of are equal
89.	In a cla	ss, there :	are tw	o sectio	ns A and	7. If 10 stu	dents of	section B s
	(A) 15	Section 1	(B)	20	(C)	25	(D)	30
88.	them fa	iled to go	and t	hus the		d for each		500. But, 5 ir increased
	(A) 35		(B)	40	(C)	60	(D)	6.5
87.	that eac	h boy get	s ₹3.6	00 and e	ach girl ₹2	.40. The no	imber o	
	(C) 80	uu cc			(U)	9500 cc		
	(A) 75				9-2	7850 cc		
	A 2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	pots is							

Devdas and Parinita are Principal literary works by

(B) Sarat Chandra Chatterjee

(D) Munshi Premchand

The conscitu of two note is 120 litres and 56 litres respectively. The

(A) Rabindra Nath Tagore

(C) Satyajit Ray

85.

100.		an alone can o	(D) by can toget do it in 6 days implete the w (B)	6:2:3 her complete and a boy ak	a piece of work in one in 18 days, how
100.	A man, a wor 3 days, if a ma long will a won (A) 9 days	an alone can o	(D) by can toget do it in 6 days implete the w (B)	6:2:3 ther complete and a boy ak ork? 21 days	
00.	(C) 5:3:2 A man, a wor 3 days. If a molong will a won	an alone can o	(D) by can toget to it in 6 days	6:2:3 her complete and a boy ak	
	(C) 5:3:2		(D)	6:2:3	
			4-4		
	(A) 3:9:2		(B)		
	3			6:10:15	
	invests and of				
9.	Y Y and Y etc	et a hucinosc	Y invocte 3 t	imae as must	as Y invests and Y
	(C) ₹90, ₹210	0. 7380	S	₹100, ₹200.	
	(A) ₹75, ₹325	5, ₹280	(B)	₹80, ₹120, ₹	480
	1/4 of what C ge	ets. Then their	shares are r	espectively	
8,	₹680 is divided	among A,B,	Such that A	gets $\frac{2}{3}$ of who	at B gets and B get:
	(A) 25%	(B) 20%	COOP	15%	(D) 12%
7.	percent is				20 pens, His gair
	(A) ₹70	(B) ₹72	(C)	₹75	(D) ₹85
5.	frame is to be	sold at			a profit of 2%, th
	(C) 8.15%		(D)	6.25%	CO,
	(A) 8.35%		(B)	7.15%	
5.	In measuring t made. The error				d 3% in excess are
	(C) 20 years		(D)	37 years	
	(A) 5 years			10 years	
-	X is 40 years of of their ages 3	old and Y is 60 :5?	0 years old. H	low many yea	rs ago was the rati
4.	(C) 1411		0.000	1250	
5.					

The sum of two numbers is 2490. If 6.5% of one number is equal to 8.5%

(B) 1380

of the other, the greater number is :

93.

(A) 1079

106.	(A) (C)	perimeters of a cine square field is 12 15500 m ² 15200 m ² se height of a cone is 100% 300%	rcular field and a and a control of the area (B) (D) is doubled, then the (B)	square field are e of the circular field 15400 m ² 15300 m ² ne increase in its v	will be
	The of U	ne square field is 12 15500 m ² 15200 m ² the height of a cone is	rcular field and a a a 1000 m ² , the area (B) (D) is doubled, then the (B)	square field are e of the circular field 15400 m ² 15300 m ² se increase in its v 200% .	I will be
	The of I (A)	ne square field is 12 15500 m ² 15200 m ²	rcular field and a 2100 m ² , the area (B)	square field are e of the circular field 15400 m ² 15300 m ²	I will be
106.	The of the (A)	ne square field is 12 15500 m²	rcular field and a a 100 m², the area (B)	square field are e of the circular field 15400 m ²	qual. If the area will be
106.	The of the (A)	ne square field is 12 15500 m²	rcular field and a a 100 m², the area (B)	square field are e of the circular field 15400 m ²	qual, If the area will be
106.	The	ne square field is 12	rcular field and a :	square field are e of the circular field	qual. If the area I will be
	7,77	15%	1		
	101	450/			
	(14)	376		20%	
105.	rate	of interest per anni	um on compounde	years and ₹10648 ad basis is 10%	in 3 years. The
	(C)	30 years	(0)	40 years	
	(A)	15 years	(B)	20 years	
104.	In h	ow many years, a s um ?	cum will be thrice		rest @10% per
	(C)	60 sec	(D)	54 sec	
	(A)	50 sec	(B)	54 sec	
103.	The pass	speed of a 150 m l a 600 m long platf	ong train is 50 km orm ?	ph. How much tin	ne will it take to
		7 hrs.	100	12 hrs.	~
	(A)	5 hrs.		6 hrs	
	342	km apart. After how	many hours will t	hey meet ?	
02.	Two	trains approach ea	ab ather at 20 km	the and 27 km the f	rom two places

101. A tap can fill a cistern in 8 hours and another tap can empty it in 16 hours. If both the taps are open, the time taken to fill the tank will be

(A) 8 hrs.(C) 16 hrs.

(B) 10 hrs.

(D) 24 hrs.

TSG	00131	4			29			2003	
	(0)	Cobalt			(D)	Aluminiun			
		Iron			(B)				
115.		ect the odd o	ne ou		4874				
			00-00						
	(C)	Feasible			(D)	Useful			
	(A)	Active			(B)	Hopeless			
	Vigi	lant : Alert : :	Viabl	0: <u>7</u>					
114.	Sele		on su	ch that r	relation be	etween wo	rds on either	side is	
	(0)	Assign . All	OI.	Ski	(0)	nouse . n	one		
		Assign . All				House : H			
		ck : Defend Gradual A	_		(P)	Sedate : 0	'mler	24	
113.				shows sin	nilar relati	on as betwe	een given word:	3.	
				4				27	
	(C)	bbbbb		(6)	(D)	ddddd		100	
	(A)	ааааа			(B)	ccccc			
	_bcdbc_dcabd_bcdbc_dc_bd								
	that order in options. Select the correct option.								
112.	In g	iven letter s	eries,	some of	the letter	are missi	ng which are g	iven in	
	(A)	NIJ	(B)	NIK	(C)	NJK	(D) OIK		
		B, TGD, QH	_			reservin C	Yang Sangaran		
1345	patt	ern.		ернасе <u>г</u>	in given	aiphabet s	series to contin	ue ine	
	eni-	et the entire	n to .	onlace 3	in whee	alabahet -	C	um th-	
		201	73.00	202	(C)	203	(D) 205	· (a)	
		3, 25, 51, 10	1. ?				^	100	
110.		ect the option	to re	place ?	such that	pattern in g	iven number se	eries is	
	(C)	15.64 m			(D)	15.8 m			
	100	15 m			(B)	14.86 m			
109.							a wall is 60° a ngth of the ladd		
							1000		
	(A)	15°	(B)	30"	(C)	75"	(D) 150°		

108. An angle is one-fifth of its supplement. The measure of the angle is

	(C)	BorD		3	(B)			
117,	Xw	alks 10 km	towards	North	. From ther	e, he wall	ks 6 km to	wards South.
	with	n, he walk reference	to his sta	owards irting p	e East. Hov	v far and	in which d	frection is he
	(A)				(B)	5 km No	rth-East	
	(C)	7 km Eas	t		(D)	7 km We	st	
	Dire	ections: (erect option	Question for given	No. classe	118 & Q	uestion 1	No. 119):	Choose the
		(A) (C	0			(B) (S	0	1995 11
		0	00			xiQ		
	-	(C) (5		C	(0)	9	
118.	Me	n, Women,	Human E	Beings	Sylv			
119.	Doc	tors, Lawy	ers, Profe	ssions	ils			
120.	Sala	et the onli	n to load	2	a Drahlam	Planes to		
120.	Pro	blem Figu	re Prepa	ace r	in Problem	rigure to	continue ti	e pattern.
			21		. 1	1000		dogon
	1	$\mathcal{O}(1)$	A) (A	Δ	A		?	
	4	14		,				
	Ans	wer Figure	15					
							7	
	(A)		Sal		(B)			
							4	
	(C)				(D)	10	Tena en	
	(~)		198		(0)	U	1 - 13	
							_	
TSGO	0131	4			30			2003

116. D is taller than C and E. A is not as tall as E. C is taller than A. D is not as

tall as B. Who among them is next to the tallest one?

pattern produced by machining operation ? (A) Roughness (B) Lay (C) Waviness (D) Cut off		(C)	2 alone	(D)	3 alone					
(A) first increases and then decreases (B) first decreases and then increases (C) increases steadily (D) decreases steadily 123. Two blocks which are at different states are brought into contact with each other and allowed to reach a final state of thermal equilibrium. The final temperature attained is specified by the (A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 ^{nst} Law of Thermodynamics (D) 3 nd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (C) 2K ₁ K ₂ (D) K ₁ +K ₂ (D) K ₁ +K ₂ (D) K ₁ +K ₂ 125. The presence of altrogen in the products of combustion ensures that (A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 126. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Flasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness	122.				d from 0°C					
(B) first decreases and then increases (C) increases steadily (D) decreases steadily (D) decreases steadily (D) decreases steadily (D) decreases steadily (E) decreases steadily (D) decreases steadily (E) de										
(C) increases steadily (D) decreases steadily 123. Two blocks which are at different states are brought into contact with each other and allowed to reach a final state of thermal equilibrium. The final temperature attained is specified by the (A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ +K ₂ (C) \(\frac{2K_1K_2}{K_1+K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (D) \(\frac{M_1+K_2}{K_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (E) \(\frac{M_1+K_2}{M_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (E) \(\frac{M_1+K_2}{M_1K_2} \) (D) \(\frac{M_1+K_2}{M_1K_2} \) (E) \		30.06								
(D) decreases steadily 123. Two blocks which are at different states are brought into contact with each other and allowed to reach a final state of thermal equilibrium. The final temperature attained is specified by the (A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 ^{ld} Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (C) \(\frac{2K_1K_2}{K_1+K_2} \) (B) \(\frac{K_1+K_2}{K_1K_2} \) (B) \(\frac{K_1+K_2}{K_1K_2} \) (C) \(\frac{2K_1K_2}{K_1+K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (D) \(\frac{M_1+K_2}{K_1K_2} \) (D) \(\frac{M_1+K_2}{K_1+K_2} \) (D) \(\frac{M_1+K_2}{K_1+K		4-6								
other and allowed to reach a final state of thermal equilibrium. The final temperature attained is specified by the (A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 rd Law of Thermodynamics (D) 3 rd Law of Thermodynamics (D) 3 rd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (C) $\frac{2K_1K_2}{K_1+K_2}$ (D) $\frac{K_1+K_2}{K_1K_2}$ (D) $\frac{K_1+K_2}{K_1K_2}$ 125. The presence of altrogen in the products of combustion ensures that (A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 126. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drift jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Elasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off										
temperature attained is specified by the (A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 rd Law of Thermodynamics (D) 3 rd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ +K ₂ (C) \frac{2K_1K_2}{K_1+K_2} (D) \frac{K_1+K_2}{K_1K_2} 125. The presence of altrogen in the products of combustion ensures that (A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 126. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Flasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness	123.	Two blocks which are at different states are brought into contact with each								
(A) Zeroth Law of Thermodynamics (B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (C) 2K ₁ K ₂ (C) (D) K ₁ +K ₂ (D) K ₁ +K ₂ (D) K ₁ +K ₂ (E) K ₁ +K ₂ (D) K ₁ +K ₂ (E) (D) K ₁ +K ₂ (E)					of thermal equilibrium. The final					
(B) First Law of Thermodynamics (C) 2 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (B) K ₁ K ₂ (C) 2K ₁ K ₂ (D) K ₁ + K ₂ (D) K ₁ + K ₂ (D) K ₁ + K ₂ (E) Incomplete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 125. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Flasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off										
(C) 2 nd Law of Thermodynamics (D) 3 nd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (B) K ₁ K ₂ (C) 2K ₁ + K ₂ (D) K ₁ + K ₂ (D) K ₁ + K ₂ (E) K ₁ + K ₂ (D) K ₁ + K ₂ (E) K ₁ + K ₂ (D) K ₁ + K ₂ (E) K ₁ + K ₂ (E) K ₁ + K ₂ (E) K ₁ + K ₂ (D) K ₁ + K ₂ (E) K										
(D) 3 rd Law of Thermodynamics 124. A composite wall consists of two layers of different materials having conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (B) K ₁ K ₂ (C) \(\frac{2K_1K_2}{K_1+K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) 125. The presence of aitrogen in the products of combustion ensures that (A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 126. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Elasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off					XII					
conductivities K ₁ and K ₂ . For equal thickness of the two layers, the equivalent thermal conductivity of the slab will be (A) K ₁ + K ₂ (B) K ₁ K ₂ (C) \(\frac{2K_1K_2}{K_1+K_2} \) (D) \(\frac{K_1+K_2}{K_1K_2} \) (E) \(\frac{K_1+K_2}{K_1+K_2} \) (E) \(\frac{K_1+K_2}{K_1+K_2}{K_1+K_2} \) (E) \(\frac{K_1+K_2}{K_1+K_2} \) (E) \(\frac{K_1+K_2}{K_1					-0-					
125. The presence of aitrogen in the products of combustion ensures that (A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) dry products of combustion are analysed (D) air is used for the combustion 126. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Elasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off	124.	con	ductivities K ₁ and K ₂ . For ivalent thermal conductivity of	equal the	hickness of the two layers, the b will be					
(A) Complete combustion of fuel takes place (B) Incomplete combustion of fuel takes place (C) day products of combustion are analysed (D) dir is used for the combustion 125. Which one of the following is the most significant property to be considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Flasticity (C) Shear Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off		(C)	$\frac{2K_1K_2}{K_1+K_2}$	(D)	$\frac{K_1 + K_2}{K_1 K_2}$					
considered in the selection of material for the manufacture of locating pine and drill jig bushes used in jigs and fixtures? (A) Wear Resistance (B) Flasticity (C) Shoar Strength (D) Tensile Strength 127. What term is used to designate the direction of the predominant surface pattern produced by machining operation? (A) Roughness (B) Lay (C) Waviness (D) Cut off	125.	(A) (B) (C)	Complete combustion of fue incomplete combustion of fue dry products of combustion of the products of combustion of fue dry products of combustion of fue the products of combustion of fue the products of combustion of fue dry products of combustion of fue dry products of combustion of fue the products of combustion of the products of the product the p	i takes p lei takes are anal	place s place					
127. What term is used to designate the direction of the predominant surface pattern produced by machining operation ? (A) Roughness (B) Lay (C) Waviness (D) Cut off	126.	and (A)	sidered in the selection of ma I drill jig bushes used in jigs ar Wear Resistance	iterial fo nd fixture (B)	or the manufacture of locating pine res ? Flasticity					
pattern produced by machining operation ? (A) Roughness (B) Lay (C) Waviness (D) Cut off		(0)	ondar orrenger	(0)	Tollow Olivergue					
(C) Waviness (D) Cut off	127.									
				(B)	Lay					
TSC004244 24 200		(C)	Waviness	(D)	Cut off					
	TEC	00424		24	2003					

2) High pressures

(B) 1 and 3

121. Consider the following Statements. A real gas obeys perfect gas law at very

Which of these Statements is/are correct?

1) High temperatures

3) Low pressures

(A) 1 alone

	(D)	uniform rate in tempe	rature rise of a	body					
129.	Who	at is the main shaft of a	an engine that o	controls the movement of pisto	on ?				
dest.	(A)	axle	(B)	drive shaft					
	(C)	crank shaft	(D)	cam shaft					
130.	For	small and intricate cas	tings, the sand	grains should be					
	(A)	fine	(B)	medium	+				
	(C)	coarse	(D)	rounded					
131.	In Submerged Arc Welding, the arc is produced between								
	(A)	(A) a bare metal electrode and work piece							
	(B)	a tungsten electrode	and work piece	X					
	(C)	a carbon electrode and work piece							
	(D)	any type of electrode	can be used						
132.	For Welding process, which is NOT correct.								
	(A)	Welding size depend	s on contact an	ea of the face of Electrodes					
	(B)	Metal fusion takes pla	ace by raising t	he temperature to fusion point					
	(C)								
	(D)	Gas flame is used as	heat source in	gas welding					
133.	In overhead westing position, which is correct option.								
	(A) work pieces lie flat, welding is done from upper side of joint								
	(B)	welding is performed from the underside of joint							
	(C)	this position is most simple operation as compared to flat position							
	(D)	(D) most suitable for Submerged Arc process							
134.	Soft iron is used in the manufacture of electromagnets because of its								
	(A)	high saturation magn	etisation only						
	(B)	low retentivity only	and the second						
	(C)	low coercive field only	y						
	(D)	high saturation magn	etisation, low re	etentivity and low coercive fie	ld				
135.	Which of the following is piezo-electric material?								
	(A)	Quartz	(B)	Silica Sand					
	(C)	Corundum	(D)	Polystyrene					
TSG	0131	4	32	2	000				

128.

Steady State Heat flow implies (A) negligible flow of heat

(B) no difference of temperature between the bodies

(C) constant heat flow rate i.e. heat flow rate independent of time

TSG	0013	14	33	2003					
	(C)	induced draft fans	(D)	Electrostatic precipitators					
143.	pov	reduce air pollution due to sr ver plants. reheaters		superheaters					
	(D)	increases its surface area for t		9.50					
	(B)	reduce armature copper losse: reduce eddy current	5						
		reduce hysteresis loss							
142.		armature core of a d.c. machin	ne is	usually made of laminated sheets					
		Core flux density is increased	(D)	Core flux density is reduced					
	freq	quency, its	- 5	Flux density remains unaffected					
141.	Wh	en a given transformer is opera	ating	at its rated voltage with reduced					
		its resistance becomes zero							
	(B) its resistance becomes very small (C) its resistance decreases								
	(A) its resistance becomes negative								
140.	A material is said to have become superconductor when								
	(C)	Reluctivity	(D)	Permittivity					
	200	Conductance	(B)						
139.	Rec	ciprocal of magnetic permeability	is						
	(C)	1 ² RL	(D)	Int.					
		T only		IPL ²					
130.	flow	ring through a conductor of Resi portional to	stano	e R for a Length L and Time T, is					
138.	Acc	ording to louis's law heat or	nerov	produced by a Current while					
	(D)	Voltage between two conducto	rs inc	reases					
	(C)	Conductors repel each other							
	4	Conductors are in resonance							
131.		Conductors attract each other	: 30111	e di etatal					
137.	If the	o conductors carry current in the	sam	e direction					
	(C)	Delta-Delta	(D)	Delta-Zigzag					
	(A)	Star-Delta	(B)	Star-Star					
130.	pha	se difference of 30° between it		put and corresponding input line					

144.	Match Col. X (Instrument) with Col. Y (Use) Col. X Col. Y							
	P	Transformer	1	Measures Current				
		Rectifier	2.	Insulation Resistance				
	Q							
	R	Ammeter	3.	Steps down Voltage				
	S	Megger meter	4.	Converts AC input to Unipolar output				
	(A)	P-3, Q-4, R-1, S-2	(B)	P-3, Q-1, R-4, S-2				
	(C)	P-4, Q-3, R-2, S-1	(D)	P-3, Q-1, R-2, S-4				
145.	FET	is a device which has		A research and the				
	(A)	high input impedance	and is current	controlled				
	(B)	low input impedance a	nd is voltage	controlled				
	(C)	high input impedance a low input impedance a	and is correct	controlled				
	(D)	low input impedance a	ing is current	Commoned				
146	Wh	ich gate corresponds to	the action of	paralle switches ?				
		AND gate	(B)	OR gate				
	(C)	NAND gate	(D)	NOR gate				
147.	Wh	ich of the following cont	ributes to ham	monics distortion in amplifiers?				
141.	(A)		device (B)	defective device				
	(C)		· (D)	positive feedback				
		- I II - Platement start	is NICIT some					
148.		ect the Statement which	ns NOT come	amplifying electrical signals				
	(A)	A transistor is compos	ed of semico	nductor material				
	(C)	p-n diode is based up	on p-n junctio	n				
	(D)	Potentiometer control	s audio signal	s the same standard po				
		- N	40					
149.	The	e main advantage of a b	oridge rectifier	over full wave rectifier with centre				
		ped transformer is						
	(B)	less ripple No transformer is nee	rhort					
	(C)			is half				
	(D)			THE RELIEF OF				
150.	W	neatstone bridge is used	to measure					
	(A)		and high valu	es of current				
	(B)	high values of current						
	(C)							
	(D)	resistance values						

RRB SSE YELLOW(TSG001314) KEY									
1.A	2.C	3.C	4.D	5.D	6.D	7.B	8.D	9	10.B
11.B	12	13.A	14.D	15.A	16.A	17.A	18.D	19.D	20.C
21.A	22.D	23.A,D	24.C	25.D	26.D	27.A	28.C	29.B	30.D
31.D	32.C	33.C	34.D	35.C	36.A	37.B	38.B	39.B	40.A
41.D	42.B	43.C	44.C	45.D	46.C	47.C	48.C	49.B	50.C
51.C	52.A	53.C	54.B	55.B	56.B	57.A	58.A	59.B	60.C
61.B	62.C	63.D	64.B	65.C	66.B	67.A	68.C	69.C	70.D
71.A	72.C	73.D	74.C	75.A	76.D	77.A	78.A	79.B	80.B
81.C	82.D	83.A	84.D	85.B	86.B	87.B	88.B	89.A	90.A
91.A	92.C	93.C	94.B	95.C	96.B	97.B	98.B	99.D	100.A
101.C	102.B	103.B	104.B	105.B	106.B	107.B	108.B	109.A	110.C
111.B	112.A	113.A	114.C	115.A	116.B	117.B	118.D	119.D	120.C
121.C	122.B	123.A	124.C	125.D	126.C	127.C	128.C	129.B	130.A
131.A	132.B	133.C	134.C	135.A	136.A	137.A	138.B	139.C	140.B
141.C	142.C	143.D	144.A	145.C	146.B	147.A	148.D	149.B	150.D