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Abstract

The theory of the Fibonacci p-numbers, one of many generalisations of the Fibonacci
numbers, is fascinating. An overview of this theory is given, before two recent and very

contrasting applications are explored and analysed.



This piece of work is a result of my own work except where it forms an assessment based
on group project work. In the case of a group project, the work has been prepared in
collaboration with other members of the group. Material from the work of others not

involved in the project has been acknowledged and quotations and paraphrases suitably
indicated.
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Introduction

The Fibonacci numbers are a widely acclaimed sequence of integers generated by a recursion relation,
where the nth term is the sum of the previous two terms. Although Indian mathematicians such
as Pingala were already aware of their existence, the Fibonacci numbers are credited to Leonardo
of Pisa, the Italian mathematician who introduced the western world to the Hindu-Arabic numer-
als. Leonardo, or Fibonacci as he is commonly known, discussed the Fibonacci numbers in his 1202
book Liber Abaci as the solution to a problem concerning a rabbit population. While the sequence
may seem juvenile at first, mathematicians have been fascinated for centuries by its underlying beauty.

The Golden Ratio, the limit of the ratio of successive Fibonacci numbers, has itself been of par-
ticular interest over the years. There are numerous claims regarding appearances of the Golden Ratio
in the world around us, many of which are disputed. Some suggest that geometric objects displaying
the Golden Ratio are the most aesthetically pleasing and that the Golden Ratio appears in Egyptian
pyramids, the Acropolis in Athens and Da Vinci’s ‘The Vetruvian Man’ to name just a few. There
have also been suggestions that the Golden Ratio can be used to predict changes in stock market
prices and even the proposition that the Golden Ratio has special significance to the state of Illinois
in the United States of America! [18] Many of these claims lack sufficient supporting evidence. There
are however many proven applications of the Fibonacci numbers and the Golden Ratio in areas rang-
ing from Numerical Analysis to Theoretical Physics, and Fibonacci number theory has often proved
unexpectedly useful - the appearance of the Fibonacci numbers in the ‘negative solution’ to Hilbert’s
Tenth Problem is a notable example. [21]

This report focuses upon the theory and applications of the Fibonacci p-numbers, of which the Fi-
bonacci numbers are a special case. The aim of the first chapter is to familiarise the reader with
the core material which is required in subsequent chapters. In particular, the origins of the Fi-
bonacci p-numbers and the Golden p-Proportion are discussed, and properties and identities, which
appear analagously in later chapters, are proved. The second chapter introduces the Fibonacci (p,m)-
numbers, a generalisation of the Fibonacci p-numbers. It is shown that there exists a closed form
expression for the nth Fibonacci (p,m)-number. Using this closed form expression, Fibonacci theory
is extended from a discrete to a continuous domain in the third chapter. Some interesting curves
and surfaces are derived and a potential application in physical cosmology is discussed. Fibonacci
Coding Theory, a very contrasting application of the Fibonacci p-numbers, is analysed in the final
chapter. Research of this topic is in its infancy and as such, the material seen here is the interleaving
of published research and my own thoughts and analysis.

iii



Chapter 1

The Generalised Golden Section

The primary aim of this chapter is to show the mathematical elegance of the Fibonacci p-numbers
and their relation to the Golden p-Section, as well as providing a framework to build upon in later
chapters. Properties and identities of these numbers, which appear analagously in subsequent chapters,
are proved.

1.1 The Fibonacci p-numbers

Consider the following problem, adapted from [26]:

Newborn rabbit couples take p months to mature into adult couples and then produce one newborn
couple per month from month p+1 onwards. All newborn couples consist of one male and one female,
and rabbits are assumed to be immortal. If a newborn couple is put in an enclosed place in the first
month, how many rabbit couples will there be in total in the nth month?

We will look for a general solution to this problem.

Let bm denote a rabbit couple that has been maturing for m months with 0 ≤ m ≤ p. b0 is a
newborn couple and A = bp is an adult couple. Then the intermediate stages of maturing, dependent
on the value of p, are:

b0 −→ b1
b1 −→ b2
b2 −→ b3
...

...
bp−1 −→ A

For the case p = 0, newborn rabbit couples immediately mature into adult couples and then produce
babies one month later. Therefore the reproduction process is modelled by A→ AA (an adult rabbit
couple ‘becomes’ two different adult rabbit couples), and the rabbit population doubles each month.
This is a trivial case with little application to the life sciences as organisms take at least a little time
to mature. As a result we will consider cases where p > 0.

For example, when p = 3 the intermediate stages from a newborn to an adult couple are:

b0 −→ b1
b1 −→ b2
b2 −→ A

1



n Rabbit Couples A b0 b1 b2 Total
1 b0 0 1 0 0 1
2 b1 0 0 1 0 1
3 b2 0 0 0 1 1
4 A 1 0 0 0 1
5 A b0 1 1 0 0 2
6 A b0 b1 1 1 1 0 3
7 A b0 b1 b2 1 1 1 1 4
8 A b0 b1 b2 A 2 1 1 1 5
9 A b0 b1 b2 A A b0 3 2 1 1 7
10 A b0 b1 b2 A A b0 A b0 b1 4 3 2 1 10
11 A b0 b1 b2 A A b0 A b0 b1 A b0 b1 b2 5 4 3 2 14
12 A b0 b1 b2 A A b0 A b0 b1 A b0 b1 b2 A b0 b1 b2 A 7 5 4 3 19

Table 1.1: The ‘rabbit problem’ over the first 12 months when p = 3.

Table 1.1 shows the growth of the rabbit population over the first 12 months. The total number of
rabbits is decomposed into newborn couples b0, adult couples A, and the couples in the intermediate
stages b1 and b2.

When p = 3, the total number of rabbit couples follows the sequence

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19 . . .

Notice that this is the arithmetic sequence corresponding to the recursion relation

G(n) = G(n− 1) +G(n− 4) n ∈ Z,

with G(1) = G(2) = G(3) = G(4) = 1. In other words the nth term of the sequence is found by sum-
ming the previous term with the term three previous to that, and the first four terms of the sequence
are all equal to 1. This sequence can also be seen in the columns for A, b0, b1 and b2.

Similarly, p = 4 gives the sequence

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20 . . .

which is generated by the recursion relation

H(n) = H(n− 1) +H(n− 5) n ∈ Z,

with H(1) = H(2) = H(3) = H(4) = H(5) = 1.

Upon inspection of sequences for further values of p, we can conclude that in general, the total
number of rabbit couples in month n is the nth Fibonacci p-number [26]:

Definition. (The Fibonacci p-numbers)
For any integer p ≥ 0 and n ≥ p+ 2, the nth Fibonacci p-number is given by the recursion relation

Fp(n) = Fp(n− 1) + Fp(n− p− 1) n ∈ Z, (1.1)

with the initial conditions Fp(1) = Fp(2) = · · · = Fp(p) = Fp(p+ 1) = 1.

2



A visual representation of (1.1) below shows that the nth Fibonacci p-number is the sum of the previous
term and the term p previous to that:

The Fibonacci p-numbers also extend to negative values of n. By taking n = p + 1 in the recursion
relation (1.1) we have

Fp(p+ 1) = Fp(p) + Fp(0).

As the initial conditions in the definition above give Fp(p) = Fp(p+ 1) = 1, then Fp(0) = 0.

As there are p + 1 initial conditions for (1.1), we can use the same method to find the first p Fi-
bonacci p-numbers for n ≤ 0:

Fp(0) = Fp(−1) = Fp(−2) = . . . = Fp(−p+ 1) = 0 (1.2)

These are in essence the initial conditions for the negative Fibonacci p-numbers.

Now, rearranging the recursion relation (1.1) gives Fp(n − p − 1) = Fp(n) − Fp(n − 1). A shift
by p+ 1 terms gives the following equivalent recursion relation:

Fp(n) = Fp(n+ p+ 1)− Fp(n+ p), n ≤ −p.

This recursion relation and the initial conditions (1.2) enable us to find that:

Fp(−p) = Fp(1)− Fp(0) = 1. (1.3)

Continuing the sequence gives

Fp(−p− 1) = Fp(−p− 2) = . . . = Fp(−2p+ 1) = 0, (1.4)

and
Fp(−2p) = Fp(−p+ 1)− Fp(−p) = −1. (1.5)

This continues for all negative values of n. We will not focus on Fibonacci p-numbers for negative
n, but they will prove useful later. Table 1.2 gives the Fibonacci p-numbers for p = 1, 2, 3, 4, 5 and
−9 ≤ n ≤ 8. [31]

n −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

F1(n) 34 −21 13 −8 5 −3 2 −1 1 0 1 1 2 3 5 8 13 21
F2(n) 2 0 −2 1 1 −1 0 1 0 0 1 1 1 2 3 4 6 9
F3(n) 1 0 1 −1 0 0 1 0 0 0 1 1 1 1 2 3 4 5
F4(n) 1 −1 0 0 0 1 0 0 0 0 1 1 1 1 1 2 3 4
F5(n) −1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 2 3

Table 1.2: The extended Fibonacci p-numbers for p = 1, 2, 3, 4, 5. [31]
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Given the highly idealised nature of the generalised rabbit problem it may be difficult to forsee its
application on a wider scale in the life sciences. However note that for all cases where p > 0, the
reproduction process modelled by

A −→ Ab0

is asymmetric, as the adult rabbit couple A ‘becomes’ two different couples A and b0. This has simi-
larities to the asymmetric binary cell division common in bacteria, insects and plants. In [24] Spears
and Bicknell-Johnson analyse models of cell growth based on the Fibonacci 2- and 3-numbers and
conclude that the models “provide rational bases for the occurrence of Fibonacci and other recursive
phyllotaxis and patterning in biology”.[26]

However the overriding importance of the generalised rabbit problem is that it produces the Fi-
bonacci p-numbers which have numerous applications in many varied disciplines other than the life
sciences. Notable cases are the discovery of a new measurement theory, a new theory of real numbers,
an application in electrical engineering and a coding theory which is discussed in detail in Chapter 4
of this report.

1.2 Qp matrices

The Fibonacci p-numbers can be represented in the following form:

Fp(n)
Fp(n− 1)
Fp(n− 2)

...
Fp(n− p+ 1)
Fp(n− p)


︸ ︷︷ ︸

fn

=



1 0 · · · 0 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


︸ ︷︷ ︸

QT
p



Fp(n− 1)
Fp(n− 2)
Fp(n− 3)

...
Fp(n− p)

Fp(n− p− 1)


︸ ︷︷ ︸

fn−1

(1.6)

where fn and fn−1 are (p+ 1)× 1 vectors and QTp is the transpose of the Fibonacci Qp matrix:

Qp =



1 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


. (1.7)

Qp is a (p+ 1)× (p+ 1) matrix which contains a p× p identity matrix in its upper right corner. Re-
gardless of the value of p, the first column always begins and ends with a 1, and has zeros elsewhere.
The last row always begins with a 1 and has zeros in all other positions. [31]

To see that (1.6) does represent the Fibonacci p-numbers, apply matrix multiplication to give the
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recursion relation for the Fibonacci p-numbers (1.1) and the following trivial expressions:

Fp(n− 1) = Fp(n− 1),

Fp(n− 2) = Fp(n− 2),

...

Fp(n− p) = Fp(n− p).

The Fibonacci Qp matrices for the cases p = 0, 1, 2, 3 are:

Q0 = (1), Q1 =
(

1 1
1 0

)
, Q2 =

1 1 0
0 0 1
1 0 0

 , Q3 =


1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Perhaps the reason why the Qp matrix is intriguing, and encourages mathematicians to explore its
properties, is the direct relation between the Fibonacci p-numbers and the elements of the Qnp matrix.
With the help of Table 1.2 we can see a pattern emerging when we consider the powers of the Q1

matrix for example:

Q1 =
(

1 1
1 0

)
=
(
F1(2) F1(1)
F1(1) F1(0)

)
, Q2

1 =
(

2 1
1 1

)
=
(
F1(3) F1(2)
F1(2) F1(1)

)
,

Q3
1 =

(
3 2
2 1

)
=
(
F1(4) F1(3)
F1(3) F1(2)

)
, Q4

1 =
(

5 3
3 2

)
=
(
F1(5) F1(4)
F1(4) F1(3)

)
,

and the powers of the Q2 matrix:

Q2 =

1 1 0
0 0 1
1 0 0

 =

F2(2) F2(1) F2(0)
F2(0) F2(−1) F2(−2)
F2(1) F2(0) F2(−1)

 ,

Q2
2 =

1 1 1
1 0 0
1 1 0

 =

F2(3) F2(2) F2(1)
F2(1) F2(0) F2(−1)
F2(2) F2(1) F2(0)

 ,

Q3
2 =

2 1 1
1 1 0
1 1 1

 =

F2(4) F2(3) F2(2)
F2(2) F2(1) F2(0)
F2(3) F2(2) F2(1)

 ,

Q4
2 =

3 2 1
1 1 1
2 1 1

 =

F2(5) F2(4) F2(3)
F2(3) F2(2) F2(1)
F2(4) F2(3) F2(2)

 .

In general the nth power of the Qp matrix takes the following form [31]:

Theorem. For any integer p ≥ 1 and n ∈ Z, the nth power of the Fibonacci Qp matrix is given by:

Qnp =


Fp(n+ 1) Fp(n) · · · Fp(n− p+ 2) Fp(n− p+ 1)

Fp(n− p+ 1) Fp(n− p) · · · Fp(n− 2p+ 2) Fp(n− 2p+ 1)
...

...
. . .

...
...

Fp(n− 1) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)
Fp(n) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)

 , (1.8)

where Fp(n) is the nth Fibonacci p-number.
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Proof. We will use induction to prove this theorem1.

Firstly, using (1.1)–(1.5), we show that it is true for the simple case when n = 1:

Q1
p =


Fp(2) Fp(1) · · · Fp(3− p) Fp(2− p)

Fp(2− p) Fp(1− p) · · · Fp(3− 2p) Fp(2− 2p)
...

...
. . .

...
...

Fp(0) Fp(−1) · · · Fp(1− p) Fp(−p)
Fp(1) Fp(0) · · · Fp(2− p) Fp(1− p)

 =


1 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
1 0 · · · 0 0

 .

This is the Qp matrix which was defined earlier (1.7). Therefore the theorem holds true for the case
n = 1.

Now assume that it also holds for Qn−1
p :

Qn−1
p =


Fp(n) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)

Fp(n− p) Fp(n− p− 1) · · · Fp(n− 2p+ 1) Fp(n− 2p)
...

...
. . .

...
...

Fp(n− 2) Fp(n− 3) · · · Fp(n− p− 1) Fp(n− p− 2)
Fp(n− 1) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)

 .

We now use that Qnp = Qn−1
p Qp:

Qn−1
p Qp =

Fp(n) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)
Fp(n− p) Fp(n− p− 1) · · · Fp(n− 2p+ 1) Fp(n− 2p)

...
...

. . .
...

...
Fp(n− 2) Fp(n− 3) · · · Fp(n− p− 1) Fp(n− p− 2)
Fp(n− 1) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)




1 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
1 0 · · · 0 0



=


Fp(n) + Fp(n− p) Fp(n) · · · Fp(n− p+ 2) Fp(n− p+ 1)

Fp(n− p) + Fp(n− 2p) Fp(n− p) · · · Fp(n− 2p+ 2) Fp(n− 2p+ 1)
...

...
. . .

...
...

Fp(n− 2) + Fp(n− p− 2) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)
Fp(n) + Fp(n− 1) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)



=


Fp(n+ 1) Fp(n) · · · Fp(n− p+ 2) Fp(n− p+ 1)

Fp(n− p+ 1) Fp(n− p) · · · Fp(n− 2p+ 2) Fp(n− 2p+ 1)
...

...
. . .

...
...

Fp(n− 1) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)
Fp(n) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)

 .

This is the Qnp matrix, hence the theorem is proved.

1The original proof of this theorem can be found in [25]. Unfortunately I was unable to locate this source,
so the proof shown here is my own.
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Remark. Qnp is a (p + 1) × (p + 1) matrix where the first row is made from a decreasing Fibonacci
p-sequence of length p+ 1, starting with the term Fp(n+ 1):

. . . , Fp(n+ 1), Fp(n), . . . , Fp(n− p+ 2), Fp(n− p+ 1), . . . .

The second row consists of the sequence above shifted forwards by p terms. All subsequent rows are
found by shifting the sequence in the previous row backwards by a term.

The application of the Fibonacci p-numbers in Fibonacci Coding Theory, discussed later in this report,
uses the Qnp matrix to a great extent and in particular requires the following identity involving its
determinant. The proof is adapted from [31].

Theorem. For any integer p ≥ 0 and n ∈ Z,

detQnp = (−1)pn. (1.9)

Proof. Firstly we will consider the determinant of the Qp matrix, aided by the following matrix theory
from [15].

Let A be a square matrix and let aij denote the matrix element in the ith row and jth column of
A. The cofactor Aij of aij in the expansion of detA is (−1)i+j times the determinant of the submatrix
of A obtained by deleting the ith row and jth column of A.

Consider the matrices:

Q2 =

1 1 0
0 0 1
1 0 0

 and Q3 =


1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Q2 is a submatrix of Q3 obtained by deleting row 4 and column 5 of Q3. Using the matrix theory
above, the cofactor of the element in the 4th row and 5th column of Q3 is (−1)4+5 times the determinant
of Q2. As the element in the 4th row and 5th column of Q3 is 1 and there are zeros elsewhere in that
row and column:

detQ3 = −detQ2.

By analogy we can prove that
detQ2 = −detQ1.

We can easily calculate that detQ0 = 1 and detQ1 = −1. Therefore we find that detQ2 = 1,
detQ3 = −1 and so on. In general for integer p ≥ 0:

detQp = (−1)p. (1.10)

Now, using matrix theory [2] and (1.10):

detQnp = (detQp)n = (−1)pn.

Hence, we have proved the Theorem.

7



1.3 The Fibonacci numbers

We now look in more detail at a particular case of the Fibonacci p-numbers. The Fibonacci 1-numbers
are generated if p, the number of months in which a newborn rabbit couple matures, is taken to be one.
This was the original ‘rabbit problem’ discussed by Fibonacci in Liber Abaci. The problem solved in
§1.1 is simply a generalisation of Fibonacci’s rabbit problem where rabbits can take any number of
months to mature. From now on we will drop the 1 and refer to these numbers by their more common
name, the Fibonacci numbers, and denote them by {F (n)}.

So by setting p = 1 in the recursion relation (1.1) we obtain:

F (n) = F (n− 1) + F (n− 2), n ∈ Z (1.11)

with the initial conditions F (1) = F (2) = 1.

This recurrence relation produces the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

where each term for n ≥ 3 is the sum of the previous two terms. Extending the Fibonacci numbers
for n ≤ 0, as in Table 1.2, reveals the interesting property [10]:

F (−n) = (−1)n+1F (n). (1.12)

There are many more identities and properties of the Fibonacci numbers, so many that one could prob-
ably devote an entire report to them. However the following identities appear frequently throughout
the applications later in this report, and often in a generalised form. Therefore it is useful to see and
be able to prove these identities for the basic case p = 1. For these proofs we will alter our notation
for the Fibonacci numbers slightly so that F (n) is written as Fn. This is simply for clarity.

Theorem (Cassini’s identity).
Fn−1Fn+1 − F 2

n = (−1)n. (1.13)

Proof. Earlier we proved that detQnp = (−1)pn, (1.9). Note that when p = 1 this reduces to

detQn1 = (−1)n. (1.14)

From (1.8) we can see that

Qn1 =
(
Fn+1 Fn
Fn Fn−1

)
,

and therefore
detQn1 = Fn−1Fn+1 − F 2

n .

Using (1.14), it follows that
Fn−1Fn+1 − F 2

n = (−1)n.

Remark. Since Cassini’s identity (1.13) is equivalent to detQn1 = (−1)n, which is a particular case
of (1.9), we are lead to conclude that detQnp = (−1)pn is in fact a generalised form of the Cassini
identity. [31]

The Cassini identity is a special case of Catalan’s identity [22]:
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Theorem (Catalan’s identity). For positive integers n and r, with n > r:

F 2
n − Fn+rFn−r = (−1)n−rF 2

r . (1.15)

To prove Catalan’s identity, we require the following two lemmas2:

Lemma 1. For positive integers a and b with a > 1, the following identity holds:

Fa+b = FaFb+1 + Fa−1Fb. (1.16)

Proof. We will prove this lemma by induction on b.

For the simple case when b = 1:

Fa+1 = FaF2 + Fa−1F1

= Fa + Fa−1,

which is true by (1.11).

Now assume that the identity is true for b < b0, where b0 ≥ 2 is an integer, and consider the case
when b = b0. Then

FaFb0+1 + Fa−1Fb0 = Fa(Fb0 + Fb0−1) + Fa−1(Fb0−1 + Fb0−2) (1.17)

= (FaFb0 + Fa−1Fb0−1) + (FaFb0−1 + Fa−1Fb0−2). (1.18)

Using the induction hypothesis (1.16), with b = b0 − 1 and b = b0 − 2, (1.18) is equivalent to:

FaFb0+1 + Fa−1Fb0 = Fa+b0−1 + Fa+b0−2

= Fa+b0 .

Lemma 2. For all positive integers t ≥ 2, the following identity holds:

F 2
t−1 + FtFt−1 − F 2

t = (−1)t. (1.19)

Proof. Again, we will prove by induction.

For t = 2, we use (1.11) to show that

F 2
1 + F2F1 − F 2

2 = 12 + 1 · 1− 12

= (−1)2.

Therefore the identity holds for t = 2.

Assume that the identity is true for all t satisfying 2 ≤ t < t0, where t0 ∈ Z. Then using (1.11):

F 2
t0−1 + Ft0Ft0−1 − F 2

t0 = F 2
t0−1 + (Ft0−1 + Ft0−2)Ft0−1 − (Ft0−1 + Ft0−2)2 .

2The proofs given by [22] have errors. These proofs are my own corrected versions.
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Expanding the squared bracket and simplifying gives:

F 2
t0−1 + Ft0Ft0−1 − F 2

t0 = F 2
t0−1 − Ft0−1Ft0−2 − F 2

t0−2

= −
(
F 2
t0−2 + Ft0−1Ft0−2 − F 2

t0−1

)
.

By the inductive hypothesis (1.19), with t = t0 − 1:

−(F 2
t0−2 + Ft0−1Ft0−2 − F 2

t0−1) = (−1)(−1)t0−1

= (−1)t0 .

Now we can prove Catalan’s identity:

F 2
n − Fn+rFn−r = (−1)n−rF 2

r .

Proof. Make the substitutions x = n− r and a = r to give:

F 2
x+a − Fx+2aFx = (−1)xF 2

a .

Taking the left side and applying Lemma 1 gives

F 2
x+a − Fx+2aFx = (FxFa+1 + Fx−1Fa)2 − (FxF2a+1 + Fx−1F2a)Fx

= F 2
xF

2
a+1 + 2FxFa+1Fx−1Fa + F 2

x−1F
2
a − (FxFa+1+a + Fx−1Fa+a)Fx.

Applying Lemma 1 again results in

F 2
x+a − Fx+2aFx = F 2

xF
2
a+1 + 2FxFa+1Fx−1Fa + F 2

x−1F
2
a

− Fx

(
Fx(Fa+1Fa+1 + FaFa) + Fx−1(FaFa+1 + Fa−1Fa)

)
.

Simplifying gives

F 2
x+a − Fx+2aFx = FxFx−1Fa(Fa+1 − Fa−1) + F 2

a (F 2
x−1 − F 2

x ).

Using the recursion relation (1.11) we have that

Fa = Fa+1 − Fa−1.

Therefore

F 2
x+a − Fx+2aFx = FxFx−1Fa(Fa) + F 2

a (F 2
x−1 − F 2

x )

= F 2
a (F 2

x−1 + FxFx−1 − F 2
x ).

By Lemma 2,
F 2
x+a − Fx+2aFx = (−1)xF 2

a .
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1.4 The Golden p-Section

In The Elements, Euclid proposed the problem of the division of a line into extreme and mean ratio.
In this section a generalisation of Euclid’s problem is discussed, and its relation to the Fibonacci
p-numbers becomes clear later in this chapter.

Definition. The point B divides a line AC in a Golden p-Section if

AB

BC
=
(
AC

AB

)p
p ∈ Z≥0. (1.20)

In other words, the ratio of the longer segment to the shorter segment is equal to the pth power of the
ratio of the total length of the line to the longer segment.

There are infinite integer values for p ≥ 0, so there are infinite ways to divide the line in a Golden
p-Section (1.20). The line divisions for the first five values of p are shown in Figure 1.1.

Figure 1.1: The Golden p-Sections for p = 0, 1, 2, 3, 4. [26]

Recall the generalised rabbit problem in §1.1, where p is the number of months a newborn rabbit cou-
ple takes to mature into an adult couple. For p = 0, the reproduction process is symmetric (A→ AA).
But for p > 0, the reproduction process is asymmetric (A→ Ab0). The same occurs with the Golden
p-section above - the line division is symmetric about B when p = 0 and asymmetric for p > 0.

We now wish to find the ratio AC
AB which satisfies the Golden p-Section (1.20). Arbitrarily setting

the length AB = 1 and the length AC = x gives BC = x− 1. Substituting into (1.20) gives

1
x− 1

= xp

which, when rearranged, is the golden algebraic equation

xp+1 − xp − 1 = 0. (1.21)

This is an equation of the (p + 1)th degree and therefore has p + 1 roots which we shall denote
x1, x2, . . . , xp, xp+1. We can show that all of these roots are distinct. [16]

Theorem. The golden algebraic equation of the Fibonacci p-numbers, xp+1 − xp − 1 = 0, does not
have multiple roots.
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Proof. We will prove this theorem by contradiction3.

Let f(z) = zp+1 − zp − 1 and suppose that α is a multiple root of f(z) = 0. Note that f(z) 6= 0 when
α = 0 and α = 1, so they are not possible solutions.

Since α is a multiple root the following must hold:

f(α) = αp+1 − αp − 1 = 0,

f ′(α) = (p+ 1)αp − pαp−1 = 0.

Rearranging and factorising these gives

f(α) = αp(α− 1)− 1 = 0, (1.22)

f ′(α) = αp−1((p+ 1)α− p) = 0. (1.23)

We know that α = 0 and α = 1 are not solutions. Therefore α = p
p+1 from (1.23).

Substituting α = p
p+1 into (1.22) gives (

p

p+ 1

)p( p

p+ 1
− 1
)
− 1 = 0

⇐⇒
(

p

p+ 1

)p(p− (p+ 1)
p+ 1

)
= 1

⇐⇒ − 1
p+ 1

(
p

p+ 1

)p
= 1.

This implies that
1

p+ 1

(
p

p+ 1

)p
= −1.

This is a contradiction as 1
p+1( p

p+1)p is positive for all p (recall that p is defined for integers greater
than or equal to zero). Hence, the equation f(z) does not have multiple roots.

Here are some examples showing the roots of the algebraic equation found for the cases p = 0, 1, 2:

Example 1. The golden algebraic equation of degree 1
When p = 0, (1.21) reduces to x− 1− 1 = 0, so x1 = 2. This corresponds to case a) in Figure 1.1

above, where AC
AB = 2.

Example 2. The golden algebraic equation of degree 2
When p = 1 we have the equation x2−x−1 = 0. This is well known as the Fibonacci quadratric

equation which is derived from the original problem of dividing a line into extreme and mean ratio
(see case b) in Figure 1.1. Using the quadratic formula −b ±

√
b2−4ac

2a we find the two roots to be

x1 =
1 +
√

5
2

and x2 =
1−
√

5
2

. (1.24)

3The proof in [16] uses a lemma for which the proof is false. However the proof of the theorem itself does
not actually require use of the lemma at all. Therefore the proof shown here is my adapted version.
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The positive root x1 is traditionally denoted by the greek letter τ (although in some texts it is φ) and
is commonly called the Golden Ratio. The negative root x2 is equal to − 1

τ and the ratios AC
AB and AB

BC
are both equal to τ . [10]

The Golden Ratio τ = 1.61803399 . . . is argued by some to be the “most irrational of irrational
numbers” as when written in continued fraction4 form it converges to a single value the slowest. In
Mario Livio’s words, “the Golden Ratio is farther away from being expressible as a fraction than any
other irrational number”. [20]

Example 3. The golden algebraic equation of degree 3
For p = 2, (1.21) reduces to

x3 − x2 − 1 = 0. (1.25)

The three roots of a monic cubic equation of the form x3 + ax2 + c = 0 are found using the formulae
(see Appendix A):

x1 = −1
3

(
a+

3

√
m+

√
n

2
+

3

√
m−

√
n

2

)
,

x2 = −1
3

(
a+ ω2

3

√
m+

√
n

2
+ ω1

3

√
m−

√
n

2

)
, (1.26)

x3 = −1
3

(
a+ ω1

3

√
m+

√
n

2
+ ω2

3

√
m−

√
n

2

)
,

where
m = 2a3 + 27c, n = m2 − 4a6,

ω1 = −1
2

+
1
2

√
3i, ω2 = −1

2
− 1

2

√
3i.

Since there are three possible values for each cube root r = 3

√
m+
√
n

2 and s = 3

√
m−
√
n

2 we must choose
r and s such that rs = a2.

So for our equation x3 − x2 − 1 = 0 we have a = c = −1. Using the formulas above we find
that:

x1 =
h2 + 2h+ 4

6h
= 1.4655712319 . . . ,

x2 = −h
2 − 4h+ 4

12h
+ i
√

3
(
h

12
− 1

3h

)
= −0.233 · · · − (0.793 . . . )i,

x3 = −h
2 − 4h+ 4

12h
− i
√

3
(
h

12
− 1

3h

)
= −0.233 · · ·+ (0.793 . . . )i,

4A continued fraction is of the form a0 +
1

a1 +
1

a2 + . . .

where a0, a1, a2, . . . are positive integers, except

perhaps for a0. The Golden Ratio as a continued fraction is τ = 1 +
1

1 +
1

1 + . . .

. [5]
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where h = 3
√

116 + 12
√

93. [28]

It is clear that the root x1 is positive, real and irrational. x2 and x3 are complex conjugates of
the form z = a− bi and z = a+ bi respectively, and since h is an irrational number the real parts of
x2 and x3 are irrational.
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1.5 The Golden p-Proportion

Note that in all three of our examples there is exactly one root which is both positive and real,
and without loss of generality we have let x1 be this root. In fact it is true in general that of all the
roots of the golden algebraic equation (1.21), only one is both positive and real for each value of p. [28]

This root can also be denoted by τp and is called the Golden p-Proportion as it corresponds to the
ratio AC

AB which satisfies the Golden p-Section above. The approximate values of τp for p = 0, 1, 2, 3, 4
are shown in Figure 1.1 above, and they suggest that τp monotonically decreases as p increases. We
can see geometrically that τp → 1 as p→∞, since the length of the AB will get closer and closer to
the length of AC as p becomes large.

§1.1 and §1.4 may initially seem unrelated. However the link between the Fibonacci p-numbers and
the Golden p-Section becomes clear if we consider the limit of the ratio of two consecutive Fibonacci
p-numbers as n tends to infinity [28]:

lim
n→∞

Fp(n)
Fp(n− 1)

= x. (1.27)

We know from (1.1) that

Fp(n)
Fp(n− 1)

=
Fp(n− 1) + Fp(n− p− 1)

Fp(n− 1)

= 1 +
Fp(n− p− 1)
Fp(n− 1)

.

Since
Fp(n− p− 1)
Fp(n− 1)

≡ Fp(n− 2) · Fp(n− 3) · · ·Fp(n− p− 1)
Fp(n− 1) · Fp(n− 2) · · ·Fp(n− p)

,

we can express the ratio of two consecutive Fibonacci p-numbers in the form

Fp(n)
Fp(n− 1)

= 1 +
Fp(n− 2)
Fp(n− 1)

· Fp(n− 3)
Fp(n− 2)

· · · Fp(n− p− 1)
Fp(n− p)

. (1.28)

As a result of (1.27), we have that limn→∞
Fp(n−1)
Fp(n) = 1

x . So as n→∞, (1.28) becomes

x = 1 +
1
xp
.

Rearranging gives the algebraic equation xp+1−xp− 1 = 0 and we know that the positive root of this
is τp. Therefore

lim
n→∞

Fp(n)
Fp(n− 1)

= τp. (1.29)
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Example 4. The Fibonacci numbers
It was Johannes Kepler who first observed that the ratio of consecutive Fibonacci numbers oscillates

about (see Figure 1.2) and tends to the Golden Ratio τ as n→∞.

Figure 1.2: The oscillations of the ratio of consecutive Fibonacci numbers
about the Golden Ratio τ .

In summary: we have seen that the Fibonacci p-numbers, a generalisation of the Fibonacci numbers,
can be derived from a ’rabbit problem’ where newborn rabbit couples take p months to mature. The
limit of the ratio of consecutive Fibonacci p-numbers is the Golden p-Proportion τp. This corresponds
to the value of the ratio AC

AB which satisfies the Golden p-Section and is the only positive, real root of
the distinct roots, x1, x2, . . . , xp+1, of the golden algebraic equation xp+1 − xp − 1 = 0.
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Chapter 2

A closed form expression for the
m-extension of the Fibonacci
p-numbers

There are many ways to generalise the Fibonacci numbers. We saw one of these generalisations in the
previous chapter in the form of the Fibonacci p-numbers and we can generalise further by introducing
the m-extension of the Fibonacci p-numbers. We will not study the basic theory and properties of
these numbers in any great detail as much of it follows analogously from the topics discussed in the
previous chapter. Instead, this chapter introduces their closed form expression, which is necessary
knowledge for the more complex work in Chapter 3 on Fibonacci curves and surfaces.

2.1 The m-extension of the Fibonacci p-numbers

Definition. For any integer p ≥ 0 and real number m > 0, the nth term of the m-extension of the
Fibonacci p-numbers is defined by [17]:

Fp,m(n) = mFp,m(n− 1) + Fp,m(n− p− 1) n ∈ Z, (2.1)

for n ≥ p+ 2. The terms for n = 1, 2, . . . , p+ 1 are given by the initial conditions Fp,m(n) = mn−1.

This recursion relation has similarities to that of the Fibonacci p-numbers, which is produced by
setting m = 1 in (2.1). However, a weighting of m is now given to the previous term. A visual
representation of (2.1) is given below:

From now on for simplicity, we will refer to the m-extension of the Fibonacci p-numbers as the
Fibonacci (p,m)-numbers.

Recall that earlier we found the Fibonacci p-numbers for n ≤ 0 by rearranging the recursion relation
for the Fibonacci p-numbers (1.1). The same method can be applied for the Fibonacci (p,m)-numbers,
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and we find that:

Fp,m(0) = Fp,m(−1) = . . . = Fp,m(−p+ 1) = 0,

Fp,m(−p) = 1,

Fp,m(−p− 1) = Fp,m(−p− 2) = . . . = Fp,m(−2p+ 1) = 0,

Fp,m(−2p) = −m,

Fp,m(−2p− 1) = 1,

Fp,m(−2p− 2) = 0, . . . .

We can continue the sequence for infinite values of n ≤ 0. [17]

We saw earlier, when deriving the result (1.29), that the recursion relation for the Fibonacci p-numbers
reduces to the golden algebraic equation (1.21) if we use (1.27). Similarly, if we make the assumption
that the limit of the ratio of consecutive Fibonacci (p,m) numbers exists and equals a number x, then
(2.1) reduces to the algebraic equation

xp+1 −mxp − 1 = 0, (2.2)

which has the roots x1, x2, . . . , xp+1. Note that, due to the factor of m in (2.1), these roots differ from
the roots of the golden algebraic equation (1.21) discussed in the previous chapter.

It is clear that, as x1, x2, . . . , xp+1 solve (2.2), we can obtain the following identity which connects
powers of the roots:

xnj = mxn−1
j + xn−p−1

j (2.3)

where n ∈ Z and j = 1, 2, . . . , p+ 1.

The positive root of the algebraic equation (2.2) is denoted by Φp,m and is called the Golden
(p,m)-Proportion. Analagous to (1.29), Φp,m satisfies

lim
n→∞

Fp,m(n)
Fp,m(n− 1)

= Φp,m. (2.4)

For the case m = 1, Φp,1 is equivalent to the Golden p-Proportion τp, discussed earlier in §1.5.

Let us consider a couple of particular cases of the Fibonacci (p,m)-numbers:

Example 5. The Fibonacci (1,m)-numbers [30]
Taking p = 1 in the recursion relation for the Fibonacci (p,m)-numbers (2.1) gives:

F1,m(n) = mF1,m(n− 1) + F1,m(n− 2), (2.5)

with two initial conditions F1,m(1) = 1 and F1(2) = m. This generates the Fibonacci (1,m)-numbers1:

. . . ,m2 + 1,−m, 1, 0, 1,m,m2 + 1,m3 + 2m, . . .

where the nth term in the sequence is calculated by summing m of the previous term with the term
previous to that. Letting m = 1 gives the Fibonacci numbers

. . . , 2,−1, 1, 0, 1, 2, 3, 5, 8, 13, . . .

1The Fibonacci (1,m)-numbers are referred to as the Fibonacci k-numbers in [11, 12, 13] and as the Fibonacci
numbers of order m in [30].
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which were discussed in §1.3 of Chapter 1.

The corresponding algebraic equation for the Fibonacci (1,m)-numbers is found by letting p = 1
in the equation (2.2):

x2 −mx− 1 = 0, (2.6)

and solving for x using the quadratic formula gives two real solutions:

x1 =
m+

√
4 +m2

2
, x2 =

m−
√

4 +m2

2
. (2.7)

The positive root x1 corresponds to the Golden (1,m)-Proportion Φ1,m and we can express the negative
root in terms of Φ1,m as follows:

x2 =
(m−

√
4 +m2)
2

× m+
√

4 +m2

m+
√

4 +m2

= − 2
m+

√
4 +m2

= − 1
Φ1,m

. (2.8)

The roots of (2.6) are now denoted as

Φ1,m =
m+

√
4 +m2

2
and − 1

Φ1,m
=
m−

√
4 +m2

2
.

We can obtain identities through addition and subtraction of these two roots such as

Φ1,m −
1

Φ1,m
= m

and
Φ1,m +

1
Φ1,m

=
√

4 +m2. (2.9)

Example 6. The Fibonacci (2,m)-numbers
The recursion relation for the Fibonacci (2,m)-numbers is

F2,m(n) = mF2,m(n− 1) + F2,m(n− 3),

by taking p = 2 in (2.1), and the initial conditions are F2,m(1) = 1, F2,m(2) = m and F2,m(3) = m2.
This produces the Fibonacci (2,m)-sequence

. . . ,−m, 0, 1, 0, 0, 1,m,m2,m3 + 1,m4 +m, . . .

By taking p = 2 in (2.2), the algebraic equation for the Fibonacci (2,m)-numbers is

x3 −mx2 − 1 = 0. (2.10)

As with an earlier example (1.25), this is a monic cubic equation of the form x3 + ax2 + c = 0. Thus
using the set of general formulas (1.26) with a = −m and c = 1, we find that the cubic equation (2.10)
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has the roots [17]:

x1 =
h2 + 2mh+ 4m2

6h
, (2.11)

x2 = −h
2 − 4mh+ 4m2

12h
+ i
√

3
(
h

12
− m2

3h

)
, (2.12)

x3 = −h
2 − 4mh+ 4m2

12h
− i
√

3
(
h

12
− m2

3h

)
, (2.13)

where h = 3
√

108 + 8m3 + 12
√

81 + 12m3.

2.2 Binet formulas

As we have seen, the nth Fibonacci (p,m)-number can be calculated using the recursion relation (2.1).
This method requires us to calculate all preceding Fibonacci (p,m)-numbers in the sequence and, even
when using a computer, it would become tiresome to compute for large values of n.

However, all sequences defined recurrently have a closed form expression. The closed form expression
for the Fibonacci numbers was derived by Jacques Binet in 1843 and, although Leonhard Euler, Daniel
Bernoulli and Abraham de Moivre were aware of it more than a century earlier, the name ‘Binet for-
mula’ remained. [34]

The Binet formula for the Fibonacci numbers expresses the nth Fibonacci number as the sum of
powers of the roots (1.24) multiplied by constant coefficients. We wish to generalise this for the
Fibonacci (p,m)-numbers (2.1) by the following theorem. The proof is adapted from [17].

Theorem. For any p ≥ 1 and m ≥ 1 where p and m are integers, the nth Fibonacci (p,m)-number
can be represented in the form:

Fp,m(n) = k1(x1)n + k2(x2)n + · · ·+ kp+1(xp+1)n (2.14)

where x1, x2, . . . , xp+1 are the roots of the algebraic equation (2.2) and k1, k2, . . . , kp+1 are constant
coefficients which satisfy:

Fp,m(0) = k1 + k2 + · · ·+ kp+1 = 0,
Fp,m(1) = k1x1 + k2x2 + · · ·+ kp+1xp+1 = 1,
Fp,m(2) = k1(x1)2 + k2(x2)2 + · · ·+ kp+1(xp+1)2 = m,

...
...

...
...

Fp,m(p) = k1(x1)p + k2(x2)p + · · ·+ kp+1(xp+1)p = mp−1,

Fp,m(p+ 1) = k1(x1)p+1 + k2(x2)p+1 + · · ·+ kp+1(xp+1)p+1 = mp.

(2.15)

Proof. First, recall that the initial conditions of the Fibonacci (p,m)-numbers (2.1) are given by
Fp,m(n) = mn−1 for 1 ≤ n ≤ p+1. We have also found that Fp,m(0) = 0. Substituting n = 0, . . . , p+1
into (2.14) gives the conditions (2.15) for the constant coefficients k1, k2, . . . , kp+1 above.

We now prove (2.14) by induction - the basic cases are given by (2.15) above. Now assume that
the theorem holds for n < n0, where n0 ≥ p+ 2 is an integer, and consider the case when n = n0.
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Using (2.3):

k1(x1)n0 + k2(x2)n0 + · · ·+ kp+1(xp+1)n0 = k1

(
m(x1)n0−1 + (x1)n0−p−1

)
+ k2

(
m(x2)n0−1 + (x2)n0−p−1

)
+ . . . + kp+1

(
m(xp+1)n0−1 + (xp+1)n0−p−1

)
= m

(
k1(x1)n0−1 + k2(x2)n0−1 + · · ·+ kp+1(xp+1)n0−1

)
+
(
k1(x1)n0−p−1 + k2(x2)n0−p−1 + · · ·+ kp+1(xp+1)n0−p−1

)
.

By the induction hypothesis:

k1(x1)n0−1 + k2(x2)n0−1 + · · ·+ kp+1(xp+1)n0−1 = Fp,m(n0 − 1),

and
k1(x1)n0−p−1 + k2(x2)n0−p−1 + · · ·+ kp+1(xp+1)n0−p−1 = Fp,m(n0 − p− 1).

Therefore

k1(x1)n0 + k2(x2)n0 + · · ·+ kp+1(xp+1)n0 = mFp,m(n0 − 1) + Fp,m(n0 − p− 1)

= Fp,m(n0).

Therefore to find Binet’s formula for any given p, we must first find the roots of the corresponding
algebraic equation (2.2) and then calculate the coefficients k1, k2, . . . , kp+1 using the conditions stated
in the theorem. The following examples show the method for the Fibonacci (1,m)-numbers and the
Fibonacci (2,m)-numbers.

Example 7. Continuation of Example 6: The Fibonacci (1,m)-numbers.
Earlier we found the roots of (2.6) to be

Φ1,m =
m+

√
4 +m2

2
and − 1

Φ1,m
=
m−

√
4 +m2

2
.

So, by the theorem above, Binet’s formula for the Fibonacci (1,m)-numbers takes the form

F1,m(n) = k1Φn
1,m + k2

(
− 1

Φ1,m

)n
. (2.16)

From the definition of the Fibonacci (p,m)-numbers (2.1) and subsequent calculations of (p,m) num-
bers for n ≤ 0, we know that F1,m(0) = 0, F1,m(1) = 1 and F1,m(2) = m. Therefore k1 and k2 must
satisfy 

F1,m(0) = k1 + k2 = 0,

F1,m(1) = k1Φ1,m + k2

(
− 1

Φ1,m

)
= 1,

F1,m(2) = k1Φ2
1,m + k2

(
− 1

Φ1,m

)2

= m.

(2.17)

Substituting k1 = −k2 into the second equation gives:

k1Φ1,m + k1

(
1

Φ1,m

)
= k1

(
Φ1,m +

1
Φ1,m

)
= 1.
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Using (2.9) we find that

k1 =
1√

4 +m2
, and k2 = −k1 = − 1√

4 +m2
.

The third equation in (2.17) can be used as to check if necessary.

We can now write (2.16) as

F1,m(n) =
1√

4 +m2
Φn

1,m −
1√

4 +m2

(
− 1

Φ1,m

)n

=
1√

4 +m2

[(
m+

√
4 +m2

2

)n
−

(
m−

√
4 +m2

2

)n]
. (2.18)

This is Binet’s formula for the Fibonacci (1,m)-numbers, also known as the Gazale formula after
Midhat Gazale who first derived it. If we were to take m = 1 we would obtain Binet’s original formula
for the nth term of the Fibonacci sequence (1.11):

F (n) =
1√
5

(
τn −

(
1
τ

)n)
, (2.19)

where τ = 1+
√

5
2 is the Golden Ratio. [30]

Example 8. Continuation of Example 7: The Fibonacci (2,m)-numbers
Binet’s formula for the Fibonacci (2,m)-numbers is of the form:

F2,m(n) = k1(x1)n + k2(x2)n + k3(x3)n.

In Example 7 we found the roots of the algebraic equation (2.10) to be:

x1 =
h2 + 2mh+ 4m2

6h
,

x2 = −h
2 − 4mh+ 4m2

12h
+ i
√

3
(
h

12
− m2

3h

)
,

x3 = −h
2 − 4mh+ 4m2

12h
− i
√

3
(
h

12
− m2

3h

)
,

where h = 3
√

108 + 8m3 + 12
√

81 + 12m3.

By (2.1), the initial conditions for the Fibonacci (2,m)-numbers are F2,m(1) = 1,F2,m(2) = m and
F2,m(3) = m2, and we also know that F2,m(0) = 0. Therefore the coefficients k1, k2 and k3 must
satisfy: 

F2(0) = k1 + k2 + k3 = 0,

F2(1) = k1x1 + k2x2 + k3x3 = 1,

F2(2) = k1(x1)2 + k2(x2)2 + k3(x3)2 = m,

F2(3) = k1(x1)3 + k2(x2)3 + k3(x3)3 = m2.

22



As there are three unknowns we only require three of the these four equations, although the remaining
equation is useful for checking purposes. The solution to this system of equations is

k1 =
2h(h+ 2m)
h3 + 8m3

,

k2 =
h(−(h+ 2m) + i

√
3(h− 2m))

h3 + 8m3
,

k3 =
h(−(h+ 2m)− i

√
3(h− 2m))

h3 + 8m3
, (2.20)

with h = 3
√

108 + 8m3 + 12
√

81 + 12m3.

Therefore we have found that the nth Fibonacci (2,m) number can be calculated using the closed
form expression:

F2,m(n) =
2h(h+ 2m)
h3 + 8m3

(
h2 + 2mh+ 4m2

6h

)n

+
h(−(h+ 2m) + i

√
3(h− 2m))

h3 + 8m3

(
−h

2 − 4mh+ 4m2

12h
+ i
√

3
(
h

12
− m2

3h

))n

+
h(−(h+ 2m)− i

√
3(h− 2m))

h3 + 8m3

(
−h

2 − 4mh+ 4m2

12h
− i
√

3
(
h

12
− m2

3h

))n
, (2.21)

where h = 3
√

108 + 8m3 + 12
√

81 + 12m3. [17]

As h is an irrational number, this formula is a combination of complex numbers with irrational real
and imaginary parts. It is therefore intriguing that this reduces to an integer for every value of n.

In summary: The Fibonacci (p,m)-numbers are a generalisation of the Fibonacci p-numbers, and
therefore possess many similar properties. It was proved that the generalised Binet formula allows the
nth Fibonacci (p,m)-number to be calculated without knowledge of previous terms in the sequence.
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Chapter 3

Fibonacci on a continuous domain

The generalised Binet formula is now used to extend the Fibonacci (p,m)-numbers to a continuous
domain. The properties and geometry of Fibonacci curves and surfaces are discussed and a potential
application in physical cosmology is proposed.

3.1 Continuous functions for general p

Let us consider the general form of Binet’s formula for the Fibonacci (p,m)-numbers:

Fp,m(n) = k1(x1)n + k2(x2)n + · · ·+ kp+1(xp+1)n, (3.1)

where x1, x2, . . . , xp+1 are the roots of the algebraic equation (2.2) and k1, k2, . . . , kp+1 are the coeffi-
cients satisfying the equations (2.15). The value of p determines the number of roots and coefficients,
how many of them are real and how many are complex valued.

If p is even, there will be an odd number of roots and coefficients. Only x1, the Golden (p,m)-
Proportion, is real while the other p roots x2, . . . , xp+1 can be grouped into p

2 pairs of complex con-
jugate roots, (at − ibt) and (at + ibt) where t = 1, 2, . . . , p2 . Similarly, the coefficient k1 is real valued
and the other p coefficients can be grouped into the complex conjugate pairings (ct+idt) and (ct−idt).

If p is odd, there will be an even number of roots and coefficients. The roots x1 and x2 will be
real. The other p − 1 roots will form p−1

2 pairs of complex conjugate roots, (at − ibt) and (at + ibt)
where t = 1, 2, . . . , p−1

2 . And similarly the coefficients k1 and k2 will be real numbers and the other
coefficients can be grouped into p−1

2 complex conjugate pairs (ct + idt) and (ct − idt).

Therefore Binet’s formula (3.1) for all integer values of p ≥ 1, can be represented as two separate
formulas, one for even p and the other for odd p. [17]

For even p:

Fp,m(n) = k1(x1)n + (c1 + id1)(a1 − ib1)n + (c1 − id1)(a1 + ib1)n

+ · · ·+ (c p
2

+ id p
2
)(a p

2
− ib p

2
)n + (c p

2
− id p

2
)(a p

2
+ ib p

2
)n, (3.2)

and for odd p:

Fp,m(n) = k1(x1)n + k2(x2)n + (c1 + id1)(a1 − ib1)n + (c1 − id1)(a1 + ib1)n

+ · · ·+ (c p−1
2

+ id p−1
2

)(a p−1
2
− ib p−1

2
)n + (c p−1

2
− id p−1

2
)(a p−1

2
+ ib p−1

2
)n. (3.3)
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Both and contain expressions of the form1

(c+ id)(a− ib)n + (c− id)(a+ ib)n = c
(
(a+ ib)n + (a− ib)n

)
+ id

(
(a− ib)n − (a+ ib)n

)
. (3.4)

Let’s consider (a± ib)n. We can convert this from cartesian to polar coordinates by using the change
of variables:

a = r cos θ, b = r sin θ, r =
√
a2 + b2,

so that

(a± ib)n = (r cos θ ± ir sin θ)n

= rn(cos θ ± i sin θ)n. (3.5)

We can now apply De Moivre’s formula:

(cos θ ± i sin θ)n = cos(nθ)± i sin(nθ)

to find that

(a+ ib)n + (a− ib)n = rn
(

cos(nθ) + i sin(nθ)
)

+ rn
(

cos(nθ)− i sin(nθ)
)

= 2rn cos(nθ)

and

(a− ib)n − (a+ ib)n = rn
(

cos(nθ)− i sin(nθ)
)
− rn

(
cos(nθ) + i sin(nθ)

)
= −2irn sin(nθ).

Therefore (3.4) can be written as:

(c+ id)(a− ib)n + (c− id)(a+ ib)n = 2crn cos(nθ) + id
(
− 2irn sin(nθ)

)
= 2rn

(
c cos(nθ) + d sin(nθ)

)
. (3.6)

If we use the change of variables

c = R cos γ, d = R sin γ, R =
√
c2 + d2,

then
(c+ id)(a− ib)n + (c− id)(a+ ib)n = 2rn

(
R cos γ cos(nθ) +R sin γ sin(nθ)

)
.

This allows us to use the trigonometric identity

cosα cosβ + sinα sinβ = cos(α− β),

which gives

(c+ id)(a− ib)n + (c− id)(a+ ib)n = 2rn
(
R cos(nθ − γ)

)
= 2(a2 + b2)

n
2

√
c2 + d2 cos(nθ − γ). (3.7)

1From here I have completed the derivation of (3.7) as this is not explicity given in [17].
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Therefore Binet’s formula for even p (3.1) can be written as:

Fp,m(n) = k1(x1)n + 2(a2
1 + b21)

n
2

√
c21 + d2

1 cos(nθ1 − γ1)

+ · · ·+ 2(a2
p
2

+ b2p
2
)

n
2

√
c2p

2
+ d2

p
2

cos(nθ p
2
− γ p

2
)

= k1(x1)n + 2

p
2∑
t=1

(a2
t + b2t )

n
2

√
c2t + d2

t cos(nθt − γt). (3.8)

For odd p, (3.1) can be written as:

Fp,m(n) = k1(x1)n + k2(x2)n cos(πn) + 2(a2
1 + b21)

n
2

√
c21 + d2

1 cos(nθ1 − γ1)

+ · · ·+ 2(a2
p−1
2

+ b2p−1
2

)
n
2

√
c2p−1

2

+ d2
p−1
2

cos(nθ p−1
2
− γ p−1

2
)

= k1(x1)n + k2(x2)n cos(πn) + 2

p−1
2∑
t=1

(a2
t + b2t )

n
2

√
c2t + d2

t cos(nθt − γt), (3.9)

where θ = arccos a√
a2+b2

and γ = arccos c√
c2+d2

.

These formulas give the corresponding Fibonacci (p,m)-number for each value of n - the formula
we use is dependent on whether p is even or odd. However calculating Fibonacci (p,m)-numbers was
not the main purpose of deriving these formulas, as in most cases it would be simpler to use (3.1).

Instead, rewriting the general Binet formula as (3.8) and (3.9) allows for continuous functions {FFp,m(x)}
to be obtained, one for even p and one for odd p, by replacing n by a continuous variable x.

For even p:

FFp,m(x) = k1(x1)x + 2

p
2∑
t=1

(a2
t + b2t )

x
2

√
c2t + d2

t cos(xθt − γt), (3.10)

and for odd p:

FFp,m(x) = k1(x1)x + k2(x2)x cos(πx) + 2

p−1
2∑
t=1

(a2
t + b2t )

x
2

√
c2t + d2

t cos(xθt − γt). (3.11)

Authors considering particular cases of these continuous functions in [12, 13, 26, 32] refer to them
as Quasi-sine functions, due to some similarities to the shape of the sine function. Therefore we
will call FFp,m(x) the Quasi-sine Fibonacci (p,m)-function. This function connects the co-ordinates
(n,Fp,m(n)) by a smooth curve, effectively extending the Fibonacci (p,m)-numbers to a continuous
domain x.

3.2 The Quasi-sine Fibonacci (1, m)-function

To show some of the properties of the Quasi-sine Fibonacci (p,m)-function we now focus on a par-
ticular case, the Quasi-sine Fibonacci (1,m)-function which is found by taking p = 1. We consider
the curve’s geometry, and some interesting identities which are very similar to identities and relations
discussed in previous chapters. The analysis of these curves can be carried out in a similar manner
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Figure 3.1: The Quasi-sine Fibonacci (1,m)-function for m = 1, 2, 3. [17]

with all cases of the Quasi-sine Fibonacci (p,m)-function.

In Example 7 we found the Binet formula for the Fibonacci (1,m)-numbers to be

F1,m(n) =
1√

4 +m2

[
Φn

1,m −
(
− 1

Φ1,m

)n]

=
Φn

1,m − (−1)nΦ−n1,m√
4 +m2

,

where Φ1,m = m+
√

4+m2

2 .

By taking into consideration that cos(πn) = (−1)n for n ∈ Z and replacing the discrete variable
n by the continuous variable x we obtain the Quasi-sine Fibonacci (1,m)-function:

FF1,m(x) =
Φx

1,m − cos(πx)Φ−x1,m√
4 +m2

. (3.12)

The curves for FF1,m(x) where m = 1, 2, 3 are shown in Figure 3.1. Note that, for discrete values of
x, the equation for the Quasi-sine Fibonacci (1,m)-function is equivalent to Binet’s formula for the
Fibonacci (1,m)-numbers. Therefore FF1,m(x) passes through the co-ordinates (x, F1,m(x)) when x
is an integer, and regardless of the value of m, FF1,m(x) will always pass through the origin.

Away from the origin, the shape of the curve differs dependent on whether x is positive or nega-
tive. For x < 0, the cos(πx)Φ−x1,m term in (3.12) is more influential than the Φx

1,m term. This is why,
for negative x, the curve oscillates about the x axis in a similar fashion to the sine function and the
amplitude increases as x becomes more negative. Whereas for positive x, the Φx

1,m term becomes more
influential and the cos(πx)Φ−x1,m term less so. Hence the curve possesses a shape similar to that of the
exponential function for x > 0.

However, dependent on the value of m, oscillations may still occur for x > 0. Looking closely at
the curves in Figure 3.1, it is possible to see that FF1,1(x) does have one maximum (at x ≈ 1.09458)
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and one minimum (at x ≈ 1.67669) for positive x, whereas the curves FF1,2(x) and FF1,3(x) do
not possess any extreme points. This suggests that as the real number m increases, the curve os-
cillates less for positive x. In fact, Falcon and Plaza argued that there must exist a critical value
m0 whereby any curves for m > m0 do not have an extreme points for x > 0. They found that
m0 ≈ 1.282974. [12]

The Quasi-sine Fibonacci (1,m)-function possesses many identities analagous to those of the Fibonacci
(1,m)-numbers and its special case, the Fibonacci numbers. The following identites are shown as they
are analagous to some identities proved earlier.

Theorem (Recursion relation).

FF1,m(x) = m · FF1,m(x− 1) + FF1,m(x− 2). (3.13)

Proof. This proof is adapted from [12]. By the formula (3.12):

mFF1,m(x− 1) + FF1,m(x− 2) = m

(
Φx−1

1,m − cos(π(x− 1))Φ−(x−1)
1,m√

4 +m2

)

+
Φx−2

1,m − cos(π(x− 2))Φ−(x−2)
1,m√

4 +m2
. (3.14)

The cosine function is periodic with period 2π, and this means that for r ∈ Z:

cos(θ ± rπ) = (−1)r cos(θ). (3.15)

Therefore
cos(π(x− 1)) = cos(πx− π) = − cos(πx)

and
cos(π(x− 2)) = cos(πx− 2π) = cos(πx).

Hence (3.14) becomes:

mFF1,m(x− 1) + FF1,m(x− 2) = m

(
Φx−1

1,m + cos(πx)Φ−x+1
1,m√

4 +m2

)

+
Φx−2

1,m − cos(πx)Φ−x+2
1,m√

4 +m2

=
mΦx−1

1,m + Φx−2
1,m + cos(πx)Φ−x1,m(mΦ1,m − Φ2

1,m)
√

4 +m2
.

As Φ1,m is a root of the algebraic equation (2.2) when p = 1, we can use the identity (2.3) to show
that

Φx
1,m = mΦx−1

1,m + Φx−2
1,m and Φ2

1,m = mΦ1,m + 1.

Therefore

mFF1,m(x− 1) + FF1,m(x− 2) =
Φx

1,m + cos(πx)Φ−x1,m(mΦ1,m −mΦ1,m − 1)
√

4 +m2

=
Φx

1,m − cos(πx)Φ−x1,m√
4 +m2

= FF1,m(x).
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This recursion relation for the Quasi-sine Fibonacci (1,m)-function (3.13) is the continuous form of
the recursion relation for the Fibonacci (1,m)-numbers (2.5). The latter is obtained by letting x take
only integer values in (3.13) as we know that this gives the Fibonacci (1,m)-numbers.

Another property of the Quasi-sine Fibonacci (1,m)-function is given by the following theorem [12]:

Theorem (Asymptotic quotient). For r ∈ Z,

lim
x→∞

FF1,m(x)
FF1,m(x− r)

= Φr
1,m.

Proof. Firstly, it is clear that Φ1,m = m+
√

4+m2

2 > 1 as we defined m > 0. Then using (3.12):

lim
x→∞

FF1,m(x)
FF1,m(x− r)

= lim
x→∞

Φx
1,m − cos(πx)Φ−x1,m

Φx−r
1,m − cos(π(x− r))Φ−x+r1,m

.

As Φ1,m 6= 0, we can divide both the numerator and the denominator by Φx−r
1,m :

lim
x→∞

FF1,m(x)
FF1,m(x− r)

= lim
x→∞

Φr
1,m − cos(πx)Φ−2x+r

1,m

1− cos(π(x− r))Φ−2x+2r
1,m

.

We know that Φ1,m > 1 so, as x→∞, Φ−2x+r
1,m and Φ−2x+2r

1,m will tend to zero giving

lim
x→∞

FF1,m(x)
FF1,m(x− r)

= Φr
1,m.

In §1.3 we proved Catalan’s identity (1.15) for the Fibonacci numbers, a basic case of the Fibonacci
(p,m)-numbers when p = m = 1. It is interesting to see that an analagous form of Catalan’s identity
holds for the Quasi-sine Fibonacci (1,m)-function. The following theorem is equivalent to that which
is given in [12] but has been stated in a form which corresponds to Catalan’s formula proved in §1.3.
A step in the proof, which was omitted in [12], has also been included.

Theorem (Catalan’s identity for the Quasi-sine Fibonacci (1,m)-function). If r ∈ Z, then(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) = (−1)r cos(πx)
(
FF1,m(r)

)2
. (3.16)

Proof.(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) =(
Φx

1,m − cos(πx)Φ−x1,m√
4 +m2

)2

−

(
Φx+r

1,m − cos(π(x+ r))Φ−x−r1,m√
4 +m2

)(
Φx−r

1,m − cos(π(x− r))Φ−x+r1,m√
4 +m2

)
.

Using the property (3.15):(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) =(
Φx

1,m − cos(πx)Φ−x1,m√
4 +m2

)2

−

(
Φx+r

1,m + (−1)r+1 cos(πx)Φ−x−r1,m√
4 +m2

)(
Φx−r

1,m + (−1)r+1 cos(π(x))Φ−x+r1,m√
4 +m2

)
.
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Then, expanding the brackets and simplifying the resulting expression gives(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) =

(−1)r cos(πx)Φ2r
1,m + (−1)r cos(πx)Φ−2r

1,m − 2 cos(πx)
4 +m2

. (3.17)

Now note that, as cos2(πr) = 1 = (−1)r cos(πr), then

(−1)r cos(πx)Φ−2r
1,m ≡ (−1)r cos(πx) cos2(πr)Φ−2r

1,m (3.18)

and
2 cos(πx) ≡ 2(−1)r cos(πx) cos(πr). (3.19)

Using (3.18) and (3.19), the equation (3.17) can then be written as(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) =

(−1)r cos(πx)Φ2r
1,m + (−1)r cos(πx) cos2(πr)Φ−2r

1,m − 2(−1)r cos(πx) cos(πr)
4 +m2

Factorising this gives:

(
FF1,m(x)

)2 − FF1,m(x+ r) · FF1,m(x− r) = (−1)r cos(πx)

(
Φ2r

1,m − 2 cos(πr) + cos2(πr)Φ−2r
1,m

4 +m2

)

= (−1)r cos(πx)

(
Φr

1,m − cos(πr)Φ−r1,m√
4 +m2

)2

= (−1)r cos(πx)
(
FF1,m(r)

)2
.

Note that Cassini’s identity is a special case of Catalan’s identity above when r = 1.

3.3 The hyperbolic Fibonacci (1, m)-functions

We now discuss a pair of continuous functions which have connections to the Fibonacci (1,m)-numbers
and the Golden (1,m)-Proportion, Φ1,m. These continuous functions are also geometrically related
to the Quasi-sine Fibonacci (1,m)-function seen in the previous section. As with the Quasi-sine Fi-
bonacci (1,m)-function, this pair of functions can be generalised for all p.

Binet’s formula for the Fibonacci (1,m)-numbers:

F1,m(n) =
Φn

1,m − (−1)nΦ−n1,m√
4 +m2

can be seperated into formulas for even and odd values of n:

F1,m(n) =


Φn

1,m − Φ−n1,m√
4 +m2

, if n is even

Φn
1,m + Φ−n1,m√

4 +m2
, if n is odd.
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By replacing the discrete variable n by the continuous variable x, we obtain the hyperbolic Fibonacci
sine (1,m)-function:

sF1,m(x) =
Φx

1,m − Φ−x1,m√
4 +m2

, (3.20)

and the hyperbolic Fibonacci cosine (1,m)-function:

cF1,m(x) =
Φx

1,m + Φ−x1,m√
4 +m2

, (3.21)

where Φ1,m = m+
√

4+m2

2 is the Golden (1,m)-Proportion. [30]

As these functions are derived from Binet’s formula it is credible to suggest that identities will ex-
ist that are similar to those of the Fibonacci (1,m)-numbers and special cases such as the Fibonacci
numbers. Two such identities are analagous to the recursion relation for the Fibonacci (1,m)-numbers:

Theorem (Recursion relations for the hyperbolic Fibonacci (1,m)-functions).

cF1,m(x) = m · sF1,m(x− 1) + cF1,m(x− 2), (3.22)

sF1,m(x) = m · cF1,m(x− 1) + sF1,m(x− 2). (3.23)

Proof. We will prove the first recursion relation2 (3.22). The proof of the second relation (3.23) is
very similar.

m · sF1,m(x− 1) + cF1,m(x− 2) = m

(
Φx−1

1,m − Φ−x+1
1,m√

4 +m2

)
+

Φx−2
1,m + Φ−x+2

1,m√
4 +m2

=
Φx−2

1,m (mΦ1,m + 1) + Φ−x+2
1,m (1− Φ−1

1,m)
√

4 +m2
.

To simplify this expression we can use that Φ1,m is a root of the algebraic equation (2.2). Therefore,
by substituting x = Φ1,m we obtain Φ2

1,m = mΦ1,m+1. Dividing this through by Φ2
1,m and rearranging

gives Φ−2
1,m = 1− Φ−1

1,m. Hence we can write

m · sF1,m(x− 1) + cF1,m(x− 2) =
Φx

1,m + Φ−x1,m√
4 +m2

= cF1,m(x).

We saw Catalan’s identity earlier for the Fibonacci numbers (1.15) and also in an analagous form for
the Quasi-sine Fibonacci (1,m)-function (3.16). An analagous form of Catalan’s identity also exists
for the hyperbolic Fibonacci (1,m)-functions3 [12]:

Theorem (Catalan’s identity for the hyperbolic Fibonacci (1,m)-functions). If r ∈ Z, then

[cF1,m(x)]2 − cF1,m(x+ r) · cF1,m(x− r) = −[sF1,m(r)]2. (3.24)

2This proof follows a similar method to a proof in [30].
3This identity has been written in a form which coincides with the conventions used previously in this report.
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Proof.

[cF1,m(x)]2 − cF1,m(x+ r) · cF1,m(x− r) =

(
Φx

1,m + Φ−x1,m√
4 +m2

)2

−

(
Φx+r

1,m + Φ−x−r1,m√
4 +m2

)(
Φx−r

1,m + Φ−x+r1,m√
4 +m2

)

=
Φ2x

1,m + 2 + Φ−2x
1,m − (Φ2x

1,m + Φ2r
1,m + Φ−2r

1,m + Φ−2x
1,m )

4 +m2

= −

(
Φ2r

1,m − 2 + Φ2r
1,m

4 +m2

)

= −

(
Φr

1,m − Φ−r1m√
4 +m2

)2

= −[sF1,m(r)]2.

The hyperbolic Fibonacci sine and cosine functions were named as such due to their similarities to the
functions sinhx and coshx. These similarities arise because the former are obtained from the latter
by a direct substitution of the constant terms - the term Φ1,m is substituted for e, and the constant
coefficient is altered. Figures 3.2(a) and 3.2(b) show the similarities in overall shape between the re-
spective functions, although it also illustrates that the gradients of the hyperbolic Fibonacci functions
are steeper. Scaling the hyperbolic Fibonacci functions and plotting y = sF1,m(2x) and y = sinhx
together (Figure 3.2(c)), and y = cF1,m(2x) and y = coshx together (Figure 3.2(d)), shows an even
closer resemblence. The graphs in Figure 3.2 were drawn using the computer program Maple.

It is apparent from Figure 3.2 that both sF1,m(x) and sinhx are odd functions as both are symmetric
with respect to the x axis. It is common knowledge that this is the case for sinhx but we can be sure
that it is true for sF1,m(x) by the following:

sF1,m(−x) =
Φ−x1,m − Φx

1,m√
4 +m2

= −

(
Φx

1,m − Φ−x1,m√
4 +m2

)
= −sF1,m(x). (3.25)

cF1,m(x) and coshx are both even functions and the former is shown explicitly by4:

cF1,m(−x) =
Φ−x1,m + Φx

1,m√
4 +m2

=
Φx

1,m + Φ−x1,m√
4 +m2

= cF1,m(x). (3.26)

The hyperbolic Fibonacci functions are not only similar to the hyperbolic sine and cosine functions in
terms of their shape and symmetry but they also possess similar identities. The following are a short
selection of such identities.

Theorem (Pythagorean theorem). The following identity is similar to cosh2 x− sinh2 x = 1. For
m,x ∈ R, (

cF1,m(x)
)2 − (sF1,m(x)

)2 =
4

4 +m2
. (3.27)

4I have corrected an error in the proof given in [30].
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(a) sinhx and sF1,m(x). (b) coshx and cF1,m(x).

(c) sinhx and sF1,m(2x). (d) coshx and cF1,m(2x).

Figure 3.2: Comparisons between the hyperbolic sine and cosine functions, hyperbolic Fibonacci
sine and cosine (1,m)-functions and scaled hyperbolic Fibonacci sine and cosine (1,m)-functions.

Proof. [30]

(
cF1,m(x)

)2 − (sF1,m(x)
)2 =

(
Φx

1,m + Φ−x1,m√
4 +m2

)2

−

(
Φx

1,m − Φ−x1,m√
4 +m2

)2

=
Φ2x

1,m + 2 + Φ−2x
1,m − Φ2x

1,m + 2− Φ−2x
1,m

4 +m2

=
4

4 +m2
.

Theorem (Sum and difference identities). For x, y ∈ R,

cF1,m(x± y) =
√

4 +m2

2

(
cF1,m(x)cF1,m(y)± sF1,m(x)sF1,m(y)

)
, (3.28)

sF1,m(x± y) =
√

4 +m2

2

(
cF1,m(x)sF1,m(y)± sF1,m(x)cF1,m(y)

)
. (3.29)

Proof. We will only prove the identity for cF1,m(x+ y), as the proofs of the other three identites are
very similar. The proof is adapted from [12].

33



By (3.20) and (3.21):

cF1,m(x+ y) =
√

4 +m2

2

(
cF1,m(x)cF1,m(y) + sF1,m(x)sF1,m(y)

)
=
√

4 +m2

2

(
(Φx

1,m + Φ−x1,m)(Φy
1,m + Φ−y1,m) + (Φx

1,m − Φ−x1,m)(Φy
1,m − Φ−y1,m)

4 +m2

)

=

(
Φx+y

1,m + Φx−y
1,m + Φy−x

1,m + Φ−x−y1,m + Φx+y
1,m − Φx−y

1,m − Φy−x
1,m + Φ−x−y1,m

2
√

4 +m2

)

=
Φx+y

1,m + Φ−x−y1,m√
4 +m2

.

By the definition of the hyperbolic Fibonacci cosine function (3.21), the proof is complete.

Theorem (De Moivre’s formula for the hyperbolic Fibonacci functions). For m,x ∈ R and n ∈ Z the
following identity holds:(

cF1,m(x)± sF1,m(x)
)n

=
(

2√
4 +m2

)n−1 (
cF1m(nx)± sF1,m(nx)

)
. (3.30)

Proof. We will prove De Moivre’s formula by considering three cases5, and using identities and prop-
erties of the hyperbolic Fibonacci sine and cosine functions seen previously.

For n ≥ 1 we use induction on n. The theorem clearly holds for the basic case n = 1. Assume
that it also holds for a positive integer k:(

cF1,m(x)± sF1,m(x)
)k

=
(

2√
4 +m2

)k−1 (
cF1m(kx)± sF1,m(kx)

)
We now show that the theorem is true for n = k + 1:(

cF1,m(x)± sF1,m(x)
)k+1

=
(
cF1,m(x)± sF1,m(x)

)k(
cF1,m(x)± sF1,m(x)

)
By the induction hypothesis:(

cF1,m(x)± sF1,m(x)
)k+1

=
(

2√
4 +m2

)k−1 (
cF1,m(kx)± sF1,m(kx)

)(
cF1,m(x)± sF1,m(x)

)

=
(

2√
4 +m2

)k−1 (
cF1,m(kx)cF1,m(x) + sF1,m(kx)sF1,m(x)

± cF1,m(kx)sF1,m(x)± sF1,m(kx)cF1,m(x)
)

=
(

2√
4 +m2

)k−1(
cF1,m(kx)cF1,m(x) + sF1,m(kx)sF1,m(x)

±
(
cF1,m(kx)sF1,m(x) + sF1,m(kx)cF1,m(x)

))
.

5This theorem is stated but not proved in [30].
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Using the sum and difference identities (3.28) and (3.29):

(
cF1,m(x)± sF1,m(x)

)k+1
=
(

2√
4 +m2

)k−1 ( 2√
4 +m2

cF1,m(kx+ x)± 2√
4 +m2

sF1,m(kx+ x)
)

=
(

2√
4 +m2

)k (
cF1,m((k + 1)x)± sF1,m((k + 1)x)

)
.

Therefore the theorem is true for n = k + 1 if it is true for n = k. Hence, by induction it is true for
all n ≥ 1.

For the case n = 0 we can show the result to be correct:(
cF1,m(x)± sF1,m(x)

)n
=
(

2√
4 +m2

)−1 (
cF1m(0)± sF1,m(0)

)

=

√
4 +m2

(
Φ0

1,m + Φ0
1,m ± (Φ0

1,m − Φ0
1,m)

)
2
√

4 +m2

= 1.

For n < 0, let m be a positive integer such that n = −m. Then(
cF1,m(x)± sF1,m(x)

)n =
(
cF1,m(x)± sF1,m(x)

)−m
=

1(
cF1,m(x)± sF1,m(x)

)m
=
(

2√
4 +m2

)−(m−1) 1
cF1,m(mx)± sF1,m(mx)

Multiplying the nominator and the denominator by cF1,m(mx)∓ sF1,m(mx) gives

(
cF1,m(x)± sF1,m(x)

)n =
(

2√
4 +m2

)−m+1 cF1,m(mx)∓ sF1,m(mx)(
cF1,m(mx)± sF1,m(mx)

)(
cF1,m(mx)∓ sF1,m(mx)

)
=
(

2√
4 +m2

)−m+1 cF1,m(mx)∓ sF1,m(mx)(
cF1,m(x)

)2 − (sF1,m(x)
)2 .

By the Pythagorean theorem (3.27), we know that
(
cF1,m(x)

)2 − (sF1,m(x)
)2 = 4

4+m2 .

Therefore

(
cF1,m(x)± sF1,m(x)

)n =
(

2√
4 +m2

)−m+1(4 +m2

4

)(
cF1,m(mx)∓ sF1,m(mx)

)
=
(

2√
4 +m2

)−m−1 (
cF1,m(mx)∓ sF1,m(mx)

)
.
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Using that sF1,m(mx) is an odd function (3.25), and cF1,m(mx) is an even function (3.26):

(
cF1,m(x)± sF1,m(x)

)n =
(

2√
4 +m2

)−m−1 (
cF1,m(−mx)± sF1,m(−mx)

)
=
(

2√
4 +m2

)n−1 (
cF1,m(nx)± sF1,m(nx)

)
.

Hence, we have proved the theorem for all n.

Moving away from the identities of the hyperbolic Fibonacci functions and back to the discussion of the
geometry of these curves, we conclude this section by considering the relationship between sF1,m(x),
cF1,m(x) and the Quasi-sine Fibonacci function FF1,m(x).

Let n be an integer on the continuous domain x. Then for n = 2k with k ∈ Z (ie. even integers):

FF1,m(2k) =
Φ2k

1,m − cos(2πk)Φ−2k
1,m√

4 +m2

=
Φ2k

1,m − Φ−2k
1,m√

4 +m2

= sF1,m(2k) = F1,m(2k). (3.31)

For n = 2k + 1 (ie. odd integers):

FF1,m(2k + 1) =
Φ2k+1

1,m − cos(2πk + π)Φ−2k−1
1,m√

4 +m2

=
Φ2k+1

1,m + Φ−2k−1
1,m√

4 +m2

= cF1,m(2k + 1) = F1,m(2k + 1). (3.32)

Therefore the Quasi-sine Fibonacci (1,m)-function coincides with the hyperbolic Fibonacci sine
(1,m)-function at the co-ordinates (2k, F1,m(2k)), and the hyperbolic Fibonacci cosine (1,m)-function
at (2k + 1, F1,m(2k + 1)). Figure 3.3 shows that the hyperbolic Fibonacci functions are in fact the
envelopes of the Quasi-sine Fibonacci function.

3.4 The Quasi-sine Fibonacci (2, m)-function

We have seen an example of the Quasi-sine (p,m)-Fibonacci function where p is odd, and the proper-
ties of this function and its envelopes, the hyperbolic Fibonacci sine and cosine functions. This section
takes us through an example of the Quasi-sine (p,m)-Fibonacci function where p is even and utilises
the general theory from §3.1.

The particular case we will derive is the Quasi-sine Fibonacci (2,m)-function. Recall that in Ex-
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Figure 3.3: The Quasi-sine Fibonacci (1,m)-function and its envelopes. [32]

ample 8 we found the Binet formula for the Fibonacci (2,m)-numbers to be

F2,m(n) =
2h(h+ 2m)
h3 + 8m3

(
h2 + 2mh+ 4m2

6h

)n

+
h(−(h+ 2m) + i

√
3(h− 2m))

h3 + 8m3

(
−h

2 − 4mh+ 4m2

12h
+ i
√

3
(
h

12
− m2

3h

))n

+
h(−(h+ 2m)− i

√
3(h− 2m))

h3 + 8m3

(
−h

2 − 4mh+ 4m2

12h
− i
√

3
(
h

12
− m2

3h

))n
,

where h = 3
√

108 + 8m3 + 12
√

81 + 12m3.

Notice that in line with the general theory discussed in §3.1, there are an odd number of roots
and coefficients - three roots and three coefficients to be exact. The first root is the Golden (2,m)-
Proportion while the other two roots are complex conjugates. The coefficients of the second and third
roots are also complex conjugate.

Hence, the Binet formula above can be written in the form:

F2,m(n) =
2h(h+ 2m)
h3 + 8m3

(
h2 + 2mh+ 4m2

6h

)n
+ (c− id)(a+ ib)n + (c+ id)(a− ib)n,

where

a = −h
2 − 4mh+ 4m2

12h
, b =

√
3
(
h

12
− m2

3h

)
,

c =
−h(h+ 2m)
h3 + 8m3

, d =
h
√

3(h− 2m)
h3 + 8m3

.

We can then use the general formula (3.10) with p = 2 to rewrite Binet’s formula as

F2,m(n) =
2h(h+ 2m)
h3 + 8m3

(
h2 + 2mh+ 4m2

6h

)n
+ 2
√
c2 + d2(a2 + b2)

n
2 cos(nθ − γ),

37



Figure 3.4: The Quasi-sine Fibonacci (2,m)-function for m = 1, 2, 3. [17]

where θ = arccos a√
a2+b2

and γ = c√
c2+d2

.

Substituting the continuous variable x for n gives the Quasi-sine Fibonacci (2,m)-function [17]:

F2,m(x) =
2h(h+ 2m)
h3 + 8m3

(
h2 + 2mh+ 4m2

6h

)x
+

{
4h
√
h2 − 2hm+ 4m2

h3 + 8m3

(
(h− 2m)

√
h2 + 2hm+ 4m2

6h

)

× cos
(
x arccos

(
2m− h

2
√
h2 + 2hm+ 4m2

)
− arccos

(
− 2m+ h

2
√
h2 − 2hm+ 4m2

))}
. (3.33)

The graph of this function is shown in Figure 3.4. We could apply similar analysis to this function
as we did to the Quasi-sine Fibonacci (1,m) and find analogous identities. We can also hypothesise
that the hyperbolic Fibonacci sine and cosine (2,m)-functions will be the envelopes of this function
for similar reasons to those discussed in §3.3. However we will not discuss the Quasi-sine Fibonacci
(2,m)-function in any greater detail in this chapter.

In the remainder of this chapter we introduce some curves and surfaces lying in three-dimensional
space. These are related to the Quasi-sine Fibonacci (1,m)-function and the hyperbolic Fibonacci
(1,m)-functions. We then discuss a potential application within physical cosmology.

3.5 The three-dimensional Fibonacci (1, m)-spiral

The Quasi-sine Fibonacci (1,m)-function is the projection onto the planeXOY of the three-dimensional
Fibonacci (1,m)-spiral. The spiral is produced by the translational movement of a point on an infinite
rotating horn-shaped surface and is defined by the function [13]:

CFF1,m(x) =
Φx

1,m − cos(πx)Φ−x1,m√
4 +m2

+ i
sin(πx)Φ−x1,m√

4 +m2
. (3.34)

When x takes integer values, the imaginary part of CFF1,m(x) vanishes, as sin(πx) = 0. This leaves
the Gazale formula (2.18), and therefore the Fibonacci (1,m)-numbers are produced at integer values
of x.
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Figure 3.5: The three-dimensional Fibonacci (1,m)-spiral for m = 1. [27]

As with the Quasi-sine Fibonacci (1,m)-function and the hyperbolic Fibonacci (1,m)-functions, the
three-dimensional Fibonacci (1,m)-spiral possesses identities analagous to the Fibonacci (1,m)-numbers.
Two such identities are the recurrence relation [12]:

CFF1,m(x) = m · CFF1,m(x− 1) + CFF1,m(x− 2), (3.35)

and Catalan’s identity:(
CFF1,m(x)

)2 − CFF1,m(x+ r) · CFF1,m(x− r) = (−1)r
(
CFF1,m(r)

)2
. (3.36)

We have already seen proofs of similar identities for the Quasi-sine Fibonacci (1,m)-function and the
hyperbolic Fibonacci (1,m)-functions. Therefore the proofs of (3.35) and (3.36) will not be given here.

3.6 Metallic Shofars

If we consider the axis OY as the real axis and the axis OZ as the imaginary axis, then

y(x) = Re
(
CFF1,m(x)

)
=

Φx
1,m − cos(πx)Φ−x1,m√

4 +m2
(3.37)

and

z(x) = Im
(
CFF1,m(x)

)
=

sin(πx)Φ−x1,m√
4 +m2

. (3.38)

Equation (3.37) can be rewritten as:

y(x)−
Φx

1,m√
4 +m2

= −
cos(πx)Φ−x1,m√

4 +m2
. (3.39)

If we then square both sides of each of the equations (3.38) and (3.39) we obtain:(
y −

Φx
1,m√

4 +m2

)2

=

(
cos(πx)Φ−x1,m√

4 +m2

)2
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(a) The Metallic Shofars for m = 1, 2, 3. [14] (b) The three-dimensional Fibonacci (1, 1)-
spiral lying on the surface of the Golden Shofar,
which is produced when m = 1. [32]

Figure 3.6

and

z2 =

(
sin(πx)Φ−x1,m√

4 +m2

)2

.

Therefore (
y −

Φx
1,m√

4 +m2

)2

+ z2 =

(
cos(πx)Φ−x1,m√

4 +m2

)2

+

(
sin(πx)Φ−x1,m√

4 +m2

)2

=

(
Φ−x1,m√
4 +m2

)2 (
cos2(πx) + sin2(πx)

)
.

This can be simplified using the trigonometric identity sin2(θ) + cos2(θ) = 1 to give:

(
y −

Φx
1,m√

4 +m2

)2

+ z2 =

(
Φ−x1,m√
4 +m2

)2

. (3.40)

This is the equation for a hyperbolic (negatively curved) surface of revolution called the Metallic Shofar6

(Figure 3.6(a)) which possesses the shape of a horn or funnel with a bell and tail which extend in-
finitely. The three-dimensional Fibonacci (1,m)-spiral lies on its surface. Figure 3.6(b) shows this for
m = 1. [13]

Rearranging (3.40) shows the relationship between the Metallic Shofar and the hyperbolic Fibonacci

6A shofar is a horn commonly found at Jewish religious occassions.
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(a) Projection onto the plane XOY . [27] (b) Projection onto the plane XOZ. [27]

Figure 3.7

(1,m)-functions:

z2 =

(
Φ−x1,m√
4 +m2

)2

−
(
y −

Φx
1,m√

4 +m2

)2

=

(
Φ−x1,m√
4 +m2

+
(
y −

Φx
1,m√

4 +m2

))
·

(
Φ−x1,m√
4 +m2

−
(
y −

Φx
1,m√

4 +m2

))

=

(
y −

Φx
1,m − Φ−x1,m√

4 +m2

)
·

(
Φx

1,m + Φ−x1,m√
4 +m2

− y

)

z2 = (y − cF1,m(x)) · (sF1,m(x)− y)

Therefore we can see in Figure 3.7(a) that projecting the surface onto the plane XOY by taking
z = 0 results in a region bounded by the curves y = cF1,m(x) and y = sF1,m(x). The interior curve
is the Quasi-sine Fibonacci (1,m)-function, the projection of the three-dimensional Fibonacci (1,m)-
spiral. Similarly, the projection of the Metallic Shofar in the plane XOZ (Figure 3.7(b)) gives a region
bounded by the exponential curves z = ±(Φ−x1,m/

√
4 +m2). [13]

If we let x be a constant in equation (3.40), we obtain an equation of the form (y − y0)2 + (z − z0)2 = r2.
This is the equation of a circle centered at (y0, z0) with radius r. Therefore all intersections of the
Metallic Shofar by planes parallel to the plane Y OZ give a circle centered at (y, z) = (Φx

1,m/
√

4 +m2, 0)
with radius Φ−x1,m/

√
4 +m2.

It is interesting to note that the authors who derived the Metallic Shofar have proposed that it
could model the spatial section of the universe. As the universe cannot be viewed from the outside,
we rely on astronomical data and astrophysical discoveries to try to determine the accuracy of such
hypotheses. According to the article [3], recordings of cosmic microwave background radiation col-
lected by NASA’s Wilkinson Microwave Anisotropy Probe do not rule out the possibility that the
universe has the shape of an ‘infinitely long horn’. The Metallic Shofar is certainly compliant with
this description, but it does not seem to be considered as seriously as other horn topologies, such as
the Picard horn. Furthermore, hyperbolic geometries such as the Metallic Shofar are not the only
ones proposed. Some have also considered spherical geometries, such as the Poincaré Dodecahedral
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Space7, which have a positive curvature, and many believe the universe to be flat. [23]

Determining the topology of the universe is important in determining its future. A negatively curved
universe, which includes one that has the shape of a Metallic Shofar, continues to expand forever.
This expansion is accelerated by the presence of dark matter and ultimately, it would lead either
to a universe too cold to sustain life (the ‘Big Freeze’) or the disintegration of matter into unbound
elementary particles and radiation (the ‘Big Rip’). [33] Therefore it is clear that further research into
the shape of universe is required. It will be interesting to see whether the hypothesis that the universe
has the shape of a Metallic Shofar survises further investigation.

In summary: The Quasi-sine Fibonacci (p,m)-function is derived from the general form of Binet’s
formula using polar coordinates and De Moivre’s formula. It possesses many properties which are
analagous to the Fibonacci (p,m)-numbers. The hyperbolic Fibonacci (p,m)-functions are the en-
velopes of the Quasi-sine Fibonacci (p,m)-function, and they possess many similar properties to the
hyperbolic sine and cosine functions. The Quasi-sine Fibonacci function is the projection of the three-
dimensional Fibonacci spiral. This spiral lies on the surface of the Metallic Shofar, a hyperbolic surface
proposed as a possible model for the spatial section of our universe.

7A closed 3-manifold constructed by gluing pairs of opposite faces of a dodecahedron together.
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Chapter 4

Fibonacci Coding Theory

The Fibonacci p-numbers can also be applied to a very different field - coding theory. In this chapter
we introduce the Fibonacci coding theory and method before analysing its practicality.

4.1 An introduction to coding theory

The modern world relies heavily on the transmission of data over varying distance. Coding theory is a
combination of pure mathematics, algebra and engineering, which addresses difficulties in the reliable
and efficient transmission of digital data from an information source to an information sink.

Figure 4.1: A basic model of the communication system. [7]

Figure 4.1 shows a communication system where a digital message is sent from a source to its destina-
tion through a communication channel. This data transmission can occur either in the space domain,
where a message is transferred between two distinct locations; or the time domain, where some data is
stored and retrieved at a later time. Coding of a message can generally be seperated into two distinct
categories, source coding and channel coding. In practice either one or both types of coding may be
used.

Source coding is a form of data compression where the aim is to increase efficiency within the network.
There are two forms of source coding - lossy and lossless. Lossy source coding discards data to reduce
both the transmission time through the channel and the memory space required to store the data. It
cannot be reversed to obtain all of the original data. An example of this type of data compression is
found with JPEG image files where the image quality is reduced if the file size is made smaller. Lossless
source coding, such as Zip data compression on the internet, usually exploits statistical redundancy
to make data more compact without a loss of data or quality. Data compressed by a lossless source
code can be decompressed to its original form. [9]
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A channel is a medium through which data can be transferred and channel coding can follow one
of two methods depending on whether this channel is noisy or noiseless. A noisy channel is one that
is unreliable as there is the possibility that ‘noise’ can cause errors to the transmitted message such
that the output from the channel is not the same as the input. Scratches and dust on a CD causing a
track to skip and meteor showers causing images of deep space sent from satellite stations to distort
are a couple of examples. For the purpose of our application we are interested in noisy channels1.
Error-correcting codes are used with the objective of detecting and correcting any errors caused within
a noisy channel.

In the following chapter we will consider the transmission of a single message through the com-
munication system. We will assume that source coding has already been applied to this message such
that it is now represented by an ordered list of t symbols, U = {u1, u2, . . . , ut}. These symbols belong
to an alphabet Λr = {λ1, λ2, . . . , λr}, a finite set of r distinct symbols. It would be unwise to send a
message through the channel in this form as there are no means by which the receiver on the other
side of the channel can detect or correct any errors which occur to the symbols in the message due to
noise. This is why channel coding is used. The message U is encoded using an error correcting code
to produce a codeword, c. There is a one-to-one mapping between a message U and its coresponding
codeword. In other words, no two messages U and V can both be encoded to the same codeword and
vice versa.

The coding adds additional information which helps the receiver to detect and correct errors. This
additional information is called redundancy and can also become erroneous due to noise in the channel.
Therefore it does not fully guarantee that the receiver will be able to detect or correct any errors in a
recieved code. Redundancy is proportional to the probability of a successful transmission but inversely
proportional to efficiency within the network. Finding the least redundancy necessary to obtain a suffi-
ciently high probability of successful transmission is one of the fundamental problems in coding theory.

The codeword is sent through a channel about which we must make some assumptions. Firstly,
the channel is discrete which means that only finite alphabets are used; and secondly it is memoryless
as a symbol error to one element of the codeword does not increase or decrease the probability of
an error occuring elsewhere in the codeword. A further assumption is that errors do not change the
number of elements in the codeword.

On the other side of the channel, an output is received that may or may not be equivalent to the
codeword that was sent. The receiver uses the redundant information and possibly knowledge about
properties of the error correcting code to detect where errors have occured. If all errors are corrected,
this is called complete decoding and the corrected output is then decoded to obtain the original mes-
sage. If there are detected errors which remain uncorrected, then we say that incomplete decoding
has occurred. In this instance, retransmission may be requested if the channel is two-way and it is
possible to do so. However when a channel is one-way - an example being from a deep space probe to
Earth - retransmission is not possible and the message is lost.

1Coding theory differs for noiseless channels as the aim is to optimise the channel’s usage.

44



4.2 The Fibonacci coding method

Let the message matrix M be a square (p+ 1)× (p+ 1) matrix where p is an integer greater than or
equal to one. [31] Matrix elements within M are denoted2 by mi,j , where i corresponds to rows of M
and j corresponds to columns of M , with 1 ≤ i, j ≤ (p+ 1):

M(p+1)×(p+1) =


m1,1 m1,2 . . . m1,p+1

m2,1 m2,2 . . . m2,p+1
...

...
. . .

...
mp+1,1 mp+1,2 . . . mp+1,p+1

 .

Given a message U = {u1, u2, . . . , ut}, an ordered list of t message symbols, the first step in the
Fibonacci coding method is to arrange the symbols into a message matrix M . This is done row by
row from top left to bottom right, subject to the following conditions:

1. The ordering of the message symbols must be preserved;

2. Each matrix element mi,j must contain at least one message symbol.

The first condition is maintained so that the message U can be read directly from M at the destination.
To be able to uphold the second condition, the parameter p must be chosen such that (p+ 1)2 ≤ t, to
ensure that there are at least as many message symbols as matrix elements.

Example 9. Consider the message {1, 3, 5, 7, 9, 2, 4, 6, 8}. There are nine message elements so p must
be chosen such that (p+ 1)2 ≤ 9. Therefore the message can be arranged either in a 2× 2 or a 3× 3
matrix. Two permitted arrangements are:

i) M2×2 =
(

135 79
24 68

)
, ii) M3×3 =

1 3 5
7 9 2
4 6 8

 .

However these two arrangements are not permitted as they both violate one of the conditions above:

iii) M ′2×2 =
(

135 24
79 68

)
, iv) M ′3×3 =

1 3 5
7 9 2
4 68

 .

Note that if p is chosen such that (p + 1)2 < t, as is the case with i) in Example 10, then at
least one matrix element mi,j will hold more than one message element3. To ensure that there is no
confusion at the destination as to whether, for example, 135 should be interpreted: as the integer one
hundred and thirty-five; as the integers one and thirty-five placed next each other; as thirteen and
five placed next to each other; or as three seperate integers one, three and five, we will assume that,
after source coding, all the message symbols belong to the alphabet Λ10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In
practice a larger alphabet could be considered.

However in the intermediary stages between the source and destination, message symbols placed
together in a single matrix element mi,j are treated as a single symbol. For example, during coding,
decoding and error correction the element m1,1 of i) in Example 10 is interpreted as the integer one
hundred and thirty-five and not as three seperate integers placed together. Therefore the message

2Note that much of the notation used within this chapter differs from that used in [4] and [31]. This is simply
to aid the understanding of the coding theory.

3This is an example of the pidgeonhole principal which states that if y items are put into x pidgeonholes
where y > x, then at least one pidgeonhole must contain more than one item.
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symbols must be arranged in M such that 0 is never the first symbol in a ‘block’ of symbols in a
matrix element mi,j . This is so that, for example, 012 is not interpreted as the integer twelve and
then decoded as 12.

Note that once the message symbols have been inserted into the message matrix M , it is possible
that some matrix elements mi,j may only contain a single symbol which is 0. In order to derive an
error correcting relation later in this chapter, we will require that all message matrix elements must
be strictly positive. [31] Therefore an integer µ is added to each element mi,j to obtain a matrix M̂
where all elements m̂i,j are strictly positive:

M̂(p+1)×(p+1) =


m̂1,1 m̂1,2 . . . m̂1,p+1

m̂2,1 m̂2,2 . . . m̂2,p+1
...

...
. . .

...
m̂p+1,1 m̂p+1,2 . . . m̂p+1,p+1

 . (4.1)

Now recall that in §1.2, we represented the recursion relation for the Fibonacci p-numbers in matrix
form (1.6), using the Fibonacci Qp matrix (1.7). We then proved by induction that the (p+1)×(p+1)
Qnp matrix is

Qnp =


Fp(n+ 1) Fp(n) · · · Fp(n− p+ 2) Fp(n− p+ 1)

Fp(n− p+ 1) Fp(n− p) · · · Fp(n− 2p+ 2) Fp(n− 2p+ 1)
...

...
. . .

...
...

Fp(n− 1) Fp(n− 2) · · · Fp(n− p) Fp(n− p− 1)
Fp(n) Fp(n− 1) · · · Fp(n− p+ 1) Fp(n− p)

 , (4.2)

where Fp(n) is the nth Fibonacci p-number (1.1).

The Qnp matrix is used as the encoding matrix as its dimensions are equal to those of M̂ and it
contains properties which prove useful later. The value of n is chosen freely - the optimal value of n
will be discussed later. The parameter p has already been determined when choosing the dimensions
of the message matrix M .

To encode the matrix M̂ we use the formula [31]:

M̂ ×Qnp = E (4.3)

and obtain the code matrix 4:

E =


e1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . ep+1,p+1

 . (4.4)

This code matrix is sent through the channel, together with the determinant of M̂ . In the channel,
symbol errors may occur to one or more of the elements ei,j in the code matrix E. These errors can
be represented in the form of an error matrix :

Σ =


σ1,1 σ1,2 . . . σ1,p+1

σ2,1 σ2,2 . . . σ2,p+1
...

...
. . .

...
σp+1,1 σp+1,2 . . . σp+1,p+1

 . (4.5)

4The code matrix is equivalent to the codeword discussed in §4.1. Codeword is the term conventionally used,
as elements are usually represented in vector form.
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Therefore, on the other side of the channel, the received code matrix E′ is the addition of the code
matrix E and the error matrix Σ:

E′ =


e1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . ep+1,p+1

 +


σ1,1 σ1,2 . . . σ1,p+1

σ2,1 σ2,2 . . . σ2,p+1
...

...
. . .

...
σp+1,1 σp+1,2 . . . σp+1,p+1



=


e′1,1 e′1,2 . . . e′1,p+1

e′2,1 e′2,2 . . . e′2,p+1
...

...
. . .

...
e′p+1,1 e′p+1,2 . . . e′p+1,p+1

 . (4.6)

Also received is (det M̂)′, which may or may not be equivalent to det M̂ , depending on whether noise
has caused an error. We use two checking relations to detect if errors are present in the matrix E′. If
no errors are detected then the received code matrix E′ is equivalent to the sent code matrix E and
the error matrix Σ consists entirely of zero elements. The matrix E is then decoded to M̂ , using the
inverse of the Qnp matrix, by the formula:

E ×Q−np = M̂. (4.7)

However if errors are detected in the matrix E′, then the two checking relations are used to try to
correct the errors. If error correction is successful the matrix E is obtained. This is decoded to
M̂ as above and therefore complete decoding has occurred. Then the original message matrix M is
obtained by subtracting the constant µ from M̂ and the message is subsequently read from M at the
destination. However, if the errors are detected but cannot be corrected, then incomplete decoding
has occurred and retransmission is requested if the channel is two-way. [31]

4.3 Checking relations

We will now prove two checking relations which, as previously mentioned, are required for error
detection and correction.

Theorem. For p, n ∈ Z and p ≥ 1:

detE = (−1)pn × det M̂. (4.8)

Proof. This proof is taken from [31], although different notation is used.

Consider the formula for encoding the matrix M̂ :

E = M̂ ×Qnp .

Taking the determinant of both sides of the equation and using matrix theory5 gives:

detE = det(M̂ ×Qnp )

= det M̂ × detQnp .

In §1.2, we proved that detQnp = (−1)pn. Therefore

detE = (−1)pn × det M̂.

5If A and B are two square matrices of the same dimension then det(AB) = det(A)× det(B). [2]
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Theorem. For p = 1, and finite values of n, the following connections between elements of the code
matrix E exist:

e1,1
e1,2

≈ τ,
e2,1
e2,2

≈ τ.

Proof. This proof is adapted from [31].

Consider the Fibonacci decoding formula M̂ = E ×Q−np :(
m̂1,1 m̂1,2

m̂2,1 m̂2,2

)
=
(
e1,1 e1,2
e2,1 e2,2

)
× 1

detQn1

(
−F (n− 1) F (n)
F (n) −F (n+ 1)

)
.

Applying the identity (1.9), this is equivalent to:(
m̂1,1 m̂1,2

m̂2,1 m̂2,2

)
=
(
e1,1 e1,2
e2,1 e2,2

)
× (−1)−n

(
−F (n− 1) F (n)
F (n) −F (n+ 1)

)
.

Matrix multiplication results in the following four equations which give the matrix elements of M̂ in
terms of elements of E and the Fibonacci numbers:

m̂1,1 = −
(
(−1)−nF (n− 1)

)
e1,1 +

(
(−1)−nF (n)

)
e1,2,

m̂1,2 =
(
(−1)−nF (n)

)
e1,1 −

(
(−1)−nF (n+ 1)

)
e1,2,

m̂2,1 = −
(
(−1)−nF (n− 1)

)
e2,1 +

(
(−1)−nF (n)

)
e2,2,

m̂2,2 =
(
(−1)−nF (n)

)
e2,1 −

(
(−1)−nF (n+ 1)

)
e2,2.

Recall that the elements of M̂ are all strictly positive. Therefore

−
(
(−1)−nF (n− 1)

)
e1,1 +

(
(−1)−nF (n)

)
e1,2 > 0,(

(−1)−nF (n)
)
e1,1 −

(
(−1)−nF (n+ 1)

)
e1,2 > 0,

−
(
(−1)−nF (n− 1)

)
e2,1 +

(
(−1)−nF (n)

)
e2,2 > 0,(

(−1)−nF (n)
)
e2,1 −

(
(−1)−nF (n+ 1)

)
e2,2 > 0.

Dividing both sides of each inequality by (−1)−n and rearranging we have that:

F (n)e1,2 > F (n− 1)e1,1, (4.9)

F (n)e1,1 > F (n+ 1)e1,2, (4.10)

F (n)e2,2 > F (n− 1)e2,1, (4.11)

F (n)e2,1 > F (n+ 1)e2,2. (4.12)

By rearranging to isolate e1,1 in (4.9) and (4.10), we find that

F (n+ 1)
F (n)

e1,2 < e1,1 <
F (n)

F (n− 1)
e1,2,

which is equivalent to
F (n+ 1)
F (n)

<
e1,1
e1,2

<
F (n)

F (n− 1)
. (4.13)
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Similarly, from (4.11) and (4.12):

F (n+ 1)
F (n)

e2,2 < e2,1 <
F (n)

F (n− 1)
e2,2,

which is equivalent to
F (n+ 1)
F (n)

<
e2,1
e2,2

<
F (n)

F (n− 1)
. (4.14)

Therefore both e1,1

e1,2
and e2,1

e2,2
are bounded above and below by the quotient of two consecutive Fibonacci

numbers.

Recall from §1.5 that

lim
n→∞

Fp(n)
Fp(n− 1)

= τp = lim
n→∞

Fp(n+ 1)
Fp(n)

,

where τp is the Golden p-Proportion - the positive, real root of the golden algebraic equation (1.21).
In particular, recall from Example 4 that the Golden p-Proportion for the case when p = 1 is the
Golden Ratio τ = 1+

√
5

2 .

By the Squeeze Theorem6, as n tends to infinity both e1,1

e1,2
and e2,1

e2,2
tend to the Golden Ratio τ .

For finite values of n:
e1,1
e1,2

≈ τ,
e2,1
e2,2

≈ τ.

This corollary and its proof are formed using material from [4]:

Corollary. Let k be an integer such that 1 ≤ k ≤ p and 2 ≤ j + k ≤ p + 1. Then, for p ≥ 1 and
finite n:

ei,j
ei,j+k

≈ τkp . (4.15)

Outline of proof. The proof for general p is very similar to the proof for p = 1. Begin with the
formula M̂ = E × Q−np and apply matrix multiplication to obtain equations for m̂i,j in terms of the
code elements of E and Fibonacci p-numbers. Use that all elements m̂i,j are positive and obtain
inequalities of the form:

Fp(n)
Fp(n− k)

≶
ei,j
ei,j+k

≶
Fp(n+ 1)

Fp(n− k + 1)
.

Applying (1.29) and the Squeeze Theorem gives that:

lim
n→∞

ei,j
ei,j+k

= τkp , (4.16)

and for finite n:
ei,j
ei,j+k

≈ τkp .

6The Squeeze Theorem, otherwise known as the Pinching Theorem or the Sandwich Theorem, is as follows:

Suppose that f(x) ≤ g(x) ≤ h(x) hold for all x in some open interval containing a, except possibly at
a itself. a can be any real number or it can be −∞ or +∞. Suppose also that

lim
x→a

f(x) = lim
x→a

h(x) = L.

Then lim
x→a

g(x) = L. [1]
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Example 10. For p = 2, the relationships between the elements ei,j are:

e1,1
e1,2

≈ τ2,
e1,2
e1,3

≈ τ2,
e1,1
e1,3

≈ τ2
2 ,

e2,1
e2,2

≈ τ2,
e2,2
e2,3

≈ τ2,
e2,1
e2,3

≈ τ2
2 ,

e3,1
e3,2

≈ τ2,
e3,2
e3,3

≈ τ2,
e3,1
e3,3

≈ τ2
2 ,

where τ2 ≈ 1.465. The full derivation for p = 2 can be seen in [4].

Example 11. When p = 99, there are 10, 000 elements within the code matrix E so it would be
tiresome to find the relationships between all of the elements. However using (4.15) we know that, for
example:

e1,10

e1,100
≈ τ90

99 , and
e100,10

e100,100
≈ τ90

99 .

4.4 Error detection and correction

In the communication system, the ‘receiver’ receives the matrix E′ and (det M̂)′. We now introduce
the method of detecting and correcting errors which may be present in E′. This method requires the
use of the checking relations (4.8) and (4.15).

Theorem. If both E′ and (det M̂)′ do not contain errors, then:

detE′ = (−1)pn × (det M̂)′. (4.17)

Proof. In the previous section we proved that

detE = (−1)pn × det M̂.

If E′ does not contain any errors then it is equivalent to the sent code matrix E, and therefore
detE = detE′. Similarly, if the (det M̂)′ does not contain an error, it is equivalent to det M̂ which
was sent. Hence the theorem is proved.

Remark. The converse does not hold.

To convince yourself of this, consider the following scenarios where detE′ = (−1)pn × (det M̂)′ does
not imply that E′ and (det M̂)′ are error-free:

i) There are two or more errors7 present in E′ such that the determinant of E′ is equal to the
determinant of E. (det M̂)′ has no error and is therefore equivalent to det M̂ .

For example, suppose the matrix E =
(

89 55
144 89

)
is sent and E′ =

(
89 60
132 89

)
is received. Both have

a determinant of one, meaning that the equality (4.17) will hold, even though E′ has two errors.

ii) There are errors to both E′ and (det M̂)′ such that (4.17) still holds.

For example, suppose the matrix E =
(

89 55
144 89

)
is sent and E′ =

(
89 50
150 89

)
, which has a determinant of

421, is received. Also, (det M̂)′ = (−1)n×421 is received which differs from det M̂ which was sent. Al-
though both detE′ and (det M̂)′ have errors, the equality (4.17) still holds as 421 = (−1)n×(−1)n×421.

Therefore we may find that (4.17) is true, but we still cannot be sure that neither E′ nor (det M̂)′

possess errors. In this situation we must apply the following result:
7If there is only one error present then detE′ cannot be equivalent to detE.
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Theorem. If the matrix E′ does not have errors, the following connections between its elements exist:

e′i,j
e′i,j+k

≈ τkp , (4.18)

where 1 ≤ k ≤ p and 2 ≤ j + k ≤ p+ 1.

Proof. If E′ does not have errors, then it is equivalent to E and therefore the result follows from the
identity (4.15).

Therefore on receipt of E′ and (det M̂)′, if both (4.17) and (4.18) are satisfied then we conclude that
there are no errors present and proceed to decode E′. However if either (4.17) or (4.18) are not sat-
isfied, then we conclude that either: E′ has at least one error; (det M̂)′ differs from det M̂ ; or both
have errors8.

Consider again the scenarios discussed above. In each scenario the matrix E′ satisfies (4.17) but
does not (4.18), and therefore we conclude correctly that errors are present in either E′, (det M̂)′ or
both.

If we do conclude that errors have occurred, we assume at first that an error does not lie in (det M̂)′

and try to correct any errors in E′. We can propose later that (det M̂)′ has an error if error correction
on E′ is unsuccessful.

If there are errors present in E′, there could be between one and (p + 1)2 inclusive. We begin by
assuming that there is one error present and try to solve the resulting problem. If we are unsuccessful,
we then assume there are two errors present and so on.

There are
(
(p+1)2

1

)
= (p + 1)2 ways in which a single error can occur in E′ and so there are (p + 1)2

cases to consider. For each case, we denote the erroneous matrix element by xi,j and treat it as an
unknown, and all other matrix elements e′i,j are considered equivalent to their corresponding ei,j and
are therefore denoted as such. Hence the cases we consider are:

E′ =


x1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . ep+1,p+1

 , · · · E′ =


e1,1 e1,2 . . . x1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . ep+1,p+1

 ,

...
. . .

...

E′ =


e1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
xp+1,1 ep+1,2 . . . ep+1,p+1

 , · · · E′ =


e1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . xp+1,p+1

 .

(4.19)
For each case, we use (4.17) to obtain an equation involving the variable xi,j , whose value is dependent
on the other elements in the matrix. If xi,j is found not to be an integer, then its corresponding case
cannot be equivalent to the sent matrix E as all elements of E are integers.

8The authors of [4] and [31] do not mention the need for the second checking relation (4.18) when detecting
errors. However, as dicussed, this checking relation is required.
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The remaining xi,j ’s are re-entered into their corresponding matrix in (4.19). If one of these ma-
trices is equivalent to the sent code matrix E, then (4.18) will hold for that matrix, but not for any
other matrices. However if no matrix satisfies (4.18), then we conclude that there cannot be exactly
one error in E′. [31]

Example 12. Let us consider the error correction method thus far for p = 1. Suppose that we receive
the matrix

E′ =
(
e′1,1 e′1,2
e′2,1 e′2,2

)
,

and (det M̂)′ such that either (4.17) or (4.18) does not hold. We assume that (det M̂)′ is not erroneous
and consider the four possible ways in which one error could be present in E′:

i) E′ =
(
x1,1 e1,2
e2,1 e2,2

)
, ii) E′ =

(
e1,1 x1,2

e2,1 e2,2

)
,

iii) E′ =
(
e1,1 e1,2
x2,1 e2,2

)
, iv) E′ =

(
e1,1 e1,2
e2,1 x2,2

)
.

Applying the checking relation (4.17) to each of these four cases gives the linear equations:

i) x1,1e2,2 − e1,2e2,1 = (−1)n × (det M̂)′,

ii) e1,1e2,2 − x1,2e2,1 = (−1)n × (det M̂)′,

iii) e1,1e2,2 − e1,2x2,1 = (−1)n × (det M̂)′,

iv) e1,1x2,2 − e1,2e2,1 = (−1)n × (det M̂)′.

Solving for xi,j in each case gives

i) x1,1 =
(−1)n × (det M̂)′ + e1,2e2,1

e2,2
,

ii) x1,2 =
(−1)n+1 × (det M̂)′ + e1,1e2,2

e2,1
,

iii) x2,1 =
(−1)n+1 × (det M̂)′ + e1,1e2,2

e1,2
,

iv) x2,2 =
(−1)n × (det M̂)′ + e1,2e2,1

e1,1
.

We then check whether any of the cases, where xi,j is an integer, satisfy the checking relation (4.18).
For example, suppose that we find x1,1 to be an integer. We would choose this corrected value of e′1,1
if:

x1,1

e1,2
≈ τ,

e2,1
e2,2

≈ τ

If no case satisfies (4.18), then there is either more than one error in E′, or (det M̂)′ is erroneous. [31]

Returning to the error correction for general p: if either no xi,j is an integer or (4.18) does not
hold for any of the (p+ 1)2 cases, there is more than one error in E′ or (det M̂)′ recieved differs from
det M̂ . The next step would be to try to error correct as if there are exactly two errors present in E′,
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and there are
(
(p+1)2

2

)
ways in which this could occur. Let yi,j denote an erroneous matrix element.

All other elements e′i,j are deemed equivalent to their corresponding ei,j and are therefore denoted as
such. The cases to consider are:

E′ =


y1,1 y1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
ep+1,1 ep+1,2 . . . ep+1,p+1

 , · · · E′ =


e1,1 . . . y1,p y1,p+1

e2,1 . . . e2,p e2,p+1
...

. . .
...

...
ep+1,1 . . . ep+1,p ep+1,p+1

 ,

...
. . .

...

E′ =


e1,1 e1,2 . . . e1,p+1

e2,1 e2,2 . . . e2,p+1
...

...
. . .

...
yp+1,1 yp+1,2 . . . ep+1,p+1

 , · · · E′ =


e1,1 . . . e1,p e1,p+1

e2,1 . . . e2,p e2,p+1
...

. . .
...

...
ep+1,1 . . . yp+1,p yp+1,p+1

 .

Applying the checking relation (4.17) to each case gives
(
(p+1)2

2

)
equations involving two variables -

some may be linear, others may be non-linear. Some equations may have a finite number of integer
solutions while others may have an infinite number of integer solutions or no integer solutions at all.
The solution which satisfies the second checking relation (4.18) must be chosen, if such a solution
exists. Otherwise, we continue and try to correct for three errors. [31]

Example 13. Continuation of Example 12.
Suppose that in Example 12 we found no xi,j which satisfies (4.18). We now try to error correct

as if there are two errors present. There are
(
4
2

)
= 6 ways in which two errors could occur in E′:

i) E′ =
(
y1,1 y1,2

e2,1 e2,2

)
, ii) E′ =

(
y1,1 e1,2
y2,1 e2,2

)
, iii) E′ =

(
y1,1 e1,2
e2,1 y2,2

)
,

iv) E′ =
(
e1,1 y1,2

y2,1 e2,2

)
, v) E′ =

(
e1,1 y1,2

e2,1 y2,2

)
, vi) E′ =

(
e1,1 e1,2
y2,1 y2,2

)
.

Let’s consider the cases i), ii), v) and vi). Taking the determinant of E′ and applying (4.17) to each
of these cases, we obtain equations of the form ax+ by = c. These are linear Diophantine equations9

but with certain restrictions imposed upon a, b, x and y. As all the code elements are positive in-
tegers, this implies that: a,x and y are positive integers; b is a negative integer due to the minus
sign in the determinant of E′; and c may be a positive or negative integer depending on the value of
(−1)n×(det M̂)′. A linear Diophantine equation possesses infinite integer solutions if c is a multiple of
the greatest common divisor of a and b. These solutions can be found using the Extended Euclidean
Algorithm. However if c is not a multiple of the greatest common divisor of a and b, then no integer
solutions exist. [5]

For cases iii) and iv), taking the determinant of E′ and applying (4.17) gives nonlinear equations
of the form xy = c, where c is a constant integer and x, y > 0 are variables. These are equations for
rectangular hyperbolas in the upper right quadrant where the horizontal and vertical axes are asymp-
totic. Whether there are integer solutions or not depends on whether c is positive or negative. If c
is positive, there will exist a finite number of integer solutions but always at least the two solutions,
(x, y) = (1, c) and (x, y) = (c, 1). Any other integer solutions lie on the curve between these two

9A linear diophantine equation is of the form ax+ by = c where a, b, c are integers and the variables x, y can
only take integer values.
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co-ordinates. However if c ≤ 0, then no solutions exist for x, y > 0.

If, from all the cases i) − iv), there is an integer solution which satisfies the checking relation (4.18)
then this yi,j is the corrected value of its corresponding e′i,j .

If we are not able to error correct for two errors we continue to error correct for three errors and
so on, up to and including error correction for (p + 1)2 − 1 errors if necessary. However we are not
able to error correct for (p+ 1)2 errors, as all (p+ 1)2 elements in the matrix E′ would be treated as
unknowns. In other words, there is a lack of necessary information. Therefore, if we are not able to
correct for (p+ 1)2 − 1 errors, we must propose that there are either (p+ 1)2 errors in the matrix E′,
or (det M̂)′ is incorrect, or both. Incomplete decoding will have occurred and retransmission would
be requested if the channel is two-way. [31]

4.5 A numerical example

Algorithmic methods for a general theory can sometimes be difficult to digest without an example to
follow. Therefore we now give an example of the Fibonacci coding method.

A message is to be sent through the channel from the source to the destination. After source coding,
the message is in the form U = {0, 9, 1, 2, 1, 5}, an ordered list of t = 6 symbols from the alphabet
Λ10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We must choose the parameter p ≥ 1 such that (p + 1)2 < 6. This
condition only allows us to choose p = 1, so the message matrix M will be a 2× 2 matrix. We arrange
the message symbols into M according to the conditions stated earlier:

M =
(

0 9
12 15

)
.

As m1,1 = 0, we must add an integer µ to each mi,j to obtain a matrix M̂ where all m̂i,j > 0. Taking
µ = 1 we obtain

M̂ =
(

1 10
13 16

)
,

which has a determinant of −114.

We now select the encoding matrix Qnp given by (1.8). The parameter p = 1 but we can choose
n freely. We will choose Q14

1 , a matrix containing the thirteenth, fourteenth and fifteen Fibonacci
numbers:

Q14
1 =

(
F (15) F (14)
F (14) F (13)

)
=
(

610 377
377 233

)
.

We then encode M̂ to obtain the code matrix E by using the formula M̂ ×Q14
1 = E:(

1 10
13 16

)(
610 377
377 233

)
=
(

4380 2707
13962 8629

)
.

The matrix E and det M̂ = −114 are sent through the channel.

Suppose that on the other side of the channel we receive

E′ =
(

4385 2707
13962 8699

)
and (det M̂)′ = −114.
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It is unknown whether errors are present in either E′ or (det M̂)′ due to noise. Therefore, we need to
check whether the checking relation detE′ = (−1)pn × (det M̂)′ is satisfied. Firstly, we calculate

detE′ = 4385× 8699− 2707× 13962

= 349981.

We then see that the checking relation does not hold:

349981 6= (−1)14 × (−114).

Therefore either between one and four errors have occurred to E′, or (det M̂)′ differs from det M̂ . At
first we assume that (det M̂)′ is correct and proceed with error correction on E′.

There are
(
4
1

)
= 4 cases to consider when error correcting for one error:

i) E′ =
(
x1,1 2707

13962 8699

)
, ii) E′ =

(
4385 x1,2

13962 8699

)
,

iii) E′ =
(

4385 2707
x2,1 8699

)
, iv) E′ =

(
4385 2707
13962 x2,2

)
.

The notation xi,j represents an erroneous matrix element and it’s value is determined by the other
elements in the matrix. Thus, suppose x1,1 is where the error occurred and the remaining e′i,j are
equivalent to ei,j . Then we will be able to obtain the true value of x1,1 by using the checking relation
(4.8). However, in reality we do not know whether x1,1 is actually where an error has occurred, so we
must apply (4.17) to all the cases i)− iv):

i) 8699x1,1 − 2707× 13962 = (−1)14 × (−144),

ii) 4385× 8699− 13962x1,2 = (−1)14 × (−144),

iii) 4385× 8699− 2707x2,1 = (−1)14 × (−144),

iv) 4385x2,2 − 2707× 13962 = (−1)14 × (−144).

Solving these equations, we find that:

x1,1 ≈ 4344.751, x1,2 ≈ 2732.077 x2,1 ≈ 14091.341, x2,2 ≈ 8619.154.

There are no integer solutions so we can conclude that there is either more than one error in E′ or
det M̂ is erroneous.

Hence we proceed to correct for two errors. There are
(
4
2

)
cases to consider:

i) E′ =
(
y1,1 y1,2

13962 8699

)
, ii) E′ =

(
y1,1 2707
y2,1 8699

)
, iii) E′ =

(
y1,1 2707

13962 y2,2

)
,

iv) E′ =
(

4385 y1,2

y2,1 8699

)
, v) E′ =

(
4385 y1,2

13962 y2,2

)
, vi) E′ =

(
4385 2707
y2,1 y2,2

)
.

(4.20)
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We apply (4.17) to all the cases i)− vi) to obtain the equations:

i) 8699y1,1 − 13962y1,2 = (−1)14 × (−114),

ii) 8699y1,1 − 2707y2,1 = (−1)14 × (−114),

iii) y1,1y2,2 − 2707× 13962 = (−1)14 × (−114),

iv) 4385× 8699− y1,2y2,1 = (−1)14 × (−114),

v) 4385y2,2 − 13962y1,2 = (−1)14 × (−114),

vi) 4385y2,2 − 2707y2,1 = (−1)14 × (−114).

Cases i), ii), v) and vi) are of the form ax + by = c and, as we seek integer solutions, they are
Linear Diophantine equations. We find that for all of these cases gcd(a, b) = 1, thus c is a multiple
of gcd(a, b). Therefore there are infinite solutions for cases i), ii), v) and vi). Using the Extended
Euclidean Algorithm, we find that the solutions for yi,j > 0 are10:

i) (y1,1 = 13710 + 13962q, y1,2 = 8542 + 8699q), (4.21)

ii) (y1,1 = 2482 + 2707q, y2,1 = 7976 + 8699q), (4.22)

v) (y1,2 = 3782 + 4385q, y2,2 = 12042 + 13962q), (4.23)

vi) (y2,1 = 1317 + 4385q, y2,2 = 813 + 2707q), (4.24)

where q ∈ Z≥0.

For cases iii) and iv) we must consider solutions which satisfy:

iii) y1,1y2,2 = 37795020, (4.25)

iv) y1,2y2,1 = 38145229. (4.26)

A particular solution obtained from (4.25) is (y1,1, y2,2) = (4380, 8629). If we enter this solution back
into its corresponding matrix iii) in (4.20), we see that the second checking relation (4.18) holds:

4380
2707

≈ 1.618027 ≈ τ, 13962
8629

≈ 1.618032 ≈ τ.

Therefore, through the error correction method above, we have corrected the received matrix E′ to
obtain the sent matrix E:

E =
(

4380 2707
13962 8629

)
.

Subtraction of the sent matrix E from the received matrix E′ gives the error matrix

Σ =
(

5 0
0 70

)
,

from which we can see the magnitude of the symbol errors and the positions where they occurred.

10The equations were solved with the aid of [19].
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We then decode the code matrix E to obtain M̂ :

E ×Q−14
1 =

(
4380 2707
13962 8629

)(
233 −377
−377 610

)

=
(

1 10
13 16

)
= M̂.

Finally we subtract µ = 1 from all elements m̂i,j to give the original message matrix

M =
(

0 9
12 15

)
,

from which the message can be read as U = {0, 9, 1, 2, 1, 5}. U has been transmitted succesfully
through the channel from the source to the destination.

4.6 Theory versus practicality

A good coding theory is not only one which produces sound results on paper, but one which has few
practical difficulties and can be applied successfully in the real world. Is Fibonacci coding a good
coding theory? In this section we explore this using a combination of [4] and my own thoughts.

Error correction forms a major part of the Fibonacci coding method. It was mentioned previously that
a maximum of (p + 1)2 errors can occur to a code matrix E containing (p + 1)2 elements. In theory
the error correction method allows us to successfully correct errors in all scenarios where between one
and p2 + 2p inclusive errors occur. For example, when p = 1 we can successfully error correct up to
and including threefold errors, but cannot correct fourfold errors. As there are

(
4
k

)
ways in which k

errors can occur in a 2× 2 code matrix E, the total number of possible error combinations for p = 1
is: (

4
1

)
+
(

4
2

)
+
(

4
3

)
+
(

4
4

)
= 15.

We can successfully error correct for all these error combinations, except for the one case where there
are fourfold errors present. Thus S1, the probability of successful error correction for p = 1, is

S1 =
14
15
≈ 0.933.

When p = 2, we can correct all error combinations except the one case of ninefold errors. Therefore

S2 =
510
511

≈ 0.998.

In fact, the following result for general p is stated in [4]. We prove the result here.

Theorem. For p ≥ 1, the probability of successful error correction is

Sp =
2(p+1)2 − 2
2(p+1)2 − 1

. (4.27)

To enable us to prove this theorem, we require the following lemma:

Lemma. For n, k ∈ Z,
n∑
k=1

(
n

k

)
= 2n − 1 (4.28)
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Proof of Lemma. Letting x = y = 1 in the binomial formula

n∑
k=0

(
n

k

)
xn−kyk = (x+ y)n

gives the identity
n∑
k=0

(
n

k

)
= 2n.

This can be written as (
n

0

)
+

n∑
k=1

(
n

k

)
= 2n,

which is equivalent to
n∑
k=1

(
n

k

)
= 2n − 1.

Proof of Theorem. Using the Lemma above, the total number of possible error combinations is(
(p+ 1)2

1

)
+
(

(p+ 1)2

2

)
+ · · ·+

(
(p+ 1)2

(p+ 1)2

)
=

(p+1)2∑
k=1

(
(p+ 1)2

k

)

= 2(p+1)2 − 1 (4.29)

For all values of p, we are able to correct all possible error combinations except where there are (p+1)2

errors present. We are therefore able to correct 2(p+1)2−2 error combinations from a total of 2(p+1)2−1
possible error combinations. The probability of successful error correction, Sp, will equal the number
of error combinations we are able to correct as a proportion of the total number of possible error
combinations. Therefore

Sp =
2(p+1)2 − 2
2(p+1)2 − 1

.

Let the random variable X be the number of errors that occur to E. Note that, we have assumed
that P (X = 1) = P (X = 2) = · · · = P (X = (p + 1)2). In other words, one error is as likely to occur
as (p+ 1)2 errors. However this is not the case in reality. Suppose that θ is the probability11 that an
error occurs to the matrix element ei,j and 1 − θ is therefore the probability that an error does not
occur to that element. Then X follows a binomial distribution with probability mass function:

P (X = k) =
(

(p+ 1)2

k

)
θk(1− θ)(p+1)2−k

for k = 0, 1, 2, . . . , (p+1)2. It is likely that θ < 1
2 , in which case the probability that (p+1)2 errors occur

will be relatively small compared to the probabilities that other numbers of errors occur. Therefore,
with θ < 1

2 , a plausible statement to make is [8]:

Sp >
2(p+1)2 − 2
2(p+1)2 − 1

.

11As mentioned in the motivation to coding theory, we assume the channel is memoryless, meaning that a
symbol error to one element does not increase or decrease the probability that a symbol error occurs to another
element.
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Note that Sp → 1 as p→∞ and therefore, in theory we would like to choose p as large as is feasibly
possible so that the probability of successful error correction is as close to one as possible. However
there are several practical drawbacks to this. As p increases, the number of elements in the matrices
increases quadratically and as a result the number of arithmetic operations (+,−,×,÷) performed
during the method increases quickly - perhaps quadratically or even exponentially. An algorithm
which grows exponentially is usually not a practical one. Therefore, if p is large and the checking
relations (4.17) and (4.18) fail when we recieve E′ and (det M̂)′, would it be more efficient to ask for
retransmission if the channel is two way, rather than potentially attempting to correct p2 + 2p errors?

Another practical issue with a large value of p is our ability to solve equations which contain a
large number of variables. Linear equations in one variable, which we obtain when error correcting for
one error, are simple to solve. However when we error correct for two errors or more we will encounter
linear and non-linear equations with an increasing number of variables. Is it realistic to assume that
we are able to solve equations with up to and including p2 + 2p variables?

This leads to a potential issue concerning our ability to find a particular solution which satisfies
the relation (4.18). Using brute-force to try to find such a solution among a finite number of solutions
is not ideal, but it is still a method which works. However if there are an infinite number of solutions
to consider, a brute-force method is obviously not practical. It is not only time-consuming but poten-
tially never-ending if there are actually no solutions which satisfy (4.18). A graphical approach is also
impractical when there are many variables. Therefore, is there an efficient method which enables us
to find the particular solution we seek when our equations involve many variables?

How do we decide how ‘close’ the approximation (4.18) is required to be for us to conclude that
a particular solution is correct? The answer to this is related to our choice of n when selecting the
encoding matrix Qnp . The larger the value of n, the more exact the approximation (4.18) due to (4.16).
Therefore increasing n indirectly increases the accuracy of error correction. However, we also need
to consider redundancy caused by n - additional information which is not necessary to be able to
accurately error correct. [31] If n = a is the smallest value of n such that error correction occurs
with full accuracy, then choosing n > a will add redundancy to the coding method and, as mentioned
earlier, redundancy is inversely proportional to efficiency.

So, is Fibonacci coding a good coding theory? In theory, it is a good coding theory as the prob-
ability of successful error correction converges to one. However, there remain many issues regarding
practicality, such as: the choices of p and n; our ability to solve equations which contain many vari-
ables; our ability to find a particular integer solution which satisfies (4.18), from an infinite number of
solutions; and problems regarding the approximations (4.18), and the accuracy of the method. It is
clear that more research is required before Fibonacci coding theory can be applied to real life scenarios.
However, applying Fibonacci coding with a low value of p seems plausible as, even for the simplest
case when p = 1, the ability of the Fibonacci coding method to successfully error correct “exceeds
essentially all well-known correcting codes” [31].
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Conclusion

Over the years, countless texts have been written about the Fibonacci numbers, the Golden Ratio
and their applications. The aim of this report was to stay off the beaten track and introduce the
reader to some lesser known applications related to the Fibonacci p-numbers. Much of the material
discussed has only been published within the last five years and therefore is very much current research.

On the surface, the Fibonacci p-numbers may seem very elementary and questions may be asked
as to why they have undergone so much research. After all, any mathematics which stems from a
highly idealised rabbit problem may be deemed as elementary at first. However it becomes clear that
the topic is in fact vast, and at times complex, especially when the theory for large values of p is
considered. We saw the underlying beauty of the Fibonacci p-numbers in the first chapter through
their relationship with the Golden p-Proportion, and it became apparent that they possess interesting
properties and identities. In fact, given the huge number of properties and identities for the Fibonacci
numbers, there may be many more for the Fibonacci p-numbers which are yet to be discovered.

Establishing a closed form expression for the nth Fibonacci (p,m)-number, a generalisation of the
nth Fibonacci p-number, enabled Fibonacci theory to be extended from the discrete to the continuous
domain. We derived functions for Fibonacci curves and surfaces which lie in two and three dimen-
sional space and argued that, although it is possibly a far-fetched idea, the Metallic Shofar cannot
be dismissed as a possible model for the spatial section of the universe. Little additional research
of the Metallic Shofar and the Fibonacci curves is necessary, although it may be interesting if not
particularly useful, to investigate the geometrical aspects such as Gaussian curvature and geodesics.

However it became apparent that much research is necessary if Fibonacci coding theory is to be
put into practice. Many of the potential practical drawbacks are not mentioned in the published
research available on this topic, as they tend to focus upon the method of Fibonacci coding and its
success in theory. Therefore much of the analysis of the coding theory is my own, and I have left open
questions which may be the subject of research in the future. I certainly feel some numerical analysis
of the coding algorithm is vital, as well as collaborations with engineers and computer scientists, if
this coding theory is to provide the safe tranmission of data in our communications networks in the
future.

There are many more intiguing applications of the Fibonacci p-numbers, which unfortunately could
not be covered in this report. If these are of interest, the works of the Ukrainian mathematician
Alexey Stakhov are most certainly worth reading.
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Appendix A

Formulae for the roots of the monic
cubic equation

A monic polynomial is one in which the coefficient of the highest order term is 1. The roots of the
monic cubic equation x3 + ax2 + bx+ c = 0 are:

x1 = −1
3

(
a+

3

√
m+

√
n

2
+

3

√
m−

√
n

2

)

x2 = −1
3

(
a+ ω2

3

√
m+

√
n

2
+ ω1

3

√
m−

√
n

2

)

x3 = −1
3

(
a+ ω1

3

√
m+

√
n

2
+ ω2

3

√
m−

√
n

2

)
where

m = 2a3 − 9ab+ 27c

k = a2 − 3b

n = m2 − 4k3 = (2a3 − 9ab+ 27c)2 − 4(a2 − 3b)3

ω1 = −1
2

+
1
2

√
3i

ω2 = −1
2
− 1

2

√
3i

Note that from n = m2 − 4k3:

k3 =
m2 − n

4

⇐⇒ k3 =
(
m+

√
n

4

)(
m−

√
n

4

)

⇐⇒ k =
3

√
m+

√
n

4
3

√
m−

√
n

4

Therefore, since there are three possible values for each cube root r = 3

√
m+
√
n

2 and s = 3

√
m−
√
n

2 we
must choose r and s such that rs = k. [6]
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