LIFE SCIENCES Corp. Top Line Data of ANAVEX[®]2-73 (*blarcamesine*) Randomized, Double-blind, Multicenter, Placebocontrolled Phase 2b/3 in Patients with Early Alzheimer's Disease (AD)

Stephen Macfarlane¹, Timo Grimmer², Terence O'Brien³, Edward Hammond⁴, Walter E. Kaufmann⁴, Emmanuel O. Fadiran⁴, Christopher U Missling⁴

¹HammondCare - Melbourne (Australia) ²TU Muenchen - Munich (Germany) ³Monash University, Alfred Health - Melbourne (Australia) ⁴Anavex Life Sciences - New York (United States)

CTAD, December 1, 2022

Nasdaq: AVXL | DEC 2022

Disclosures

Stephen Macfarlane:

- Speakers' Honoraria: Eli Lilly, Lundbeck, Janssen
- Advisory Boards: Eli Lilly, Roche, Biogen
- Research funding: Eli Lilly, Roche, Merck, Prana Biotechnology, Novo Nordisk, Janssen, Eisai, Anavex Life Sciences
- Paid stipend: Medical Safety Monitor for Anavex Rett syndrome program

Forward Looking Statement

This presentation contains forward-looking statements made within the meaning of the Private Securities Litigation Reform Act of 1995 by Anavex[®] Life Sciences Corp. and its representatives. These statements can be identified by introductory words such as "expects," "plans," "intends," "believes," "will," "estimates," "forecasts," "projects," or words of similar meaning, and by the fact that they do not relate strictly to historical or current facts. Forward-looking statements frequently are used in discussing potential product applications, potential collaborations, product development activities, clinical studies, regulatory submissions and approvals, and similar operating matters. Many factors may cause actual results to differ from forward-looking statements, including inaccurate assumptions and a broad variety of risks and uncertainties, some of which are known and others of which are not. Known risks and uncertainties include those identified from time to time in reports filed by Anavex Life Sciences Corp. with the Securities and Exchange Commission, which should be considered together with any forward-looking statement. No forward-looking statement is a guarantee of future results or events, and one should avoid placing undue reliance on such statements. Anavex Life Sciences Corp. undertakes no obligation to update publicly any forward-looking statements, whether as a result of new information, future events or otherwise. Anavex Life Sciences Corp. cannot be sure when or if it will be permitted by regulatory agencies to undertake clinical trials or to commence any particular phase of any clinical trials. Because of this, statements regarding the expected timing of clinical trials cannot be regarded as actual predictions of when Anavex Life Sciences Corp. will obtain regulatory approval for any "phase" of clinical trials. We also cannot be sure of the clinical outcome for efficacy or safety of our compounds. Potential investors should refer to the risk factors in our reports filed on Edgar.

Today's Highlights

- A Novel Platform Approach to Address the Complexity of CNS Diseases by Activation of SIGMAR1 by Orally Available Small Molecule (ANAVEX[®]2-73 – blarcamesine)
- ANAVEX®2-73 Phase 2b/3 AD Study Met Primary Endpoints, Showing Statistically Significant Reduction of Clinical Decline In Global Clinical Study of Patients With Early Alzheimer's Disease
- Consistent Scientific Rationale with Correlating Biomarkers with Clinical Outcome Measures by Applying Genetic Precision Medicine
- Confirmed Human Patient Data also in other Disorders of Cognitive Impairment: Rett Syndrome (RTT), Parkinson's Disease Dementia (PDD)

ANAVEX®2-73 (*blarcamesine***)** Mechanism of Action

Alzheimer's Disease (AD) Pathology is Complex

Amyloid beta

□ Tau hyper-phosphorylation

□ Mitochondrial dysfunction

□ Inflammation

□ Synaptic dysfunction

Cellular stress / protein misfolding

AD Pathology is Complex

SIGMAR1 Activation has been Shown to Modulate Multiple Aspects of Neurodegenerative Processes

Sigma-1 receptor agonists have been shown to restore neuronal functions in neurodegenerative processes

	Jacob & Pharbachigasi Sciences (JP (2010) 20-29	
	Journal of Pharmacological Sciences	1
Critical review Role of sigma	-1 receptors in neurodegenerative diseases	Contraction
Linda Nguyen 44 Matthew J. Robso	⁴ , Brandon P. Lucke-Wold ⁴ , Shona A. Mookerjee ⁴ , John Z. Cavendish ⁴ , n ¹ , Anna L. Scandinaro ^{4,6,6} , Rae R. Matsumoto ^{4,6,6,6,7}	
"Department of Back Floren MT 2028, United Same "Separtment of Mitsennel II MY 2028, United Same VY 2028, United Same VY 2028, United Same "Department of Participation "Department of Researching "Department of Researching	nonizar Kirova, Henr Yingela, Dieversig, Edward of Planmers, the Hindla Coren-Jone, Hengammer, hilder auf Apolanity. Wenr Veglink Dieversig, Edward of Hindlan, fins Hindla's Coren-Dire, Hengammer, d Auronautoga, Henr Hignes Konnetig, School of Hindlane, the Hindla's Learn Dire. Margammer, science, Henr Hignes Conversit, School of Hindlane, the Hindla's Learn Dire. Margammer, Henricolation Director, Barton Conversion, College College, 2011 Call Dire. Margameter, Henricolation, States Theorem, College College College, 2011 Call Dire. Marks, Chelle, Danaet Barton Hannachiel Director School of Allon and Line Inc. Annales Director Taxon.	

ANAVEX[®]2-73 enhances autophagy and alleviates Tau pathology in neurodegenerative disease models

Article

Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo

Maximilian G. Christ, Heike Huesmann, Heike Nagel, Andreas Kern and Christian Behl *

Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University. Duesbergweg 6, 53128 Mainz, Germany; maxochei@tani-mainz.de (M.G.C.); duesk@tani-mainz.de (IL11); nagelb@tani-mainz.de (H.N.); akem@tani-mainz.de (A.K.) * Correspondence: debi@tani-mainz.de (TA1: +49-6331-392-5890

Received: 29 January 2009; Accepted: 27 February 2009; Published: 2 March 2009 Received: 29 January 2009; Accepted: 27 February 2009; Published: 2 March 2009 Received: 29 January 2009; Accepted: 20 February 2009; Published: 2 March 2009

Blockade of Tau Hyperphosphorylation and $A\beta_{1\rightarrow 42}$ Generation by the Aminotetrahydrofuran Derivative ANAVEX2-73, a Mixed Muscarinic and σ_1 Receptor Agonist, in a Nontransgenic Mouse Model of Alzheimer's Disease

C check for updates

Valuedina Labora^{1,1,1,2}, Johann Haunder⁴, Sazaroa Malmatrian⁴, Garlie Haunt^{1,1,1}, Laurant Giradal^{1,1,2}, Sarag Myan Kire⁴, Varenas Wilard⁴, Alexandria Varenable^{4,4} and Tangai Haunlee^{1,1,1,2} WolfM UTL Simples Tensor ("Present of Neurogic Institute of Biovellul Eases Cong. O'Analos Ana Tanas Tutana Anal "Angenci Cases, Dease, Dispatchers of Neurogic Institute of Biovellul Eases Cong. O'Analos, Tensor (Deases), Deases (Deases), Dease Sand Neuro (Deases), Deases (Deases), O'Analos (Dease), Dease (Dease (Deases), Deases), Deases Sand Neuro (Deases), Deases (Deases), Dease (Dease), Dease (Dease (Dease), Deases), De Sigma-1 receptor agonists have a neuroprotective effect in neurodegenerative disease models

REVIEW ARTICLE

Neuronal Sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases

The SIGMAR1 Receptor is an Integral Membrane Protein Involved in Cellular Homeostasis

Impaired SIGMAR1 function leads to dysfunction in ER-mitochondria crosstalk, calcium homeostasis impairment, and ER stress response

ANAVEX®2-73 Mechanism of Action for Neurological Diseases

Neurological chronic conditions: Impaired restoration function and impaired homeostasis

SIGMAR1 activation as compensatory mechanism to chronic CNS diseases¹

¹ Brimson JM, et al. "Using Sigma-ligands as part of a multi-receptor approach to target diseases of the brain." Expert opinion on therapeutic targets. 2020

ANAVEX[®]2-73 MoA: SIGMAR1 Activation Prevents Cellular Stress Before and After RNA Gene Transcription

Source: Couly et al., Knocking Out Sigma-1 Receptors Reveals Diverse Health Problems. Cell Mol Neurobiol (2020); Lee et al., Sigma-1 receptor chaperones rescue nucleocytoplasmic transport deficit seen in cellular and Drosophila ALS/FTD models. Nat Commun. 2020 Nov 4;11(1):5580

ANAVEX[®]2-73-AD-004 Study Design

ANAVEX®2-73 AD-004 Phase 2b/3 Alzheimer's Disease Study Design

Global, multicenter, randomized, double-blind, placebo-controlled, parallel group, 48-week trial evaluating ANAVEX[®]2-73 once daily oral

ANAVEX®2-73-AD-004 Top Line Data

ANAVEX®2-73-AD-004 Baseline Disease Characteristics

	Placebo (n=170)	ANAVEX2-73 30mg (n=169)	ANAVEX2-73 50mg (n=169)	ANAVEX2-73 Total (n=338)
Age, years, mean (SD)	73.4 (6.44)	73.9 (6.76)	73.9 (6.49)	73.9 (6.63)
Female, n (%)	83 (48.8)	83 (49.1)	77 (45.6)	160 (47.3)
Race, White, n (%)	163 (95.9)	165 (97.6)	164 (97.0)	329 (97.3)
Race, Asian, n (%)	2 (1.2)	3 (1.8)	5 (3.0)	8 (2.4%)
Ethnicity Non-Hispanic or Latino or of Spanish origin, n (%)	158 (92.9)	156 (92.3)	160 (94.7)	316 (93.5)
Use of Alzheimer's Disease Medications ^a , n (%)	111 (66.1)	109 (65.3)	109 (64.9)	218 (65.1)
MMSE Score ^a , mean (SD)	23.11 (2.69)	23.62 (3.10)	23.52 (2.73)	23.57 (2.92)
ADAS-Cog Total Score ^a , mean (SD)	30.25 (8.39)	28.43 (8.52)	29.07 (8.83)	28.75 (8.67)
ADCS-ADL Score ^a , mean (SD)	66.48 (7.08)	66.59 (7.26)	66.85 (7.93)	66.72 (7.59)
CDR-SB Total Score ^a , mean (SD)	4.10 (1.76)	3.82 (1.65)	3.80 (1.81)	3.81 (1.73)

ADAS-Cog: Alzheimer Disease Assessment Scale-Cognition scale; ADCS-ADL: Alzheimer's Disease Cooperative Studies Activities of Daily Living Scale; CDR-SB: Clinical Dementia Rating Scale Sum of Boxes scale; MMSE: Mini-Mental State Examination; ^aFull Analysis Set, incudes 5 subjects not randomized, proportions may be marginally different.

ANAVEX[®]2-73 Phase 2b/3 Alzheimer's Disease Study

Primary and Key Secondary Efficacy Endpoints

Primary Endpoints

ADAS-Cog (Alzheimer Disease Assessment Scale-Cognition)

Reduction in cognitive decline assessed from baseline over 48 weeks all patients with ANAVEX[®]2-73 compared to placebo using the Alzheimer Disease Assessment Scale-Cognition (ADAS-Cog) scale

ADCS-ADL (Activities of Daily Living)

Reduction in decline of the ability to perform daily activities assessed from baseline over 48 weeks all patients with ANAVEX[®]2-73 compared to placebo using the Activities of Daily Living (ADCS-ADL) scale

Key Secondary Endpoint

CDR-SB (Clinical Dementia Rating Scale Sum of Boxes)

Reduction in cognitive decline assessed from baseline over 48 weeks all patients with ANAVEX[®]2-73 compared to placebo using the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB)

ANAVEX®2-73-AD-004 Top Line Data - Efficacy

ANAVEX®2-73-AD-004 Primary Endpoint – ADAS-Cog

- ANAVEX[®]2-73 treatment was 84% more likely to improve cognition compared to placebo, by ADAS-Cog score change of -0.50 points or better at 48 weeks
- Among patients, who improved with ANAVEX[®]2-73 treatment, Mean ADAS-Cog score improvement -4.03 points

Treatment Group	^a Odds Ratio	P-value	90% CI	95% CI
Placebo	1.0 (reference)	-	-	-
ANAVEX [®] 2-73				
ITT Population	1.839	0.015	(1.17, 2.94)	(1.07, 3.22)

ANAVEX®2-73-AD-004 Primary Endpoint – ADCS-ADL

- ANAVEX[®]2-73 treatment was 167% more likely have improve function compared to placebo, at clinically significant ADCS-ADL score change of +3.5 points or better at 48 weeks
- Clinically significant response categorization in function defined as ADCS-ADL ≥ +3.5-point change from baseline

Treatment Group	^a Odds Ratio	P-value	90% CI	95% CI
Placebo	1.0 (ref.)	-	-	-
ANAVEX®2-73				
ITT Population	2.67	0.0255	(1.17, 6.13)	(1.00, 7.18)

ANAVEX[®]2-73-AD-004 Primary Endpoint – ADAS-Cog

- ANAVEX[®]2-73 treatment slowed cognitive decline by 45% compared to placebo at 48 weeks
- Mean difference in ADAS-Cog score change of -1.85 points

Treatment Group	ADAS-Cog Score, Mean (SE)			^b Relati	ive Reduction in De	ecline (%)	
	Baseline	Week 48	^a Mean Change	Mean	95% CI	^a P-value	
Intent-to-treat (ITT) Population							
Placebo	29.18 (0.61)	33.26 (0.98)	4.11 (0.86)	Ref.	-	-	
ANAVEX [®] 2-73	27.62 (0.50)	30.36 (0.83)	2.26 (0.51)	45.02	(43.68, 48.24)	0.033	

Ref.: Reference

^aAnalysis method: t-test on change from baseline at the end of treatment (week 48) on subjects with available scores at week 48.

Mean change from baseline obtained from an average of ADAS-Cog score change for each subject.

Mean of change from baseline not equivalent to subtracting mean baseline scores from mean end of treatment scores when all subjects do not have both measures. ^bRelative Reduction in Decline = (1- [mean change in active/mean change in placebo])*100

ANAVEX[®]2-73-AD-004 Secondary Endpoint – CDR-SB

- ANAVEX[®]2-73 treatment slowed clinical decline in cognition and function assessed by 27% compared to placebo
- ANAVEX[®]2-73 treatment difference in mean score change of -0.42 points

Treatment Group	(CDR-SB, Mean (SE)		^b Relative Reduction in CDR-SB Decline (
	Baseline	Week 48	^a Mean Change	Mean	95% CI	^a P-value	
Intent-to-treat (ITT) Population							
Placebo	4.11 (0.14)	5.61 (0.26)	1.52 (0.19)	Ref.	-	-	
ANAVEX [®] 2-73	3.78 (0.10)	4.89 (0.17)	1.11 (0.14)	27.23	(26.33, 27.76)	0.040	

Ref.: Reference

^aAnalysis method: t-test on change from baseline at the end of treatment (week 48) on subjects with available scores at week 48.

Mean change from baseline obtained from an average of CDR-SB score change for each subject.

Mean of change from baseline not equivalent to subtracting mean baseline scores from mean end of treatment scores when all subjects do not have both measures. ^bRelative Reduction in Decline = (1- [mean change in active/mean change in placebo])*100

ANAVEX®2-73-AD-004 Top Line Data - Safety

ANAVEX[®]2-73-AD-004 Patient Disposition and Drug Titration Status

	Placebo (n=170)	ANAVE®X2-73 Total (n=338)
Subjects Up Titrated ^a to 30mg or 50mg n (%)	148 (88.1)	287 (85.7)
Subjects with no Up Titration ^a to 30mg or 50mg n (%)	20 (11.9)	48 (14.3)
Subjects with no Down Titration ^a , n (%)	166 (98.8)	263 (78.5)

- Study design allowed up titration to target dose with provision for down titration based on tolerability
- Similar proportion of patients in placebo and ANAVEX[®]2-73 treatment groups did not up titrate
- Therefore, ANAVEX[®]2-73 treatment groups were combined in primary analyses (all exposed to ANAVEX[®]2-73)

^aTitration Phase; excludes 5 subjects not randomized; proportions may be marginally different.

ANAVEX®2-73-AD-004 Summary of Adverse Events

- Similar TEAE rates in Active and Placebo arms
- Adverse Events ≥7.5% were predominantly mild or moderate
- No clinically significant changes in vital signs, lab values and ECG parameters in Active and Placebo groups
- Dizziness consistent with CNS drug effects. Will be mitigated in the future by bedtime dosing
- Safety findings are consistent with the known safety profile of ANAVEX[®]2-73

^a Safety Population	Placebo (n=161)	ANAVEX [®] 2-73 Total (n=301)		
	n (%)	n (%)		
Any TEAE	113 (70.2)	248 (82.4)		
Serious TEAE	15 (9.3)	47 (15.6)		
Deaths (<u>unrelated</u> to treatment)*	1 (0.6)	1 (0.3)		
Adverse Events ≥ 7.5%				
Dizziness	9 (5.6)	76 (25.2)		
Confusional State	4 (2.5)	40 (13.3)		
Fall	16 (9.9)	21 (7.0)		

^a Maintenance phase of trial

* Unrelated to treatment. Placebo arm: worsening posterior cortical atrophy; Active arm: Urinary tract infection resulting in urosepsis

ANAVEX®2-73-AD-004 Drug Modifications Due to AEs

	Placebo (n=161)	ANAVEX [®] 2-73 Total (n=301)
^a Safety Population	n (%)	n (%)
Dizziness	5 (3.1)	58 (19.3)
Dose Changed	1 (0.6)	33 (11.0)
Drug Interrupted	4 (2.5)	23 (7.6)
Drug Withdrawn	1 (0.6)	11 (3.7)
Confusional State	2 (1.2)	36 (12.0)
Dose Changed	2 (1.2)	20 (6.6)
Drug Interrupted	0	11 (3.7)
Drug Withdrawn	0	6 (2.0)

- ANAVEX[®]2-73 was well tolerated
- Most frequent adverse events (dizziness and confusion) led to drug withdrawal in <6%

Summary

Summary

- ANAVEX[®]2-73 treatment slowed decline of cognition and function in patients with early Alzheimer's disease over 48 weeks
- Patients on ANAVEX[®]2-73 treatment were 84% more likely to improve cognitively compared to placebo, by ADAS-Cog score threshold change of -0.50 points or better
- ANAVEX[®]2-73 treatment slowed cognitive decline by 45% compared to placebo at 48 weeks
- At clinically significant levels of improvement in function (ADCS-ADL score threshold change of +3.5 points or better), ANAVEX[®]2-73 treatment was 167% more likely to improve function compared to placebo
- Compared to placebo, ANAVEX[®]2-73 reduced clinical decline of cognition and function by 27% as measured by the CDR-SB
- ANAVEX[®]2-73 was safe and well tolerated

ANAVEX[®]2-73 Phase 2b/3 Results Consistent with Previous Phase 2a Study in Alzheimer's Disease

DOI: 10.1002/trc2.12013

A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer's disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study

Harald Hampel¹ | Coralie Williams² | Adrien Etcheto² | Federico Goodsaid³ Frédéric Parmentier² | Jean Sallantin⁴ | Walter E. Kaufmann^{5,6} | Christopher U. Missling⁵ | Mohammad Afshar²

¹Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
²Ariana Pharmaceuticals, Paris, France
³Regulatory Pathfinders, LLC, San Juan, Puerto Rico, USA
⁴Laboratoire d'Intelligence Artificielle, LIRMM, CNRS, Montpellier, France
⁵Anavex Life Sciences Corp., New York, New York, USA
⁶Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA

Phase 2b/3 ANAVEX[®]2-73 results complement and are consistent with findings from the previously completed Alzheimer's disease Phase 2a ANAVEX[®]2-73 trial, which also demonstrated therapeutic effect on cognition and function over 148 weeks

Source: Hampel et al. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer's disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimer's Dement. 2020;00:1–14

ANAVEX®2-73 Established SIGMAR1 Target Activation

2D [18F]FTC-146-PET imaging of ANAVEX[®]2-73: Dose-dependent ANAVEX[®]2-73 Target Engagement

Next Steps

Next Steps

- The full analyses, including prespecified biomarkers of response as well as Whole Exome Sequencing DNA data and full RNA exome expression data collection data on biomarkers of neurodegeneration, will be published in a peerreviewed medical journal
- The open-label extension study ATTENTION-AD will continue to follow participants over 96 weeks
- Plan to meet with regulatory authorities to determine next steps

Acknowledgements

- Principal Investigators & clinical sites' study staff
- Data safety review committee
- Anavex SAB
- Most of all, grateful acknowledgement of the contribution of the participating AD patients and their caregivers

Contact Us

Corporate Office Anavex[®]Life Sciences Corp. 630 5th Avenue, 20th floor New York, NY 10111 1-844-689-3939

Shareholder & Media Relations ir@anavex.com www.anavex.com NASDAQ: AVXL