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Abstract

Computational geometry has been an area of study closely linked to computer
graphics, computer-aided design, visualization and scientific simulation. Con-
structing geometric structures such as Voronoi diagram, Delaunay triangulation,
convex hull and their variants are among the fundamental problems of computa-
tional geometry. Their desirable properties make them useful in many applications
such as finite element method, surface reconstruction, collision detection and so
on.

From the early days of computational geometry in the 1970s till now, there have
been many studies on how to efficiently construct these geometric structures on
the CPU. Various algorithmic paradigms to construct them have been designed
for both single-core and multi-core systems. Nonetheless, the enormous parallel
computation power of the GPU (graphics processing unit) has not been exploited
well to solve these problems. One challenge is that constructing these geometric
structures requires “global” consideration of all input data. It thus does not map
straightforwardly to the GPU architecture that relies on regularized work and
localized data to achieve good performance.

In this thesis, we present two approaches for solving these fundamental com-
putational geometry problems on the GPU. In the first approach, we obtain
a sketch of the desirable geometric structure in the digital space, followed by
deriving an approximation in the continuous space, and finally transforming it
into the exact solution. The sketch we use is the digital Voronoi diagram, which
we compute using our Parallel Banding Algorithm (PBA) on the GPU. PBA has
optimal linear total work, high level of paralelism and excellent memory access
pattern. Using this approach, we develop GPU algorithms to construct the 2D
and 3D Delaunay triangulation and the 3D convex hull efficiently. Each of these
three problems needs a novel approach in order to obtain an approximation from
the digital Voronoi diagram and to transform it into the exact solution. In our
experiment with synthetic inputs, we obtain more than one order of magnitude
speedup when compared to the best available implementations of existing CPU
algorithms.

Our second approach combines the incremental insertion technique with local
transformations, and in contrast to the first approach, it works completely in the
continuous space. Points in the input are inserted in batches, and flipping are
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applied in different schedules to get to the final solution. We show that applying
this approach to the 2D Delaunay triangulation problem, with the help of several
heuristics, yields an even more efficient solution than using the first approach.
On the other hand, the 3D convex hull problem needs a novel flipping schedule,
while the 3D Delaunay triangulation requires a hybrid approach, with the help
of the CPU, to obtain provably correct result. Using this approach, we achieve
more than one order of magnitude speedup when compared to existing CPU
algorithms, for both synthetic and real-world inputs.

The two algorithmic approaches in this thesis focus on providing a high level of
fine-grained parallelism during execution, lacking of which is the main weakness of
existing CPU algorithms when adapted to the GPU. In addition, we also discuss
some important GPU implementation techniques to achieve high efficiency while
remaining robust to numerical error and geometric degeneracy. These techniques
mainly focus on reducing thread divergence and random memory access during
GPU computation. Overall, this thesis provides a strong foundation for further
work on solving computational geometry problems, as well as other problems in
general, on the GPU. 1

1The source code of all the implementations in this thesis is fully available at http://www.geomgpu.net
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Chapter 1
Introduction

(a) 2D Voronoi diagram (b) 2D Delaunay triangulation

(c) 3D convex hull (d) 3D Delaunay triangulation

Figure 1.1: Fundamental geometric structures in computational geometry.

Some fundamental computational geometry problems deal with constructing Voronoi diagram,
convex hull and Delaunay triangulation; see Figure 1.1. These structures are widely used in
various fields such as computer graphics, computer-aided design, visualization and scientific
computation. In this chapter, we give a brief introduction to these fundamental geometric
structures, and the motivation as well as the contribution of this thesis.
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Chapter 1. Introduction 2

1.1 Fundamental computational geometry and applications

The Voronoi diagram of a point set is a partitioning of the space into cells each associated
with an input point. Each point in a cell has the corresponding input point as its closest
neighbor. A special type of Voronoi diagram is the (possibly weighted) centroidal Voronoi
diagram in which each site lies exactly at the centroid of its Voronoi cell. These structures
have been used in clustering [Aur91] and domain partitioning for various applications such
as massively multiplayer online games [Tum04] or peer-to-peer virtual environment [AK12].
Its digital version is closely related to the Euclidean distance transform, a very important
structure in the field of image processing and computer vision [Cui99]. The Voronoi diagram
is usually obtained by dualizing the Delaunay triangulation, since algorithms to construct
the Voronoi diagram usually has lots of numerical error and robustness issues.

The convex hull of a point set is the smallest convex set covering the input points. Convex
hull is a good form of bounding volume that is useful when checking for intersection or
collision between objects [LZB08]. In robotics, it is used to approximate robots and obstacles
for the purpose of path planning [MS97]. In general, convex hull is also a useful tool in
biology and genetics [WLYZ+09] and object recognition [HH06].

Delaunay triangulation is the dual graph of Voronoi diagram. It is widely used in practice
due to many of its desirable properties. For example, in Geographical Information System
(GIS), one way to model the terrain is to interpolate the data points based on the Delaunay
triangulation [Kre97]. In path planning, the Delaunay triangulation can be used to compute
the Euclidean minimum spanning tree of a set of points, because the latter is always a
subgraph of the former [PS85]. The Delaunay triangulation is also often used as the starting
point to build quality meshes for the finite element method (FEM) [HDSB01]. An essential
step in FEM is to discretize the input domain into simple elements such as triangles or
tetrahedra, and the numerical error of the whole computation depends on the geometric
shapes and the quality of the elements. In R2, the Delaunay triangulation avoids skinny
triangles, while in R3 it can minimize the containment radius of the tetrahedra. These are
invaluable properties for mesh generation.

1.2 Motivations

Given the usefulness of these fundamental geometric structures, many algorithms have been
designed to compute them efficiently. Several algorithmic paradigms have been proposed,
including incremental construction, divide-and-conquer, plane sweeping, and incremental
insertion. Many programs are available to solve computational geometry problems, including
Triangle [She96a], CGAL [CGA] and others [Eri99]. To achieve even higher performance,
parallel algorithms are also designed for both distributed and multi-core systems. For
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distributed systems, the common approach is to partition the input domain into many small
parts, each to be solved independently in a separate computing node, before the results
are combined. For multi-core systems, the approach is to start with a coarse structure
constructed from a subset of the input points, and then the rest of the points are inserted
in parallel to construct the desired structure. With this approach, locking is necessary to
guarantee the correctness of the algorithm, and sometimes rolling back is unavoidable.

While systems with multi-core processors are widely available nowadays, they are usually
limited to having only 4 to 8 cores. On the other hand, with the development in recent
years, the graphics processing unit (GPU) is no longer limited to just for rendering and
graphics processing. With the introduction of more flexible programming frameworks such
as CUDA [NBGS08] and OpenCL [LKS+10], a growing number of general purpose problems
can be solved using the GPU. The GPU provides an enormous computing power, often
exceeding that of the CPU. This is achieved by a massively parallel architecture, using
hundreds to thousands of processing elements to execute thousands to millions of computing
threads simultaneously.

Together with the development of the GPU, there has been a growing interest in GPU
solutions for computational geometry problems. Existing algorithms for distributed and
multi-core systems do not perform very well on the GPU. First of all, the amount of RAM
of a single GPU is about the same as that of a CPU node, so it can only handle a moderate
problem size. As such, given the huge number of processing elements on the GPU, the
domain partitioning approach for distributed systems generally does not work. The reason
is that the number of parts to be partitioned into is too large, leading to parts with very
small size. As a result, balancing the load in each processing element and merging the
results afterward become prohibitively expensive. Algorithms for multi-core systems are also
not applicable, because with the growing number of processing elements, explicit locking
becomes very inefficient, if not impossible given the nature of the GPU scheduler. In general,
exploiting the enormous parallel computing power of the GPU requires a carefully designed,
fine-grained parallel algorithm with regularized work on localized data.

There have been some works that attempt to harness the computing power of the GPU.
These include the earlier work of Hoff et al. [HKL+99], Rong et al. [RT06] and Schnei-
der et al. [SKW09] to compute the digital Voronoi diagram; and the more recent works by
Stein et al. [SGES12] and Tang et al. [TZTM12] to compute the 3D convex hull. However,
these algorithms are either only able to produce approximate result, not robust enough to
handle degeneracy, or hybrid with a major amount of work still being done on the CPU.

The goal of this thesis is to find new algorithmic approaches to use the GPU effectively
to solve some major fundamental computational geometry problems. The new approaches
should promote fine-grained, wait-free parallel algorithms, and thus are scalable to the
increasing number of processing elements on the GPU. These algorithms should also be
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provably correct, and are able to handle degeneracy, an inherent problem in computational
geometry. More importantly, they should be practically implemented and achieving good
speedup compared to the best CPU programs available.

1.3 Contributions

This thesis proposes two algorithmic approaches for designing GPU algorithms to solve some
fundamental computational geometry problems.

1. The first approach uses computation in the digital space to approximate result in
the continuous space. A general algorithm consists of three phases, from obtaining a
sketch, to an approximation, then to the solution. Four major works are presented to
demonstrate this approach.

• We present the Parallel Banding Algorithm to compute the exact digital Voronoi
diagram on the GPU. The novelty comes from a careful partitioning of the input
grid into bands to allow concurrent computation, and an efficient merging of
sub-results through clever manipulation of doubly linked lists embedded on a
grid. The algorithm outperforms all sequential CPU algorithms in R2 and R3,
as well as existing GPU-based approximate algorithms. We also show how to
obtain the centroidal Voronoi diagram efficiently and accurately; see Section 4.2
and [CTMT10].

• Using the 2D digital Voronoi diagram as a sketch, we show how to dualize it into a
geometrically and topologically valid triangulation, which is an approximation of
the 2D Delaunay triangulation. After that, we present a two-step transformation
to obtain the desired result. All the steps are done in parallel on the GPU with
very high level of parallelism. Our implementation outperforms the best CPU
implementations currently available by up to 4 times in speed; see Section 4.3
and [QCT13].

• We exploit the relation between the 3D Voronoi diagram and the 3D convex hull
to compute the latter from the former. More specifically, by computing six slices
of the 3D digital Voronoi diagram, all together forming a box enclosing the input
point set, we get a good sketch from which we can derive a good approximation
of the convex hull. Some extreme points neglected due to the use of digital
approximation are added back using a digital depth test followed by a walking
approach in the continuous space. The final convex hull is obtained using the star
splaying algorithm [She05] on the GPU; see Section 4.4 and [GCN+13].

• Dualizing the 3D digital Voronoi diagram is significantly more difficult than with
the 2D case. We show that it is possible to obtain a geometrically and topologically
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valid triangulation, but at a high cost. At the same time, we show that it is also
possible to use the star splaying algorithm in a similar way to the convex hull
solution, but the efficiency is limited; see Section 4.5.

2. The second approach adapts the traditional incremental insertion technique in a novel,
massively parallel manner. In contrast to the computation in the first approach, that
in the second approach is done solely in the continuous space. Points in the input
are inserted in batches to form an initial structure, and flipping is applied in various
schedules in an attempt to obtain the final solution.

• We revisit the 3D convex hull problem. A novel flipping process called Flip-Flop
is proposed to guarantee the algorithm always produces the correct result. With
a combination of flipping both reflex edges and convex edges in a clever schedule,
we can remove all non-extreme vertices and obtain the convex hull; see Section 5.2
and [GCTH13].

• We propose a hybrid algorithm to compute the 3D Delaunay triangulation effi-
ciently. Using the GPU, we first insert points in batches, each followed by a series
of flipping passes to get closer to the Delaunay triangulation. Although flipping
alone cannot always lead us to the correct result, what it achieves is close enough.
With the help of a modified star splaying algorithm, applied adaptively on the
CPU, we can always get to the correct result. The work done on the CPU is often
minimal. Some heuristics are also proposed to further reduce the work of the
star splaying step on the CPU, as well as reducing the number of flips performed
on the GPU. As such, our hybrid algorithm outperforms all existing sequential
CPU algorithms by up to an order of magnitude, in both synthetic as well as
real-world inputs. We also adapt the approach to the 2D problem and obtain
similar speedup; see Section 5.3 and [CNGT14].

The thesis also includes many implementation details and techniques for efficient imple-
mentation of computation geometry algorithms on the GPU. These include optimization
techniques to reduce thread divergence and random memory access, which are key factors
that affect the performance of GPU code. Furthermore, some techniques are required to
guarantee the robustness of the implementation against both numerical error and geometric
degeneracy.



Chapter 2
Background

This chapter starts by describing the basic geometric structures, their relations and some
of the important properties that are useful for understanding this thesis. The frequently
used flipping operation is also described here. For a more complete understanding of these
concepts, please refer to the Dutch Book [BCKO08]. We also briefly describe some relevant
aspects of the GPU architecture and the important considerations when designing algorithms
for the GPU. At the end of the chapter, we summarize the system configuration and input
datasets to be used in all the experiments in this thesis.

2.1 Computational geometry

Fundamental computational geometry problems often begin with a given set of points S. We
are interested in three main geometric structures: the Voronoi diagram, the convex hull and
the Delaunay triangulation. They are all related to one another, as we shall see later. For
simplicity, we assume that the input points are in general position, i.e. no three points are
collinear, no four points are cocircular in R2 or coplanar in R3, no four points are cospherical,
and so on. When discussing the implementation details we will show how to deal with such
degeneracy in practice.

In the following discussion, let S = {s1, s2, . . . , sn} be the set of input points in Rd.

2.1.1 Convex hull

Definition 2.1. The convex hull C(S) of S is the smallest convex set containing S.

For simplicity, we usually refer to only the boundary of the convex hull. In R3, C(S) is
a convex polyhedron. If points in S are in general positions, then all the facets of C(S)

are triangles. Each point of S on the boundary of C(S) is called an extreme vertex. The
boundary of the convex hull can be divided into two parts, the upper hull and the lower
hull. A facet of the convex hull is in the upper hull if the space above it (in a pre-defined
direction) is outside the convex hull; otherwise it is in the lower hull.

6
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2.1.2 Voronoi diagram

Definition 2.2. The Voronoi diagram V(S) of S is a tessellation of the space into n cells,
one for each input point. A point p lies inside the cell of the input point s ∈ S if and only if
it is as close to s as to other points in S.

The term “close” here usually refers to the Euclidean distance, but can also mean other
metrics such as the Manhattan distance or the L∞ distance. The cell corresponding to the
input point s is called the Voronoi cell V(s) of s. Such a cell can either be bounded or
unbounded. A Voronoi cell V(s) is unbounded if and only if s is an extreme vertex.

In R2, two Voronoi cells intersect at a Voronoi edge, and three Voronoi cells intersect at
a Voronoi vertex. In R3, two Voronoi cells intersect at a convex polygon, called a Voronoi
face, while a Voronoi edge or a Voronoi vertex is the intersection of three or four Voronoi
cells, respectively. By definition, a Voronoi vertex is of equal distance to the input points
corresponding to the Voronoi cells incident to it.

The digital Voronoi diagram of a point set S is the digitized version of the Voronoi diagram.
We define it over a grid G of size M = md, where the input point set S is a subset of the
grid points.

Definition 2.3. The digital Voronoi cell VD(s) of s ∈ S is the set of all grid points in G
that are closer to s than to any other points in S. The collection of all the digital Voronoi
cells of points in S together forms the digital Voronoi diagram of S.

In case there are two input points with equal distance to a grid point, we use their indices to
decide. If the grid point p is in VD(s), then we say that p is colored by s; this is from how
we usually visualize the digital Voronoi diagram. From the definition, all grid points in G
are colored.

It is interesting to note that although V(s) is always connected, VD(s) might not be; see
Figure 2.1. VD(s) has one connected component (called bulk) which is path-connected to s,
and possibly some debris which is disconnected from s. This is simply due to digitization
error, and usually is not a significant issue since most applications of the digital Voronoi
diagram only use the distance map. Nonetheless, there are some serious topological problems
when we dualize the diagram, as we shall see later in Section 4.3.1.

2.1.3 Delaunay triangulation

Definition 2.4. In R2, a triangulation T (S) is a subdivision of C(S) into triangles whose
vertices are points in S. Two different triangles in T (S) only meet at a common vertex or
edge. The Delaunay triangulation D(S) is a triangulation of S such that the circumcircle of
any triangle in D(S) does not enclose any other points in S.
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site

bulk

debris

Figure 2.1: Illustration of one site, its bulk, and its debris.

Triangles in D(S) are said to satisfy the empty circle property; see Figure 1.1b. Conversely,
any triangle satisfying the empty circle property is said to be a Delaunay triangle. It can
be proven that the Delaunay triangulation always exists uniquely for a point set in general
position.

In a 2D triangulation, the star of a vertex p is the set of all triangles and edges incident
to p. The link of p is the set of all edges incident to the triangles of the star of p but not
containing p. Similarly, the star of an edge is the (up to) two triangles incident to it, and
the link of an edge is the (up to) two vertices opposite the edge in these two triangles. Each
vertex in a link is called a link point. See Figure 2.2 for an illustration. Note that an edge
on the boundary of the triangulation (i.e. on the convex hull) has only one triangle incident
to it, and thus only one link point.

p

(a) R2 - Star of a vertex

p

(b) R2 - Link of a vertex

e

(c) R2 - Link of an edge

e

(d) R3 - Link of an edge

Figure 2.2: Stars and links.

Definition 2.5. Given a triangulation T , an edge e ∈ T is said to be locally Delaunay if
and only if it has only one link point, or each circumcircle of the triangle formed by e and
each of its link point does not contain the other link point.

When an edge e has only one link point, it is a boundary edge. It is convenient to imagine
that e is incident to a triangle that extends to infinity, and thus has a link point at infinity;
therefore e is also locally Delaunay. The locally Delaunay property of an edge is easily
verified using an incircle test. The following lemma shows the connection between this local
property and the global one.

Lemma 2.1 (Delaunay lemma). If every edge of a triangulation T (S) is locally Delaunay,
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then T (S) ≡ D(S) [Law77].

All the concepts above can be generalized to higher dimensions, such as R3 in which triangles
become tetrahedra, and circumcircles become circumspheres. The link of p in this case is a
polyhedron formed by the vertices, edges and facets (i.e. triangles) incident to the tetrahedra
of the star of p but not containing p. Similarly, the link of an edge e is a closed chain of
vertices and edges from the tetrahedra incident to e, but not intersecting e; see Figure 2.2d.

2.1.4 Geometrical relations

(a) Duality (b) Lifting

Figure 2.3: The relations between Voronoi diagram, Delaunay triangulation, and convex
hull.

The three fundamental geometric structures discussed in the previous sections are related to
one another under two relations: duality and lifting. From one structure we can theoretically
derive the others.

The first relation, discovered by Boris Delaunay himself, is between the Voronoi diagram
and the Delaunay triangulation. Simply speaking, the Delaunay triangulation is the dual
graph of the Voronoi diagram. The duality is taken by replacing each Voronoi edge by a
straight edge connecting the two corresponding input points, and each Voronoi vertex by a
triangle of the three corresponding input points; see Figure 2.3a. The reverse can also be
done. In practice, the Voronoi diagram is usually not constructed directly but through the
construction and dualization of the Delaunay triangulation.

The second relation is between the Delaunay triangulation and the convex hull. Given a point
set S in R2, we lift each point p = (x, y) to the point p′ = (x, y, x2 + y2) in R3, resulting in a
new point set S′. The projection of the lower hull of S′ back to R2 is exactly the Delaunay
triangulation of S; see Figure 2.3b.



Chapter 2. Background 10

The duality and the lifting relations can also be generalized to R3 and higher dimensions.
Because of the lifting relation, a 2D incircle test can be implemented as a 3D orientation
test, while the 3D insphere test is equivalent to the 4D orientation test.

2.1.5 Flipping

2{2 flip

3{1 flip

1{3 flip

(a) Flippable

ea

c

b

d

(b) Unflippable

Figure 2.4: The flipping operation in R2.

In this section we discuss one very important operation, called flipping, to locally modify a
triangulation or a tetrahedralization. Let us start with a general definition.

Definition 2.6. Given a set S of d+ 1 points in Rd, there exists only two triangulations of
S. The flipping operation replaces one with the other.

A flip is the smallest topological modification possible to a triangulation. In R2, a flip either
replaces two triangles with another two, or three triangles with one, or the other way around.
We call them 2–2 flip and 3–1 (or 1–3) flip respectively; see Figure 2.4a. A 2–2 flip replaces
an edge with another edge, so we usually refer to it as an edge flipping operation. In R3, we
have 3–2, 2–3, 4–1 and 1–4 flips; see Figure 2.5a for an illustration of the 2–3 and 3–2 flips.

From the definition, it is clear that a flip can only be performed on d + 1 points in a
triangulation T if one of the two triangulations of these points completely exists in T . In R2,
consider an edge e = (a, b) and its link {c, d}. The induced subcomplex σe of e is the set of all
triangles (as well as their edges and vertices) in T having all vertices in Se = {a, b, c, d}. We
say that e is flippable if and only if σe is a triangulation of Se; in other words, the underlying
space of σe is the convex hull of Se. Otherwise, e is unflippable; see Figure 2.4b. In R3,
we consider a triangle instead of an edge. A 2–3 unflippable configuration is illustrated in
Figure 2.5b.
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2{3 flip

3{2 flip

(a) Flippable
  
(b) Unflippable

Figure 2.5: The flipping operation in R3.

2.2 Graphics processing unit

Since the introduction of programmable shaders, the GPU has been used for general purpose
computation besides its originally designed purpose of rendering graphics. Researchers
recast their problems into the graphics pipeline in order to make use of the floating-point
performance of the GPU [OLG+07]. Typically, these problems are embarrassingly parallel,
and thus few modifications are needed.

In the past six years, starting from the introduction of the CUDA programming framework
by NVIDIA [NBGS08], the GPU has undergone several major improvements, from the
introduction of atomic operations, double precision floating-point, to the support of caching,
call stack and recently dynamic parallelism. Figure 2.6 presents the architecture diagram of
the GF100 architecture used in the NVIDIA GTX580 GPU. Other GPU vendors such as AMD
and Intel also provide similar features, while supporting the open standard OpenCL [LKS+10].
In this thesis, we use the terms in the CUDA programming framework and NVIDIA’s GPU
architecture, but most of the discussions are still applicable to OpenCL and AMD GPUs.

2.2.1 Terminology

A CUDA device consists of one or more stream multiprocessors, each of which is composed of
many stream processors; see Figure 2.6. The CUDA programming language is an extension
of C++, with some extra syntax elements for GPU code. The GPU code is executed on the
GPU as kernels. Each kernel is executed across an array of threads, which will be scheduled
on the stream processors automatically by the GPU.

The threads executing a kernel are organized into thread blocks of the same size. The users
specify the number of threads per block and the total number of blocks to be executed
when launching the kernel. Threads in the same thread block are guaranteed to be executed
on the same stream processor, and there is a cheap barrier to synchronize them. On the
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Figure 2.6: Architecture of the NVIDIA GTX580 GPU [NVIDIA].

other hand, the only way to synchronize all the threads executing a kernel is to stop the
kernel and return to the CPU. This is typically costly and also all the data in the temporary
variables and registers are lost. Threads inside the same block also have another mechanism
to communicate: using the shared memory. Although having a rather small size, the
shared memory is faster, by up to two orders of magnitude compared to accessing normal
GPU memory (usually referred to as global memory). For more details, see the CUDA
Programming guide in the CUDA Toolkit.

2.2.2 Challenges

We identify three main challenges when programming for the GPU.

• Parallelism. This first and most important challenge, immediately visible from
Figure 2.6, is due to the huge number of stream processors on the GPU. An NVIDIA
GTX580 has 512 stream processors, and a professional card might have up to several
thousands of them. Furthermore, accessing registers and performing mathematical
operations all take several cycles, while accessing the GPU memory might take up
to hundreds of cycles. This latency can be hidden when there is more than one
thread ready to be scheduled for each stream processor. The GPU can switch between
different threads with zero latency. As such, for efficiency, it is desirable to have tens
of thousands of executing threads at any given time. Developing algorithms with such
a level of parallelism is very challenging. Besides, locking is difficult due to the way
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threads in the GPU are scheduled, so cooperating among huge number threads becomes
even more difficult.

• Divergence. The second challenge comes from the architecture of a stream multi-
processor. The stream processors inside a multiprocessor are not independent, but
rather grouped into a SIMD group, i.e. they must execute the same instruction in the
same cycle. As such, the threads in a thread block are grouped into warps each of
32 threads. Threads in the same warp execute in lockstep. When they need to take
different paths, the warp is split into two, each with some threads disabled. These
warps are merged again as soon as the divergent path is completed. In the worst case
when all 32 threads are on different paths, their execution is effectively serialized. This
has a significant effect on the performance, so designing algorithms with less divergent
in each kernel is important.

• Memory. The third challenge of GPU programming comes from the fact that the
memory system is pretty much sequential. In each cycle, if the memory access of some
threads in a warp can be combined in a single request (i.e. the access are coherent),
then the memory system can serve these threads all together. However, if these accesses
cannot be combined, multiple requests are required, and these threads will be served
sequentially and thus the performance is reduced. Combining that with the very high
latency of the memory and the very tiny amount of cache available (typically less
than 100KB per multiprocessor), accessing the memory becomes a serious bottleneck
especially for applications with lots of memory access.

The three challenges mentioned above lead to some important design principles when
developing algorithms for the GPU. We apply them constantly on all the algorithms present
in this thesis.

• First, data-parallel computation, where the same computation is performed by many
threads on multiple pieces of data, is preferred. Therefore, we need to make our
algorithm as simple and uniform as possible. The work load of each thread should
also be similar, since load balancing techniques such as work stealing or work donation
might be costly. This is to deal with the parallelism and the divergence challenge.

• Second, with so many threads, we usually employ some simple checks to break the
set of jobs into several groups, within which the jobs can be done concurrently with
no conflicts. That effectively makes the algorithms lock-free, while still allows the
algorithm to have very high parallelism.

• Third, our algorithms should strive for locality of threads which access the same data,
to improve the utilization of the small cache. Memory accessed by a thread should
also be local, not only for better caching efficiency but also for reducing the chance
of conflicting with other threads. This is mainly to address the memory challenge, as
well as improving the parallelism.
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(a) Uniform (b) Gaussian (c) Thin circle

Figure 2.7: Synthetic point distributions in R2.

(a) Cube (uniform) (b) Ball (c) Thin box (d) Thin sphere

Figure 2.8: Synthetic point distributions in R3.

2.3 Experiment setting

All the experiments in this thesis are conducted on the same PC unless otherwise stated. The
PC has an Intel i7 2600K CPU running at 3.4GHz, with 16GB of DDR3 RAM. The GPU we
use is an NVIDIA GTX 580 with 3GB of video memory. Visual Studio 2012 and CUDA 5.0
Toolkit are used to compile all the programs in 64-bit mode, with all optimizations enabled.

The input data for all our problems are a set of point, except the digital Voronoi diagram
one where the points are expected to have been labeled directly into the grid. There are
three types of data used throughout the experiments.

1. Synthetic data. Points are generated randomly in some distributions. For the digital
Voronoi diagram problem, points are generated within a grid with certain density.
For the 2D Delaunay triangulation problem, we use a uniform and a Gaussian point
distribution. Besides, we also generate points uniformly inside a thin circle, i.e. the
area between two concentric circles of radius r1 and r2 with r2 − r1 being a very small
number; see Figure 2.7. In 3D we additionally have a ball distribution, i.e. points are
generated uniformly inside a ball, and a thin sphere distribution similar to the thin
circle one. For the 3D convex hull problem, besides these we add a thin box distribution,
i.e. we replace spheres with cubes; see Figure 2.8. These distributions allow us to test
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Figure 2.9: A cropped snapshot of the Delaunay triangulation of one contour map.

the performance of our algorithms in some controlled, yet representative, situations.

2. Real-world data. Here we use point sets from some real-world examples for the
testing. In 2D we use the points extracted from the contour maps freely available
at https://www.ga.gov.au/. In these datasets, points are distributed non-uniformly
along the contour curves, which are mostly nested closed curves, similar to level set
curves. See Figure 2.9 for a cropped snapshot of the Delaunay triangulation of one
such dataset. In 3D, we use points from several models obtained from objects in the
real world, namely Armadillo, Dragon, Happy Buddha, Asian Dragon, Turbine Blade,
Angel and Brain; see Figure 2.10. The first four models are scanned surface data
obtained from the Stanford 3D Scanning Repository [Sta]. The Turbine Blade and the
Angel model are also scanned data from the Georgia Tech Large Geometric Models
Archive [Geo]. The Brain model is obtained from the Princeton Suggestive Contour
Library [Pri]. Testing on these models demonstrate the expected performance of our
algorithms when running on real applications such as FEM or computer games. The
points are usually not very nicely distributed, and the amount of degeneracy ranges
from moderate to high.

3. Pathological data. We also push the limit of the algorithms by testing on some
pathological point distributions. In 2D we try points lying exactly on a circle. In
3D, we use points on a sphere, on an ellipsoid, on grid points of a grid, and on two
non-intersecting line segments. These cases usually do not happen in practice. It is
to show the robustness of our algorithms, as well as to test its efficiency at handling
exact computation.
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Dragon – 437K points Armadillo – 172K points

Brain – 294K points Asian Dragon - 3,609K points

Angel – 237K points Happy Buddha – 543K points Blade – 882K points

Figure 2.10: Input points from real-world models R3.
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In our experiment, double precision floating points are used for both input generation and
output computation. The total time measured for our implementation always include the
time to copy the input from the CPU memory to the GPU memory, as well as the time to
copy the result back. In some cases these copying time can be quite a major part of the total
time, and we will mention that in the respective experiment sections.



Chapter 3
Related Work

This chapter covers some important previous works on the digital Voronoi diagram, convex
hull and Delaunay triangulation problems, including those for multi-core and GPU systems.
We cover some traditional approaches for sequential algorithms, and discuss in detail some
algorithms that are directly related to our work. At the end of the chapter, we also survey
some interesting works that are related to designing algorithms for the GPU.

3.1 Digital Voronoi diagram

Digital Voronoi diagram is actually not a widely known geometric structure in computational
geometry. In contrast, it is a well-studied problem in computer vision since it is equivalent
to the Euclidean distance transform (EDT) problem, which has many applications such as
pattern matching, morphological operations, video stylization, etc. Early works approximate
the Euclidean distance using other metrics such as Chamfer distance or chessboard distance
for faster computation. However, with recent development in the computation of the EDT,
other approximations are no longer necessary. The two recent survey papers [FCTB08, JBS06]
compare and contrast many state-of-the-art sequential approaches to solving the problem
in 2D and 3D, targeting mainly the exact EDT computation. In the following sections, we
highlight some of the works in computing the EDT, both exact and approximate. We look
into sequential algorithms, parallel (mostly PRAM) algorithms, as well as earlier GPU works.
In the discussion, we sometimes use the term site to refer to an input point that is associated
to a grid point.

3.1.1 Exact and approximation

Both the exact and approximate EDT can be sequentially computed in time linear to the
number of grid points M = md in d-dimension. Most approximate EDT algorithms are based
on Danielsson’s vector propagation approach [Dan80]. This approach stores the coordinates
of a candidate site for each grid point in the grid. These coordinates are then propagated
using a structuring element called vector template. Multiple templates are swept in some

18
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-1,-1 0,-1 1,-1

-1,0 0,0 0,0 1,0 -1,0 0,0 0,0 1,0

-1,1 0,1 1,1

Figure 3.1: Danielsson’s vector template.

certain fashions across the image. For example, in 2D the information can be propagated
from top to bottom (left to right and then right to left) and then from bottom to top using
the template in Figure 3.1. Such an algorithm runs in linear time, and performs very well in
practice due to its cache-friendly memory access pattern. It also produces highly accurate
EDT with just a small number of grid points possibly having inaccurate nearest site (and thus
distance value). As such, this approach is widely used in the computer vision community.

The exact EDT for a binary grid of arbitrary dimensions, on the other hand, can be computed
using a dimensionality reduction approach by Maurer et al. [MQR03]. For each dimension,
the EDT can be computed by using the EDT in the next lower dimension to construct
the intersection of the Voronoi cells of the input points with each “row” of the grid. The
computation is done using the 3 properties of the digital Voronoi diagram that we discuss in
Section 4.2.

It is notable that Maurer et al.’s algorithm is inherently parallel. In each dimension, each row
of the grid is processed independent from other rows, thus they can be handled in parallel.
However, the parallelism is limited and the time complexity is not optimal, especially on low
dimensions such as 2D or 3D.

3.1.2 PRAM algorithms

Besides sequential algorithms, a large body of works has been proposed to solve the EDT
problem in parallel, targeting the theoretical parallel machine model PRAM, including both
the EREW and the CRCW model. Lee et al. [LHS03] use dimensionality reduction together
with the theorem proven by Kolountzakis and Kutulakos [KK92] to compute the exact
EDT in O

(
log2M

)
time using O

(
M
)
processors. Better still, by redefining the problem of

finding the intersection of the Voronoi diagram with each row of the grid as the problem of
finding proximate sites (which can be optimally computed in O

(
logm

)
time using O

(
m

logm

)
processors [HNO98]), one can compute the exact EDT in O

(
logm

)
time [WHLL01]. Such a

result is theoretically optimal. However, all the algorithms mentioned above are developed
for the theoretical EREW PRAM model, with no known practical implementation. Better
time complexity algorithms for the more powerful CRCW PRAM model are also known;
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see [WHLL01]. Our algorithm in Section 4.2 is inspired by Hayashi et al. [HNO98], but is
much simpler and more practical to implement on the modern graphics hardware.

3.1.3 GPU algorithms

k

k

(a) JFA

Top to bottom

sweep

Bottom to top

sweep

Left to right

sweep

Right to left

sweep

(b) SKW

Figure 3.2: Vector templates of some GPU algorithms.

The early attempts to compute the approximate EDT using the graphics hardware include
the work of Hoff et al. [HKL+99] and Fischer and Gotsman [FG06]. They render a right-
angle cone for each site in the image to approximate the distance function, and use the
depth-testing feature on the GPU to obtain the distance map. Their method suffers from
overdrawing and tessellation error. Sud et al. [SGGM06] use a bilinear interpolation equation
to compute the distance vector at any point on a polygon using the distance vectors of the
polygon vertices. Their method can compute highly accurate distance maps for complex
models, but its complexity is dependent on the number of input points. Similar approaches
using the graphics pipeline also appear in earlier works [SPG03, SOM04, SGM05].

More recent works use the vector propagation approach to compute the approximate distance
transform on the GPU. Rong and Tan [RT06] propose the Jump Flooding Algorithm (JFA)
to compute the EDT in O

(
logm

)
time using O

(
M
)
processors. In 2D, JFA uses the vector

template shown in Figure 3.2a. At each pass, each grid point (x, y) propagates its information
to eight neighbors at position (x + i, y + j) where i, j ∈ {−k, 0, k}. JFA varies the step
length k in different passes to propagate information throughout the grid. In the first pass,
k = m

2 , and in each subsequent pass k is halved (assuming that m is a power of 2). JFA uses
O
(
logm

)
passes, thus the EDT can be computed in O

(
logm

)
time, though with a small

rate of error. Although JFA can easily exploit the computing power and memory bandwidth
of the GPU, it has a suboptimal total work complexity of O

(
M logm

)
. Besides, the work

only provides a little insight into the (expected) low error rate, and not any bound on the
absolute distance error. Cuntz and Kolb [CK07] propose a speedup version of JFA by using
a hierarchical approach to reduce the total work to O

(
M
)
at the cost of a much high error

rate. The higher error rate is because their algorithm relies on down-sampling the input
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grid to reduce the total work, while Voronoi diagram is usually very sensitive to any slight
change in the position of input points that are close to one another. This thus limits its use
in practice.

Schneider et al. [SKW09] also modify Danielsson’s vector templates slightly; see Figure 3.2b,
to allow concurrent propagation for grid points in the same row. Their sweeping algorithm,
termed SKW, can be implemented on the GPU with linear total work complexity and the
resulting distance map is close to exact. However, SKW has a high time complexity of O

(
m
)
,

and thus usually does not run faster than JFA. This is because it can only perform parallel
propagation of grid points in one row at a time (in 2D problem). With a grid size limited
by the available memory on the GPU and the need to have tens of thousands of threads or
more in order to optimally utilize the processing power available, SKW often under-utilizes
the GPU.

3.2 Convex hull

Convex hull is arguably the most fundamental computational geometry problem, with a long
history of researches and applications. The concept is so useful and easy to understand that
its 2D version is commonly covered in the first undergraduate course in algorithm. In this
section, we look at some popular sequential algorithms for convex hull as well as a few recent
attempts at constructing this geometric structure on the GPU. We also briefly introduce the
star splaying algorithm, an unconventional method to construct or fix the convex hull [She05].
We use and adapt the star splaying algorithm in several places in this thesis. The discussion
below focuses on the problem in R3, but is also mostly applicable to other dimensions.

3.2.1 Sequential and parallel algorithms

Two popular approaches commonly used to construct convex hull are the incremental inser-
tion approach and the divide-and-conquer approach. The incremental insertion approach
constructs the convex hull by locating and inserting points incrementally [CS88]. Quick-
Hull [BDH96] is a variant of such approach. In R3, the algorithm begins with a single
tetrahedron or a volume in general, usually formed by four extreme vertices. Input points
outside the volume are recursively inserted to grow its size, while points found to be within
the volume are discarded from subsequent computation. At each step, the farthest input
point from the facets of the volume is chosen to be added. Such a point is an extreme vertex,
and this also potentially maximizes the number of input points that can be discarded.

The second approach, divide-and-conquer, is used in the algorithm of Preparata and Hong
[PH77]. The input point set is divided into subsets of very small size, such that the convex
hull of each subset is easily obtained. Subsequently, a merge procedure for two convex
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hulls is recursively applied. The input is divided such that any two sub-results are non-
intersecting to simplify the merging procedure. Nevertheless, it is still quite challenging in
higher dimensions.

Both the incremental insertion and the divide-and-conquer approach have an O
(
n log n

)
time complexity. In R2 and R3, the optimal output-sensitive convex hull algorithm has a
time complexity of Θ(n log h) where h is the number of extreme vertices [KS86, Cha96].
Empirically, QuickHull is found to have the same output-sensitive time complexity. Because
of that and its low overhead in practice, QuickHull has been a popular algorithm adopted by
many applications over the years.

Parallel algorithms for convex hull have also been extensively studied in the last few decades.
For example, Miller and Stout [MS88] and Amato and Preparata [AP93] propose O

(
log n

)
parallel algorithms using O

(
n
)
processors. These algorithms are only of theoretical interest as

they have no known efficient implementation. One of the reasons is that these algorithms are
complex, making them hard to scale on a fine-grained data-parallel massively-multithreaded
architecture. For the current multi-core systems with a small number of independent
processors, algorithms designed by Dehne et al. [DDD+95] might be more applicable. These
algorithms, however, also do not have known implementations to demonstrate their use.

3.2.2 GPU algorithms

Recently, convex hull algorithms designed specifically for the GPU are also studied. Srun-
garapu et al. [SRKN11] and Jurkiewicz and Danilewski [JD10] propose two algorithms similar
to QuickHull on the GPU that work for the simple 2D case. Tzeng and Owen [TO12] further
extend that approach to R3 and higher dimensions. However, their algorithm can easily
output non-extreme vertices; see Figure 3.3 for a counter-example. Stein et al. [SGES12]
propose to compute the convex hull in R3 by iteratively inserting points and flipping. Their
claim is that their algorithm flips all reflex edges, thus the result is a convex hull. This,
however, is not true as the algorithm prohibits flipping of concave edges if doing so causes
self-intersection (as indicated in their paper), thus the final result might still contain reflex
edges. The only known approach that can produce the correct convex hull in R3 with the
help of the GPU is that of Tang et al. [TZTM12]. In this work, the hull is grown on the GPU
by iteratively inserting points into an initial tetrahedron, without any other modification.
During the process, any point found to be inside the hull is removed. Then, those points
surviving the process are passed back to the CPU memory and a CPU-based program (such
as CGAL) is used to compute the convex hull. As pointed out by the authors, if most of the
input points are extreme vertices, then their algorithm is even slower than the CPU-based
program due to the time wasted on the filtering step on the GPU.
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Figure 3.3: An example in which the algorithm in [TO12] outputs a wrong result. In (a),
after creating the initial tetrahedron abcd, e is flagged with 4abc while f is with 4acd, and
both of them are output as extreme vertices. In the correct result in (b), e is not an extreme
vertex since it lies inside tetrahedron fabc.

3.2.3 Star splaying in R3

Star splaying [She05] is a very efficient algorithm to repair convex hulls in any dimensions.
In this section, we briefly outline the algorithm in R3.

In R3, the boundary of a polyhedron is topologically similar to a triangulation in R2, and
the concepts of stars and links also apply. By extending the star of a vertex s to infinity, we
get a cone; see Figure 3.4a. If the polyhedron is convex, then the cone of each of its vertices
is also convex, and at the same time encloses all other vertices of the polyhedron.

The stars of the vertices of a polyhedron are consistent with each other. That is, if the star
of t contains 4stu, then the stars of s and u also contain this triangle. Moreover, a set of
consistent stars uniquely defines a surface triangulation. However, an arbitrary collection of
stars not coming from a polyhedron may not be consistent with each other.

The star splaying algorithm is based on the idea that if the cones of all the vertices are made
convex and their corresponding stars are made consistent, then these stars uniquely define
the convex hull of the input point set. Starting from a set of stars with their cones being
convex, the algorithm repeatedly checks for each triangle stu in the star of t whether this
triangle exists in the star of s and u or not. If 4stu does not exist in the star of s, then
some points (t, u, or both) will be inserted into the star of s in an attempt to splay it wider
to include 4stu.

The insertion of a point p (either t or u) into the star of s is done using the traditional
beneath-beyond method [Kal81] to guarantee that the cone of s is still convex after the
insertion; see Figure 3.4b. Such insertion fails only when the triangle is interior to the cone
of s, in which case some vertices on the link of s will be inserted into the star of t to splay
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Figure 3.4: Star splaying algorithm. (a) The cone of vertex s with its link in bold.
(b) Beneath-beyond insertion of p into the star of s.

that star further to remove 4stu. If the star of a vertex splays wider than a half space, that
vertex is guaranteed not to be an extreme vertex; we call its star a dead star.

A nice feature of the star splaying algorithm is that creating stars having convex cones and
enforcing their consistencies can both be done independently for each star. This is well
suited to the parallel computation model of the GPU since stars can be repeatedly checked
and modified in multiple steps without requiring any explicit locking. However, star splaying
is not suitable for constructing convex hull from a point set, since its time complexity would
be much higher than optimal.

3.3 Delaunay triangulation

The Delaunay triangulation is one of the most useful structures in computational geometry,
and thus it received lots of research attention. In this section, we detail some popular
approaches to construct the Delaunay triangulation sequentially, followed by some recent
work on adopting these approaches to parallel systems, with the focus on those for multi-core
ones.

3.3.1 Sequential algorithms

There are four major approaches to construct the Delaunay triangulation of a given point
set sequentially: incremental construction, sweep line, divide-and-conquer, and incremental
insertion.
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Incremental construction

The incremental construction approach is also often referred to as the gift wrapping approach
due to the similarity with the corresponding convex hull algorithm. The algorithm was
proposed for 2D by McLain [McL76] and generalized to 3D by Cignoni et al. [CMS92] in
the InCoDe algorithm. In R2, the Delaunay triangles are incrementally discovered, one at a
time. Starting from an arbitrary input point, we find the point nearest to it, and this forms
a Delaunay edge. Then, we find another point such that the circumcircle of the triangle
formed by these three points is the smallest. This is guaranteed to be a Delaunay triangle.
From this, Delaunay triangles are incrementally constructed from the edges that are not
yet completed, i.e. those with only one incident triangle. The algorithm is output-sensitive,
taking O

(
nf
)
time where f is the number of Delaunay triangles. The same method works

in higher dimensions as well. Furthermore, some data-structure can be used to reduce the
time to search for points to complete a facet; see for example [Dwy91]. Still, this approach
is not very efficient due to the mentioned high time complexity.

Sweep line

The sweep line approach is based on the duality between the Voronoi diagram and the
Delaunay triangulation. Fortune [For87] uses a sweep line algorithm to construct the Voronoi
diagram in R2, from which the Delaunay triangulation can be obtained. First, the algorithm
sorts the input points by their x-coordinates, and then a vertical line, called the sweep-line,
is swept from left to right. Points behind the sweep-line have already been added into
the Voronoi diagram, while points ahead of the sweep-line are waiting for processing. As
the sweep-line progresses, the Voronoi edges are generated incrementally. Two events are
processed when the sweep-line goes through the space: when an input point is reached, and
when the Voronoi vertex is crossed. The running time of this algorithm is O(n log n).

It is, however, not clear how to generalize this approach to R3. One of the reasons is that it
is much more costly to determine when the sweep-plane passes a Voronoi vertex. As such,
this algorithm is not used to construct Delaunay triangulation in dimensions higher than
two.

Divide-and-conquer

In R2, the input point set is repeatedly divided into smaller sets, until a set is small enough
that the Delaunay triangulation can trivially be computed. Then the algorithm recursively
merges the results of two small adjacent sets into that of a bigger one, until results of all
sets are grouped into one triangulation, the Delaunay triangulation. Using this approach,
the result can also be computed in optimal O(n log n) time [SH75, Dwy87].
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Figure 3.5: Constructing 2D Delaunay triangulation using divide and conquer.

This approach, however, is also difficult to generalize to higher dimensions. One reason is
that, as shown in Figure 3.5, the merge phase relies on an explicit ordering of the edges
incident to a vertex. Such an ordering, which generalizes to facets incident to a vertex, is
not available in R3 or higher dimensions.

Instead, to use divide-and-conquer in R3, a merge-first approach is needed, as proposed in the
DeWall algorithm by Cignoni et al. [CMS92]. The idea is to build the Delaunay tetrahedra
intersected by the dividing plane first, using the incremental construction approach, before
recursively constructing the rest of the Delaunay triangulation on the two sides of the plane.
By doing so, the merge phase is avoided.

Incremental insertion

This is arguably the most powerful approach for Delaunay triangulation in particular, and for
computational geometry in general. From a general point of view, the approach is to insert
input points one by one into the existing structure, and then performing some modification
if necessary.

In R2, three variants are possible. In the first variant, all input points are located and simply
inserted by splitting the triangle containing it. Then, a sequence of Delaunay flips are applied
on non-Delaunay edges until the Delaunay triangulation is reached [Law77]. This variant
has the worst case time complexity of O

(
n2
)
. In the second variant, flipping is performed

right after each point insertion [GS85]. When points are inserted in a random order, the
expected time complexity of O

(
n log n

)
can be achieved. In the third variant, instead of

using flipping, all triangles having their circumcircles enclosing the newly inserted point are
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removed, with the hole created guaranteed to be star-shaped and can simply be glued with
the new point. This is called the Bowyer-Watson algorithm [Bow81, Wat81], and is in a way
similar to the beneath-beyond algorithm by Kallay [Kal81].

In R3, the first variant above is no longer possible, as shown by Joe [Joe89]. Flipping can
get stuck, a situation in which no more Delaunay flip is flippable, and yet we still have not
reached the Delaunay triangulation. In fact, it is still an open problem whether flipping can
transform any 3D triangulation into the Delaunay triangulation. Fortunately, the second
and the third variants work without any problem in R3 or higher dimensions [Joe91].

3.3.2 Parallel and streaming algorithms for the CPU

There are several attempts at parallelizing the construction of Delaunay triangulation on
multi-core systems, especially for the 3D case. All of them are based on the incremental
insertion approach; see the survey in [KKv05] or the more recent works in [BMPS10, FC12].
Several points are inserted in parallel, followed by either flipping or Bowyer-Watson’s
algorithm. For correctness, two threads cannot update the same tetrahedron at the same
time. Moreover, two parallel insertions also cannot conflict with each other, i.e. the regions
affected by them overlap at some tetrahedra. As such, some locking strategies must be
applied. When a conflict happens, one of the two insertions must rollback all its work and
try again later. When the number of cores is small, which are typically 4 to 8 for current
multi-core systems, such algorithm is quite efficient. The implementation in [BMPS10] shows
a speedup of 7 times over the sequential CGAL Delaunay triangulator on an 8-core CPU.
However, with the huge number of threads needed on the GPU, the conflicts may happen
too often for these approaches to be usable, not to mention the complication when locking is
involved on the GPU.

As a very practical problem, there are times in which the input point set is too large that the
Delaunay triangulation computation cannot be done in the memory of a single machine. For
these cases, two solutions have been investigated: streaming and using distributed systems.
The streaming approach proposed by Isenburg et al. [ILSS06] is based on the concept of
spatial finalization. The point stream is spatially partitioned into regions, and finalization
tags are added into the stream to indicate when no more points in the stream will fall in
the specified regions. After that, a standard incremental insertion algorithm is used. Using
these tags, the algorithm can conclude when certain part of the triangulation is finalized, i.e.
future insertions cannot modify it any further. These parts can be output and then released
from the memory, thus reducing the memory footprint of the program. For distributed
systems, a similar domain partitioning approach is also commonly used. In the work of
Lo [Lo12], the sub-domains are overlapped such that the Delaunay triangulations computed
independently on each of them agree with one another. By doing so, no expensive merging
phase is needed. Given a very large input point set, this approach achieves a very attractive
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speedup of 10.8 times on a system with 12 processors. Nevertheless, it is not a suitable
approach for the GPU since it is not feasible to obtain thousands of sub-domains for the
GPU stream processors.



Chapter 4
Digital Space to Continuous Space

4.1 Overview

Modern GPUs require thousands of computation threads to maximize their utilization. In
this scenario, the biggest challenge is to orchestrate the work among threads while keeping
them fully engaged. This is most effectively done when threads perform regularized work on
localized data. For computational geometry problems in continuous space, achieving the
above two qualities is not trivial due to the locality of the processing depending heavily on
the input data and the topology of the structure being constructed. In this chapter, we
propose a novel approach to overcome this difficulty, guiding us to devise efficient GPU
algorithms for fundamental computational geometry problems. The approach typically has
the following three phases: (see Figure 4.1)

Phase 1: Sketch construction.
This phase is to compute a coarse understanding of the solution, called a sketch, in
digital space. The sketch should be computed efficiently with GPU, and it should
enable subsequent GPU processing to be of regularized work on preferably localized
data.

Phase 2: Approximation construction.
This phase is to compute an approximation of the result in continuous space. This
approximation is obtained through modifying in parallel different parts of the sketch.
It is an approximation because not all input points are necessarily incorporated, and
some parts of the structure might have yet to meet the geometric requirements of the
problem.

Phase 3: Solution construction.
This phase is to complete the solution to the given problem. In particular, any input
points that are missing in the approximation in the previous phase must now be
restored. Further processing is also needed to reach the full geometric requirement of
the problem.

29
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Figure 4.1: Using digital space computation to solve computational geometry problems
efficiently on the GPU.

The sketch we use in the following sections is obtained through the digital Voronoi diagram.
The reason is that Voronoi diagram has a close connection with both convex hull and
Delaunay triangulation, and the digital Voronoi diagram provides a good starting point for
solving these problems. This is an unconventional approach, since it is commonly known that
the Voronoi diagram is harder to construct than the other two structures, and the dualization
also poses topological and geometrical problems. Nevertheless, we show that this approach
can actually be done efficiently. In the following sections, we start with developing an efficient
algorithm to construct the digital Voronoi diagram on the GPU. Subsequently, we discuss how
to apply our proposed approach to construct the 2D Delaunay triangulation (Section 4.3),
the 3D convex hull (Section 4.4) and the 3D Delaunay triangulation (Section 4.5) on the
GPU. The three proposed algorithms are termed DigiDel2D, DigiHull3D, and DigiDel3D
respectively (“digi” for digital).

It is worth noting that not every approximation derived from the digital Voronoi diagram
sketch can be transformed into the exact solution efficiently. As a guideline, we should pick
an appropriate approximation based on the feasibility of its transformation in Phase 3. This
will become more apparent during the subsequent discussions.

4.2 Digital Voronoi diagram

Given a grid G of size M = md and a set S of input points, which are sometimes referred to
as sites, with integer coordinates in G, our goal is to compute for each grid point in G the
index of the closest site having smallest Euclidean distance to it. This is almost exactly the
same as the Euclidean distance transform problem in which for each grid point we want the
coordinates of its closest site. In the following sections, we mainly refer to the problem as
the distance transform problem since it is more efficient to store the coordinates instead of
storing the index due to faster access. The digital Voronoi diagram can be derived easily
from the distance transform result.
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4.2.1 Exact Euclidean distance transform

a

b

c

b'

p

q

Column i

Figure 4.2: Illustration of the three lemmas to compute the exact Euclidean distance
transform.

This section reviews the general approach to compute the exact Euclidean distance transform
in a dimensionality reduction manner. The initial idea is proposed by Kolountzakis and
Kutulakos [KK92], and further extended by Hayashi et al. [HNO98], Lee et al. [LHS03], and
Maurer et al. [MQR03]. Our discussion is for the 2D case, i.e. we discuss the computation
done in one dimension (for each row) and then in the second dimension (for each column)
of the grid. The same idea can easily be extended to higher dimensions by repeating the
computation for each additional dimension.

Consider a 2D grid G of size M = m2. Following the convention in graphics, the upper left
corner of the grid has coordinate (0, 0) and lower right corner (m−1,m−1). Write p(i, j) for
a pixel p at coordinate (i, j). We assume that the distances from any two input points to a
grid point are different, since in case of a tie, we can consider the distance from the input point
with smaller coordinate to be smaller. We want to determine the intersection of each column i
in G and the Voronoi diagram of the input points. Let Si,j be the closest site, among all input
points on row j, of the grid point (i, j), and let Si = {Si,j | Si,j 6= null, j = 0, 1, . . . ,m− 1}
be the collection of such closest sites for all grid points on column i. Note that Si,j is null
when there is no input point on row j. Let Pi be the set of input points whose Voronoi cells
intersect column i. These points are termed the proximate sites of column i. Among them,
each grid point on column i needs to determine one that is its closest site. To help improve
the efficiency of this computation, three straightforward lemmas are used; see [MQR03] and
Figure 4.2.

Lemma 4.1. Consider column i and let b(i1, j) and b′(i2, j) be two input points in row j.
If |i1 − i| < |i2 − i|, then VD(b′) cannot intersect column i.

This lemma means that for each column i, there can be at most one input point along a row
that can potentially be a proximate site; or more specifically, Pi ⊆ Si. As a result, |Pi| ≤ m.

Lemma 4.2. Consider column i and let a(i1, j1), b(i2, j2), c(i3, j3) be any three sites with
j1 < j2 < j3. Let the intersection of the perpendicular bisector of a and b and column i be
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p(i, u), and that of b and c be q(i, v). If u > v then VD(b) cannot intersect column i.

When the mentioned situation happens, we say that a and c dominate b on column i. In
this case, b /∈ Pi.

Lemma 4.3. Let q(i, v) and p(i, u) be two grid points in column i such that v < u, and let
a(i1, j1) and c(i3, j3) be the closest sites of q and p respectively. Then we have j1 ≤ j3. Note
that j1 = j3 when a ≡ c.

This lemma means that the Voronoi cells of the proximate sites of column i appear in exactly
the same order as the sites when sorted by their y-coordinates. With the above lemmas, the
exact digital Voronoi diagram computation is done by the following three phases:

Phase 1: For each grid point (i, j), compute Si,j .

Phase 2: Compute the set Pi for each column i using Si.

Phase 3: Compute the closest site for each grid point (i, j) using Pi.

In the following sections, we present our Parallel Banding Algorithm (PBA) to perform the
above-mentioned three phases on the GPU efficiently.

4.2.2 Phase 1: Band sweeping

In this phase, for each row, we want to compute the 1D distance transform using only those
input points in the same row. A trivial approach would be to use a two-pass sweeping (left
to right and then right to left sweeping), similar to SKW [SKW09]. This, however, restricts
the parallelism to only one thread per row, potentially under-utilizing the GPU. One could
also use the 1D JFA [RT06] with better utilization of the GPU at the cost of higher total
work. Another possibility would be to use a method similar to the work efficient parallel
prefix sum [HSO07]. This approach is too complex as compared to our following simple, yet
work and time efficient approach.

Our approach extends the naïve two-pass sweeping approach, with the introduction of bands
to effectively increase the level of parallelism. First, we divide G into k1 vertical bands of
equal size, and use one thread to handle one row of a band, performing the left-right sweeps.
Next, for one input point to propagate its information to a different band (on the same row),
it has to be the closest site of the first or the last grid point of its band. As such, to combine
the result of different bands into that of the whole row, we first propagate the information
among the first and the last grid points of all bands using a parallel prefix approach on these
2k1 grid points. With this, the first and the last grid point of each band have the correct
information. Other grid points inside a band can obtain the correct closest sites by updating,
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Algorithm 4.1: Merging PU
i and P V

i

Data: Two sets of proximate sites PU
i and P V

i .

Result: The merged result.

1 stack ← PU
i

2 for c ∈ P V
i in increasing y-coordinate do

3 while Size(stack) ≥ 2 do

4 b← Top(stack), a← SecondTop(stack)

5 if a and c dominate b then Pop(stack)

6 else break

7 end

8 Push(stack,c)

9 if the two sites at the top of stack are from P V
i then break

10 end

11 Push those sites not yet processed in P V
i into stack

12 return stack

if needed, their current information with that of the first and the last grid point of their
band. This can be done in parallel in constant time.

4.2.3 Phase 2: Hierarchical merging

This phase computes the proximate sites Pi for each column i, given Si. The sequential
implementation to determine Pi is to sweep sites in Si from topmost to bottommost, while
maintaining a stack of points that are potentially proximate sites. When a new site c ∈ Si
is reached, we examine (using Lemma 4.2) whether the site b at the top of the stack is
dominated by c and the site a at the second top position in the stack. If so, b is popped
out of the stack, and then the examination process is repeated with a taking place of b.
Once this is done, c is pushed onto the stack, and the sweeping continues. At the end of
the process, the content of the stack is Pi. This approach, however, restricts the level of
parallelism to one thread per column.

To increase parallelism, we again employ the idea of banding. First, we divide the grid G into
k2 horizontal bands of equal size. Let B = {B1, B2, . . . , Bk2} be the set of horizontal bands.
For each column of a band B ∈ B, we use one thread to run the above algorithm to compute
the proximate sites. Let PB

i be the set of proximate sites of column i considering only the
sites of Si within the band B. Then, the challenge is to merge the k2 resulting sets PB

i from
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Figure 4.3: The doubly linked lists embedded on a 2D array.

different bands of column i into Pi. To do this, for each column i, we repeatedly merge each
two sets of results PU

i and P V
i of two consecutive bands U and V (with U above V ) into

one, forming the result of a bigger band U ∪V . The merging is done in a bottom up manner,
till there is only one band left. The merging of PU

i and P V
i is detailed in Algorithm 4.1. We

treat PU
i as a stack of sorted sites, having the largest y-coordinate one at the top of the

stack, and consider each site in P V
i in increasing y-coordinate. For each site c in P V

i , we
perform the algorithm discussed earlier, repeatedly removing the site at the top of the stack
if it is dominated by c and the site at the second top position in the stack.

This algorithm uses two important observations to be efficient. First, refer to line 9. When
there are two sites of P V

i on top of the stack, no further popping is possible and we thus
can break the for-loop. This is because sites in P V

i cannot dominate each other. Second, we
can implement the stack, PU

i and P V
i as doubly linked lists so that line 11 can be done in

constant time. The doubly linked lists are embedded onto a 2D array, termed proximate
array. Figure 4.3 shows the upper part of the proximate array where the shaded items store
potential proximate sites when the processing reaches the checked row during the proximate
sites computation for each band. For each site Si,j being considered as a proximate site of
column i, we store two pointers on the proximate array at position (i, j): one pointing to
the previous proximate site Si,j1 and the other to the next proximate site Si,j2 of column i.
These pointers can simply be the indices j1 and j2 of the rows correspond to these proximate
sites. The first and the last item of each resulting band are used to store the positions of the
head and the tail of its doubly linked list.

4.2.4 Phase 3: Block coloring

This phase uses the set Pi of sites, linked as a list in increasing y-coordinate, to compute the
closest site for each grid point (i, j) of column i in the order of j = 0, 1, . . . ,m− 1. At each
grid point p, we check the distance of p to the two sites a and b where a is at the front and b
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is just after a in the list. If a is closer, then a is the closest site to p, and we use a to color p
and the process is repeated for the next grid point. If not, we remove a from the list since it
can no longer affect any other grid point from p onward (by Lemma 4.3), and use b in place
of a as the front of the list to compute the closest site to p.

One might attempt a parallel approach by using a thread to handle a segment of grid points
in column i having the same closest site in order to increase the level of parallelism. Such an
approach, however, yields a completely non-coherent pattern of write operations as well as
non-balanced work load for different threads, and thus does not have good performance in
practice.

Instead, we propose to color a block of k3 consecutive grid points in column i at a time,
using k3 threads. The k3 threads cooperate through the shared memory. Each thread looks
at two sites a and b in the front of the list. In the first case, when its grid point already has
a site nearer to a and b, it does nothing. In the second case, when its grid point is nearer to
a than to b, the thread sets the closest site to its grid point as a. Otherwise, in the third
case, the thread advances the front of the list to b. The process is repeated until no thread
advances the front of the list. After finishing a block of k3 grid points, we move on to the
next block of k3 grid points.

4.2.5 Complexity analysis

In this section, we show that Phase 1 and Phase 2 are work efficient, while Phase 3 is also
efficient in most situations.

Lemma 4.4. Phase 1 takes O
(
M
)
total work and O

(
logm

)
time.

Proof. Choose k1 to be m
logm . The left-right sweep takes O

(
M
)
total work and O

(
logm

)
time.

The propagation across bands using parallel prefix can be done in O
(
mk1 log k1

)
⊂ O

(
M
)

total work in O
(
log k1

)
⊂ O

(
logm

)
time. The last update for each grid point within a band

can trivially be done in O
(
M
)
total work and O

(
1
)
time, yielding the total work and time

complexity as claimed.

In practice, there is a limit on the number of threads that can run concurrently on the GPU.
Thus, a k1 smaller than that in the proof (as is used in our experiments) might already be
optimal. The added advantage of a smaller k1 is that the work in the propagation across
bands is slightly reduced.

Lemma 4.5. Phase 2 takes O
(
M
)
total work.

Proof. The total work to compute the proximate set for the individual columns and bands
is clearly linear. The number of merging operations performed for each column is (k2 − 1).
Consider the `-th merging using Algorithm 4.1, and suppose K` sites are popped in the
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merging. The while-loop in line 3–7 is executed exactly K` times. Due to the breaking
condition in line 9, the for-loop in line 2 can be executed no more than K` + 2 times. Line 11
can be done in O(1) work since we use doubly linked lists. As such, the total work of the
merging process for each column is no more than:

∑
`

K` +
∑
`

(K` + 2) =

(
2
∑
`

K`

)
+ 2 (k2 − 1).

Since we can remove at most a total of |Si| ≤ m sites in all the merging in column i,∑
`K` ≤ m. Thus, the total work of Phase 2 is O

(
M
)
.

The above fact means that the total work of Phase 2 is not much affected by the choice of k2.
By taking k2 all the way up to m, we can have the highest level of parallelism. However, the
merging operation still has some overhead, while there is a limit in the level of parallelism of
a GPU in practice. By allowing a flexible choice of the number of bands, we can tune the
algorithm to work best on different GPUs.

Lemma 4.6. Phase 3 takes O
(
k3M

)
total work in the worst case.

Proof. The number of attempts needed for each block to confirm its color is the number of
Voronoi cells that intersect that block. In the worst case, this number can be k3, leading to
the complexity of O

(
k3M

)
.

Although the presence of k3 means a super-linear total work for our algorithm, we can
maintain optimal total work if we set k3 to be a small constant. In practice as we observe in
our extensive experiments, a small value for k3 is sufficient to achieve good performance for
Phase 3.

4.2.6 3D and higher dimensions

Our algorithm can easily be extended to 3D and higher dimensions. For example, in the
3D case with M = m3 grid points, having done the computation as in the 2D case for each
plane where z = ` for ` = 0, 1, 2, . . . ,m − 1, we need to finalize the closest sites for each
row of grid points (a, b, `) where a and b are fixed and ` ranges from 0 to (m− 1). To do
so, we apply Phase 2 and Phase 3 on each such row, following the dimensionality reduction
approach by Maurer et al. [MQR03].

It is also possible to compute the 3D digital Voronoi diagram slice by slice. This is very
useful since current GPU memory limits a 3D array to around 5123. In order to compute
the digital Voronoi diagram for a bigger grid, we can perform the computation slice by slice
as follows. Let S` : z = ` be a slice where ` is an integer between 0 and m − 1. We first
compute for each of the m2 grid points (i, j, `) its closest site among all input points with
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i and j as their x- and y-coordinate. This can be done by projecting all the input points
onto S`. Then, we can use Phase 2 and Phase 3 of our algorithm once to compute the result
along the x-axis and then again along the y-axis to obtain the digital Voronoi diagram on
S`. This approach is also very useful for 3D applications that need the result for just one or
several slices at any moment.

In general, consider the d dimensional problem where the input size is M = md. For such a
high dimensional problem, our algorithm performs one pass of Phase 1 and (d− 1) passes of
Phase 2 and Phase 3, each of which takes linear time, thus the total work is only O

(
d2M

)
.

The extra d factor in the total work is the cost of evaluating the distance function in d

dimensions.

In contrast, the JFA algorithm [RT06] needs to perform logm passes; in each, one voxel prop-
agates its information to 3d other voxels, thus the total work of JFA is O

(
3dMd logm

)
. Sim-

ilarly, the SKW algorithm [SKW09] needs to perform 2d sweepings; in each, one voxel prop-
agates its information to 3d−1 other voxels. As such, the total work of SKW is O

(
d23d−1M

)
.

Therefore, when we increase d, the running time of JFA and SKW grows much faster than
that of our algorithm.

4.2.7 Weighted centroidal Voronoi diagram

Figure 4.4: Centroidal Voronoi diagram.

In a related problem, the digital Voronoi diagram is used in computing the (weighted)
centroidal Voronoi diagram (CVD), a special Voronoi diagram in which each site lies exactly
at the centroid of its Voronoi cell; see Figure 4.4 for an example. The CVD can be generated
from a set of input points using Lloyd’s iterative algorithm [Llo82]. In each iteration, the
algorithm computes the Voronoi diagram, locating the centroid of each Voronoi cell, and
then moving each site to the centroid of its Voronoi cell. There were several attempts in
computing the centroids of all Voronoi cells using the GPU [VSCG08, Bol09]; however, they
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j

Figure 4.5: Illustration of the weighted centroidal Voronoi diagram computation.

all restrict the processing of each Voronoi cell to a preset area around the corresponding
Voronoi site. They thus do not work for non-uniform distribution of input points where each
Voronoi cell can possibly spread across the whole grid.

Recall that the weighted centroid of the digital Voronoi cell of s ∈ S is defined as:

Cs =

∑
p∈VD(s) p w(p)∑
p∈VD(s)w(p)

,

where w(p) is the weight of grid point p. We show how to compute the numerator, while
the denominator can be computed in a similar way. Figure 4.5 shows one Voronoi cell with
the site at position (i, j) and notice that the cell is not necessarily simply connected. A
simple strategy is to sum up all the grid points vertically first, and then add up these partial
sums to obtain the final result. Note that Lemma 4.3 states that in each column, the set of
grid points which are colored by the same site is connected, forming a chunk. Thus, we can
pre-compute the prefix sum of the weights for each grid point (i, j) along a column as:

prefix[i, j] =

j−1∑
k=0

pi,k w(pi,k),

where pi,k is the grid point at (i, k). Then, knowing the starting and ending of a chunk, we
can compute the sum of the chunk. The challenge lies in where to store the sum of each
chunk for subsequent summing up as the sum of a Voronoi cell. This is discussed in the next
two paragraphs.

Lemma 4.1 states that if there is a chunk of grid points in column ` belonging to the Voronoi
region of site s at (i, j), then s must be the closest site to (`, j) among all sites in row j. As
such, we can store the sum of this chunk at position (`, j) in a 2D array, termed sum array,
as no other sites (in particular those in row j) would possibly need this same storage space.
Thus, all the partial sums that belong to site s are stored in row j as in the red region shown
in Figure 4.5. The space in the sum array is partitioned among the sites using the result of
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Figure 4.6: The original grayscale image (left) to produce the stipple drawing (right) by
using weighted centroidal Voronoi diagram.

Phase 1 of the PBA algorithm. Once we have set up the sum array (as discussed in the next
paragraph), a segmented scan of each row of the sum array gives the sum for each Voronoi
cell.

To arrive at the partial sums in the sum array using CUDA, we have the following implemen-
tation. Each block of threads is used to process a column. For block ` processing column `,
we use a shared array A` of m elements. Each thread processing a grid point (`, k) in column
` decides whether it is the topmost grid point of a chunk belonging to a site (i, j). If yes, it
stores prefix[`, k] in A`[j]. Next, after synchronizing all threads, each thread processing a
grid point (`, k) checks whether it is the bottommost grid point of a chunk belonging to a
site (i, j). If yes, it gets prefix[`, k + 1], subtracts the value stored in A`[j], and stores the
result back to A`[j]. Lastly, again after synchronizing all threads in the block, we write A`

into column ` of the sum array to complete the setup of the array. This implementation
allows all global memory access to be coherent.

The running time of the algorithm is almost independent of the density of the sites, with
the exception that when the number of sites is very small the algorithm runs faster. A
direct application of our CVD algorithm, for example, is to create an artistic stipple
drawing [Sec02]; see Figure 4.6. For such an application, there can be a large blank area
without any sites, thus the Voronoi cells of sites on the boundary of this blank area can be
elongated and be a challenging case to other existing works of CVD computation using the
GPU [VSCG08, Bol09].

4.2.8 Experiment

In this section, we compare the performance of our PBA algorithm with two other state-of-the-
art GPU algorithms, JFA by Rong and Tan [RT06] and SKW by Schiender et al. [SKW09].
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Figure 4.7: Percentage of running time of the different phases of PBA in 2D with optimized
versus unoptimized parameters.

We implement both JFA and SKW using CUDA as well. JFA is a simple algorithm and there
is no issue for our implementation to achieve the same performance as that in the original
paper. On the other hand, there are many implementation choices for SKW. In its original
paper [SKW09], the authors use an NVIDIA 8800GTX graphics card in the performance
studies. We verify that our implementation of SKW has slightly better performance than in
that paper using the same graphics card.

Parameters k1, k2 and k3

The three parameters k1, k2 and k3 are independent from each other, thus we can tune them
independently to achieve the best performance on different GPUs. For our NVIDIA GTX580
graphics card, the best values to use are k1 = 32 for all grid sizes; k2 = 16 for grid size
5122 and 10242, and k2 = 8 for other grid sizes; k3 = 32, 16, 8, 4, 2 for grid sizes from 5122

till 81922. Using smaller k3 for bigger grid sizes is better since the overhead is high when
we use a bigger value, while the benefit of having higher parallelism is lesser when the grid
gets bigger. Figure 4.7 shows the improvement in running time with the optimized choice of
parameters compared to the unoptimized case where k1 = k2 = k3 = 1. The total running
time of the optimized case is normalized to that of the unoptimized case. This highlights
the effect of our banding idea in the three phases of the algorithm. Notice that Phase 2
is the most time-consuming phase and the improvement with the idea of banding is very
significant; Figure 4.8 shows the speedup of Phase 2 for different value of k2. We observe
that that the larger the value of k2, the better the performance of our algorithm, until the
overhead of merging dominates. Also, the benefit of our banding idea is particularly clear on
small grid sizes.
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Figure 4.8: Speedup of PBA using different number of bands for Phase 2.
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Figure 4.9: Performance of PBA in 2D while varying the density of input points.

Density of input points

The theoretical complexity of all the implemented algorithms is independent of the number
of input points on the grid. However, the actual running time can be slightly affected, as
shown in Figure 4.9 on a 10242 grid. Our algorithm is slightly faster when there are very few
input points. This is probably because when the number of input points is so small, Phase 2
(which dominates the computation time) of our algorithm has very few sites to process, and
the algorithm thus runs faster. With this understanding, to have a fair comparison to other
algorithms, subsequent comparisons are done based on test cases with the density of input
points being slightly above 10% and locations chosen randomly.
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Figure 4.10: Running time of different 2D GPU algorithms (a), and their speedup over
the sequential algorithm (b).

2D Running Time

Figure 4.10a presents the running time of the CPU implementation of Maurer et al.’s
algorithm [MQR03], PBA, as well as the two other algorithms on the GPU, using different
grid sizes ranging from 5122 to 81922. PBA performs significantly faster than all other GPU
algorithms even though it produces an exact result while others only give an approximation.
This is because PBA has a good balance of total work and level of parallelism to utilize the
GPU. To appreciate the speedup of PBA better, Figure 4.10b shows the speedup of different
GPU algorithms over the CPU one. Our PBA reaches around 20 to 50 times speedup, and
is up to 7 times faster than SKW on small grid sizes, though this ratio drops when the grid
size increases. This is due to the limited number of processors of the GPU, when the grid is
very big, SKW can also have enough level of parallelism to fully utilize the GPU. On the
other hand, JFA is reasonably efficient for small grid sizes but performs the worst when the
grid size increases. For the largest grid size, PBA outperforms JFA by a factor of 4 times.

3D and Higher Dimensions

Figure 4.11a presents the running time of different algorithms in 3D. Clearly, our new
algorithm outperforms all other algorithms for all input sizes. The speedup against the CPU
algorithm ranges from 30 to 60 times. PBA is also up to 6 times faster than JFA, and around
2 to 3 times faster than SKW; see Figure 4.11b. Figure 4.12 shows the breakdown in time
for each phase of our algorithm, where the optimized cases use k1 = 1, k2 = 4 and k3 = 2.
The idea of banding plays a smaller role here in improving the performance of the algorithm
as there is already enough level of parallelism (for current GPU) since we now have m2 rows
of computation to be done concurrently in each of the three phases. Looking forward to the
hardware that can support many more threads in the near future, our banding idea would
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Figure 4.11: Running time of different 3D algorithms (a), and their speedup over the
sequential one (b).
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Figure 4.12: Percentage of running time of the different phases of PBA in 3D with optimized
versus unoptimized parameters.

remain advantageous. Also, as mentioned before, in case we need to compute the digital
Voronoi diagram slice by slice for bigger volumes, the banding idea would be beneficial as
the situation is similar to the 2D case.

For the case of d > 4, due to the limitation on M , the size m of one dimension becomes
very small (assuming a hypercube). One can trivially use Lemma 4.1 to compute the exact
digital Voronoi diagram in O(mM) total work. Since m is small, this algorithm achieves
performance comparable to, if not better than, that of any above-mentioned algorithms due
to its simplicity.
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4.3 Delaunay triangulation in R2 - The perfect dualization

Given that the digital Voronoi diagram can be efficiently computed as discussed in the
previous section, we use it as a sketch from which we derive a triangulation close to the
Delaunay triangulation1. Following the proposed approach in Section 4.1, we have the
following algorithm to compute the Delaunay triangulation for an input point set S in R2:

Phase 1a: Digital Voronoi diagram construction.
Map the input points into a grid and compute the digital Voronoi diagram. If multiple
points overlap, then keep one and label others as missing points.

Phase 1b: Triangulation construction.
Construct a triangulation by dualizing all digital Voronoi vertices into triangles. This
triangulation is an approximation of the Delaunay triangulation.

Phase 2: Shifting.
Points have been shifted due to the mapping in Phase 1a. Move them back to their
original coordinates and modify the triangulation if necessary.

Phase 3a: Missing points insertion.
Insert all missing points into the triangulation.

Phase 3b: Edge flipping.
Verify the empty circle property for each edge in the triangulation, performing edge
flipping if necessary.

Phase 1a and Phase 1b of the algorithm is performed in the digital space to construct a
sketch of the 2D Delaunay triangulation. Phase 2 transforms this result into a triangulation
in the continuous space. Phase 3a and Phase 3b subsequently complete this approximation
and transform it to the final result.

We adopt the triangulation data structure used by Shewchuk [She96a] in our algorithm. A
list of triangles, referred to as the triangle list, is stored in a pre-allocated array of size 2|S|.
Each triangle has the indices of up to three other triangles edge adjacent to it. Each point
in S has a linked list of triangles incident to it. These linked lists altogether form a data
structure referred to as the vertex array. This data structure comes in handy whenever we
want to visit all triangles incident to a point.

The dualization of a grid G colored by the input points in S is as follows. The grid can be
interpreted as a set of grid cells of unit size, whose centers being the grid points. The color
of each cell is the color of its grid point. As such, a colored grid is a subdivision. In the
digital Voronoi diagram, a corner shared by up to four grid cells is incident to one to four

1A preliminary study of this approach has appeared in the author’s undergraduate thesis.



Chapter 4. Digital Space to Continuous Space 45

different colors. If a corner is incident to three or four colors, then it is a digital Voronoi
vertex, and we can dualize it to form triangles.

4.3.1 Phase 1a: Digital Voronoi diagram construction

In this phase, we first translate and scale the point set such that its bounding box fits inside
a 2D grid G of size m2. Each point is mapped to the nearest lower left grid point. If several
points are mapped to the same grid point, then only one of them is recorded while the rest
become missing points and will be handled later.

Next, we compute the digital Voronoi diagram of all points on G on the GPU, using the
PBA algorithm in Section 4.2. The problem is that the dual of the digital Voronoi diagram
may not be a geometrically valid triangulation, since it can have duplicate and intersecting
triangles; see Figure 4.13. This is mainly because each digital Voronoi cell has not only one
connected component (called bulk) which is path-connected to its site, but also possibly
some debris which is disconnected from that; see Figure 2.1.

To avoid the debris, we consider another way to color a 2D grid, using Algorithm 4.2, which
is also referred to as the Standard flooding algorithm. Let Q be a priority queue storing pairs
(A, si) of grid point A ∈ G and input point si ∈ S with color (index) i. Let N(A) be the set of
up to eight grid points neighboring grid point A. The operation ExtractMin(Q) removes and
returns the pair with minimum distance; ‖A− si‖ ≺ ‖B − sj‖ means ‖A− si‖ < ‖B − sj‖,
or ‖A− si‖ = ‖B − sj‖ with consistent tie breaker (using, for example, the coordinates of
those four points).

Intuitively, Algorithm 4.2 grows the regions simultaneously from the input points until they
run into each other. In other words, we run multiple versions of breath-first search in parallel,
making sure they do not invade each other’s territory. It is easy to see that this algorithm
succeeds in coloring all grid points, and each region obtained are path-connected.

In [CET14] we prove that by dualizing the output of the Standard flooding algorithm, one
gets a valid triangulation of the points. Besides, the result of the standard flooding algorithm

u

v

(a)

u v

(b)

Figure 4.13: (a) Duplicate and (b) intersecting triangles due to the digital Voronoi vertices
u and v.
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Algorithm 4.2: The Standard flooding algorithm.

1 Push(Q, {(A, si) | site si is at grid point A})
2 while ¬ Empty(Q) do

3 (A, si)← ExtractMin(Q)

4 if A is not colored then

5 Color A with si
6 Push(Q, {(B, si) | B ∈ N(A))

7 end

Algorithm 4.3: Recolor the debris in the digital Voronoi diagram.

1 Identify all debris as uncolor

2 Q ← ∅
3 forall the debris A do

4 Push(Q, {(A, si) | ∃B ∈ N(A) colored by si and ‖B − si‖ ≺ ‖A− si‖})
5 end

6 while ¬ Empty(Q) do

7 (A, si)← ExtractMin(Q)

8 if A is not colored then

9 Color A by si
10 Push(Q, {(C, si) | C ∈ N(A) and ‖A− si‖ ≺ ‖C − si‖})
11 end

is very close to the digital Voronoi diagram constructed using our PBA algorithm. Indeed,
the two results differ only at the debris. In order to obtain the result of the standard flooding
algorithm, we amend the digital Voronoi diagram produced by PBA by recoloring the debris
of all digital Voronoi cells, which is very few in practice. First of all, we identify and remove
the color of the grid points that are debris. Then, we color these grid points using the color
of their neighbors, using a priority queue just like the Standard flooding algorithm. The
details are given in Algorithm 4.3. This recoloring is done on the CPU and the result is
copied to the GPU to complete Phase 1a. The correctness of Algorithm 4.3 is discussed in
Section 4.3.6.



Chapter 4. Digital Space to Continuous Space 47

4.3.2 Phase 1b: Triangulation construction

In this phase, we dualize the result of the previous phase. For each digital Voronoi vertex
incident to three or four colors we add one or two triangles respectively into the triangulation.
We assign one thread per grid point to analyze it, and then use parallel prefix sum to
calculate the offset in the triangle list for each thread to add its triangles. The number of
grid points is usually much larger than the number of threads needed to fully occupy the
GPU, so we can use the banding technique similar to Section 4.2 to reduce the number of
threads needed and also to reduce the cost of the prefix sum computation.

As the digital Voronoi diagram is truncated within the grid, its dual is not always a complete
triangulation with a convex boundary. We fix this by traversing along the boundary of the
grid, using the idea similar to Graham’s scan algorithm [Gra72] to identify triangles whose
Voronoi vertices fall outside the grid and add them into the triangulation. This additional
step is performed on the CPU as it is a simple task, and it can be done concurrently while
the GPU is populating the triangle list.

In the above computation, we want the generation of each triangle to be independent from
that of other triangles in order to achieve good parallelism. Thus, each triangle is generated
without linking up with the triangles sharing its edges. Once all the triangles are generated,
we construct in parallel the vertex array and use that to identify for each triangle, in parallel,
up to three other triangles edge adjacent to it.

In Phase 2 and Phase 3a of our algorithm, we need to add and delete vertices of the
triangulation in parallel. Deleting a vertex on the convex hull or inserting a point outside
the convex hull can be quite involved, causing non-uniform parallel computations. We add a
dummy infinity point into the triangulation, as described in Section 6.4, to simplify these
operations.

At the end of this phase, we obtain a triangulation of the point set in digital space. This is a
sketch of the Delaunay triangulation.

4.3.3 Phase 2: Shifting

Recall that during Phase 1a, points are translated, scaled, and then slightly shifted from
their original positions. We reverse this process on the constructed triangulation in two steps.
First, we reverse the scaling without destroying the validity of the triangulation. Second, we
shift the points and fix the triangulation if necessary. The first step, though looks trivial, can
result in an invalid triangulation if the possible numerical error during the scaling process is
not handled. We discuss about this issue in Section 6.2.

The second step is to shift the points back to their original coordinates. We say two points are
neighbors when they are endpoints of an edge in the triangulation. Assuming the neighbors
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(a) Bad case (b) Good case

Figure 4.14: Shifting a point s to s′ may or may not require modifications to the triangu-
lation.

Algorithm 4.4: Shifting points of good cases and recording points of bad cases.

1 set all points as unchecked

2 repeat

3 for each unchecked point si do in parallel

4 if all neighbors sj of si, j < i, have been checked then

5 if shifting si is a good case then

6 update si to its original coordinate

7 else

8 mark si as a bad case

9 mark si as checked

10 end

11 until all points have been checked

of a point s are static, shifting s may or may not cause any intersection. We refer to the
former as a bad case and the latter as a good case; see Figure 4.14. The bad case happens
when s moves across the boundary formed by its neighbors. After the first step, the distance
between each point and its original coordinate is already very small, so we expect majority
of the cases in practice are good cases.

To achieve regularized work while shifting points in parallel, we separate the processing into
two stages. In the first stage, we only shift points that are good cases. To do so, we perform
this stage in multiple iterations. Algorithm 4.4 details our approach. Initially, all the points
are marked as unchecked. In each iteration, each thread in charge of an unchecked point
si first verifies that all its neighbors with indices smaller than i are checked (line 4). We
skip the processing of si if this condition is not met. Otherwise, if shifting si while all its
neighbors remain static does not cause any intersection, then we shift it (line 5–6). If the
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Algorithm 4.5: Deleting points of bad cases.

1 repeat

2 for each point s to be deleted do in parallel

3 if s can be processed in this iteration then

4 Mark s as active

5 Record its degree

6 end

7 Compute parallel prefix sum of the degrees

8 for each point s marked as active do in parallel

9 Mark triangles in s’s fan as deleted and store their indices

10 for each point s incident to a deleted triangle do in parallel

11 Fix s’s vertex array

12 for each s marked as active do in parallel

13 Triangulate the resulting star-shaped hole and update the vertex array

14 for each new triangle t do in parallel

15 Compute t’s 3 neighbors and update the links between t and its neighbors

16 until all bad cases have been deleted

shifting creates intersections, then we leave it for the second stage (line 8). After a point
is processed, it is marked as checked. Since most points would be processed and marked
as checked in the first few iterations, we use compaction after each iteration to skip points
that are already marked as checked in subsequent iterations. This helps speed up the later
computation.

In the second stage, we delete all points that are bad cases, labelling them as missing points
for later processing. Note that we also need the above-mentioned multiple iterations to avoid
deleting in parallel two points that are neighbors; see the for-loop at line 2–6 of Algorithm 4.5.
Here each parallel for-loop is a CUDA kernel, with a global synchronization at the end. First,
for each set of points to be deleted in parallel, we count their degrees. Applying parallel
prefix sum on these counts, we get the starting position that each thread might use to store
the indices of the triangles to be deleted (line 7). These indices are needed to store the newly
created triangles during the re-triangulation. We allocate a piece of memory for each thread
to store the indices mentioned above, all of which form a single array. Second, using one
thread per point in parallel, we mark all triangles in its fan as deleted and store their indices
in the allocated memory (line 8–9). Third, we fix the vertex array in parallel by removing the
deleted triangles from it (line 10–11). After that, we use the ear-cutting method [Hig82] to
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re-triangulate the resulting star-shaped holes in the triangulation in parallel, while updating
the vertex array at the same time (line 12–13). Since the triangles to be created is no more
than those deleted, we can use the deleted slots in the triangle list that we recorded earlier
to store the new triangles, with no racing memory access during parallel computation. In
the end, we update the links between the newly created triangles and those that are edge
adjacent to them (line 14–15).

4.3.4 Phase 3a: Missing points insertion

In this phase, we insert the missing points identified in Phase 1a and Phase 2 into the
triangulation. The insertion of each missing point si starts by locating the triangle, referred
to as the container, that contains si or has an edge passing through si. To locate the triangle
containing si, we could start from a random triangle and walk towards si; however, the
closer to si we start the walking, the faster we locate its container. As such, if si is due to
Phase 1a, we start walking from a triangle incident to the point of S that was mapped to the
same grid point as si and was kept in the digital VD computation. If si is due to Phase 2,
we start walking from a triangle incident to a neighbor sj of si when we delete si. Such a
neighbor sj is recorded during Phase 2. Note that if sj is no longer in the triangulation,
then we delay the insertion of si to a later iteration, until sj is inserted. The point location
is done in parallel with one thread handling one missing point.

To insert the missing point si, we simply split its container into three new triangles. To
avoid concurrent modification of the same triangle during the parallel execution, this process
is also done in multiple iterations; see Algorithm 4.6. In each iteration, each thread handling
a missing point si first uses the index i to mark on the container (line 2–5). Next, each
thread checks the mark on the triangle and only performs the insertion if its mark is not
overwritten by any other threads (line 7). The marking is done using the atomicMinimum
operation, which is readily available on the GPU. This avoids any possible live-lock situation,
since in each iteration at least the missing point with the smallest index can be inserted.

For each missing point that can be inserted, we mark its container as deleted (line 9).
Otherwise, we record its container for point location in later iterations (line 11). After that,
we fix the vertex array of points that are incident to some deleted triangles (line 13–14).
Then, we generate new triangles, update their neighbors correspondingly, and update the
vertex array of points that are incident to some new triangles (line 15–18), similar to the
process in Phase 2. One small implementation note is on the insertion of new triangles into
the triangle list in parallel. We have to re-use all the deleted slots in the previous phase to
make sure that we do not have to resize the triangle list. This can be done by first collecting
the list of deleted slots using parallel stream compaction. Each missing point being inserted
needs up to two new slots. We can use parallel prefix sum to allocate the available slots in
the triangle list to each thread.
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Algorithm 4.6: Inserting missing points.

1 repeat

2 for each yet-to-be-inserted missing point si do in parallel

3 locate the container of si
4 mark the triangle containing si with i using AtomicMinimum

5 end

6 for each yet-to-be-inserted missing point si do in parallel

7 if its container is still marked as i then

8 mark si as active

9 mark its container as deleted

10 else

11 record the triangle found for si for future point location

12 end

13 for each point s incident to a deleted triangle do in parallel

14 Fix the vertex array of s

15 for each point s marked as active do in parallel

16 Insert s into its container to create new triangles and update the vertex array

17 for each new triangle t do in parallel

18 Find t’s neighbors and update the links between them and t

19 until all missing points have been inserted

At the end of this phase, we compact the triangle list to remove all slots that are unused.
This changes the index of the triangles, so we have to update all the references to them.

The missing point insertion phase might potentially need many iterations to complete all the
insertions. This is because missing points might fall into the same triangle; and there could
be many of them since we do not explicitly control how many input points can potentially
be mapped to a same grid point. The latter problem is the inherent limitation of our digital
approach, and we shall see its impact in the experiment with different input datasets. The
former problem is not quite apparent in practice, since even though there might be one
triangle containing many missing points, after a few iterations, the triangle is subdivided
into many more triangles, and the missing points are distributed across them if the order of
missing point insertions is random.



Chapter 4. Digital Space to Continuous Space 52

4.3.5 Phase 3b: Edge flipping

This phase transforms the current triangulation into the Delaunay triangulation. We verify
the empty circle property of each edge in our triangulation in parallel. For an edge ab of
4abc, we check if the point d of the adjacent 4adb is inside the circumcircle of 4abc. If so,
an edge flipping is performed to replace 4abc and 4adb with 4adc and 4cdb. Note that
such an edge is always flippable. This process is done in multiple iterations, and the same
strategy as in the previous phase is used to avoid concurrent modification of a triangle by
multiple threads. We use one thread to process one triangle, and we mark those that do not
need any flipping so we do not need to check them again in the next iterations. That mark
needs to be removed when the triangle is later modified.

One difficulty during this phase is the updating of the links between the triangles after each
iteration of flipping. Two adjacent triangles can participate in two different flips, thus directly
updating the adjacent triangles after flipping can cause conflicting memory access. Instead,
the update is performed in two separate GPU kernels. Each triangle has a temporary storage
for updating its links. In the first step, each pair of triangles that is just flipped updates
the temporary storage of its neighbors. In the second step, each pair of triangles mentioned
above inspects its temporary storage and updates its own links. Also, if any neighbor of this
pair is not flipped in this iteration, then we directly update this neighbor’s links.

One optimization for this phase is that a triangle ti only performs the in-circle test with its
neighbor tj if i < j, since each pair of triangles should only be checked at most once in each
iteration.

4.3.6 Proof of correctness

We only give the proof the correctness of Phase 1a, as that of other phases of our algorithm
is quite straightforward. We need to prove that using Algorithm 4.3 to recolor the digital
Voronoi diagram produces the same output as that of the standard flooding algorithm. The
correctness of Phase 1b then follows from our proof in [CET14]. For ease of understanding,
we include here some properties of the result obtained by the standard flooding algorithm.

Lemma 4.7 (Ordered Coloring Lemma). At any iteration of the standard flooding algorithm,
for every two input points si, sj ∈ S, we have ‖A− si‖ ≺ ‖Y − sj‖ for all A colored by si
and (Y, sj) ∈ Q. In other words, flooding colors the grid points in the order of their distance
from the site.

Lemma 4.8 (Monotonic Path Lemma). For each grid point A in the region colored by si in
the standard flooding, there is a monotonic path, i.e. a connected sequence of grid points
with increasing distance to si, from si to A and is completely colored by si.
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Lemma 4.9 (Bulk Lemma). The region colored by si using standard flooding contains the
bulk of si in its digital Voronoi diagram.

Clearly, from the Bulk Lemma, the difference between the standard flooding result and
the digital Voronoi diagram is only at the debris. We now show by contradiction that
Algorithm 4.3 indeed produces the same output as that of the standard flooding algorithm.
Consider the very first instance when our algorithm colors debris A with color r (inside the
while-loop) whereas the standard flooding produces grid point A with color t 6= r. There are
two situations to consider but both lead to a contradiction and thus no such debris exists:

Case 1: ‖A− sr‖ ≺ ‖A− st‖
From Algorithm 4.3, there exists a neighbor B of A colored by sr earlier, and ‖B−sr‖ ≺
‖A − sr‖. It follows that ‖B − sr‖ ≺ ‖A − sr‖ ≺ ‖A − st‖. According to our choice
of A, the grid point B is also colored by sr in the standard flooding result. By the
Ordered Coloring Lemma, (A, sr) must have been considered in the standard flooding
algorithm before (A, st) and A should thus have been colored by sr, a contradiction.

Case 2: ‖A− st‖ ≺ ‖A− sr‖
According to the Monotonic Path Lemma, there is a monotonic path from st to A.
A part of this path has been colored the same (with st) in our algorithm when we
are about to color A. Let C be the grid point closest to st on that path that is
not yet colored by our algorithm. With the previous grid point before C having
been colored with st, (C, st) must have been added to Q in our algorithm. Since
‖C − st‖ ≺ ‖A − st‖ ≺ ‖A − sr‖, we must have (C, st) inside Q be extracted before
(A, sr), a contradiction.

The argument in Case 2 also implies that the algorithm colors all debris. This concludes our
claim of correctness of our debris coloring algorithm.

4.3.7 Experiment

To assess the efficiency of our implementation, termed DigiDel2D, we compare its running
time, on both synthetic and real-world data, with those of the most popular 2D Delaunay
triangulation libraries available, Triangle and CGAL version 4.2. The experiment setting is
described in Section 2.3; see Figure 4.15 for some sample results of DigiDel2D. Note that the
output of DigiDel2D agrees with that of Triangle and CGAL except when some input points
are cocircular, in which case there are more than one possible Delaunay triangulation.

Synthetic data

Figure 4.16a presents the running time of DigiDel2D on point sets of different size from
the uniform distribution. The grid sizes used for the digital Voronoi diagram computation
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(a) Uniform - 1000 points (b) Gaussian - 1000 points (c) Contour - cropped

Figure 4.15: Sample output of DigiDel2D on different point sets.

significantly affect the running time of our program, with a larger grid giving faster running
time overall. It can also be observed that the running time of both DigiDel2D and the
two CPU programs are nearly linear to the number of input points. CGAL achieves better
running time than Triangle in all of the tests we run.

Figure 4.16b shows that using grids of size 40962, DigiDel2D achieves on average 4 times
speedup over CGAL. With an 81922 grid size, the running is slower on small input sizes, but
quickly catches up and surpasses the speed when using 40962 grid size on very large input.
On the other hand, with very small grid size such as 5122, the speedup of DigiDel2D over
CGAL drops when the number of input points increases, since such small grid size is too
small to provide a good approximation to the Voronoi diagram of the large input point.

The same conclusion is also true when the input points are from a Gaussian distribution;
see Figure 4.16c and 4.16d. For small grids, the speedup achieved is slightly lower than
with the uniform distribution due to having more points concentrated in the center of the
grid and became missing points. The speedup increases quickly when we move to a larger
grid, being comparable to the uniform case. This, however, is no longer true on extreme
cases such as when points are from the thin circle distribution, or even co-circular, since our
uniform digital Voronoi diagram is not a good approximation of the continuous one in this
case. Most of the points will be missing after Phase 1a. Nevertheless, our implementation
can still handle these cases.

Real-world data

Figure 4.17 provides the running time of DigiDel2D on several contour map datasets of
different sizes. Only points on the contours are used as input. In these datasets, points
are not uniformly distributed but instead different area has different point density, with
points distributing along some curves, leading to Delaunay triangulations with significantly
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Figure 4.16: The running time and speedup of DigiDel2D on uniform and Gaussian point
distribution, running with different grid size, compared to those of Triangle and CGAL. The
speedup is computed with respect to the running time of CGAL.
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Set # Vertices Triangle CGAL

DigiDel2D

512² 1024² 2048² 4096² 8192²

1 1,177,332 1.37 1.29 0.74 0.64 0.58 0.55 0.72 2.4

2 3,180,037 4.19 3.58 2.35 1.80 1.53 1.34 1.39 2.7

3 4,461,519 6.34 5.05 3.93 2.83 2.27 1.96 1.93 2.6

4 5,721,142 8.46 6.55 5.87 4.05 3.13 2.67 2.50 2.6

5 8,569,881 13.60 9.96 10.70 6.86 5.06 4.15 3.68 2.7

Speedup 
over CGAL 

(max)

Figure 4.17: The running time (in seconds) and speedup of DigiDel2D on some contour
datasets, running with different grid size, compared to those of Triangle and CGAL.
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Figure 4.18: The running time of different phases of DigiDel2D.

different vertex degrees. Nevertheless, DigiDel2D can still achieve around 2.5 times speedup
over CGAL on all test cases. This speedup, however, is definitely not as good as when points
are uniformly distributed, since there can be a lot more missing points.

Time breakdown

We analyze the time spent in different phases of our algorithm in Figure 4.18. Inputs of
107 points are used in this experiment. Here a larger grid has some penalty on the digital
Voronoi diagram computation time in Phase 1a and the dualization in Phase 1b. Also, more
points (that can be mapped onto the grid) are to be shifted in Phase 2. However, it gives a
better approximation and less missing points, thus Phase 3a and Phase 3b are significantly
faster, contributing to a faster running time overall. In Phase 3b, the number of flips required
decreases significantly as the grid size increases, dropping as much as 6 times when moving
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Figure 4.19: The number of flips performed in Phase 3b of DigiDel2D.

from a 5122 grid to a 81922 grid, as show in Figure 4.19. All in all, as a general guideline,
given a larger set of input points, a larger grid is preferable.

4.4 Convex hull in R3 - The digital depth test

In this section, we apply our digital approach to construct the convex hull of a point set
S ∈ R3 on the GPU. The main idea of our algorithm is similar to that in the previous section,
to use the relation between the 3D Voronoi diagram and the convex hull of S. In general,
the Voronoi cells of the extreme vertices are unbounded, i.e. they extend to infinity. More
specifically, consider a box containing S, the intersection of this box with the 3D Voronoi
diagram of S is the dual of the convex hull boundary when the size of the box goes to infinity.

Traditionally, this observation is not computationally useful as the Voronoi diagram (in
continuous space) is a structure harder to manage than the convex hull itself. However, we
can adapt this to our digital approach. Consider the input point set S enclosed in a large
enough grid G, we are interested in six slices of VD(S) when intersected with the boundary
faces of G. Unfortunately, the proof in Section 4.3.6 and [CET14] cannot be extended to
this case, and thus we cannot obtain a proper polyhedron from the dual of these slices.
Nevertheless, this dual is still very close to be a polyhedron, and is also close to the convex
hull, so we employ the star splaying algorithm as described in Section 3.2.3 to transform it
to the convex hull. Our algorithm is as follows:
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Phase 1a: Voronoi construction.
Construct six slices Vi(S) of VD(S) when intersected with the boundary face i of G.
We denote S′ ⊆ S as the set of points with non-empty Voronoi cells in some slices.

Phase 1b: Star identification.
Compute a convex star for each point s ∈ S′ from the neighbourhood information
obtained from each Vi(S).

Phase 2: Hull approximation.
Splay stars of points in S′ to arrive at C(S′).

Phase 3a: Point addition.
For each point in S′′ = S \ S′ that is outside C(S′), construct a convex star for it.

Phase 3b: Hull completion.
Apply star splaying once more to compute C(S′ ∪ S′′), which is also C(S).

Digital computation is actually applied at two places in this algorithm: during the construc-
tion of the sketch in Phase 1a, and during the point addition in Phase 3a. In Phase 3a, a
digital depth test is used to identify extreme vertices that were missed in Phase 1a. By using
a carefully chosen error bound, we can guarantee the correctness of that digital computation.

4.4.1 Phase 1a: Voronoi construction

We compute six slices of the 3D digital Voronoi diagram of S intersecting with the boundary
faces of G using the method described in Section 4.2.6; see Figure 4.20a for a sample result.
Points in S are first shifted to the nearest grid points in G, and then projected onto the
corresponding face of the grid, with only the nearest one being kept per grid point. To
avoid a huge amount of random memory access in the GPU during this projection, we use
a bucket sort technique. For each face of the grid, represented as a 2D grid, we divide it
into rectangular regions of small size. Using the GPU radix sort, we can quickly re-arrange
the point set such that points projected onto the same region are grouped together. The
size of a region is small enough to fit into the on-chip shared memory. We let one block of
threads project all points of the same region onto a shared memory array first, using the
AtomicMinimum operation to keep the nearest points only, before coherently write out the
result to the global memory.

Since the grid G has finite volume, some bounded Voronoi cells can extend beyond G and
are thus captured on the digital Voronoi diagram slices, although they do not correspond to
extreme vertices. To reduce the number of wrongly captured Voronoi cells, we scale the point
set to a slightly smaller volume, about 80%, inside G before the digital Voronoi diagram
computation.
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(a) (b)

Figure 4.20: (a) The intersection of some faces of G with the digital Voronoi diagram in
Phase 1a. (b) Stars constructed in Phase 1b; they might not be consistent.

4.4.2 Phase 1b: Star identification

The aim here is to quickly derive a sketch of the convex hull from the above digital Voronoi
diagram slices Vi(S). This sketch is obtained as a collection of convex stars of points
with non-empty digital Voronoi cells in Vi(S) for some i. We first dualize Vi(S) similar to
Section 4.3.2, but instead of creating a triangulation, for each vertex we only keep the edges
incident to it; those vertices at the other end of these edges are the vertex’s neighbors. Then
we apply the beneath-beyond algorithm [Kal81], inserting these neighbors one by one to
construct its convex star. Note that the stars are not necessarily consistent with one another,
as shown in Figure 4.20b. The construction is embarrassingly parallelizable, with one thread
handling one star.

4.4.3 Phase 2: Hull approximation

We adapt the star splaying algorithm of Shewchuk [She05] to the GPU. The adaptation
allows multiple consistency checking and point insertions to be performed in parallel. We
divide the star splaying algorithm into two stages: the checking stage and the inserting stage,
to be alternately performed until all the stars are consistent (i.e. no more edges to check). In
the checking stage, we gather all edges that need to be checked and assign each to a thread
for consistency checking, as described in Section 3.2.3. If an edge fails the consistency check,
then we create up to four insertions for the next stage. In the inserting stage, we gather
(with sorting) each set of points to be inserted into the same star and assign it to a thread
to perform the insertions. For each new edge created, we mark it for checking later. If an
existing edge ab in the star of a is removed, then the edge ba in the star of b (if exists) is
marked for checking. Due to the good sketch obtained, we expect the inconsistency to be
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minor, as can be seen in Figure 4.20b.

The data-structure for the stars is as follows. To represent a star, we actually store its link,
i.e. a set of link points in counter-clockwise order looking from the vertex. Each star is
stored in a continuous chunk of memory inside an array called the star list. During the
splaying, if the size of a star, i.e. the number of link points, increases beyond the size of its
memory storage, then we need to resize the whole array.

4.4.4 Phase 3a: Point addition

The aim of this phase is to recover extreme vertices of S that were missed in Phase 1a.
Basically, we want to find all the points in S that are outside C(S′). We utilize the graphics
rendering pipeline (through OpenGL) to achieve good performance. The idea is to perform
two rounds of checking: the first round in the digital space to handle most of the simple
cases, before the second, more accurate yet costly checking round in the continuous space.
In the first round of checking, we render the triangle faces of C(S′) with the view direction
orthogonal to each face of G in turn. There are six orthogonal directions in total. For each
rendering, we use the color and the depth buffer to record the index and the depth value,
respectively, of the triangle covering each pixel. Then, we project each point s ∈ S \ S′ in
the corresponding viewing direction and compare the depth value ds of s with the depth
value d in the depth buffer at the corresponding position. If ds− d ≤ τ where τ is a constant
threshold (which is equal to 1 pixel width; see Section 4.4.6 for the proof of correctness) then
s is potentially outside C(S′), and is subject to the second round of checking.

After the first round, most of the points that are clearly inside C(S′) would have been
removed. For each point s ∈ S that is potentially outside, we also record a triangle that
covers its projection in one of the viewing direction. Pick a point p inside C(S′) as the
viewpoint, using a technique similar to point location, starting from the recorded triangle,
we can quickly walk to the triangle t intersected by the ray −→ps and accurately determine
whether s is inside or outside. If s is outside, then we include s in S′′ and use three vertices
of t to form the initial star of s. This second round of checking can be done in parallel for
each point that is potentially outside, using one thread each.

4.4.5 Phase 3b: Hull completion

This phase is exactly the same as Phase 2. We apply the GPU star splaying algorithm to
make all the stars after Phase 3a consistent with one another. Thereafter, the set of stars
form the convex hull of S.
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Figure 4.21: The digital depth test of a point s against a triangle t on the boundary of
C(S′) when s is outside C(S′).

4.4.6 Proof of correctness

The correctness of our algorithm is straightforward, except for the possible error during
Phase 3a where we use the digital depth test to determine if a point is possibly outside
C(S′) or not. In this section, we prove that using the error bound τ = 1 as described in
Section 4.4.4, the result of Phase 3a is guaranteed to be correct.

In the digital depth test in Phase 3a, we use the six faces of G as six viewing planes.
We compare the depth ds of each point s with the minimum depth value of C(S′) at the
corresponding projection of s to quickly exclude points that are inside C(S′). However, since
the depth buffer we obtain when rendering C(S′) is of finite resolution, the depth value d
of the projection of s is actually the depth value at the center of the pixel containing this
projection; see Figure 4.21. Depending on the triangle covering that projection, (ds − d)

can be arbitrarily large. The following lemma shows that as long as we keep every point s
that has (ds − d) ≤ 1 in one of the projections, we do not miss any point outside C(S′). For
simplicity, we assume that the rendering buffer has the same size as that of G, whereas in
actual implementation this is not needed.

Lemma 4.10. Let s ∈ S \S′ be a point outside C(S′). In (at least) one of the six renderings
of C(S′) orthogonal to a face of G, we have (ds − d) ≤ τ where τ = 1 pixel width.

Proof. The point s is inside a grid cell of G whose center is the grid point A = (x̄, ȳ, z̄). The
coordinate of s is (x̄+ δx, ȳ + δy, z̄ + δz) where δx, δy, δz ∈ [−0.5, 0.5]. Let t be the triangle
covering A in different view directions, and the plane equation of t is ax+ by + cz +K = 0.
Without loss of generality we assume that a ≥ b ≥ c.

Since t appears in the depth buffer and C(S′) is convex, t must be visible from three
different viewing directions. This forms a coordinate system in which the plane equation
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of t has a, b, c ≥ 0. In the viewing direction along the positive x-axis, ds = x̄ + δx and
d is the depth of t at (ȳ, z̄). As s is outside C(S′) and thus is in front of the plane of t,
a(x̄+ δx) + b(ȳ + δy) + c(z̄ + δz) +K ≤ 0, and we thus have:

ds − d = (x̄+ δx)−
(
−bȳ + cz̄ +K

a

)
=

a(x̄+ δx) + b(ȳ + δy − δy) + c(z̄ + δz − δz) +K

a

=
a(x̄+ δx) + b(ȳ + δy) + c(z̄ + δz) +K

a
− bδy

a
− cδz

a

≤ −bδy
a
− cδz

a

≤ b

2a
+

c

2a
≤ 1

It is possible that the depth values used in the checking of s in the six viewing directions
belong to different triangles. Suppose that the depth value of t is used in one of the directions,
then from the above argument, there is one direction in which the depth d of the plane
containing t fulfills the inequality (ds − d) ≤ 1. Suppose t′ is the other triangle that covers s
in that direction, then due to the convexity of C(S′), the depth d′ of t′ must be no smaller
than d, and thus (ds − d′) ≤ 1, as required.

4.4.7 Experiment

We compare the performance of our implementation, called DigiHull3D, with the two fastest
sequential implementations of the Quickhull algorithm: Qhull [BDH96] and CGAL [CGA].
Qhull handles round-off error from floating point arithmetic by generating a convex hull
with “thick” facets: any exact convex hull must lie between the inner and outer plane of
the output facets. On the other hand, CGAL uses exact arithmetic, which is similar to our
implementation. In our experiment, we found that CGAL always runs slower than Qhull
due to its use of exact arithmetic.

The performance of DigiHull3D can be controlled by two parameters: the grid size (in
Phase 1a) and the rendering buffer size (in Phase 3a). As such we first analyze the effect of
these parameters before comparing our algorithm with others.

Grid size and rendering buffer size

We run DigiHull3D on two different input point distributions: the ball distribution and the
thin sphere distribution, with different grid sizes; see Figure 4.22. 5× 106 points are used in
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Figure 4.22: The total running time of DigiHull3D using different grid size on the ball and
the thin sphere distribution.

this experiment. Different from the experiment of DigiDel2D, using larger grid size makes
the running time much slower, except in the case of the thin sphere distribution where the
running time improves a bit when moving from 5122 grid to 10242 grid. There are two
reasons for this behavior. First, DigiHull3D needs to compute six digital Voronoi diagram
slices, thus the running time of Phase 1a is quite significant, and therefore any increases
in the grid size affects the total running time a lot. Second, the number of extreme points
is usually small, so the number of Voronoi cells intersecting a boundary face of G is small,
and thus a small grid size still has no problem providing a good approximation. This is
further illustrated in Figure 4.23a. Increasing the grid size decreases the running time of
star splaying in Phase 3b since fewer points are added in Phase 3a, but the overhead in
the digital Voronoi diagram computation in Phase 1a makes the overall running time much
slower.

The same behavior is observed for the rendering buffer size in Phase 3a. A larger buffer
size makes the second round of checking in the point addition phase faster since the digital
depth test in the first round of checking is more accurate. However, the cost of rendering
to a larger buffer size outweighs this benefit, making the overall running time of this phase
slower; see Figure 4.23b. As such, in the rest of the experiment, we use a grid of size 10242

and a rendering buffer size 5122 for best performance of DigiHull3D.
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Figure 4.23: The grid size and the rendering buffer size affect the performance of different
phases of DigiHull3D.

Synthetic data

We use four point distributions described in Section 2.3 in this experiment: cube, ball, thin
box and thin sphere; see Figure 2.8. The cube distribution has very few points on the
convex hull, while many points inside can easily be removed by the Quickhull algorithm.
The ball distribution is similar, but with a bit more points on the convex hull. The thin
box distribution also has very few extreme vertices, but points are distributed close to the
convex hull, so it is harder to eliminate them. The thin sphere distribution is a difficult case
where many points are on the convex hull while the rest of them are also close to it. These
synthetic test cases are highly representative for testing and stressing convex hull algorithms.

We first look at the running time of DigiHull3D while varying the number of points; see
Figure 4.24a. Clearly handling the ball and the cube distribution is easier than handling the
thin box and the thin sphere distribution, since in the latter two distributions it is more
difficult to eliminate the non-extreme vertices. The cube distribution takes a little longer
than the ball distribution does since there is degeneracy where coplanar points lie on the
boundary.

Figure 4.24b and 4.24c compares the speed of DigiHull3D with that of Qhull and CGAL. In
general, DigiHull3D is 3 to 7 times faster than Qhull, and is 7 to 17 times faster than CGAL
for the cube and the box distributions. Notably, for the sphere distribution where not only
are there many extreme vertices but there are also many points close to the convex hull,
DigiHull3D is up to 55 times faster than CGAL and up to 18 times faster than Qhull, even
with all the computation being exact. This is mainly because our digital Voronoi diagram
gives a very good approximation, and the digital depth test is also very fast in eliminating
non-extreme vertices.
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Figure 4.24: The running time and speedup of DigiHull3D over Qhull and CGAL on
different test cases.

In comparison, the approach of Tang et al. [TZTM12] achieves 22 times speedup over CGAL
for the ball distribution with 107 points, while our speedup is 35 times. Note also that
their experiment is done on a similar GPU as ours but with a slower CPU, so CGAL runs
slower in their system. According to the authors, their speedup drops when more points are
extreme vertices, because there is more work for the CPU processing which uses CGAL. On
the other hand, our algorithm achieves an even higher speedup when running on the sphere
distribution with many points on or close to the convex hull. Their implementation is not
available for us to do a more thorough comparison.

We note that for convex hull computation, a major part of the running time of DigiHull3D is
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Figure 4.25: The speedup of DigiHull3D over Qhull while fixing the total number of points
(n) and varying the number of extreme vertices.

spent on copying the input data from the CPU memory to the GPU memory. This copying
sometimes takes more than 40% of the total time. This is because the input point set is
very big, while the computation done on the GPU is very fast. For applications that do not
require this data transfer (e.g. when data is already in the GPU memory), the performance
of DigiHull3D is significantly higher.

Scalability on the number of extreme vertices

In order to investigate the effect of the number of extreme vertices on the performance of the
algorithm, we use a slightly modified ball distribution, in which we generate h points on the
boundary with the sphere distribution, and n− h points inside with the ball distribution.

Figure 4.25 shows the speedup of DigiHull3D over Qhull when we fix n and vary h multi-
plicatively from 20 × 104 to 26 × 104. The speedup is higher for larger n, but decreases as h
becomes larger. The explanation here is that the digital Voronoi diagram of size 5122 cannot
capture all the extreme vertices. Increasing the grid size might help the approximation, but
the overhead is too high. Nevertheless, DigiHull3D is still 3 to 9 times faster than Qhull. A
similar behavior can be observed when compared with CGAL, with the speedup being much
higher.

Real-world data

We use models of different sizes, ranging from a few hundred thousand to a few million
points in this experiment; see Figure 4.26. Points of these models are densely distributed on
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Model # Points

Running time (ms) Speedup

Qhull CGAL DigiHull3D Over Qhull Over CGAL

Armadillo 172974 42.9 93.1 101.9 0.4 0.9

Angel 237018 62.3 106.5 95.3 0.7 1.1

Brain 294012 81.0 142.0 88.3 0.9 1.6

Dragon 437645 101.0 228.7 107.7 0.9 2.1

Happy buddha 543652 147.4 352.5 141.4 1.0 2.5

Blade 882954 186.6 430.9 148.0 1.3 2.9

Asian dragon 3609600 558.0 994.5 262.2 2.1 3.8

Thai statue 4999996 714.0 1284.8 407.7 1.8 3.2

Figure 4.26: The running time of DigiHull3D and its speedup over Qhull and CGAL on
different 3D models.

the surface, while their convex hulls have very few vertices (less than 1,000). For models
with small number of points our algorithm is slower due to the overhead of the digital
computation. Using a smaller grid size and rendering buffer size might help in these cases.
Nevertheless, our algorithm still manages to out-perform Qhull and CGAL by up to 2 and 4
times respectively on large models. Note that for computing the convex hull of these real
models, a major part of the running time is spent in copying data to and from the GPU
memory.

Time breakdown

Figure 4.27 shows the running time of each step of our algorithm on different point distribution
with 5× 106 points. As expected, the behavior differs on different distributions. While the
running times of Phase 1a, Phase 1b, and Phase 3a remain almost the same since they are
not affected by how the points are distributed, the running times of the other two phases
vary significantly. Phase 2 takes more time on the thin box distribution due to many points
are wrongly captured and need to be removed by star splaying. On the other hand, Phase 3b
takes more time on the sphere distribution due to many points not captured earlier and need
to be added later. Phase 1b only takes a small portion of running time for all distributions.
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Figure 4.27: The running time of different phases of DigiHull3D.

4.5 Delaunay triangulation in R3 - The difficulties

Moving forward to adapt the algorithm in Section 4.3 to R3, there are lots of difficulties.
We outline these difficulties in Section 4.5.1, and also show some results that might be of
independent interest. In Section 4.5.2 we demonstrate our attempt at adapting the algorithm
in Section 4.4 instead to compute the 3D Delaunay triangulation. This algorithm can still
robustly construct the 3D Delaunay triangulation on the GPU, but the speedup achieved is
limited. Similar to the previous two sections, we map the input point set S into a grid G.

4.5.1 Topological and geometrical difficulties

There are two difficulties when dualizing the 3D digital Voronoi diagrams. The first one is
on dualizing the digital Voronoi diagram in R3, and the second one is on making sure that
the dual is a valid triangulation, topologically as well as geometrically.

Dualizing the 3D digital Voronoi diagram

Similar to how we dualize a 2D digital Voronoi diagram, we look at corners shared by
multiple grid cells. However, in 3D, since each grid cell is cubical, its corner is shared by
up to eight other grid cells with up to eight different colors. It is possible to treat any two
colors face-adjacent to each other as connected and dualize that into an edge, but what
about those that only share an edge of a grid cell. This problem is similar to triangulating
a set of up to eight points. Our aim is to make a consistent interpretation, i.e. a fixed
triangulation pattern. Our approach can be visualized as dualizing a perturbed grid. The grid
cells, which are cubical, are perturbed slightly such that these cells become simple polyhedra;
see Figure 4.28. With such a perturbation, only three cells can meet along an edge and only
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(a) (b)

Figure 4.28: (a) A grid of 8 perturbed voxels. (b) A perturbed voxel marked with its 24
corners.

four can meet at a corner to form a digital Voronoi vertex if all four are of different colors.
A straightforward implementation of such a perturbation is proposed in [EK12] in which the
grid points are moved along the main diagonal: (i, j, k)→ (i+ ε∆, j + ε∆, k + ε∆), where
ε > 0 is sufficiently small and ∆ = i + j + k. We note that this perturbation is merely a
convenient method to interpret our grid and does not require any extra computation.

From a digital Voronoi diagram to a valid triangulation

The triangulation dualized directly from the 3D digital Voronoi diagram has similar problems
as the one dualized from the 2D digital Voronoi diagram and then more. Not only you can
have duplicate or intersecting tetrahedra, but the tetrahedra may form tunnels or voids. The
method in Section 4.3.1 and particularly the proof in [CET14] cannot be applied to the 3D
case, but we can try to borrow some of the concepts there. A valid triangulation in R3 has
two requirements: it must be homeomorphic to a 3-ball, and there must be no intersections.
These are the topological and the geometrical condition of a 3D triangulation, respectively.

Consider a grid G colored by points in S, each set of connected grid cells with the same color
is called a component. The set of all components is a subdivision of G. To guarantee that our
dualization results in a topologically valid triangulation, following the Nerve theorem [Bor48],
the coloring must meet the following conditions:

1. Every component is homeomorphic to a 3-ball.

2. Every intersection of 2 components is homeomorphic to a disk.

3. Every intersection of 3 components is homeomorphic to a line segment.

4. Every intersection of 4 components is homeomorphic to a point.

Furthermore, it is also possible to guarantee that the dualization results in a geometrically
valid 3D triangulation, i.e. there is no self-intersections. To do that, we must make sure
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that the boundary of the dualized triangulation is a star-shaped polyhedron, and all the
tetrahedra obtained are positively orientated, as proven in the following lemma.

Lemma 4.11. Consider a 3D embedding of a topologically valid triangulation. If the
boundary of the embedding is homeomorphic to a 2-sphere and is star-shaped, and all the
tetrahedra are positively orientated, then the embedding is a geometrically valid triangulation.

Proof. Consider the topologically valid triangulation T in R4, since the boundary of T is a
star-shaped polyhedron, we can extend all the facets on the boundary to a point k1 in R4,
forming a 3-sphere S1. Similarly, we extend the facets of the convex hull of the points in T
to a point k2 in R4 to form a 3-sphere S2, such that S1 lies completely inside S2.

We define a continuous map f : S1 7→ S2 as follows. Pick a point k inside S1 as a kernel.
The continuous map f maps any point x ∈ S1 to a point y ∈ S2 where y is the intersection
of the ray

−→
kx with S2. Clearly, f maps a point in T into a point in the convex hull of T , at

the same position.

The degree of f is the multiplicity of the image of S2, i.e. the number of time S1 maps to
S2, taking into account whether the map preserves the orientation or not. Take any point y
in the underlying space of T (assuming it is not on any triangle, edge or vertex), the degree
of f at y is the number of tetrahedra in T that contain y, counting a tetrahedron positive if
it has positive orientation and negative if it has negative orientation. The main point here is
that the degree is the same at every point of S2; see, for example, Chapter 3 of [GP10].

To determine the degree of the map f , we take a point y outside the convex hull of T . Since
the boundary of T is star-shaped, the line ky intersects S1 at exactly one point, which is
on a tetrahedron formed by a facet on the boundary of T and k1. As such, the degree of
the map f is 1. For any point y′ inside the embedding of T , since there is no negatively
oriented tetrahedra, y′ must be contained by exactly one tetrahedron. This implies that the
embedding of T has no self-intersections.

It is very costly, and sometimes impossible, to obtain a coloring that satisfies all the conditions
mentioned above due to a lot of topological and geometrical constraints. As such, we cannot
extend the approach in Section 4.3 to compute the 3D Delaunay triangulation.

4.5.2 Algorithm using star splaying

In this section, we sketch a different algorithm, following an approach similar to that in
Section 4.4, to compute the 3D Delaunay triangulation. Our algorithm again makes use of
the star splaying algorithm [She05], this time in R4. The sketch obtained from the digital
Voronoi diagram is lifted into R4 and transformed into a 4D convex hull using the star
splaying algorithm. The result projected into R3 is the 3D Delaunay triangulation. The
algorithm consists of the following phases:
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Phase 1a: Voronoi Construction.
Construct the digital Voronoi diagram VD(S).

Phase 1b: Working Set Identification.
Derive, for each point s ∈ S, a working set of s that includes points of S \ {s} that are
nearby s as indicated in VD(S).

Phase 2: Star Creation.
Create a convex star for each point s ∈ S by inserting points from its working set one
by one using the beneath-beyond algorithm.

Phase 3: Star Splaying.
Splay the stars until they are all consistent with one another.

Phase 1a is done similar to Phase 1a in the 2D Delaunay triangulation algorithm. In Phase 1b,
we use the perturbed grid interpretation to identify the neighbors of each point s ∈ S. To
do so, we first identify the corners incident to four neighbors with different colors. Each of
this gives us a tetrahedron on which any two vertices are neighbors. The set of neighbors is
the working set of s.

Each point needs at least 4 points in its working set to form a star. If any working set is
smaller than this number, which sometimes happens, then we augment it the working set of
the point’s neighbors, if available. We also create the working sets for the missing points
from Phase 1a. Each missing point gets the same working set as that of the input point
which occupies the grid point that it maps to.

The star creation and the star splaying phase are done similar to Phase 1b of the 3D
convex hull algorithm, except it is a 4D star splaying rather than a 3D one. One interesting
implementation note is the data-structure used during the star splaying. Each star is
allocated a continuous chunk of memory inside a huge array to store its link triangulation.
It is very easy for a star to exceed its storage during splaying, and that might happen many
times for some very bad stars. Expanding the storage for a star is costly since we have to
reallocate the whole star list. Instead, we note that given the good quality of the digital
approximation, the size of the star after Phase 2 is mostly correct. We split the storage of
a star into two parts, i.e. the star list is stored in two separate arrays. The first storage
space of a star is allocated during Phase 2, while the second one can be allocated and resized
during Phase 3. This way, the first array is fixed, and contains the majority of information.
The second array is dynamic, and can be reallocated frequently, but its size is usually very
small so reallocating it is not costly.
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4.5.3 Experiment

In this section, we first discuss about the effect of the grid size on the performance of our
implementation, termed DigiDel3D, overall as well as of individual phases. After that we
compare our performance with that of CGAL, the fastest CPU 3D Delaunay triangulation
software available.

Grid sizes and time breakdown

Similar to the 2D case, the performance of DigiDel3D is strongly dependent on the quality of
the approximation derived from the digital computation. Hence, grid size is a very important
parameter. Figure 4.29a shows the running time of DigiDel3D using different grid size, on
varying number of points ranging from 105 to 14 × 105 uniformly distributed. It is clear
that using a small grid such as 643 is almost impossible for these numbers of input points.
The approximation is not good, and many points are missing and thus their stars are only
approximated using their neighbor’s stars. As such, the star splaying in Phase 3 becomes
expensive. Note that star splaying is only efficient when the stars are close to be consistent,
as discussed in Shewchuk’s paper [She05]. Using a 1283 grid gives a more reasonable speedup,
and the performance is much better when using 2563 or 5123 grids.

Figure 4.29b gives a clearer picture of the effect of grid size on the performance of different
phases of the algorithm when handling 5×105 points uniformly distributed. The performance
of Phase 3 is significantly improved, up to 5 times, when moving from the 643 grid to the
5123 grid. The running time of Phase 1a and Phase 1b increases due to having to process a
larger grid, but overall both phases take less time than Phase 3. It is only when moving from
2563 to 5123 grid that the overhead of handling a larger grid outweighs the improvement in
Phase 3. As the number of points increases and hence the work in Phase 3 increases, a larger
grid would give even more benefit. Besides, a large grid is also needed to handle points that
are non-uniformly distributed.

Synthetic data

We compare the performance of DigiDel3D with CGAL on different point sets from the
uniform and the Gaussian distribution, with sizes ranging from 105 to 14×105; see Figure 4.30.
On the uniform distribution, using a 5123 grid, DigiDel3D manages to outperform CGAL by
up to 3.5 times. For point set of size less than 8× 105, using a 2563 grid is slightly better, as
mentioned earlier. With the Gaussian distribution, clearly we need a 5123 grid, and even
so the speedup of DigiDel3D is still slightly lower. We also observe that the speedup still
increases with larger input for the uniform distribution, but with the Gaussian distribution,
the speedup starts to drop with the increase in input size. This is because more points are
concentrated in the center of the grid, and thus the number of missing points increases very
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Figure 4.29: The total running time and time breakdown of DigiDel3D on a uniform
distribution, using different grid sizes.
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Figure 4.30: The speedup of DigiDel3D compared to CGAL.

fast with the increase in the input size. This being sensitive to input distribution is one of
the main disadvantages of using the digital space, and it has now become more obvious in
higher dimensions. We have also tested DigiDel3D on a more extreme case, the thin sphere
distribution, as described in Section 2.3. DigiDel3D can handle these cases robustly, but the
performance is only slightly better than CGAL on small input size, and lower when there
are more than 5× 105 points.

Real-world data

Real-world data poses a greater challenge to DigiDel3D. We run some experiments with the
3D models mentioned in Section 2.3. In these datasets, points are not uniformly distributed,
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Model # Points

Running time (s) Speedup

CGAL

DigiDel3D

Armadillo 172974 1.7 2.2 1.9 0.7 0.9

Angel 237018 2.4 8.2 5.3 0.3 0.5

Brain 294012 3.0 3.6 2.7 0.8 1.1

Dragon 437645 4.7 11.5 6.8 0.4 0.7

Happy Buddha 543652 5.6 - 11.3 - 0.5

Blade 882954 9.5 - 31.5 - 0.3

256³ 512³ 256³ 512³

Figure 4.31: The running time comparison between DigiDel3D and CGAL on some real
3D models.

and there are also a lot of degeneracies. Figure 4.31 shows the running time of both CGAL
and DigiDel3D on these models. Using 2563 grid size, DigiDel3D runs out of memory when
processing some large test cases, since the star splaying uses more memory due to the
approximation being of low quality. Using 5123 grid, out of the 6 models tested, only in the
Brain model does DigiDel3D manage to outperform CGAL. Nonetheless, our implementation
can handle these test cases robustly.

4.6 Discussion

In this chapter, we have introduced a novel approach to solve several fundamental computa-
tional geometry problems. Taking advantage of the connection between the fundamental
geometric structures and the Voronoi diagram to derive an approximation in digital space, we
develop efficient algorithms to construct the convex hull and the Delaunay triangulation in
R2 and R3 robustly on the GPU, with provable correctness. There are two main advantages
of our approach. First, a major part of the computation is done through the construction
of the digital Voronoi diagram, which can be performed very quickly and efficiently on the
GPU. Our digital Voronoi diagram algorithm is work efficient, with very high parallelism
and also has good memory access pattern, thus it can exploit the enormous computation
power of the GPU. Second, the approximation from the digital space computation also acts
as a very good bootstrapping phase, providing enough input for the data-parallel processing
in subsequent phases.
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These are not to say that this approach comes with no disadvantage. The most significant
shortcoming is also from using the digital computation to approximate continuous structures.
As shown in some of the experiment, the approximation is affected by the point distribution
in the input. This is not very apparent in 2D, but starts to show up in 3D, especially in the
3D Delaunay triangulation computation. The second shortcoming is from the attempt to
dualize the digital Voronoi diagram. There are many possible topological difficulties, which
we solve nicely for the 2D Delaunay triangulation case, but not completely for the 3D case
and higher dimensions. More research is needed in this area to push the applicability of this
approach further.

The work in this chapter has received helps and collaboration from several people. Tang Ke ran
some testing on the earlier version of the PBA algorithm, including several approximate ones,
and provided valuable feedback. Mohamed Anis provided the preliminary implementation of
Schneider et al.’s algorithm on CUDA. The DigiDel2D work was developed from an earlier
collaboration with Rong Guodong and Stephanus. The convex hull algorithm described
in Section 4.4 was done in collaboration with Gao Mingcen, and the 4D star splaying in
Section 4.5 was implemented on the GPU together with Ashwin Nanjappa. The validity of
the triangulation dualized from the digital Voronoi diagram in both R2 and R3 was proven
with the help of Professor Herbert Edelsbrunner.



Chapter 5
Incremental Insertion with Local Transformation

5.1 Overview

Algorithm 5.1: Traditional incremental insertion paradigm.

Data: A point set S.

Result: The resulting structure T
1 T ← a simple initial structure

2 Q← S \ {p | p ∈T}
3 while ¬ Empty(Q) do

4 p← ExtractMin(Q)

5 locate a position of p in T
6 insert p into T
7 apply a series of local transformation around p

8 end

9 return T

In this chapter, we aim to address the most prominent shortcoming of the digital approach
proposed in the previous chapter, which is the inability to handle inputs with points not
“nicely” distributed. We propose a new approach to construct the convex hull and the
Delaunay triangulation, with the goal of achieving good speedup even on real-world datasets.
Particularly, we focus on the algorithm to construct the Delaunay triangulation in R3, since
the digital approach has a lot of difficulty handling this problem.

Our new approach is motivated by the traditional incremental insertion approach widely
used to solve computational geometry problems on the CPU. This traditional approach
generally follows the framework in Algorithm 5.1. Here Q is a priority queue to order the
insertions in some way. Starting from an initial structure, the algorithm repeatedly inserts
more points. Each insertion consists of three basic steps: locate the position, insert, and
apply local transformation to restore the properties of the structure.

76
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Algorithm 5.2: Parallel incremental insertion with local transformation approach.

Data: A point set S.

Result: The resulting structure T
1 T ← a simple initial structure

2 Q← S \ {p | p ∈T}
3 while ¬ Empty(Q) do

4 evaluate and choose points to be inserted in parallel

5 insert the chosen points into T
6 remove the inserted points from Q

7 update the location of points in Q

8 end

9 repeat

10 evaluate and choose the local places to transform in parallel

11 apply the local transformations

12 until no more transformation is possible

13 return T

Most existing multi-core computational geometry algorithms rely on this traditional approach.
The parallelism is achieved by performing multiple insertions (line 4–7) in parallel. This,
however, requires locking since two insertions may try to modify the same part of the
structure, leading to a race condition. Moreover, to guarantee correctness of the local
transformation in line 7, if two insertions affect each other (i.e. their affected regions overlap),
then only one can continue while the other needs to roll back and try again later. Such
an approach is not applicable to the GPU for many reasons. First, locking is costly if not
unfeasible on the GPU. Second, the work of each thread is possibly unbalanced. And most
importantly with a huge number of threads on the GPU, the chance that the insertions
conflict is very high, leading to a lot of rolling back, wasting the computation.

Our approach is different. We parallelize the steps inside the while-loop separately, making
it more suitable for the GPU while being able to be executed in a lock-free manner; see
Algorithm 5.2 for an overview. There are two main phases in our approach: the insertion
phase and the transformation phase. In the insertion phase, points are quickly inserted in
parallel in batches to construct an initial structure. The points are chosen to be inserted in
some order to better approximate the final structure. After that, local transformations are
applied in parallel, also in multiple batches, until we get the desired result.

There are several challenges when applying this approach. First, the order of point insertion
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can affect the performance significantly. And second, it is not always possible to apply the
same local transformation algorithm as the sequential algorithm and get the correct result.
The details will be clearer in the next sections when we apply this approach to the three
problems discussed in the previous chapter. The three algorithms proposed in this chapter
are termed IncDel2D, IncHull3D and IncDel3D for the 2D Delaunay triangulation, 3D convex
hull, and 3D Delaunay triangulation problem respectively (“Inc” for incremental insertion).

5.2 3D convex hull revisit

The idea of the algorithm in this section is to use parallel insertion to construct a polyhedron
from points in S, followed by using flipping to transform it into the convex hull of S. In
Section 2.1.5, we have defined the flipping operation on a triangulation. The convex hull
is slightly different from the triangulation, so we need to adjust the definition of the flips.
The topological structure of a flip remains the same, but the geometrical condition of a
flip is redefined. We make sure the flips do not create self-intersection by starting from a
star-shaped polyhedron and only allow flips that do not break this star-shaped property.

Definition 5.1. Given a point s ∈ R3 and three points a, b, c ∈ S, the cone of triangle abc
w.r.t. s, denoted as Cs(4abc) is the convex hull of the three rays −→sa,

−→
sb, and −→sc.

Two cones overlap if they contain some common points not on their boundaries. Let T be a
polyhedron with vertices in S and with faces that are triangles. We say T is a star-shaped
polyhedron w.r.t. s if s is in the interior of T and the cones of any two triangles of T w.r.t. s
do not overlap each other. This means the boundary of a star-shaped polyhedron is entirely
visible from s. The point s is called the kernel of T .

Let T be a star-shaped polyhedron w.r.t a kernel point s in R3. Let e = ab be an edge in T
with two link points c, d. The edge e is a reflex edge (w.r.t. s) if c and s lie on different sides
of 4bad; otherwise it is a convex edge. We say that e is flippable w.r.t. s if firstly s is outside
the tetrahedron abcd, and secondly the union of the cones of the triangles of σe (the induced
subcomplex of e) is equal to C({−→sa,

−→
sb,−→sc,

−→
sd}). Otherwise, e is unflippable.

Intuitively, an edge is flippable if after flipping it, the polyhedron is still star-shaped w.r.t. s.
This star-shaped condition guarantees that flipping does not create self-intersections in the
polyhedron. As mentioned earlier, our convex hull algorithm consists of two phases:

Phase 1: Construction.
Use incremental insertion to construct a star-shaped polyhedron with the points in
S′ ⊂ S such that any other point in S is inside the polyhedron.

Phase 2: Flipping.
Use flipping to transform the constructed polyhedron into the convex hull of S.
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(a) (b)

Figure 5.1: (a) A stuck configuration in 3D when flipping a star-shaped polyhedron. The
dashed edges are reflex but are all unflippable. (b) The top-down view.

In Phase 2, it is tempting to use an algorithm similar to Phase 3b in Section 4.3.5, flipping
in parallel all reflex and flippable edges until no more flips can be done. This, however, does
not lead to the convex hull in some cases, such as the one in Figure 5.1. In this example, the
three vertices of the small triangle in the center are pushed down slightly so that all dashed
edges are reflex but are not flippable.

Instead, we propose a slightly modified flipping algorithm to avoid getting stuck during
flipping. The detail is discussed below.

5.2.1 Phase 1: Construction

Algorithm 5.3 constructs a star-shaped polyhedron of S using multiple rounds of point
insertion; see Figure 5.2. It follows the structure of the first phase outlined earlier in
Algorithm 5.2. First, the polyhedron T is initialized by four points of S, and the kernel is
the centroid of this polyhedron. Each point in S is then assigned to one triangle in T if it
falls inside the corresponding cone (line 4–5). The details of how to choose the four initial
points is discussed in Section 6.4.

s

Figure 5.2: A result of the Construction phase.
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Algorithm 5.3: Constructing a star-shaped polyhedron.

Data: A point set S in R3

Result: C(S)

1 initialize T with 4 points a, b, c, d in S

2 s← the centroid of T
3 S ← S \ {a, b, c, d}
4 for each p ∈ S do in parallel

5 location[p] ←4t s.t. t ∈ T and p ∈ Cs(t)
6 while ¬Empty(S) do

7 for each p ∈ S do in parallel

8 AtomicMaximum(minDist[location[p]], Distance(p, location[p]))

9 for each p ∈ S do in parallel

10 if minDist[location[p]] = Distance(p, location[p]) then

11 insert[location[p]] ← p

12 for each 4t ∈ T do in parallel

13 p← insert[t ]

14 if p 6= null then

15 split 4t into three triangles using p

16 for each p ∈ S do in parallel

17 update location[p] if it was split

18 if p and s lie on the same side of location[p] then S ← S \ p
19 end

The main loop of the algorithm inserts the rest of points of S into T while removing points
that are completely inside T , i.e. not extreme vertices. The process is done in multiple
iterations, each one inserts a batch of points, at most one per triangle. First, the GPU kernel
in line 7–8 finds for each triangle the point in its cone that is farthest. This is done using
the AtomicMaximum function. Then, the GPU kernel in line 9–11 finds the corresponding
winner and the kernel in line 12–15 inserts it into the corresponding triangle by splitting
that triangle into three. Lastly, the kernel in line 16–18 updates the location of the points
that are left in S, while removing those clearly in the interior of T .

The purpose of finding the farthest point for each triangle to insert is motivated by the
Quickhull algorithm [BDH96]. It allows us to quickly eliminate most non-extreme vertices.
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5.2.2 Phase 2: Flipping

We propose a modified flipping algorithm to avoid getting stuck while flipping. The idea
comes from the observation that whenever we have a reflex edge that is unflippable, we can
identify a non-extreme vertex.

Lemma 5.1. Any 2–2 unflippable edge e = ab that is reflex is incident to a non-extreme
vertex. That is, either a or b is non-extreme [GCTH13].

On the other hand, if all vertices on the polyhedron are extreme vertices, then flipping always
works.

Lemma 5.2. If all vertices of T are extreme vertices, then any reflex edge e of T is 2–2
flippable, and thus T can always be transformed until it has no more reflex edge. After that,
T is the convex hull [GCTH13].

Clearly, since we are constructing the convex hull, any non-extreme vertex should be removed
by a 3–1 flip. However, if the degree of that vertex is greater than 3, then we cannot perform
a 3–1 flip. Fortunately since we know that this vertex should be removed, we can apply
flipping on both the reflex and the convex edges incident to the vertex to decrease its degree
until we can perform a 3–1 flip to remove it.

The new flipping algorithm, termed Flip-Flop is sketched in Algorithm 5.4. In the description
of Algorithm 5.4, we skip the details on how to avoid race condition and how to update the
triangulation while flipping, since these have been described in Section 4.3.5. Instead, we
focus on the conditions to perform a flip. There are three cases in which we perform the
flip of an edge. In line 6, we flip e if it is a 3–1 flip and flipping it removes a non-extreme
point (either already labeled or e is reflex). In line 13, we flip e if it is reflex and none of
the non-extreme vertices we labeled is involved. In line 14, we flip e if doing so reduces
the degree of the non-extreme vertex with smallest index involved in the flip, regardless of
whether it is reflex or convex. Note that after each flip, we label all the modified edges to
be checked again next round. A vertex is labeled as non-extreme when we can identify it
through a reflex and unflippable edge (line 8–10).

The motivation behinds the three flipping cases is clear. For case 1, we can remove a
non-extreme vertex, and that moves us closer to the final result so we always do it. For
case 2, if the flip does not involve any non-extreme vertex, then we do it when the edge is
reflex, similar to the traditional flipping algorithm. Case 3 is a little bit tricky; there are
non-extreme vertices involved and thus we only flip if doing so reduces the degree of the
non-extreme vertex with smallest index. This is so that the algorithm does not flip an edge
back and forth.
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Algorithm 5.4: The Flip-Flop algorithm.

Data: A star-shaped polyhedron T
Result: C(T )

1 label all vertices of T as extreme

2 label all edges as to be checked

3 while there are edges to be check do

4 for each edge e that needs to be checked do in parallel

5 if e is a 3–1 flip then

6 if e is reflex or flipping e removes a non-extreme vertex then flip e

7 else

8 if e is reflex and unflippable then

9 label a vertex as non-extreme

10 label all edges on the star of that vertex as to be checked

11 if e is flippable then

12 x← the non-extreme vertex with smallest index involved in the flip

13 if x = null and e is reflex then flip e

14 if x 6= null and x ∈ e then flip e

15 end

16 end

5.2.3 Proof of correctness

The correctness of our flipping algorithm is guaranteed with the following lemmas.

Lemma 5.3. If the degree of a non-extreme vertex v is 3, then any edge incident to it is
3–1 flippable [GCTH13].

Lemma 5.4. If the degree of a non-extreme vertex v is more than 3, then there exists a 2–2
flippable edge incident to v [GCTH13].

The Flip-Flop algorithm definitely terminates, since each flip performed either increases the
volume of T or decreases the degree of a non-extreme vertex without increasing the degree
of any other non-extreme vertex with smaller index. The algorithm flips all flippable edges,
and if there is any unflippable edge, then we can identify a non-extreme vertex; otherwise it
contradicts Lemma 5.2. Then, by Lemma 5.3 and Lemma 5.4, we can flip and remove the
non-extreme vertices. As such, when the algorithm terminates, the result is the convex hull.
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Figure 5.3: The running time of IncHull3D on different test cases.

5.2.4 Experiment

We compare the performance of the implementations of our algorithm, termed IncHull3D, on
the GPU with the two fastest convex hull implementations on the CPU, Qhull and CGAL,
as well as with DigiHull3D, the algorithm proposed in the previous chapter.

Synthetic data

Similar to Section 4.4, we use four point distributions: cube, ball, thin box and thin sphere
as the synthetic data to test our convex hull algorithm. First, we show the running time of
IncHull3D on our synthetic data in Figure 5.3. This time, different from DigiHull3D which is
more sensitive to how the points are distributed, IncHull3D is only sensitive to the number
of extreme vertices. The cube and the thin box distributions both have very few vertices on
the convex hull, thus the running time of them is similar. The ball distribution has a few
more extreme vertices, so it takes a little longer to process. The thin sphere distribution has
the most number of extreme vertices, and thus IncHull3D needs significantly more time to
finish the computation.

Figure 5.4 compares the running time of IncHull3D with Qhull, CGAL and DigiHull3D. Our
GPU implementation achieves up to 20 times speedup compared to Qhull, and 65 times
speedup compared to CGAL. Interestingly, the speedup even increases when there are more
extreme vertices. Also, even for small point set and a simple point distribution such as the
cube or the ball distribution, IncHull3D still manages to outperform CGAL by more than 15
times.

IncHull3D also performs better than the digital solution DigiHull3D, especially on the cube
and the thin box point distributions; see Figure 5.4c. As mentioned in the previous chapter,
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Figure 5.4: The speedup of IncHull3D over Qhull, CGAL, and DigiHull3D.

DigiHull3D does not perform well in the cube and the box distributions due to the use of
approximation in the digital space. IncHull3D, however, does not have this disadvantage,
and thus it is two to three times faster. For the thin sphere distribution, however, IncHull3D
is only slightly faster than DigiHull3D, probably due to different implementations.

Scalability on the number of extreme vertices

Similar to the experiment with DigiHull3D, we use the modified ball distribution to test
the performance of IncHull3D with varying number of extreme vertices. Figure 5.5 shows
the performance comparison against Qhull. We also include the result of DigiHull3D for
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comparison. Clearly, with our novel flipping algorithm, IncHull3D handles inputs with many
extreme vertices very well. The speedup over Qhull increases sharply when there are more
points on the convex hull. This is opposite to DigiHull3D which actually slows down when
there are more extreme vertices. As such when the number of extreme vertices is high,
IncHull3D easily outperforms DigiHull3D. It is only when the number of extreme vertices is
small that DigiHull3D performs close to IncHull3D.

Real-world data

We use the same set of models to test IncHull3D; see Figure 5.6. When the number of input
points is small, the cost of copying data to and from the GPU memory dominates the total
running time, and thus IncHull3D is only slightly faster than CGAL, while slightly slower
than Qhull. This is still better than DigiHull3D since in the latter, there is also the overhead
of the digital Voronoi diagram computation. When the number of points is larger, IncHull3D
is up to 5 times faster than Qhull, and up to 8 times faster than CGAL. It is also around 2
times faster than DigiHull3D. This shows that IncHull3D is better at handling non-uniform
point distribution compared to DigiHull3D, which is our goal when designing the second
approach in this chapter.

Time breakdown

In Figure 5.7, we compare the time spent on the two phases of IncHull3D, the Construction
phase (Phase 1) and the Flipping phase (Phase 2), on the four synthetic point distribution
with 5× 106 points. As more points are on the convex hull, both stages of the algorithm take
more time. Phase 1 needs more time to insert points, since fewer points that are non-extreme
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Armadillo 172974 69.9 0.6 1.3 1.5

Angel 237018 80.2 0.8 1.3 1.2

Brain 294012 74.4 1.1 1.9 1.2

Dragon 437645 88.0 1.1 2.6 1.2

Happy buddha 543652 98.6 1.5 3.6 1.4

Blade 882954 88.8 2.1 4.9 1.7

Asian dragon 3609600 162.4 3.4 6.1 1.6

Thai statue 4999996 150.9 4.7 8.5 2.7
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Figure 5.6: The running time of IncHull3D and its speedup over Qhull, CGAL and
DigiHull3D on different 3D models.
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Figure 5.7: The time spent on different phases of IncHull3D.

vertices can be removed so the actual number of points that are inserted is higher. Phase 2
needs more time to flip the constructed polyhedron to the convex hull. The ratio between
the times spent in the two phases also changes. When the number of extreme vertices is
small, Phase 2 takes much less time than Phase 1, while in the thin sphere distribution when
there are more extreme vertices, Phase 2 takes a larger portion of the total time. The trend
is that when there are even more extreme vertices, Phase 2 would dominate the running
time of IncHull3D. This is because the number of points on the convex hull affects the first
phase at a logarithmic rate (i.e. only affects the number of insertion iterations) while it
affects the second phase at a linear rate in our experiment.
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5.3 Delaunay triangulation in R2 and R3 with adaptive star-
splaying

Following the proposed approach, we aim to construct the Delaunay triangulation in a similar
manner as when we construct the convex hull in the previous section. Parallel point insertion
is used to construct an initial triangulation, and parallel flipping is used to transform it into
the Delaunay triangulation. This method works correctly in R2, since any triangulation can
be flipped into the Delaunay triangulation, regardless of the flip order. However, in R3 the
flipping can get stuck, as shown by Joe [Joe89]. When there are no more flippable facets, we
might still have some non-locally Delaunay ones. The Flip-Flop algorithm does not work in
this case, since when constructing the Delaunay triangulation, none of the point should be
removed.

We observe that in practice, after the flipping, only a small number of facets might still
be non-locally Delaunay. Also, according to the work by Joe [Joe89], these unflippable
facets form cycles, called NLONT-configuration (non-locally optimal nontransformable).
In other words, they cluster together, and that is why they are stuck. We propose to
use the star splaying algorithm to transform the obtained triangulation into the Delaunay
triangulation. The star splaying algorithm is modified to work adaptively on only those
areas with unflippable facets. Overall, our algorithm consists of two phases.

Phase 1: Parallel point insertion and flipping.
Use incremental insertion together with flipping to construct a near-Delaunay triangu-
lation. This phase is performed on the GPU.

Phase 2: Adaptive star splaying.
Apply the star splaying algorithm adaptively to transform the result of Phase 1 into
the Delaunay triangulation. This phase is performed on the CPU.

It is possible to perform Phase 2 on the GPU, similar to Section 4.5.2. However, we find
that it is easier to do this on the CPU, and actually it allows the work to be smaller since
the computation can be done adaptively on only some small areas on the triangulation.

We note that in R2, only Phase 1 is enough to construct the Delaunay triangulation. In
the following discussion, we focus on the problem in R3. Nevertheless, many techniques
discussed below can still be applied on the 2D implementation.

5.3.1 Phase 1: Parallel point insertion and flipping

A simple approach to perform Phase 1 on the GPU is shown in Algorithm 5.5. The algorithm
starts by constructing an arbitrary triangulation of the point set S using incremental insertion
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Algorithm 5.5: Incremental insertion and flipping to construct the Delaunay trian-

gulation (version 1).

Data: A point set S

Result: D(S)

1 initialize T with a large enough simplex t

2 for each p ∈ S do in parallel location[p] ← t

3 while ¬Empty(S) do

4 for each p ∈ S do in parallel insert[location[p]] ← p

5 for each t ∈ T with insert[t] 6= null do in parallel

6 split t using insert[t ] and remove insert[t ] from S

7 for each p ∈ S do in parallel update location[p] if it was split

8 end

9 label all facets in T as to be checked

10 while there are facets to be check do

11 for each facet f that needs to be checked do in parallel

12 if f is non-locally Delaunay and flippable then

13 flip f

14 label all updated facets as to be checked

15 end

16 return T

(line 3–8). In each iteration, first we pick for each triangle (or tetrahedron) a point inside it
to insert, if any (line 4). Then we split the triangle (tetrahedron) and update the neighbors
in the next kernel (line 6). Finally, we update the location of the points that are left in S if
its old location was split (line 7).

In the second stage, we repeatedly check the facets in T to find the non-locally Delaunay
facets that are flippable, and flip them. This flipping and updating of the neighboring
information also requires several kernels to avoid race condition, as described in Section 2.1.5.

This simple approach, however, leads to many locally non-Delaunay facets in the triangulation
in R3 after flipping, to the extent that it is not practical to be corrected in Phase 2. Instead,
we propose to apply flipping after each iteration of point insertion. This has two benefits.
First, the earlier we flip, the easier to resolve the locally non-Delaunay facets, and thus fewer
unflippable facets remain when we get stuck, as shown later in our experiment. Second,
flipping increases the number of tetrahedra significantly before the next iteration of point
insertion. If no flipping is performed, then before each iteration of flipping the number of
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Algorithm 5.6: Incremental insertion and flipping to construct the Delaunay trian-

gulation (version 2).

Data: A point set S

Result: D(S)

1 initialize T with a large enough tetrahedron t

2 for each p ∈ S do in parallel location[p] ← t

3 while ¬Empty(S) do

4 for each p ∈ S do in parallel insert[location[p]] ← p

5 for each t ∈ T with insert[t ] 6= null do in parallel

6 split t using insert[t ] and remove insert[t ] from S

7 label all new facets to be checked

8 while there are facets to be checked do

9 for each facet f that needs to be checked do in parallel

10 if f is locally non-Delaunay and flippable then

11 flip f

12 label all updated facets to be checked

13 end

14 update the locations of points in S

15 end

16 return T

tetrahedra in T is 3m where m is the number of points inserted so far. By applying flipping
after each insertion iteration, the number of tetrahedra in T approaches the expected value
of 6.67m, the number of tetrahedra in the Delaunay triangulation of a uniformly distributed
point set in R3 [Dwy91]. This means that in the next iteration we can insert more points
in parallel, and thus fewer iterations are needed. Besides, if we look at this problem as
computing the convex hull in lifted space, then flipping in earlier iterations increases the
volume faster, so we expect that less flips are required.

Our new approach is detailed in Algorithm 5.6. In each iteration, we first insert one batch
of points into the triangulation (line 4–7). We also label the new facets so that they are
checked in the subsequent flipping. The flipping is performed right after a batch of points is
inserted (line 8–13). We repeatedly check the facets in T to find those locally non-Delaunay
facets that are flippable, flip them, and update the neighboring information. Finally, we
update the locations of the points that are left in S if their old locations were split (line 14),
to prepare for the next round of point insertion.
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Figure 5.8: At the end of the point insertion and flipping phase of our IncDel3D algorithm,
less than 0.05% of the facets, shaded in the figure, are locally non-Delaunay.

The result of this phase is a triangulation that is very close to the Delaunay triangulation.
There are still facets that are not locally Delaunay but are all unflippable. However, using our
strategy, this number is usually very small. Figure 5.8 shows the locally non-Delaunay facets
at the end of Phase 1 during the Delaunay triangulation construction of two 3D models.

5.3.2 Phase 2: Adaptive star splaying

The star splaying algorithm used in this phase to transform the result of Phase 1 into the
Delaunay triangulation is adaptive, and is done sequentially on the CPU. As we show in our
experiment, the work needed here is small and thus does not affect the performance of our
algorithm.

There are three steps in this phase. Step 1 is to construct the convex stars in R4. Step 2 is
to make the stars consistent by splaying. Step 3 is to convert the stars into a triangulation.
These three steps are performed adaptively, with the goal that the work done should be
proportional to the actual changes needed.

The three key ideas of our adaptive star splaying algorithm are as follows. First, consider a
vertex s ∈ T and its star. If s is not incident to any locally non-Delaunay facet, i.e. its star
facets are all locally Delaunay, then when lifted to R4, its star is already convex. Therefore,
only stars of the vertices that are incident to some locally non-Delaunay facets are not yet
convex and need to be corrected. Other stars can be derived directly from T without any
modification. Second, inside each star that is reconstructed, only the tetrahedra that do not
appear in T need to be checked for consistency, since those that are in T should already be
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Figure 5.9: 2D illustration of the adaptive star splaying algorithm. Only the shaded region
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consistent. Third, only the stars that are modified need to be converted and patched back
into T . These ideas are illustrated in Figure 5.9. Applied correctly, these three ideas help us
achieve the goal mentioned earlier.

Building the initial stars

We only rebuild the stars of the vertices that are incident to some locally non-Delaunay
facets. These vertices are called failed vertices. Since the locally Delaunay checks on all
facets have been done on the GPU during the flipping, we use the GPU to collect those
failed vertices and pass it to the CPU.

A naïve approach to construct the star of a vertex s is to find all its neighbors in T and
insert them one by one using the beneath-beyond method. This, however, is very costly
because a vertex may have many neighbors. Also, it is wasteful since the star of s in T
should already be very close to be convex. Instead, we consider the stars of T lifted to R4.
Since any vertex s is an extreme vertex, the star of s is contained in a half-space. Thus,
there exists a hyperplane H near s in R4 that cuts through the star of s. This intersection
is a polyhedron P, and the problem of constructing the convex star for s is equivalent to
making this polyhedron the convex hull. Figure 5.10 illustrates this in R2 lifted to R3. In
the following discussion, the term “vertical” means along the lifting direction.

Lemma 5.5. The polyhedron P on H is star-shaped w.r.t the intersection of H and the
vertical line through s.

Proof. We sweep each tetrahedron t in the star of s in R3 along the vertical direction, forming



Chapter 5. Incremental Insertion with Local Transformation 92

  

H

s

P

s'

Figure 5.10: Constructing the convex star of s in R2 lifted to R3. All vertices shown in
the figure are already lifted.

non-overlapping wedges in R4. Note that this is the same as sweeping the tetrahedra in the
lifted star of s. Thus, these wedges intersect P at some non-overlapping tetrahedra, while
the vertical line through s intersects H at a point s′ that is inside P and is a vertex of all
these tetrahedra. The boundary of the polyhedron P is actually the link of s′. Therefore, P
is star-shaped w.r.t to s′ on H.

This lemma allows us to use the Flip-Flop algorithm in Section 5.2.2 to compute the convex
hull of P , which is equivalent to computing the convex star of s. That is much more efficient
than constructing the convex stars from scratch. We retrieve the link triangulation of s from
T , and apply Flip-Flop to transform it into a convex star in R4. The hyperplane H is used
for explanation only, and it needs not be explicitly computed. The actual orientation tests
can be done directly in R4 with respect to the point s.

Note that all the Delaunay checks have been done on the GPU in Phase 1. As such, when
applying the Flip-Flop algorithm to construct each convex star, we start the checking and
flipping from those that were previously marked as locally non-Delaunay facets. That saves
a lot of checking cost for the construction.

Adaptive splaying

The splaying step is done as described in Section 3.2.3 and Section 4.5.2. During this step,
we may need to access some stars which were not constructed in the previous step. We
simply retrieve these stars from T , since they are already convex.

If we check all the tetrahedra created in the previous step for consistency, then we need to
pull in the stars of all the vertices incident to the failed vertices. This might turn out to be
unnecessary if these stars are still consistent. We observe that if a tetrahedron already exists
in T , then it need not be checked since any three of its vertices should have already be on or
inside the convex star of the fourth one. Thus, during the flipping process the previous step,
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we only label the tetrahedra that are modified, from which we start the consistency check in
this step. This reduces the number of checks as well as the number of stars that need to be
retrieved from T .

Patch the triangulation

After the stars are consistent, T needs to be updated. Consider the set Tp of all tetrahedra
in T we have previously used to build the stars, and let Tn be the set of tetrahedra we can
derive from the set of new stars after splaying. During the star construction, we keep a map
between the tetrahedra in the stars and the corresponding ones in T . From that, we find the
set of newly created tetrahedra T+ = Tn \ Tp and the set of deleted tetrahedra T− = Tp \ Tn.
We remove the tetrahedra in T− from T , and add those in T+ to T .

Next we update the connectivity between the tetrahedra. We do not need to process those in
Tp \T−, which are the old tetrahedra that still survive. Instead, for each tetrahedron t in T+,
we set its 4 neighbors and also update the neighbors to point to t using the connectivity from
the stars. This way, for the tetrahedra in Tp \ T− that are adjacent to some new tetrahedra,
the connectivity is updated correctly. As a result, we only update the portions of T that are
changed. After this step, the resulting triangulation is the Delaunay triangulation.

5.3.3 Point insertion heuristic

During the insertion phase, we insert points in batches. Each simplex (triangle or tetrahedron)
received at most one point per round to avoid race condition. In each iteration, if there are
multiple points in a simplex, then we need to choose which one to insert. In the convex
hull construction algorithm in Section 5.2, we pick the point farthest from the triangle so
that we can maximize the number of non-extreme points we can discard afterward. For
Delaunay triangulation, we propose to insert the point that is nearest to the circumcenter of
the simplex.

The motivation of inserting near the circumcenter of a simplex is clear. When lifted to
R4, constructing the Delaunay triangulation is equivalent to constructing the lower hull.
Inserting the point nearest to the circumcenter of the simplex is the same as inserting the
point farthest to the lifted simplex. In doing so, the volume of the hull grows the most and
gets closer to the convex hull, thus the number of flipping in the next phase can be reduced.

Another reason is the point nearest to the circumcenter is also farthest from the vertices of
the simplex, i.e. the minimum distance is maximal. As such, the facets created during the
insertion are of better quality and thus it is also easier for the flipping later.

To evaluate the efficiency of this heuristic, we analyze the number of stars involved in Phase 2,
including those that are created initially and those that are retrieved from the result of
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Model
# Stars involved

C.center Centroid Random

Armadillo 1427 2372 3151

Angel 3304 4452 7017

Brain 1965 2309 10397

Dragon 5851 7736 14707

Happy Buddha 6086 7842 13124

Blade 11171 25212 35388

Asian Dragon 30756 65740 73252

(b) Real-world data

Figure 5.11: The running time and the number of stars involved of IncDel3D on uniform
point distribution when using different point insertion strategy.

Phase 1. We compare the value when using the proposed approach with two other strategies:
picking the point near the centroid of the tetrahedron, and picking randomly. Figure 5.11a
shows the result on the uniform distribution. Clearly, inserting near the circumcenter is
significantly better than choosing a random point to insert, with the number of stars involved
in Phase 2 reduces by nearly two times. Interestingly, picking points near the centroid to
insert performs slightly better than our choice of inserting points near the circumcenter first.
However, the situation becomes clearer when we look at the result on real-world data, as
shown in Figure 5.11b. Given the input points from those real 3D models which are usually
non-uniformly distributed, our heuristic shows a major advantage. It gives a much better
result after Phase 1, and thus in Phase 2 the number of stars involved is significantly reduces,
by up to 5 times less than picking points randomly to insert, and up to 2.5 times better than
picking points near the centroid.

5.3.4 Point relocation and the history DAG

During Phase 1, as described in Algorithm 5.6, we need to keep updating the locations of
points in S after flipping so that the point insertion in the next iteration can be performed.
Relocating the remaining points after a new batch of points is inserted is simple, since each
existing tetrahedron is either split into four tetrahedra, or is unmodified. However, during
flipping, the tetrahedra are also modified. A simple approach is to update after each iteration
of flipping. This, however, is not GPU friendly, since all the points need to participate in



Chapter 5. Incremental Insertion with Local Transformation 95

  

a b d e f g i j k

a, d, e b, f, c g, j, k

a, b, h f, g, i

d, b, l a, c, e f, j, k

3-2 flip

2-3 flip

Tetrahedra list

Iteration 1

Iteration 2

Iteration 3

Figure 5.12: A history DAG of flipping in 3D.

Algorithm 5.7: Construct the history DAG from the list of flips.

1 let k be the number of flip iterations performed

2 initialize last[t] = null for all tetrahedra t

3 for i = k to 1 do

4 for each flip node x performed in iteration i do in parallel

5 x.n1 = last[x.t1], x.n2 = last[x.t2]

6 last[x.t1] = last[x.t2] = x

7 if f is a 2-3 flip then

8 x.n3 = last[x.t3]

9 else

10 last[x.t3] = x

11 end

the relocation step but only few of them are affected by the flips in this iteration. Instead,
we record all the flips done in the flipping loop into a directed acyclic graph (DAG), and
use this data structure to relocate the points; see Figure 5.12. This history DAG stores the
evolution of the triangulation during the flipping. Each node represents a flip, containing the
indices of the 5 vertices and the three tetrahedra involved. Note that we reuse the tetrahedra
indices, so a 2-3 flip transforms {t1, t2} to {t1, t2, t3}, and vice versa. Each node has up to
three pointers {n1, n2, n3} that point to the nodes corresponding to the future flips that
modify the tetrahedra created in this flip.

The history DAG is constructed as follows. During the flipping, we record all the flips as
nodes in the DAG, without pointing them to each other. After that, we build the connectivity
by processing the iterations of flipping bottom up; see Algorithm 5.7. We use last[t] to
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store the last flip node that modifies t. From bottom up, the flips in each iteration are
processed in parallel. For each flip f creating tetrahedra t1, t2 (and possibly t3), we update
the corresponding node in the DAG. We point that node to the two (or three) nodes that
correspond to the future flips that modify its tetrahedra, using the last array (line 5, 8).
Then, we update the last array accordingly (line 6, 10). By processing the iterations of
flipping from bottom up, setting the pointers are coherent memory writes.

To update the point locations using the history DAG, each thread processing a remaining
point s starts from its location t and follows the nodes in the history DAG from last[t] till it
reaches a null pointer. At each flip node we use one (or two) orientation tests to determine
the new location after that flip. The last tetrahedron recorded is the new location of s.

5.3.5 Compaction versus collection

Consider the flipping loop at line 8–13 of Algorithm 5.6. We assign one thread per tetrahedron,
checking its four facets if they are labeled. Any duplicate checks caused by two tetrahedra
sharing a facet can be avoided by comparing their indices. We observe that after a few
iterations, many tetrahedra have no more facets to be checked, so many threads are idle thus
reducing the efficiency due to thread divergence. Two solutions are possible.

The first solution is to compact the list of tetrahedra after each iteration. We label the
tetrahedra that need to be checked in this iteration; they are called active tetrahedra. We use
parallel stream compaction to compact all the active tetrahedra before launching the kernel
to check them. This is costly near the end of the flipping where few tetrahedra are involved.

The second solution is to collect the tetrahedra to be checked in the next iteration during
the flipping. Each flip modifies at most 3 tetrahedra, so we pre-allocate an array of size 3
times the number of active tetrahedra in this iteration of flipping. Each flip writes down the
tetrahedra that it modified into this array. The array is then compacted and used in the
next iteration of flipping. This strategy scales well with the number of active tetrahedra in
each iteration, but it also shuffles the order of the tetrahedra to be checked, and thus the
memory access is not in order.

In our implementation, we combine these two approaches. In the first few iterations when
the number of active tetrahedra is still very large, we use the first strategy. When this
number drops to below a certain threshold, we switch to the second strategy. This approach
can avoid the disadvantage of both strategies and achieve the best performance.

5.3.6 Memory access optimization

Given the enormous parallel computation of the GPU, the performance of our algorithms is
usually limited by the memory system. The GPU memory has very high latency, and if the
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Figure 5.13: The time breakdown of IncDel2D with and without sorting.

accesses are not coherent, then they will be serialized. The latest GPU architecture has an
L2 cache, but this cache is very small thus it is important to improve the memory access
pattern of our algorithm. There are several approaches to rearrange the data in such a way
that the cache is better utilized to reduce the time taken in Phase 1.

First, we observe that during point insertion as well as point relocation, each thread processing
a point needs to access the triangle or tetrahedron containing that point, including the
coordinates of the vertices, leading to a lot of random memory access. We propose to sort
the input points along the Hilbert space filling curve at the beginning of the algorithm. By
doing so, points that fall into the same simplex tend to stay near each other in the point list
and will be processed by adjacent threads. As such, the accesses by these threads are shared
through the cache and the performance is improved. Especially for point relocation, nearby
threads tend to travel the same path in the history DAG.

The benefit of this sorting in our 2D implementation is shown in Figure 5.13. In this
experiment, 107 points uniformly distributed are used as input. As we expect, by sorting
the input points, the performance of the point insertion increases by more than 2 times,
while that of the point relocation increases nearly 4 times. The extra cost of just a single
time sorting, plus updating the point indices back to the original order before output, is
insignificant compared to the benefit.

The sorting of input points benefit the point insertion and point relocation tasks, but not
the flipping, while the task of flipping is actually the most time consuming one in the 3D
Delaunay triangulation problem. During flipping, each thread processing a tetrahedron needs
to access its neighboring tetrahedra. It has been shown that by sorting the tetrahedra by
its minimum vertex index, accessing neighboring tetrahedra can be faster. However, after
each iteration of flipping, the tetrahedra list will be modified and the order may need to
be updated. It is not possible to sort the tetrahedra list after each and every iteration of
flipping, since that would be too costly. One simple approach is to sort this list only after a
new batch of points is inserted, but the cost of sorting is still significant. Besides, during
flipping in 3D, additional tetrahedra are added (in the 2–3 flips), thus further scramble the
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Figure 5.15: The time breakdown of IncDel3D with different data reordering strategies.

sorted order.

We propose a self-sorting data structure to store the tetrahedra such that the sorted order
can be maintained during flipping. The idea is to reserve space in the list so that during
flipping, new tetrahedra can be inserted at the appropriate places. In the tetrahedra list,
each vertex is given a storage of k slots. We also keep track of the empty slots in the storage
of each vertex; see Figure 5.14. During flipping, for each 3–2 flip, the new empty slot is
recorded. For each 2–3 flip, we check the storage of each of the four vertices of the additional
tetrahedron to find an available slot. If all the four storages are full, then the tetrahedron
is added to the end of the tetrahedra list. The above allocation is done in parallel using
atomic operations. Since the number of vertices is large, the contention for these atomic
operations is quite small, and thus it does not affect the performance. In our experiment,
the average degree of a vertex is around 27, so by choosing k = 8, there is a very high chance
that the additional tetrahedra are stored at appropriate locations on the list. As a result,
the tetrahedra list is always kept partially sorted during flipping.

Figure 5.15 shows the running time of different tasks in our 3D Delaunay triangulation
implementation, using different data reordering strategies. These include using the self-
sorting data-structure, sorting once after each batch of point insertion, and not sorting at
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all. Clearly, just by sorting once, the point insertion and the point relocation tasks already
become much faster. The flipping time also reduces by 25%, but at a substantial cost of
sorting. The self-sorting data-structure not only reduces the flipping time further, but also
removes the sorting cost. As such, in the experiment sections below, we always use this
data-structure.

5.3.7 2D Experiment

We apply the proposed algorithm to compute the 2D Delaunay triangulation. Since flipping
never gets stuck in R2, we do not need the adaptive star splaying in Phase 2 of the algorithm.
Other than that, all the previously proposed techniques are still helpful. Note that since in R2

we only need to perform 2–2 flips, there is no need to rearrange the triangles during flipping
to improve cache efficiency. Nonetheless, sorting the input points in the beginning is still
very helpful. In the following sections, we compare the performance of our implementation,
termed IncDel2D, with Triangle, CGAL, as well as the DigiDel2D, the algorithm proposed
in the previous chapter.

InsertAll-Flip versus Insert-Flip

First of all, we look at the benefit of applying flipping right after each batch of point insertion.
This strategy, termed Insert-Flip, is compared against the simpler strategy of incrementally
inserting all the points before doing any flipping, which we call the InsertAll-Flip strategy.
Figure 5.16a shows the running time comparison between these two strategies, with input
points from a uniform distribution. The Insert-Flip strategy gains about 15% faster. The
reason is that the Insert-Flip strategy requires less flips in total to reach the Delaunay
triangulation. This is verified in Figure 5.16b where we plot the number of flips used by
the two strategies. In general, the Insert-Flip strategy needs more than 30% less flips.
Figure 5.16c shows the time spent in inserting points, flipping, and updating point locations,
for an input of 107 points. Although when mixing point insertions and flipping, the point
relocation cost increases quite a bit, the flipping time reduction is much higher, and thus
overall the Insert-Flip strategy is still better.

Synthetic data

Figure 5.17a shows the speedup of IncDel2D on the uniform point distribution. In general,
IncDel2D outperforms Triangle by around 6 to 10 times, CGAL by 6 to 7 times, and this
speedup increases as the number of points increases. IncDel2D is also about 2 times faster
than DigiDel2D. Similar behavior is observed with the Gaussian distribution.
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Figure 5.16: Comparing two different strategies for Phase 1 in IncDel2D.
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Figure 5.17: The speedup of IncDel2D compared to Triangle, CGAL and DigiDel2D.
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Figure 5.18: The number of flips performed by IncDel2D versus DigiDel2D.

We also look at the performance on the thin circle distribution in Figure 5.17b, which is
where DigiDel2D falls short. For this distribution, it is very difficult for the digital Voronoi
diagram to properly approximate the continuous one. IncDel2D achieves almost similar
speedup over CGAL and Triangle as in the case of the uniform distribution, while it is about
5 times faster than DigiDel2D, even when the latter uses the 81922 grid size.

In Figure 5.18, we compare the number of flips performed by our two GPU algorithms. The
design of DigiDel2D is such that the sketch obtained through digital computation is close
to the final solution, thus the number of flips needed to transform it into the Delaunay
triangulation should be small. Clearly, for the uniform distribution, this is true. IncDel2D
requires more than 3 times more flips than DigiDel2D. The reason that DigiDel2D is slower
than IncDel2D is possibly due to different implementation and optimizations. However, the
scenario is reversed when we look at the result in the thin circle distribution. In this case,
since the digital Voronoi diagram can no longer capture the continuous one accurately, the
sketch obtained is not very near the Delaunay triangulation, and thus more flips are needed.
In fact, DigiDel2D requires 50% more flips than IncDel2D. Due to the benefit of using the
Insert-Flip strategy, IncDel2D uses almost the same number of flips in both the uniform and
the thin circle distribution.

Real-world data

We present the running time of IncDel2D on the contour datasets in Figure 5.19. As expected
from the experiment in the previous section, IncDel2D is only slightly affected by these
non-uniformly distributed point sets, with the speedup over Triangle ranges from 6 to 9
times, and that over CGAL is 5.5 to 6.5 times. IncDel2D also outperforms DigiDel2D by 2.5
times, which is as expected since DigiDel2D has more difficulty handling these cases.
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Set # Vertices Time (ms)
Speedup

Triangle CGAL DigiDel2D

1 1,177,332 231 5.9 5.6 2.4

2 3,180,037 569 7.4 6.3 2.4

3 4,461,519 802 7.9 6.3 2.4

4 5,721,142 1001 8.4 6.5 2.5

5 8,569,881 1512 9.0 6.6 2.4

6 9,546,638 1702 9.0 6.5 2.5

Figure 5.19: The running time of IncDel2D and its speedup over Triangle, CGAL, and
DigiDel2D on the contour datasets.

5.3.8 3D Experiment

We compare the performance of our 3D implementation, called IncDel3D, with that of CGAL
and DigiDel3D, using all the techniques discussed earlier such as mixing point insertion and
flipping, inserting point near to the circumcenter of the tetrahedra, and rearranging the data
in memory. We also look at how much more effort is needed in Phase 2 to transform the
result after flipping in Phase 1 into the Delaunay triangulation.

InsertAll-Flip versus Insert-Flip

Here first analyze the advantage of using the Insert-Flip strategy versus the InsertAll-Flip
strategy. The experiment is done on the uniform distribution. First, similar to the 2D case,
this makes the number of flips needed smaller, as can be seen in Figure 5.20a. With the
Insert-Flip strategy, the number of flips reduces by about 40%. However, this is not the
main advantage of the Insert-Flip strategy in 3D. The main benefit is that it reduces the
number of unflippable facets, and thus the number of failed vertices that need to be fixed in
Phase 2. As such, in Figure 5.20b, we notice nearly a two order of magnitude reduction in
the number of failed vertices when using the Insert-Flip strategy. This is the main reason
why performing Phase 2 on the CPU is practical.



Chapter 5. Incremental Insertion with Local Transformation 103

  
Insert-Flip InsertAll-Flip

  
2 4 6 8 10

0

5

10

15

20

25

30

# Points (10 )⁵

#
 F

li
p
s 
(1

0
)⁶

(a) Number of flips

  
2 4 6 8 10

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

# Points (10 )⁵

#
 F

a
il
ed

 v
er

t i
ce

s
(b) Number of failed vertices

Figure 5.20: The number of flips and the number of failed vertices of IncDel3D using the
Insert-Flip strategy compared to the InsertAll-Flip strategy.

Synthetic data

Figure 5.21a shows the speedup of IncDel3D over CGAL on different point distributions,
with the input size ranges from 105 to 15 × 105. Besides the uniform, Gaussian and thin
sphere distribution, we also try two pathological distributions: the grid distribution and the
sphere distribution; see Section 2.3 for more details. The speedup starts at 5 to 6 times, and
quickly rises to 8 to 10 times when the number of points increase. Particularly, for the sphere
distribution, not only can IncDel3D handle them robustly, but the speedup over CGAL is
even higher, reaching more than 20 times speedup. This shows that our approach to handle
exact computation on the GPU is very efficient. This also means that IncDel3D is not much
affected by the distribution of points.

On the other hand, Figure 5.21b shows the comparison between IncDel3D and DigiDel3D,
the algorithm using the digital Voronoi diagram introduced in the earlier chapter. Unlike
IncDel3D, DigiDel3D is significantly affected by the point distribution. For the uniform and
the Gaussian distribution, IncDel3D runs about 3 times faster than DigiDel3D. However, on
the thin sphere and the grid distribution, the running time of DigiDel3D increases sharply
as the number of points increases, and thus the speedup of IncDel3D also increases. In fact,
DigiDel3D cannot handle these two distributions with more than 106 points since it runs out
of GPU memory. For the thin sphere distribution, this is because the digital computation on
the grid of finite resolute cannot capture the Voronoi diagram fully. For the grid distribution,
the problem is different. In this pathological case, there are a lot of coplanar points, and
thus the star splaying phase requires the Simulation of Simplicity (SoS) technique [EM90] to
perturb the points to get a consistent result, while the digital Voronoi diagram computation
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Figure 5.21: The speedup of IncDel3D compared to CGAL and DigiDel3D on different
point distributions.

is done in the digital space without this perturbation. As for the sphere distribution, the
performance of DigiDel3D is much worse than with the thin sphere distribution, and is thus
excluded in the chart.

Real-world data

Recall that the aim of the new approach in this chapter is to achieve good speedup even
on real-world datasets. Figure 5.22 shows the running time of IncDel3D on some 3D
models, as used in the other experiments, and the speedup over CGAL and DigiDel3D.
While DigiDel3D has a lot of difficulty handling these non-uniformly distributed point sets,
IncDel3D can handle them easily. Without the overhead of computing the digital Voronoi
diagram, IncDel3D outperforms CGAL even on small inputs. The speedup ranges from 7 to
10 times, even for models that contain a lot of degeneracies like the Blade model. Compared
to DigiDel3D, the new algorithm is 5 to 10 times faster. Moreover, IncDel3D requires less
memory than DigiDel3D, so it can handle the Asian Dragon model with more than 3.5× 106

points on our GPU while DigiDel3D cannot.

Detailed analysis

Figure 5.23 shows the percentage of running time taken by different tasks in our implementa-
tion, including Phase 1 and Phase 2, on different point distributions with 106 points. These
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Model # Points
Speedup

CGAL DigiDel3D

Armadillo 172974 0.3 7.0 5.5

Angel 237018 0.4 7.9 12.1

Brain 294012 0.4 9.4 6.3

Dragon 437645 0.8 8.0 8.6

Happy Buddha 543652 0.9 8.7 12.2

Blade 882954 1.6 7.6 19.2

Asian Dragon 3609600 4.7 10.7 -

IncDel3D
time (s)

Figure 5.22: The running time and speedup of IncDel3D on different 3D models.
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tasks are initialization, inserting points, flipping, relocating points, sorting, splaying, and
outputting the result to CPU memory. As we expect, in the uniform, the Gaussian and the
grid distribution, majority of the running time is spent in flipping. Also, by using the history
DAG, although the number of flips is so high, the point relocation task still takes quite a
moderate amount of time. It would take nearly two times longer if the DAG were not used.

In the thin sphere distribution we start seeing some difference. Being a very non-uniform
point distribution, flipping has more difficulty reaching the Delaunay triangulation, and thus
more works remain to be done. Therefore, star splaying takes a bigger portion of the running
time. Similarly, in the pathological case with points being cospherical, the adaptive star
splaying takes nearly 25% of the total running time.

A pathological case for flipping in 3D triangulation would be when points are distributed on
two non-parallel non-intersecting curves in 3D. In this case, not only is the number of flips
required quadratic, but the number of iterations of flipping is also linear to the number of
points, thus IncDel3D becomes much slower. However this case rarely happens in practice.

To further understand the behavior of our algorithm, we look at the number of stars
participating in the adaptive star splaying in Phase 2. Figure 5.24 shows the number of stars
constructed for the failed vertices, as well as the number of additional stars taken from the
triangulation during the splaying. In this experiment we use 5× 105 points for the synthetic
inputs, and the Happy Buddha model, which has approximately the same number of points,
as a real-world input for comparison. As can be seen, on the first three distributions, the
number of stars initially constructed is very small, only about 600 stars, and less than 200

additional stars are involved in the splaying. On the thin sphere and the sphere distributions,
significantly more stars are involved, but still less than 2% of the number of input points in
total. The same applies to the real-world test case. Note that the sphere distribution is an
extreme case. This shows that the flipping can get quite close to the Delaunay triangulation,
and with our adaptive star splaying algorithm, not much more work is needed to obtain the
final result.

5.4 Discussion

In this chapter, we have introduced a second approach to solve computational geometry
problems on the GPU. Motivated by the traditional incremental insertion algorithm, our
approach insert points in batches followed by parallel flipping to transform the structure
into the desirable result. This approach is both lock-free and highly scalable, making it very
suitable for the GPU.

The main difficulty of this approach is that performing local transformation in parallel may
not always lead to the final solution. Except for the 2D Delaunay triangulation case, both
the 3D convex hull and the 3D Delaunay triangulation have this problem. For the convex
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hull case, we introduce a novel flipping strategy that combines both Delaunay flips and
non-Delaunay flips to guarantee that we can always transform the initial structure into the
convex hull. For the 3D Delaunay triangulation case, although we cannot modify the flipping
algorithm to guarantee such result, we introduce an adaptive star splaying algorithm that
can take over the result after the flipping is done, and quickly transform it into the Delaunay
triangulation. This part of the computation is done on the CPU but it is very efficient,
taking an insignificant amount of time in most cases. Also, several heuristics are introduced
to reduce the number of flips required, as well as improving the result at the end of the
flipping thus reducing the cost of fixing on the CPU even further.

Overall, the three algorithms provided in this chapter is an improvement over those presented
in the previous chapter in many cases. The main advantage of the approach in this chapter
is that its performance is not too much affected by the input point distribution. While using
the digital approximation works very well for points that are uniformly distributed, as in
the case of 2D Delaunay triangulation and 3D convex hull, it is no longer as efficient in the
non-uniform case, especially in higher dimensions.

The second advantage here is that during the computation, the topology of the structure is
always guaranteed to be correct. As such, the data-structure used can be much simpler and
also requires less memory. As a result, for most cases we can handle larger input sizes.

Credits are given to several people for collaborating on the work in this chapter. Gao
Mingcen contributed a major part on the proof of correctness of the Flip-Flop algorithm in
Section 5.2; and Ashwin Nanjappa implemented the preliminary version of the 3D Delaunay
triangulation algorithm in Section 5.3.



Chapter 6
Numerical Error and Robustness Issues

In practice, the input point set S might not be of general positions as we assumed in the
beginning. There may be points on the same line, plane, circle or sphere. For these degenerate
inputs, our implementations either explicitly handle it, as has been done in Section 4.3.4, or
perturb the input points to avoid it.

Worse still, the input points may not be exactly collinear for example, but very close to.
Numerical error during floating point arithmetic leads to many troublesome problems and
inconsistencies while handling degeneracy. In this chapter, we discuss how we handle these
issues while keeping our implementation efficient on the GPU. Depending on the situation,
certain numerical error might be avoided completely by not using floating point computation,
or with some careful considerations. In other cases, we need to perform exact arithmetic, i.e.
fully expanding the results of floating point computation.

In this chapter, we summarize the techniques that we use to handle numerical error and
degeneracy for all the algorithms in this thesis. Besides, for robustness reason as well as for
simplicity and thus efficiency of our implementation, we may need to introduce an infinity
point into the point set. This implementation technique is discussed in the last section of
this chapter.

6.1 Numerical error on digital Voronoi diagram computation

During Phase 2 of our PBA algorithm in Section 4.2, we need to use Lemma 4.2 to
determine whether the Voronoi cell of a certain point b can appear on the column i or it is
completely dominated by the Voronoi cells of a and c on this column. The decision relies
on the computation of the two points p(i, u) and q(i, v) which are the intersection of the
perpendicular bisector of ab and bc with column i. This computation can have numerical
error due to a division, and as a result b might inaccurately color a grid point while it should
not, or it misses a grid point that it should color; see Figure 6.1.

To avoid this numerical error problem, our implementation uses integer division instead of
floating point division while calculating u and v. In other words, we perform the checking of

108



Chapter 6. Numerical Error and Robustness Issues 109

a

b

c

p
q

(a) V(b) intersecting this column.

a

b

c

q

p

(b) V(b) not intersecting this column.

Figure 6.1: Numerical error while checking if a and c dominates b on the given column. It
is difficult to confirm whether V(b) intersects the column or not.

Lemma 4.2 using u′ = buc and v′ = bvc, which can be computed exactly, instead of u and v.
Clearly, if u′ < v′ then u < v, and if u′ > v′ then u > v. When u′ = v′, both intersection
points lie in between a pair of consecutive grid points on column i, and thus b cannot color
any grid point in this column. In this case we say that b is dominated by a and c in the
digital space of column i.

6.2 Transforming the point set in DigiDel2D

In the algorithm in Section 4.3, when working with points having floating point coordinates,
Phase 1a needs to map them to an m2 grid. We want precise computation so that the
triangulation computed with respect to points mapped to the grid remains a triangulation
when we do a part of the inverse mapping to the original coordinates of the points, as
discussion in Section 4.3.3. In this section, we show how precise computation can be achieved
by representing the scale and translation used in the mapping with only certain number of
bits.

We just consider the 1D coordinate in the x-axis; the discussion can be generalized to 2D with
scale be the larger one calculated from each dimension, while translation is simply a vector of
two components. Let the points be such that their minimum and maximum x-coordinates
are xmin and xmax, respectively. Let x be the original coordinate of a point. The coordinate
of the point mapped to the grid is thus x̄ = b(x− translation)/scalec where translation = xmin

and scale = (xmax − xmin)/m. The computation of a triangulation in Phase 1a and Phase 1b
is performed using these integer coordinates.

Then, Phase 2 shifts all points in the grid back to their positions given in the input. To
maintain as many shifting of good cases as possible, we first perform the inverse scaling
and shifting for the whole bounding box with all the points. Specifically, we have x′ =

(x̄× scale + translation) as the new coordinate of the point before shifting it to the original
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coordinate x. The subsequent shifting is only to negate the effect of the truncation to integer
coordinate. To ensure we still have a valid triangulation with x′ in place of x̄, we must be
able to compute the floating point number x′ with no rounding error.

Let (pMax + 1) be the maximum number of bits available for the mantissa in our floating
point representation. Note that the explicit mention of “+1" here is a provision for possible
overflow of (x̄× scale + translation). As x̄ is a non-negative integer with maximum value of
(m− 1), it needs pM = (logm) bits to represent. Let the number of bits used to represent
the mantissas of the two constants scale and translation be pS and pT , respectively. We keep
pT = pMax, and mention pS in the next paragraph.

We are ready to discuss how to set scale and translation before doing the actual mapping to the
grid. First, the result of the (x̄×scale) is accurately represented using no more than pMax bits,
as long as we do some necessary rounding up on scale such that its mantissa is representable
by pS = (pMax−pM) bits. The rounding up can just increase scale by a little bit at its least
significant bits and thus we are still able to spread out the mapping of points on the grid.
Second, the addition of (x̄× scale) with translation can result in rounding error as translation
can be much smaller or much larger than (x̄×scale). Let range = (xmax−xmin) = (m×scale).
We consider two cases to guarantee that the computation of x′ is accurate:

Case 1: translation ≤ range.
Let 2t be the largest term in the binary representation of range. We reduce translate
by removing all terms in its binary representation that are smaller than 2t−(pMax−1).

Case 2: translation > range.
We round up scale a little bit as follows. Let 2r be the largest term in the binary repre-
sentation of translation. We round up all terms that are smaller than 2r−(pMax−1)+pM

in the binary representation of scale. Because range = xmax − xmin ≥ 2r−(pMax−1), we
always have that scale, represented by pS bits, is larger than 2r−(pMax−1)+pM for any
meaningful input and is thus non-zero. Also, the rounding up does not increase the
value of scale more than twice, and thus we are still able to spread out the mapping of
points on the grid.

6.3 Exact predicates and symbolic perturbation

All the algorithms we proposed relies on predicates such as orientation test, incircle test and
insphere test. These tests are all of high order computations, and thus might have numerical
error when using floating point computation. Numerical error is dangerous in that not only
does it produce wrong output such as missing some points on the convex hull, but it can
also give inconsistent result and thus the star splaying algorithm might fail to converge.

To deal with numerical error, we adopt Shewchuk’s implementation of exact predicates
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[She96b] on the GPU. Each exact predicate consists of two parts: the fast check and the
exact check. In the fast check, computation is done purely using floating point arithmetic,
and it uses arithmetic filtering to determine if the result is reliable or not. If the absolute
value of result is greater than a certain error bound, then it is reliable. Otherwise, the exact
check is called. The exact check represents each floating point number as an expansion, i.e.
an array of floating point numbers in sorted magnitude. Each number is preallocated with
the maximum size possibly required to represent it, depending on the computation that
leads to it. This way, the computation is guaranteed to be exact.

Most of the threads performing the predicates do not need to go into exact computation.
The error bound used in the filter is small enough that exact computation is required
only when points are very close to being degenerate. This causes divergence in the thread
execution. Besides, each exact computation requires a lot more temporary memory than the
fast computation, and hence the number of threads that we can launch to perform exact
computation is much smaller. If both the fast and the exact checks are done in the same
kernel, then the fast checks are slowed down.

In order to reduce this divergence during predicate computation, we split each kernel that
performs some predicates into two separate kernels, to be called one after the other. In the
first kernel, all threads only use the fast checks. Threads that need to further use the exact
checks will be marked. In the second kernel, only threads that are marked in the previous
kernel perform the exact check. This way, the fast checks are done with as many threads as
needed, and thus are very efficient.

One issue with this approach is that when launching the kernel to perform the exact check,
very few threads actually have to do something. Most of the threads just check to find
out they are not marked, and then stop. This significantly wastes the computing power of
the GPU. To handle this, it is necessary to obtain a compressed list of threads (or more
accurately the list of work items) that need exact checks. Performing compaction all the time
is expensive, so we propose to use on-the-fly compaction on the shared memory. Threads in
the same block do the compaction on the shared memory, and then one thread performs
an AtomicAdd to get the global offset to output the compacted result to the global memory.
Since the number of exact checks needed is usually very small, the access to the global
memory is reduced.

Even with exact computation, we still have a robustness issue when input points are actually
degenerate. For example, when we do point location on a 3D triangulation, if the point
lies on a facet, then we still have to decide whether it should belong to one tetrahedron
or the other. This decision has to be consistent across the program. The star splaying
algorithm also requires consistent predicate results. To handle that, we use the simulation
of simplicity method by Edelsbrunner [EM90]. This approach requires us to perform a few
more determinant calculations in case of a degenerate point set. That just makes the threads
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performing these predicate checks be more divergent. However, with our kernel splitting
scheme mentioned above, this does not greatly affect the overall performance of our program.

6.4 Infinity point and the extended triangulation

In all the algorithms discussed in this thesis, one of the most common operations we need to
perform is inserting points into an existing triangulation. The insertion is done in parallel,
and it is important to make sure that these insertions do not introduce self-intersections in
the triangulation. If the points being inserted fall into the existing simplices (triangles or
tetrahedra), then the problem is simple since we just need to restrict at most one insertion
per simplex. However, if the insertion falls outside the existing triangulation, then the
situation is more troublesome. In that case, we use the technique discussed in Section 5.2,
introducing a kernel point s and making sure that the boundary of the triangulation is always
maintained star-shaped with respect to s. By doing so, the space outside the triangulation
is partitioned into a set of none self-intersecting cones formed by the kernel point and the
facets on the boundary of the triangulation.

To make the code for handling this boundary situation simpler, we introduce an infinity point
into the triangulation. The infinity point is considered as a virtual vertex, connected to the
boundary of the triangulation to form an extended triangulation covering the whole space
(either R2 or R3). Besides the normal simplices, there is an extra set of infinity simplices
adjacent to the boundary of the triangulation, with one vertex being the infinity point. These
infinity simplices are treated as normal simplices, except during predicate computations.
When an orientation check, incircle check, or insphere check involving the infinity point is
performed, the coordinate of the kernel point s, as calculated below, is used instead, and the
result is reversed accordingly.

The kernel point s is constructed, in the IncDel3D implementation for example, as follows.
We use a parallel scan operation on the GPU to find the two points a and b in S with the
minimum and maximum x-coordinates. Then, we use another scan to find the point c that
is farthest from the edge ab, and a last scan to find the point d that is farthest from the
triangle abc. By doing so, we get an initial tetrahedron abcd that has a large volume in most
cases. The point s is calculated to be the centroid of the tetrahedron abcd. Note that we
also perform an orientation check on abcd and if the predicate result is 0 (i.e. these points
are coplanar), the program terminates since the whole input point set is coplanar.



Chapter 7
Concluding Remarks

In this thesis, we have proposed two approaches to solve three fundamental computational
geometry problems on the GPU. In the first approach, a major part of the computation
is performed in the digital space to obtain a good approximation, before a transformation
phase is applied to obtain the final result in the continuous space. The digital approximation
is derived from the digital Voronoi diagram which can be efficiently constructed using our
Parallel Banding Algorithm. The advantage of this approach is that a major part of the
computation is done in the digital space with high level of parallelism and a good memory
access pattern. This approach works particularly well in 2D when we construct the Delaunay
triangulation, since we can provably derive a valid triangulation from the digital computation.

For the higher dimensions problems, namely the 3D convex hull and the 3D Delaunay
triangulation, we encounter some issues. The dualization becomes more challenging and
the result is in general not topologically correct. We adopt the star splaying algorithm on
the GPU to efficiently correct these problems. For the 3D convex hull problem, we also
introduce the digital depth test to further perform more work in the digital space while still
guaranteeing the correctness of the algorithm in the continuous space. For the 3D Delaunay
triangulation problem, we show that it is possible to have a digital structure that can be
dualized into a valid 3D triangulation, but obtaining that structure is too costly, even for
the GPU. As such, an approach similar to that for the 3D convex hull problem is used.
Nevertheless, the approach still allows us to, for the first time, achieve significant speedup
when compared to the best sequential CPU implementations currently available, for all the
three problems.

Moving on to the second approach, we depart from the digital computation approach
and instead try to rely on a combination of the incremental insertion technique and local
transformations. Points are inserted in batches with the help of some heuristics to provide a
good triangulation before flipping is applied in parallel to transform it to the correct result.
In the 2D Delaunay triangulation problem, this approach works very well. In the 3D convex
hull problem, we need a slightly modified flipping schedule to guarantee that flipping provably
converges to the solution. In the 3D Delaunay triangulation problem, flipping can no longer
guarantee us correct result, and actually the existence of a flipping path to transform any
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triangulation to the Delaunay one is an open problem. Nevertheless, flipping usually takes
us very close to the result, and with our adaptive version of star splaying on the CPU, we
can obtain the final result efficiently. We also further provide two heuristics, one on choosing
the order of point insertion, and one on alternating between inserting points and flipping, to
further reduce the cost of flipping as well as the cost of the subsequent star splaying phase.
Overall, this approach allows us to reach a speedup similar to the first approach, if not a bit
better. More importantly, this approach is not much dependent on the distribution of the
input point set as compared to the first approach, and thus it can handle real-world input
data very well.

7.1 Limitations

From a high level point of view, there is a fundamental difference between the digital approach
and the incremental insertion approach. In the digital approach, through the use of the
digital Voronoi diagram to approximate the continuous one, we can capture the geometry
of the desired result approximately, while we sometimes fail to capture the topology. As a
result, in the 3D convex hull and the 3D Delaunay triangulation problem, it is necessary for
us to use the star splaying algorithm to correct the topology of the derived sketch. The only
scenario in which the digital computation produces a sketch with correct topology is when
constructing the 2D Delaunay triangulation, although the proof for that is rather intricate.

The continuous approach, on the other hand, focuses on maintaining the topology of the
structure at all time, while only uses some heuristics to partially capture the geometry.
For example, we insert at most one point into a simplex at a time, while flips that cause
self-intersections are prohibited. As a result, the implementation of this approach is usually
much simpler. However, because the geometry is not well captured, more transformations
are needed to get to the final result. In some cases, due to the restriction of the topology, it
may not be possible to reach, for example, the 3D Delaunay triangulation. In that case, we
still need the star splaying algorithm to handle the few last modifications to the structure
under construction. The star splaying algorithm actually disintegrates the existing structure
into smaller components (stars) to reduce the topological constraints in order to transform it
into the correct result.

In the two following sections, we discuss a few other limitations of the two proposed approach
in practice.

7.1.1 The digital approach

Due to the nature of the digital space with finite resolutions, it is difficult to capture all
the geometrical information. As a result, there are two cases in which the information in
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(a) Under-approximation (b) Over-approximation

Figure 7.1: Two problems associated with the input points being shifted in digital space.

the continuous space is missed in the digital space. The first case is when multiple input
points are mapped to the same grid point. In this case, only one point can be captured in
the digital computation, while the rest need to be processed later. As a result, when the
input points are cluttered, especially on real-world inputs where points are arranged along
some curves or surfaces instead of spreading evenly in the space, many points are missed
in the digital computation. The second case is when multiple Voronoi vertices fall into the
same grid cell. Again, only one can be captured, while others are either shifted to nearby
grid cells or are lost, causing topological problems in the sketch. This is clearly observed
when experimenting with the thin circle or the thin sphere point distributions.

Another issue that can affect the quality of the sketch, and thus the performance of our
algorithms, is the shifting of input points. When we map the points into the digital space,
we shift them slightly. In the convex hull construction described in Section 4.4 for example,
this shifting causes two following problems:

Under-approximation problem.
When we have multiple points shifted to the same grid point, we can only record one
point, and thus there are potentially many more points outside C(S′). See Figure 7.1a
for a 2D illustration where the round black points are kept and the solid line denotes
part of C(S′). The round white points are missing points, many of which are outside
C(S′). We address this issue by an efficient depth test in Section 4.4.4 and with
the walking to locate a nearby triangle for every point outside C(S′), we are able to
construct a very good star for that point. This reduces the amount of splaying needed
in the next phase.

Over-approximation problem.
In certain cases, for example when points are distributed near the surface of a cube
axis-aligned with G, many points that are not extreme vertices are shifted outside and
are legitimately captured in the sketch. See Figure 7.1b for a 2D illustration, where
after the digital Voronoi diagram computation, all the round black points, after shifted
to the square black grid points, are captured. To address this issue, when computing
each slice of the digital Voronoi diagram, we only shift two coordinates of the points
while keeping the third one untouched (i.e. using floating value). This gives us a much
more accurate sketch.
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7.1.2 The incremental insertion approach

The incremental insertion with local transformation approach helps avoid many issues
associated with the digital computation. However, it still has several limitations that
potentially affect the performance of our algorithms.

Firstly, the approach makes heavy use of flipping. Since incremental construction does not
provide a good approximation of the desired structure, a lot of flips are needed. Each flip
requires memory access to check, perform, and update the neighboring information. These
accesses are usually random, and that puts a lot of pressure onto the GPU memory system.
Section 5.3.5 has mentioned some techniques to improve the situation, but in general most
of our implementations are still memory bound.

Secondly, during the incremental insertion process, at most one point can be inserted into a
simplex in each round. In the worst case where after each insertion, all the remaining points
fall into the same simplex, we need O(n) rounds of insertion. Fortunately, this is usually not
the case in practice, since with our heuristic in choosing the order of points to insert, the
remaining points are spread quite evenly among the existing simplices (even on non-uniform
point distributions or real-world datasets).

Thirdly, we do not have any clear control over the number of iterations of flipping. Here we
are not referring to those pathological cases in which O(n2) flips are needed. Instead, we are
talking about some practical situations in which the flips are serialized. We illustrate this
scenario with an example in 2D convex hulls construct, in which each flip is a 2–1 flip to
remove a non-extreme vertex; see Figure 7.2. In this example, at any point in time, only one
flip is available, and only after that flip is performed does another flip appear. A very similar
scenario can happen during 3D convex hull and Delaunay triangulation construction. In
that case, the number of iterations of flipping can be very large, with very few flips in each
iteration. This leads to a lot of synchronizations between the CPU and the GPU, affecting
the performance of the algorithms.

The 3D Delaunay triangulation algorithm has another limitation, which is on the unpre-
dictability of the number of unflippable facets remaining after Phase 1. This number is

  

Only this 2 1 flip is available–

Figure 7.2: An illustration of a situation where flipping is serialized.
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affected by the order of points that we insert, and the order of flips performed. In our
experiment with synthetic data, this number is usually quite stable, but with real-world data,
this number varies significantly. Fortunately our adaptive star splaying algorithm, combined
with the use of Flip-Flop in the construction of convex stars, is quite efficient at removing
these unflippable facets. It remains a challenging problem to improve the situation, and if
possible reaching the Delaunay triangulation through flipping alone.

7.2 Outlook

The last few years have seen many new techniques developed for programming on the GPU.
We look into some of the techniques that could change or be used in the algorithms we
propose in this thesis.

In the Tao analysis [PNK+11], our algorithms are classified as morph algorithms, because
the computation repeatedly modifies the connectivity in the underlying structure. A series of
papers by the same group of authors [HBP11, NBP13a, NBP13b, NBP13c] presents several
techniques for implementing this class of algorithms on the GPU. Many of these techniques
have already been independently developed for this thesis. These works also emphasize on the
need for better ways to rearrange the data to improve cache efficiency. Wu et al. [WZZ+13]
prove that the general problem of re-positioning data to minimize non-coalesced memory
access on the GPU is NP-complete. They also discuss a few techniques to rearrange data,
some of which are also very similar to those we propose.

Besides the memory access problem, the overhead of synchronizing between the GPU and the
CPU is also a serious issue. Particularly, our algorithms are all developed in a multi-iterations
style. This results in a large number of kernel launches and GPU-CPU communications. The
IncDel3D algorithm, for example, requires a few hundred iterations of flipping in total, most
of which performing very few actual flips. A recent work by Gupta et al. [GSO12] advocates
for the use of Persistent Threads, a programming principle in which a kernel is launched
with only enough threads so that all of them reside and execute on the GPU at the same
time. This allows us to globally synchronize the execution of threads across all blocks, and
thus a single kernel launch can perform multiple iterations of computation without the need
to stop and exit to the CPU. Such a global synchronization mechanism is also discussed by
Xiao and Feng [XF10]. They successfully design a scalable and decentralized global barrier
without using atomic operations. The persistent threads style could be useful to reduce the
overhead in our implementations.

Recently, Stuart and Owens [SO11] propose several techniques to implement mutex and
semaphore efficiently on the GPU. These are two important synchronization primitives that
can be used to lock data while processing in parallel. This possibly allows us to use the
Bowyer-Watson algorithm on the GPU, similar to the work by Batista et al. [BMPS10]. In
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our preliminary experiment with the parallel Bowyer-Watson algorithm on the GPU, we
find that with an input of one million points, we need more than 400 rounds of insertions,
since each round can only insert at most a few thousand points. This is because most of
the insertions conflict with each other since the regions affected by each insertion overlap.
As a result, even with locking possible and using the persistent threads programming style,
it would still be challenging to implement this approach while fully utilize the parallel
computing power on the GPU. With the fast growing number of stream processors, such
a coarse-grained approach is definitely less favorable compared to the two approaches we
present in this thesis.



References

[AK12] Almashor, M. and Khalil, I. Fully peer-to-peer virtual environments with 3D
Voronoi diagrams. Computing, 94(8–10):679–700, 2012.

[AP93] Amato, N. M. and Preparata, F. P. An NC parallel 3D convex hull algorithm.
In SCG ’93: proceedings of the 9th symposium on Computational geometry,
pages 289–297, New York, NY, USA, 1993. ACM.

[Aur91] Aurenhammer, F. Voronoi diagrams–a survey of a fundamental geometric data
structure. ACM Computing Survey, 23(3):345–405, 1991.

[BCKO08] Berg, M. d., Cheong, O., Kreveld, M. v., and Overmars, M. Computational
geometry: algorithms and applications. Springer-Verlag TELOS, Santa Clara,
CA, USA, 3rd edition, 2008.

[BDH96] Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. The Quickhull algorithm
for convex hulls. ACM transactions on Mathematical Software, 22(4):469–483,
1996. http://www.qhull.org/.

[BMPS10] Batista, V. H., Millman, D. L., Pion, S., and Singler, J. Parallel geometric
algorithms for multi-core computers. Computational geometry, 43(8):663–677,
2010.

[Bol09] Bollig, E. F. Centroidal Voronoi tesselation of manifolds using the GPU.
Master’s thesis, Department of Scientific Computing, Florida State University,
2009.

[Bor48] Borsuk, K. On the imbedding of systems of compacta in simplicial complexes.
Fundamenta Mathematicae, 35(1):217–234, 1948.

[Bow81] Bowyer, A. Computing Dirichlet tessellations. The computer journal, 24(2):162–
166, 1981.

[CET14] Cao, T.-T., Edelsbrunner, H., and Tan, T.-S. Triangulations from topologi-
cally correct digital Voronoi diagrams. Computational Geometry: Theory and
Applications, 2014. To appear.

[CGA] CGAL, Computational Geometry Algorithms Library, v4.2. http://www.cgal.
org.

[Cha96] Chan, T. M. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete and Computational Geometry, 16:361–368, 1996.

119



References 120

[CK07] Cuntz, N. and Kolb, A. Fast hierarchical 3D distance transforms on the GPU.
In Eurographics, pages 93–96, 2007.

[CMS92] Cignoni, P., Montani, C., and Scopigno, R. A merge-first divide & conquer
algorithm for Ed Delaunay triangulations. Technical report, Istituto CNUCE -
C.N.R., Pisa, Italy, 1992.

[CNGT14] Cao, T.-T., Nanjappa, A., Gao, M., and Tan, T.-S. A GPU accelerated
algorithm for 3D Delaunay triangulation. In I3D ’14: Proceedings of the 2014
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pages
47–54, New York, NY, USA, 2014. ACM.

[CS88] Clarkson, K. L. and Shor, P. W. Algorithms for diametral pairs and convex
hulls that are optimal, randomized, and incremental. In SCG ’88: Proceedings
of the 4th symposium on Computational Geometry, pages 12–17, New York, NY,
USA, 1988. ACM.

[CTMT10] Cao, T.-T., Tang, K., Mohamed, A., and Tan, T.-S. Parallel banding algorithm
to compute exact distance transform with the GPU. In I3D ’10: Proceedings of
the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,
pages 83–90, New York, NY, USA, 2010. ACM.

[Cui99] Cuisenaire, O. Distance transformations: fast algorithms and applications to
medical image processing. PhD thesis, Universite catholique de Louvain (UCL),
Louvain-la-Neuve, Belgium, 1999.

[Dan80] Danielsson, P.-E. Euclidean distance mapping. Computer Graphics and Image
Processing, 14:227–248, 1980.

[DDD+95] Dehne, F., Deng, X., Dymond, P., Fabri, A., and Khokhar, A. A. A random-
ized parallel 3D convex hull algorithm for coarse grained multicomputers. In
SPAA ’95: proceedings of the 7th ACM symposium on Parallel Algorithms and
Architectures, pages 27–33, New York, NY, USA, 1995. ACM.

[Dwy87] Dwyer, R. A faster divide-and-conquer algorithm for constructing Delaunay
triangulations. Algorithmica, 2:137–151, 1987.

[Dwy91] Dwyer, R. Higher-dimensional Voronoi diagrams in linear expected time.
Discrete & Computational Geometry, 6(1):343–367, 1991.

[EK12] Edelsbrunner, H. and Kerber, M. Dual complexes of cubical subdivisions of Rn.
Discrete & Computational Geometry, 47(2):393–414, 2012.

[EM90] Edelsbrunner, H. and Mücke, E. P. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics, 9:66–104, 1990.



References 121

[Eri99] Erickson, J. Computational geometry pages, list of software libraries and codes.
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html, 1999.

[FC12] Foteinos, P. and Chrisochoides, N. Dynamic parallel 3D Delaunay triangulation.
In Quadros, W. R., editor, Proceedings of the 20th International Meshing
Roundtable, pages 9–26, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[FCTB08] Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. 2D Euclidean
distance transform algorithms: A comparative survey. ACM computing survey,
40(1):1–44, 2008.

[FG06] Fischer, I. and Gotsman, C. Fast approximation of high-order Voronoi diagrams
and distance transforms on the GPU. Graphics Tools, 11(4):39–60, 2006.

[For87] Fortune, S. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1–
4):153–174, 1987.

[GCN+13] Gao, M., Cao, T.-T., Nanjappa, A., Tan, T.-S., and Huang, Z. gHull: a GPU
algorithm for 3D convex hull. ACM transactions on Mathematical Software,
40(1):3:1–3:19, October 2013.

[GCTH13] Gao, M., Cao, T.-T., Tan, T.-S., and Huang, Z. Flip-flop: convex hull construc-
tion via star-shaped polyhedron in 3D. In I3D ’13: proceedings of the 2013
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pages
45–54, New York, NY, USA, 2013. ACM.

[Geo] The Georgia Tech large geometric models archive. http://www.cc.gatech.edu/
projects/large_models/.

[GP10] Guillemin, V. and Pollack, A. Differential Topology. American Mathematical
Society, Providence, Rhode Island, 2010.

[Gra72] Graham, R. L. An efficient algorith for determining the convex hull of a finite
planar set. Information Processing Letters, 1(4):132–133, 1972.

[GS85] Guibas, L. and Stolfi, J. Primitives for the manipulation of general subdivisions
and the computation of Voronoi. ACM Transactions on Graphics, 4(2):74–123,
1985.

[GSO12] Gupta, K., Stuart, J. A., and Owens, J. D. A study of persistent threads style
GPU programming for GPGPU workloads. In InPar ’12: Innovative Parallel
Computing, pages 1–14, May 2012.

[HBP11] Hassaan, M. A., Burtscher, M., and Pingali, K. Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms. In PPoPP
’11: Proceedings of the 16th ACM symposium on Principles and Practice of
Parallel Programming, pages 3–12, New York, NY, USA, 2011. ACM.



References 122

[HDSB01] Huebner, K. H., Dewhirst, D. L., Smith, D. E., and Byrom, T. G. The Finite
Element Method for Engineers. Wiley, New York, NY, USA, 2001.

[HH06] Hahn, H. and Han, Y. Recognition of 3D object using attributed relation graph
of silhouette’s extended convex hull. In Advances in Visual Computing, volume
4292 of Lecture Notes in Computer Science, pages 126–135. Springer Berlin
Heidelberg, 2006.

[Hig82] Highnam, P. T. The ears of a polygon. Information Processing Letters, 15(5):196–
198, 1982.

[HKL+99] Hoff, III, K. E., Keyser, J., Lin, M., Manocha, D., and Culver, T. Fast
computation of generalized Voronoi diagrams using graphics hardware. In
SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer
Graphics and Interactive Techniques, pages 277–286, 1999.

[HNO98] Hayashi, T., Nakano, K., and Olariu, S. Optimal parallel algorithms for
finding proximate points, with applications. IEEE transactions on Parallel and
Distributed Systems, 9(12):1153–1166, 1998.

[HSO07] Harris, M., Sengupta, S., and Owens, J. D. Parallel prefix sum (scan) with cuda.
In Nguyen, H., editor, GPU Gems 3, pages 815–876. Addison Wesley, 2007.

[ILSS06] Isenburg, M., Liu, Y., Shewchuk, J., and Snoeyink, J. Streaming computation
of Delaunay triangulations. ACM Transactions on Graphics, 25(3):1049–1056,
July 2006.

[JBS06] Jones, M. W., Baerentzen, J. A., and Sramek, M. 3D distance fields: A survey of
techniques and applications. IEEE transactions on Visualization and Computer
Graphics, 12(4):581–599, 2006.

[JD10] Jurkiewicz, T. and Danilewski, P. Efficient quicksort and 2D convex hull for
CUDA, and MSIMD as a realistic model of massively parallel computations.
http://www.mpi-inf.mpg.de/~tojot/papers/chull.pdf, October 2010.

[Joe89] Joe, B. Three-dimensional triangulations from local transformations. SIAM
journal on Scientific and Statistical Computing, 10(4):718, 1989.

[Joe91] Joe, B. Construction of three-dimensional Delaunay triangulations using local
transformations. Computer aided geometric design, 8(2):123–142, 1991.

[Kal81] Kallay, M. Convex hull algorithms in higher dimensions. Unpublished
manuscript, department of mathematics, university of Oklahoma, Norman,
Oklahoma, 1981.



References 123

[KK92] Kolountzakis, M. N. and Kutulakos, K. N. Fast computation of the Euclidean
distance maps for binary images. Information processing letters, 43:181–184,
1992.

[KKv05] Kohout, J., Kolingerová, I., and Žára, J. Parallel Delaunay triangulation in E2
and E3 for computers with shared memory. Parallel computing, 31(5):491–522,
2005.

[Kre97] Kreveld, M. Algorithms for triangulated terrains. In SOFSEM’97: Theory and
Practice of Informatics, volume 1338 of Lecture Notes in Computer Science,
pages 19–36. Springer Berlin Heidelberg, 1997.

[KS86] Kirkpatrick, D. G. and Seidel, R. The ultimate planar convex hull algorithm.
SIAM Journal on Computing, 15(1):287–299, February 1986.

[Law77] Lawson, C. L. Software for C1 surface interpolation. In Rice, J. R., editor,
Mathematical Software III, pages 161–194. Academic Press, 1977.

[LHS03] Lee, Y.-H., Horng, S.-J., and Seitzer, J. Parallel computation of the Euclidean
distance transform on a three-dimensional image array. IEEE transactions on
Parallel and Distributed Systems, 14(3):203–212, 2003.

[LKS+10] Lee, J., Kim, J., Seo, S., Kim, S., Park, J., Kim, H., Dao, T. T., Cho, Y.,
Seo, S. J., Lee, S. H., Cho, S. M., Song, H. J., Suh, S.-B., and Choi, J.-D. An
OpenCL framework for heterogeneous multicores with local memory. In PACT
’10: Proceedings of the 19th international conference on Parallel Architectures
and Compilation Techniques, pages 193–204, New York, NY, USA, 2010. ACM.

[Llo82] Lloyd, S. P. Least squares quantization in PCM. IEEE transactions on
Information Theory, 28(2):129–137, 1982.

[Lo12] Lo, S. H. Parallel Delaunay triangulation in three dimensions. Computer
Methods in Applied Mechanics and Engineering, 237-240:88–106, September
2012.

[LZB08] Liu, R., Zhang, H., and Busby, J. Convex hull covering of polygonal scenes
for accurate collision detection in games. In GI ’08: Proceedings of Graphics
Interface, pages 203–210, Windsor, Canada, 2008.

[McL76] McLain, D. H. Two dimensional interpolation from random data. The computer
journal, 19(2):178–181, 1976.

[MQR03] Maurer, Jr., C. R., Qi, R., and Raghavan, V. A linear time algorithm for
computing exact Euclidean distance transforms of binary images in arbitrary
dimensions. IEEE transactions on Pattern Analysis and Machine Intelligence,
25(2):265–270, 2003.



References 124

[MS88] Miller, R. and Stout, Q. F. Efficient parallel convex hull algorithms. IEEE
Transactions on Computers, 37(12):1605–1618, 1988.

[MS97] Meeran, S. and Share, A. Optimum path planning using convex hull and local
search heuristic algorithms. Mechatronics, 7(8):737–756, 1997.

[NBGS08] Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable parallel program-
ming with CUDA. Queue, 6(2):40–53, 2008.

[NBP13a] Nasre, R., Burtscher, M., and Pingali, K. Atomic-free irregular computations
on gpus. In Proceedings of the 6th workshop on General Purpose Processor
using Graphics Processing Units, pages 96–107, New York, NY, USA, 2013.
ACM.

[NBP13b] Nasre, R., Burtscher, M., and Pingali, K. Data-driven versus topology-driven
irregular computations on GPUs. In IPDPS ’13: Proceedings of the 27th IEEE
international symposium on Parallel and Distributed Processing, pages 463–474,
May 2013.

[NBP13c] Nasre, R., Burtscher, M., and Pingali, K. Morph algorithms on GPUs. In
PPoPP ’13: Proceedings of the 18th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, pages 147–156, New York, NY, USA,
2013. ACM.

[OLG+07] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., KrÃĳger, J., Lefohn,
A. E., and Purcell, T. A survey of general-purpose computation on graphics
hardware. Computer graphics forum, 26(1):80–113, 2007.

[PH77] Preparata, F. P. and Hong, S. J. Convex hulls of finite sets of points in two
and three dimensions. Communication of ACM, 20(2):87–93, 1977.

[PNK+11] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M. A., Kaleem,
R., Lee, T.-H., Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D.,
and Sui, X. The tao of parallelism in algorithms. In PLDI ’11: Proceedings of
the 32nd ACM SIGPLAN conference on Programming Language Design and
Implementation, pages 12–25, New York, NY, USA, 2011. ACM.

[Pri] The Princeton suggestive contour library. http://gfx.cs.princeton.edu/proj/
sugcon/models/.

[PS85] Preparata, F. P. and Shamos, M. I. Computational geometry: an introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[QCT13] Qi, M., Cao, T.-T., and Tan, T.-S. Computing 2D constrained Delaunay
triangulation using the GPU. IEEE Transactions on Visualization and Computer
Graphics, 19(5):736–748, May 2013.



References 125

[RT06] Rong, G. and Tan, T.-S. Jump flooding in GPU with applications to Voronoi
diagram and distance transform. In I3D ’06: Proceedings of the 2006 ACM
SIGGRAPH symposium on Interactive 3D graphics and games, pages 109–116,
New York, NY, USA, 2006. ACM.

[Sec02] Secord, A. Weighted Voronoi stippling. In NPAR ’02: proceedings of the 2nd
international symposium on Non-photorealistic Animation and Rendering, pages
37–43, New York, NY, USA, 2002. ACM.

[SGES12] Stein, A., Geva, E., and El-Sana, J. CudaHull: Fast parallel 3D convex hull on
the GPU. Computers & Graphics, 36(4):265–271, 2012.

[SGGM06] Sud, A., Govindaraju, N., Gayle, R., and Manocha, D. Interactive 3D distance
field computation using linear factorization. In I3D ’06: Proceedings of the
2006 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,
pages 117–124, New York, NY, USA, 2006. ACM.

[SGM05] Sud, A., Govindaraju, N., and Manocha, D. Interactive computation of dis-
crete generalized Voronoi diagrams using range culling. In Proceedings of the
international symposium on Voronoi diagrams in science and engineering, 2005.

[SH75] Shamos, M. I. and Hoey, D. Closest-point problems. FOCS ’75: proceedings
of the 16th annual symposium on Foundations of Computer Science, pages
151–162, 1975.

[She96a] Shewchuk, J. R. Triangle: Engineering a 2D quality mesh generator and Delau-
nay triangulator. In Lin, M. and Manocha, D., editors, Applied Computational
Geometry towards geometric engineering, volume 1148 of Lecture Notes in
Computer Science, pages 203–222. Springer Berlin / Heidelberg, 1996.

[She96b] Shewchuk, J. R. Robust adaptive floating-point geometric predicates. In SoCG
’96: Proceedings of the twenty-second annual symposium on Computational
geometry, pages 141–150, New York, NY, USA, 1996. ACM.

[She05] Shewchuk, J. R. Star splaying: an algorithm for repairing Delaunay triangu-
lations and convex hulls. In SoCG ’05: Proceedings of the twenty-first annual
symposium on Computational geometry, pages 237–246, New York, NY, USA,
2005. ACM.

[SKW09] Schneider, J., Kraus, M., and Westermann, R. GPU-based real-time discrete
Euclidean distance transforms with precise error bounds. In VISAPP ’09:
International conference on Computer Vision Theory and Applications, pages
435–442, 2009.

[SO11] Stuart, J. A. and Owens, J. D. Efficient synchronization primitives for GPUs.
CoRR, abs/1110.4623, 2011.



References 126

[SOM04] Sud, A., Otaduy, M. A., and Manocha, D. DiFi: Fast 3D distance field
computation using graphics hardware. Computer Graphics Forum, 23(3):557–
566, 2004.

[SPG03] Sigg, C., Peikert, R., and Gross, M. Signed distance transform using graphics
hardware. In VIS’03: Proceedings of the 14th IEEE Visualization 2003, pages
12–19, Washington, DC, USA, 2003. IEEE Computer Society.

[SRKN11] Srungarapu, S., Reddy, D. P., Kothapalli, K., and Narayanan, P. J. Fast
two dimensional convex hull on the GPU. In Proceedings of the 2011 IEEE
workshops of international conference on Advanced Information Networking
and Applications, WAINA ’11, pages 7–12, Washington, DC, USA, 2011. IEEE
Computer Society.

[Sta] The Stanford 3D scanning repository. http://graphics.stanford.edu/data/
3Dscanrep/.

[TO12] Tzeng, S. and Owens, J. D. Finding convex hulls using Quickhull on the GPU.
CoRR, abs/1201.2936, 2012.

[Tum04] Tumbde, A. A Voronoi partitioning approach to support massively multiplayer
online games. Technical report, The University of Wisconsin, 2004.

[TZTM12] Tang, M., Zhao, J.-Y., Tong, R., and Manocha, D. GPU accelerated convex
hull computation. Computers & Graphics, 36(5):498–506, 2012.

[VSCG08] Vasconcelos, C. N., Sá, A., Carvalho, P. C., and Gattass, M. Lloyd’s algorithm on
GPU. In ISVC ’08: proceedings of the 4th international symposium on Advances
in Visual Computing, pages 953–964, Berlin, Heidelberg, 2008. Springer-Verlag.

[Wat81] Watson, D. F. Computing the n-dimensional Delaunay tessellation with appli-
cation to Voronoi polytopes. The computer journal, 24(2):167–172, 1981.

[WHLL01] Wang, Y.-R., Horng, S.-J., Lee, Y.-H., and Lee, P.-Z. Optimal parallel algorithms
for the 3D Euclidean distance transform on the CRCW and EREW PRAM
models. In Proceedings of the 19th workshop on Combinatorial Mathematics
and Computation Theory, Taiwan, 2001.

[WLYZ+09] Wang, Y., Ling-Yun, W., Zhang, J.-H., Zhan, Z.-W., Xiang-Sun, Z., and
Luonan, C. Evaluating protein similarity from coarse structures. IEEE/ACM
transactions on Computational Biology and Bioinformatics, 6(4):583–593, 2009.

[WZZ+13] Wu, B., Zhao, Z., Zhang, E. Z., Jiang, Y., and Shen, X. Complexity analysis
and algorithm design for reorganizing data to minimize non-coalesced memory
accesses on GPU. In PPoPP ’13: Proceedings of the 18th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 57–68,
New York, NY, USA, 2013. ACM.



References 127

[XF10] Xiao, S. and Feng, W.-C. Inter-block GPU communication via fast barrier
synchronization. In IPDPS ’10: Proceedings of the 24th IEEE international
symposium on Parallel and Distributed Processing, pages 1–12, Los Alamitos,
CA, USA, 2010. IEEE Computer Society.



List of publications

1. Thanh-Tung Cao, Ke Tang, Mohamed Anis and Tiow-Seng Tan. Parallel Banding
Algorithm to compute exact distance transform with the GPU. In I3D ’10: Proceedings
of the 2010 ACM symposium on Interactive 3D Graphics and Games, 83–90, 2010.

2. Mingcen Gao, Thanh-Tung Cao, Tiow-Seng Tan, and Zhiyong Huang. gHull – A
three dimensional convex hull algorithm for graphics hardware. In I3D ’11: Proceedings
of the 2011 ACM symposium on Interactive 3D Graphics and Games, 204, 2011. Poster.

3. Meng Qi, Thanh-Tung Cao, and Tiow-Seng Tan. Computing 2D constrained Delau-
nay triangulation using the GPU. In I3D ’12: Proceedings of the 2012 ACM symposium
on Interactive 3D Graphics and Games, 39–46, 2012.

4. Meng Qi, Thanh-Tung Cao, and Tiow-Seng Tan. Computing 2D constrained Delau-
nay triangulation using the GPU. IEEE Transactions on Visualization and Computer
Graphics, 19(5):736–748, 2013.

5. Mingcen Gao, Thanh-Tung Cao, and Tiow-Seng Tan. Flip-Flop: Convex hull
construction via star-shaped polyhedron in 3D. In I3D ’13: Proceedings of the 2013
ACM symposium on Interactive 3D Graphics and Games, 45–54, 2013.

6. Mingcen Gao, Thanh-Tung Cao, Ashwin Nanjappa and Tiow-Seng Tan. gHull – A
GPU algorithm for 3D convex hull. ACM Transactions on Mathematical Software,
40(1):3, 2013.

7. Thanh-Tung Cao, Ashwin Nanjappa, Mingcen Gao and Tiow-Seng Tan. A GPU
accelerated algorithm for 3D Delaunay triangulation. In I3D ’14: Proceedings of the
2014 ACM symposium on Interactive 3D Graphics and Games, 47–54, 2014.

8. Thanh-Tung Cao, Herbert Edelsbrunner, and Tiow-Seng Tan. Triangulations from
topologically correct digital Voronoi diagrams. Computational Geometry: Theory and
Applications, 2014. To appear.


	List of Figures
	List of Algorithms
	Introduction
	Fundamental computational geometry and applications
	Motivations
	Contributions

	Background
	Computational geometry
	Convex hull
	Voronoi diagram
	Delaunay triangulation
	Geometrical relations
	Flipping

	Graphics processing unit
	Terminology
	Challenges

	Experiment setting

	Related Work
	Digital Voronoi diagram
	Exact and approximation
	PRAM algorithms
	GPU algorithms

	Convex hull
	Sequential and parallel algorithms
	GPU algorithms
	Star splaying in 3D

	Delaunay triangulation
	Sequential algorithms
	Parallel and streaming algorithms for the CPU


	Digital Space to Continuous Space
	Overview
	Digital Voronoi diagram
	Exact Euclidean distance transform
	Phase 1: Band sweeping
	Phase 2: Hierarchical merging
	Phase 3: Block coloring
	Complexity analysis
	3D and higher dimensions
	Weighted centroidal Voronoi diagram
	Experiment

	Delaunay triangulation in 2D - The perfect dualization
	Phase 1a: Digital Voronoi diagram construction
	Phase 1b: Triangulation construction
	Phase 2: Shifting
	Phase 3a: Missing points insertion
	Phase 3b: Edge flipping
	Proof of correctness
	Experiment

	Convex hull in 3D - The digital depth test
	Phase 1a: Voronoi construction
	Phase 1b: Star identification
	Phase 2: Hull approximation
	Phase 3a: Point addition
	Phase 3b: Hull completion
	Proof of correctness
	Experiment

	Delaunay triangulation in 3D - The difficulties
	Topological and geometrical difficulties
	Algorithm using star splaying
	Experiment

	Discussion

	Incremental Insertion with Local Transformation
	Overview
	3D convex hull revisit
	Phase 1: Construction
	Phase 2: Flipping
	Proof of correctness
	Experiment

	Delaunay triangulation in 2D and 3D with adaptive star-splaying
	Phase 1: Parallel point insertion and flipping
	Phase 2: Adaptive star splaying
	Point insertion heuristic
	Point relocation and the history DAG
	Compaction versus collection
	Memory access optimization
	2D Experiment
	3D Experiment

	Discussion

	Numerical Error and Robustness Issues
	Numerical error on digital Voronoi diagram computation
	Transforming the point set in DigiDel2D
	Exact predicates and symbolic perturbation
	Infinity point and the extended triangulation

	Concluding Remarks
	Limitations
	The digital approach
	The incremental insertion approach

	Outlook

	References

