Claim 1. For consecutive numbers $p$, a prime number, and $n^{2}$, a square number, $p=n^{2}+1$.
Proof. Suppose $p$, a prime number, and $n^{2}$, a square number are consective such that the prime is smaller. Thus $p=n^{2}-1=(n+1)(n-1)$, which is not prime when $n>2$. Therefore the claim must be true.

