
International Scholarly Research Network
ISRN Computer Graphics
Volume 2012, Article ID 936315, 8 pages
doi:10.5402/2012/936315

Research Article

A Novel GPU-Based Deformation Pipeline

Muhammad Mobeen Movania and Lin Feng

Division of Information Systems, School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

Correspondence should be addressed to Muhammad Mobeen Movania, mova0002@e.ntu.edu.sg

Received 17 August 2011; Accepted 24 September 2011

Academic Editor: C.-M. Wang

Copyright © 2012 M. M. Movania and L. Feng. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We present a new deformation pipeline that is independent of the integration solver used and allows fast rendering of deformable
soft bodies on the GPU. The proposed method exploits the transform feedback mechanism of the modern GPU to bypass the CPU
read-back, thus, reusing the modified positions and/or velocities of the deformable object in a single pass in real time. The whole
process is being carried out on the GPU. Prior approaches have resorted to CPU read-back along with the GPGPU mechanism.
In contrast, our approach does not require these steps thus saving the GPU bandwidth for other tasks. We describe our algorithm
along with implementation details on the modern GPU and finally conclude with a look at the experimental results. We show how
easy it is to integrate any existing integration solver into the proposed pipeline by implementing explicit Euler integration in the
vertex shader on the GPU.

1. Introduction

Physically based deformation is an actively sought out area
of research. Real-time deformations of 3D volumes as well
as polygonal objects have been used in the modeling of real-
time surgery simulators in the past with approaches such as
FEM-based models [1, 2], ray deflectors [3, 4], mass spring
models [5, 6], and chain mail algorithm [7]. In this paper,
we limit our discussion to the mass spring models since they
are among physically based methods of deformation. This
restriction is for convenience only and it is easy to apply the
proposed ideas to any of the existing deformation methods
cited earlier since all of the models follow the same physical
laws. How they follow the laws is subjective. Our main
contribution is the development of a new pipeline on the
GPU using the transform feedback mechanism for physically
based deformation that is independent of the integration
solver and the deformation method used.

Prior approaches are based on the GPGPU approach
that requires rendering of positions and velocities into sep-
arate offscreen buffers using multiple passes. Moreover,
these approaches are using the fragment pipeline only which
results in an imbalanced utilization of the programmable
graphics pipeline. In contrast, our approach performs the

deformation calculation in the vertex shader in a single
pass. In addition, the fragment shader may be utilized for
other rendering tasks, for example, volume rendering of the
deformed elements. Since the transform feedback mecha-
nism allows points to be deformed directly on the GPU
without a CPU transfer, this saves the GPU bandwidth
significantly, preventing the stalls which might have taken
place due to the CPU-GPU transfer. Utilizing the proposed
pipeline, we can obtain a much more concise implemen-
tation as we will see using the cloth simulation as an ex-
ample.

2. Previous Work

Deformable models allow us to portray the accurate real
world behavior of a 3D object be it a polygonal geometry
or a 3D volume. Without these models, the 3D world would
seem characterless. In the case of the surgical simulators, this
realism is particularly important since this dynamic behavior
adds to the visual cues which play a significant role during
the surgical training. There has been a considerable amount
of research on physical deformable models in computer
graphics. Rather than listing out all of the approaches one
by one, we refer the readers to the following survey [8].

2 ISRN Computer Graphics

Numerous deformation models have been proposed.
One such model, the ray deflectors method [3, 4], involves
bending of viewing rays using translate, rotate, scale, and
discontinuous operators for deformation. It should be noted
that the operators are limited to spheres only; thus, it is
difficult to approximate more complex topologies without a
very large number of spheres of varying radii. This in turn
requires significant resources which makes this method non-
real time.

With the introduction of the 3D texture mapping
capability in hardware, new and innovative uses of texture
memory were proposed. This includes applications ranging
from volumetric renderers to volume deformers. Typically,
this approach [9, 10] converts the volume into a collection
of tetrahedra. Following this conversion, the volume defor-
mation is applied in either model space or volume space
using an affine 4 × 4 matrix. Along with the transfor-
mation matrix, several constraints are also imposed [10]
to maintain continuity. Unfortunately, this model requires
considerable additional processing time during conversion
of the volume into its tetrahedral representation. Moreover,
continuity constraints have to be met in order to avoid cracks
between the tetrahedra during deformation. To circumvent
this problem, the skeleton trees method [11] was proposed
that uses the skeleton representation of the data to aid
as bones for deformation. The same disadvantage as in
the texture mapping approach is that the extraction of
the skeleton representation requires considerable amount
of preprocessing time which is dependent on the dataset
resolution.

Similar to the requirement of the intermediate represen-
tation for the 3D texture mapping and the skeleton trees
approach, the displacement-driven model [12] generates
deformations by extracting a high-resolution triangular
surface mesh. It constructs a deformed node index table
(DNIT) to model the deformation propagation driven by
the displacement at a surface contact point (SCP). Surface
nodes that undergo deformation are added to the current
DNIT according to the triangular mesh topology. It sounds
promising for real-time deformation, but this approach is
limited to modeling of isotropic elastic deformations only.

The deformations are not just restricted to the spatial
domain. One frequency domain approach, the scheduled
Fourier method [13], uses the Fourier transforms of the
volume to morph from one volume to another. Similarly,
the wavelet-based morphing method [14] uses the wavelet
domain by first decomposing the volume into a set of
frequency bands. These bands are then smoothly interpo-
lated and finally the morphed output is generated from
the smoothly interpolated bands. In both of the frequency
domain approaches, high frequencies may be introduced
during the interpolation step which results in a sequential
crystallization of the data. This unfortunately restricts the
application of the method.

The quest for real-time deformation led to the develop-
ment of a new breed of fast algorithms that includes the 3D
chain mail algorithm [7]. It approximates the deformation
by linking elements as chain rings. The deforming elements
only propagate deformation to their immediate neighbors;

hence this method of deformation is very fast. However,
the deformation is restricted using several constraints and,
notably, the underlying model for deformation is not
physically based.

With the advent of the GPU, its immense computational
power has been used to extend and enhance the deformation
models such as those for tetrahedral [2] and multigrid
FEM [1]. Noticeably, mass-spring models have been studied
heavily for deformable body simulations [5, 6] as well as
for surgical simulations [15, 16]. Two of these approaches
in [12, 17] try to conserve volume during deformation. The
approach in [12] uses special support springs to represent
the inner matter of a volumetric object that aids in volume
conservation. Unfortunately, a significantly large number of
support springs are needed to create realistic deformations. A
different approach in [17] uses the Bulk Modulus to restore
volume by applying volumetric stresses using circumcenter
alignment method. Like the texture mapping algorithm, this
method also requires extraction of tetrahedral elements for
deformation propagation which adds significant preprocess-
ing time.

The GPU-based approaches in [15, 18, 19] have resorted
to the general-purpose GPU, or GPGPU, techniques for
evaluating the position and/or velocity integration on the
fragment shader. This involves rendering a screen-sized
quad with the appropriate textures setup and then the
fragment shader is invoked to solve the integration for each
fragment. The output from the fragment shader is written to
another texture. The GPGPU approaches require algorithms
to be moulded considerably so that it is easier to apply
GPGPU techniques to them. As demonstrated in [15], such
compliance could be achieved by rearranging the dataset in
a flat layout. In addition, conforming an algorithm to the
GPGPU design requires ample skill and experience, while
some GPU-based algorithms can be empowered by GPGPU
programming paradigms like CUDA and OpenCL. In fact,
implementation with a CUDA kernel does not necessarily
accelerate a process, and it depends a lot on the algorithm
at hand and how the memory access patterns are in the GPU
pipeline.

Largely due to the generality of the mass spring models in
physically based modeling, we are also especially interested in
its application. We propose a new strategy on the GPU using
the transform feedback mechanism for physically based
deformation that is independent of the integration solver
and its numerical integration schemes. In the following
sections, we demonstrate the implementation of the explicit
Euler integration scheme to show how the new pipeline
is formed. We will also describe how to incorporate other
numerical integration schemes in the proposed pipeline.
Experimental results will be presented and the performance
will be compared with prior work on the GPU.

3. Mathematical Modelling

From the point of view of mathematical modeling, there
is a strong overlap among the physical deformable models
specifically between the FEM-based model and the mass
spring model. An elastic model is based on a 3D mesh of

ISRN Computer Graphics 3

virtual masses which are linked to their neighbors using
massless springs in three ways [20]:

(1) structural springs that link the node to its immediate
neighbor in x-, y- and z-axes only,

(2) shear springs that connect the remaining neighbors
including all of the diagonal links,

(3) flexion springs that are structural springs connected
to the nodes one node away.

Each of these springs is constrained by a different force; that
is, under pure stress, shear springs are constrained, under
pure compression/traction stress (i.e., stretching), only struc-
tural springs are constrained, and under pure flexion stresses
(i.e., bending), only flexion springs are constrained. All of the
connections act as linear springs which bring the voxel mesh
towards equilibrium.

Each node is associated with a set of physical properties
including mass (m), position (x), velocity (v), and accelera-
tion (a). At any point in time, the system is governed by the
following second order ODE:

mẍ = −cẋ +
∑

fint + fext, (1)

where c is the damping coefficient, fint is the ith spring force,
and fext is the external force which may be due to the user’s
intervention, wind, or gravity force or collision force due to
collision of the object with other objects. The spring force fi
can be defined as

fint(t) = ki
(∥∥∥xi(t)− x j(t)

∥∥∥− li
) xi(t)− x j(t)∥∥∥xi(t)− x j(t)

∥∥∥
, (2)

where ki is the spring’s stiffness, li is the resting length of the
spring, xi is the spring’s position, and x j is the position of its
neighbor.

The system in (1) may be solved using any of the numer-
ical integration schemes for, for example, explicit Euler inte-
gration, implicit Euler integration, midpoint method (2nd-
order Runge Kutta), Verlet integration, or 4th-order Runge
Kutta method. Whatever method we use, the acceleration (a)
may be calculated using Newton’s second law of motion:

ai(t + Δt) = fi(t + Δt)
mi

. (3)

If the explicit Euler integration [6, 20] is used, the velocity (v)
and position (x) are updated separately using the following
equations:

vi(t + Δt) = vi(t) + Δtai(t + Δt), (4)

xi(t + Δt) = xi(t) + Δtvi(t). (5)

In the case of the Verlet integration, there is no need to
calculate and store velocity (v) since the new position (x) is
obtained from the current and the previous position, using
the following numerical operations:

xi(t + Δt) = 2xi(t)− xi(t − Δt) + ai(t)Δt2. (6)

For this to work, both the current and the previous positions
are needed. When the implicit Euler integration is used, the
new position is given as

xi(t + Δt) = xi(t) + Δtvi(t + Δt). (7)

Note that in (7), the new velocity is used immediately to
obtain the new position whereas in (5), the old velocity is
used.

In the case of the midpoint Euler method (2nd-order
Runge Kutta), the new velocity and the new position are
given as

vi(t + Δt) = vi(t) + Δtai

(
t +

Δt

2

)
,

xi(t + Δt) = xi(t) + Δtvi

(
t +

Δt

2

)
.

(8)

Note that in (8), both the acceleration and the velocity are
evaluated at the midpoint between t and (t + Δt), that is,
(t + Δt/2). Likewise, Verlet integration may be refined by
evaluating the acceleration (a) and the previous position
x(t − Δt) at the midpoint as follows:

xi(t + Δt) = 2xi(t)− xi

(
t − Δt

2

)
+ ai

(
t +

Δt

2

)
Δt2. (9)

Finally, for the 4th-order Runge Kutta method, the new
velocities are first obtained using the following set of
operations:

vi(t + Δt) = vi(t) +
1
6

(F1 + 2(F2 + F3) + F4),

F1 = Δt

2
ai(t + Δt),

F2 = Δt

2
F1

mi
,

F3 = Δt
F2

mi
,

F4 = Δt
F3

mi
.

(10)

The new positions are then obtained by the following set of
operations:

xi(t + Δt) = xi(t) +
1
6

(k1 + 2(k2 + k3) + k4),

k1 = Δt

2
ai(t + Δt),

k2 = Δt

2
k1,

k3 = Δtk2,

k4 = Δtk3.

(11)

In an iterative algorithm, setting of the time step (Δt) value is
critical. For stability, Courant condition should be met; that
is, Δt must be inversely proportional to the square root of
elasticity (k) [1, 19].

4 ISRN Computer Graphics

Vertex
shader

Rasterizer

Geometry

shader

Fragment

shader

Raster
operations

GPU

CPU
Attributes

(position/velocity/
connection)

xi(t)

vi(t)

vi(t + Δt) = vi(t)+ Δtai(t + Δt),

xi(t + Δt) = xi(t)+ Δtvi(t),

Tr
an

sf
or

m

fe
ed

ba
ck

Buffer objects

Tessellation
shader

Frame buffer

Figure 1: Proposed deformation pipeline using transform feed-
back.

4. The Transform Feedback Pipeline

Prior algorithms like in [15, 18, 19] have resorted to the
GPGPU-based techniques for evaluating the position and/or
velocity integration on the fragment shader. This involves
rendering a screen-sized quad with the appropriate textures
setup and then the fragment shader is invoked to solve the
integration for each fragment. The output from the fragment
shader is written to another texture. On the contrary, we
adopt a different approach in this paper (see Figure 1).
We implement the mass spring deformation by using the
transform feedback mechanism of the modern GPU. This
mechanism allows us to push as many vertices as the GPU
may handle for deformation.

To understand how the different steps of the algorithm
work, for the rest of this discussion, we will be discussing
the steps needed to implement the explicit Euler integration
as an example. We do the integration calculation on the
vertex shader. Then, using transform feedback, we direct the
new positions and velocities to a set of vertex array objects
(VAOs).

We have two VAOs for updating the physics and two
more VAOs for rendering of the resulting positions. Refer-
ring to Figure 2 for the following, each VAO stores a set
of vertex buffer objects (VBOs) for position and velocity.
An additional VBO is required to store the connection

Velocity VBO vi(t) Velocity VBO vi(t)

Position VBO xi(t) Position VBO xi(t)

Connection VBO

Update VAO 0 Update VAO 1

fi(t) = ki(li− ∥ xi(t)− xi(t) ∥)
xi(t)− xi(t)

∥ xi(t)− xi(t) ∥ ,

ai(t + Δt) = fi(t+Δt)
mi

,

vi(t + Δt) = vi(t)+ Δtai(t + Δt),

xi(t + Δt) = xi(t)+ Δtvi(t),

Vertex shader + transform
feedback

Figure 2: The VAO and VBO setup for transform feedback: the
blue solid rectangles show the attributes written to a VAO; the red
dotted rectangles show the attributes being read simultaneously
from another VAO.

information. The connection VBO is also bound to the
texture buffer target so that the connectivity information
could be fetched in the vertex shader on demand. The usage
flags for the position and velocity VBOs are set as dynamic
(GL DYNAMIC COPY in OpenGL) since the data will be
dynamically modified using the shaders. This gives an addi-
tional hint to the GPU so that it may put the buffers in the
fastest accessible memory.

The application pushes a set of positions (each element is
a float4 with xyz in the first three components and mass in
the fourth component), velocities (each element is a float3),
and one connection texture buffer object (each element is
an ivec4) to the GPU. The connection texture buffer object
stores the neighborhood information for each mass so that
the neighbor’s position could be retrieved. The reason we
use a set of VBOs for positions and velocities is so that
we may use the ping pong strategy to read from a set of
position/velocity while we write to another set using the
transform feedback approach since we may not write to a
transform feedback attribute when we are reading from it.

The vertex shader receives the positions, velocities, and
connections as input attributes. The damping coefficient (c)
and the spring stiffness (k) are given as shader uniforms.
The vertex shader calculates the acceleration by running a
loop through all of the neighbors. For fixed masses, a special
sentinel value (−1) is used. Thus, if the current position’s
x component is −1, the point is fixed. In the loop, the
neighbor’s position and its resting length are obtained. These

ISRN Computer Graphics 5

values are then used to obtain the current spring’s force fi.
This force is added along with the external forces such as
wind or gravity. This loop continues for all neighbors. Once
the external force is calculated, the acceleration is obtained.
Finally, the acceleration is used to get the new velocity. This
in turn allows us to obtain the new position.

The new positions then applied certain constraints like
the positivity constraint to prevent the masses from falling
under the ground plane. The positivity constraint is given as

xi · y =
⎧
⎨
⎩

xi+1 · y, if xi+1 · y > 0,

0, else,
(12)

where xi · y is the y component of the position x assuming
that the y-axis is the world up axis. Likewise, other con-
straints like collision of the mass with an arbitrary polygon
may be implemented very easily in the vertex shader. For
instance, we consider a constraint on collision of the masses
with a sphere. Assuming that we have a sphere having a center
(C) and a radius (r), we have a mass at position (xi) and it is
transformed to a new position (xi+1). The collision constraint
is given as

xi+1 =
⎧
⎪⎨
⎪⎩

C +
(xi − C) · r
|xi − C| , if |xi − C| < r,

xi, else.
(13)

5. Implementation and
Performance Assessment

We have implemented the proposed pipeline using the GLSL
shading language. Setting up of the VAOs and VBOs for
transform feedback is described in the previous section. For
instant rendering of the deformed objects, we require a pair
of VAOs for updating the position and velocity.

Referring to Figure 3, for each rendering cycle, we swap
between the two buffers to alternate the read/write pathways.
Before the transform feedback could proceed, we need to
bind the update VAOs to the current render device so that
the appropriate buffer objects can be set up for writing data
to. Once the update VAO is bound, we bind the appropriate
VBOs for reading the current positions and velocities to
the current transform feedback buffer base (by issuing a
call to glBindBufferBase OpenGL function). The rasterizer
is disabled to prevent the execution of the rest of the
programmable pipeline. The draw point call is issued to
allow writing vertices to the VBO. The transform feedback
is then disabled. The amount of primitives transformed
could be queried by issuing a query. Following the transform
feedback, the rasterizer is enabled and then the points are
drawn. This time, the render VAOs are bound. This renders
the deformed points on screen.

This process is repeated until the difference between
the current and the previous position of the mass is below
a threshold. The threshold value is dependent on the
simulation accuracy required. In practice, a value of 0.001
is found to be a good compromise. A recent extension
GL ARB transform feedback2 in the core OpenGL 4.0 has

Update VAO

0

Update VAO

1

Position/velocity

VBO 0

Position/velocity
VBO 1

BindVAO

BindBufferBase

Disable
rasterizer

Start transform

feedback

Draw points

Draw points

End transform

feedback

Enable
rasterizer

Render VAO

0

Render VAO
1

BindVAO

Figure 3: The transform feedback data flow for the update and
render cycle.

eased the transform feedback along with the handling of its
buffer object/s. It provides specific states that allow transform
feedback to store references to the VBO. The extension
also adds some functions that allow rendering of primitives
without the need to query the number of primitives written
through the transform feedback.

We have applied the new deformation pipeline on a
Dell Precision T7500 workstation (Windows 7 64-bit) with a
2.27 GHz Intel Xeon CPU with 4 GB of RAM. The machine is
equipped with a Quadro FX 5800 GPU card with 4096 MB
of dedicated video memory. The output resolution for all of
the experiments is 1024 × 1024 pixels.

For comparisons of performance, we rendered a deform-
ing grid of points ranging from the size of 64 × 64 grid
points to 2048 × 2048 grid points, on both CPU and GPU,
as shown in Figure 4. In the experiment, the user arbitrarily

6 ISRN Computer Graphics

(a) (b)

(c) (d)

(e) (f)

Figure 4: Real-time rendering of deformation of a grid of masses using explicit Euler integration using transform feedback.

picks up a point and moves the point in 3D space. The
grid deforms accordingly to bring the grid mesh towards
equilibrium. The explicit Euler integration was used as the
integration solver for this experiment. Execution time was
recorded for both deforming operations and rendering of the
updated grid points for a single frame.

For fair comparisons, we optimized the CPU code by
utilizing the OpenMP (column Optimized CPU (b) in Table 1
and column CPU (a) in Table 2). The force accumulation and
the spring constraint phase is greatly aided by the OpenMP
pragma to accelerate the code by issuing parallel threads. This
helps to reduce the execution time for rendering a single
frame as shown in Table 1. In addition, an unoptimized
CUDA version using global memory (column GPU-CUDA-
UOP (b) in Table 2) and an optimized CUDA version using
the shared memory (column GPU-CUDA-OP (c) in Table 2)
are also implemented (using the same integration scheme
and the grid sizes) followed by our transform feedback-based

Table 1: Comparison of unoptimized and optimized CPU code.

Grid size
Time for rendering a single frame (in msecs)

Unoptimized
CPU (a)

Optimized CPU
(b)

Speedup
(b/a)

64 × 64 1408.45 99.90 14.09

128 × 128 5263.16 368.83 14.27

256 × 256 16666.67 1515.15 11.00

512 × 512 N/A 5000.04 N/A

1024 × 1024 N/A 200,000.00 N/A

2048 × 2048 N/A N/A N/A

code (column GPU-TF (d) in Table 2). The performance of
the four programs is summarized in Table 2. The CUDA
versions were tested with different execution configurations,
and after various experiments, we found the execution

ISRN Computer Graphics 7

Table 2: Comparison of execution performance.

Grid size
Time for rendering a single frame (in msecs) Speedup

(a/d)
Speedup

(b/d)
Speedup

(c/d)CPU (a) GPU-CUDA-UOP (b) GPU-CUDA-OP (c) GPU-TF (d)

64× 64 99.90 4.05 2.557 1.07 93.36 3.79 2.39

128× 128 396.82 4.92 3.126 1.47 269.94 3.35 2.13

256× 256 1,515.15 6.99 5.742 3.34 453.63 2.09 1.72

512× 512 5,000.00 31.06 9.861 11.65 429.18 2.66 0.85

1024× 1024 200,000.00 133.69 38.957 54.76 3652.30 2.44 0.71

2048× 2048 N/A 699.31 172.408 265.25 N/A 2.63 0.65

configuration of 8 × 8 threads per block to perform best on
our hardware.

As expected, for small grid sizes, even the optimized
CPU implementation can also catch up with the require-
ment of real-time rendering. However, as the grid size
increases, the amount of calculations increases which drops
the performance of CPU program sharply. The drops in
performance for the three versions of GPU implementation
also vary. Our proposed GPU program using transform
feedback is about 2 to 3 times faster as compared to a
naive CUDA implementation (see column GPU-CUDA-
UOP (b)). The main reason for the slowdown of the naive
CUDA program seems to be due to the noncoalesce memory
accesses needed to obtain the neighbour node positions
making the kernel memory bound. Another reason may
be the OpenGL interop that is needed to copy the data
to/from the CUDA device from/to the OpenGL API. Since
memory read is the most expensive operation and our
proposed pipeline using transform feedback reads directly
from the GPU memory, we attain significant speedup as
compared to a naive CUDA implementation. However, this
memory access overhead becomes significant for large grid
sizes (compare column GPU-TF (d) to column GPU-CUDA-
OP (b) for large grid size). This is where the versatility of
CUDA comes into play since using shared memory and
careful memory access patterns, many sequential memory
transactions could be coalesced into a single transaction.
This feature is unfortunately not available through OpenGL
and transform feedback. Thus, an optimized CUDA code
using the shared memory performs better for larger grid sizes
due to the greater flexibility of memory access provided in
CUDA.

To assess the effectiveness of the transform feedback for
different integration solvers, we conducted another experi-
ment. We compared the performance of the discussed inte-
gration schemes, namely, explicit Euler, implicit Euler, Verlet
integration, and midpoint Euler (2nd order Runge Kutta)
and 4th order Runge Kutta methods on the proposed GPU
pipeline. Table 3 shows the time measured for a single frame
including deformation updates and rendering for the same
set of grid configurations as were used for the previous
experiment.

As can be seen, the overall performances of these integra-
tion solvers are close to each other in the transform feedback
pipeline. This ensures the stability and scalability of the new
algorithm in applications. The Verlet integration has reduced

Table 3: Performance of different integration schemes.

Grid size
Time for rendering a single frame (in msecs)

Explicit
Euler

Implicit
Euler

Midpoint
Euler

4th-order
R. K.

Verlet

64× 64 1.07 0.867 0.905 1.151 0.853

128× 128 1.47 1.817 1.806 1.895 1.793

256× 256 3.34 3.409 3.464 3.678 3.107

512× 512 11.65 11.588 11.088 11.957 11.027

1024× 1024 54.76 54.288 54.436 55.157 53.705

2048× 2048 265.25 274.725 271.739 327.868 258.397

memory requirement (no velocity storage required) and
performs well; it is also stable, with an approximation error
on the order of O(n4). From the point of view of stability,
the 4th-order Runge Kutta method is found to be the best
whereas the explicit Euler method is the worst. Thanks to the
flexibility of the proposed pipeline, we have enjoyed minimal
efforts to add support for all of the integration schemes.

6. Conclusion

We have presented a novel GPU-based deformation pipeline.
Our approach is based on the mechanism of transform
feedback available in the new-generation GPUs. To the best
of our knowledge, this is the first ever proposal of a pipeline
that is using transform feedback for deformation entirely on
the GPU. We are confident on the results obtained from the
algorithm and would like to expand the model to address
specific areas like biomedical modeling and simulation [21,
22].

As expected, when comparing our implementation to
an optimized CUDA implementation, the performance of
the CUDA implementation is better. We can think of two
reasons for this; the first is the ability in CUDA to write to
any memory region directly (the scattered writes) and the
second is the ability in CUDA to control the shared memory
the efficient use of which may allow contiguous memory
accesses. This feature is unfortunately unavailable in shader
APIs and so clearly the performance suffers specially in case
of larger resolutions.

To circumvent such a performance loss, we may use a
CUDA kernel to do scattered writes, alongside a GLSL shader.
This way CUDA may be used for scattered data writes as

8 ISRN Computer Graphics

well as for processing the more computationally demanding
steps. This hybrid scheme however requires a more rigorous
treatment and that will possibly be a future research topic.

Acknowledgment

This work is partially supported by a research grant from the
Institute of Media Innovation, Nanyang Technological Uni-
versity, Singapore.

References

[1] J. Georgii and R. Westermann, “A multi-grid frame-work for
real-time simulation of deformable volumes,” in Proceedings
of the VRI-PHYS Workshop on Virtual Reality Interactions and
Physical Simulations, 2005.

[2] J. Georgii and R. Westermann, “A generic and scalable pipeline
for GPU tetrahedral grid rendering,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 5, pp. 1345–
1352, 2006.

[3] Y. Kurzion and R. Yagel, “Space deformation using ray
deflectors,” in Proceedings of the 6th Eurographics Workshop on
Rendering, pp. 21–30, 1995.

[4] Y. Kurzion and R. Yagel, “Interactive space deformation with
hardware-assisted rendering,” IEEE Computer Graphics and
Applications, vol. 17, no. 5, pp. 66–77, 1997.

[5] T. Vassilev and B. Spanlang, “A mass-spring model for real
time deformable solids,” in Proceedings of the East-West Vision,
pp. 149–154, 2002.

[6] T. Vassilev and R. Rousev, “Algorithm and data structures
for implementing a mass-spring deformable model on GPU,”
Biomedical Physics Papers, Research and Laboratory Univer-
sity Ruse, 2008.

[7] S. F. F. Gibson, “3D ChainMail: a fast algorithm for deforming
volumetric objects,” in Proceedings of the Symposium on
Interactive 3D Graphics (I3D ’97), pp. 149–154, April 1997.

[8] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M.
Carlson, “Physically based deformable models in computer
graphic,” STAR Report Eurographics, vol. 25, no. 4, pp. 809–
836, 2005.

[9] S. Fang, R. Srinivasan, S. Huang, and R. Raghavan, “Deform-
able volume rendering by 3D texture mapping and octree
encoding,” in Proceedings of the IEEE Visualization Conference,
pp. 73–80, November 1996.

[10] R. Westermann and C. Rezk-Salama, “Real-time volume
deformations,” Computer Graphics Forum, vol. 20, no. 3, pp.
443–451, 2001.

[11] N. Gagvani, D. Kenchammana-Hosekote, and D. Silver, “Vol-
ume animation using the skeleton tree,” in Proceedings of the
IEEE Symposium on Volume Visualization, pp. 47–53, 1998.

[12] P. Chen, K. E. Barner, and K. V. Steiner, “A displacement driven
real-time deformable model for haptic surgery simulation,” in
Proceedings of the 14th Symposium on Haptics Interfaces for
Virtual Environment and Teleoperator Systems, pp. 499–505,
March 2006.

[13] J. F. Hughes, “Scheduled Fourier volume morphing,” Com-
puter Graphics, vol. 26, no. 2, pp. 43–46, 1992.

[14] T. He, S. Wang, and A. Kaufman, “Wavelet-based volume mor-
phing,” in Proceedings of the IEEE Visualization Conference, pp.
85–92, October 1994.

[15] J. Mosegaard, “A GPU accelerated spring mass system for sur-
gical simulation,” Studies in Health Technology and Informatics,
vol. 111, pp. 342–348, 2005.

[16] C. A. D. Leon, S. Eliuk, and H. T. Gomez, “Simulating soft
tissues using a GPU approach of the mass-spring model,” in
Proceedings of the IEEE Virtual Reality (VR ’10), pp. 261–262,
March 2010.

[17] Y. Shen, X. Zhou, N. Zhang, K. Tamma, and R. Sweet, “Realis-
tic soft tissue deformation strategies for real time surgery sim-
ulation,” Tech. Rep. UMSI 2009/13, University of Minnesota
Supercomputing Institute, 2009.

[18] J. Georgii, F. Echtler, and R. Westermann, “Interactive simu-
lation of deformable bodies on GPUs,” in Proceedings of the
Simulation and Visualization, pp. 247–258, 2005.

[19] J. Georgii and R. Westermann, “Mass-spring systems on the
GPU,” Simulation Modelling Practice and Theory, vol. 13, no.
8, pp. 693–702, 2005.

[20] Y. Chen and Q.-H. Zhu, “Physically based animation of
volumetric objects,” Tech. Rep. CVC-980209, 1998.

[21] F. Lin, H. S. Seah, and Y. T. Lee, “Deformable volumetric
model and isosurface: exploring a new approach for surface
boundary construction,” Computers and Graphics, vol. 20, no.
1, pp. 33–40, 1996.

[22] F. Lin, H. S. Seah, Z. Wu, and D. Ma, “Voxelization and fab-
rication of freeform models,” Virtual and Physical Prototyping,
vol. 2, no. 2, pp. 65–73, 2007.

