Starter

Match the following sequences to their names:

Recurrence Relations 09/06/2017

- Know the names of the different types of sequence
- Understand the subscript notation of a recurrence relation
- Able to generate terms of a sequence given the nth term

- Recurrence Relations describe the relationship between consecutive terms in a sequence
- Example: A sequence is defined by the nth term: $U_n = 2U_{n-1}$

Given that $U_1 = 2$ write down the first four terms of the sequence

U is used here to represent a term

n is the term number

Example: A sequence is defined by the nth term:

$$U_n^2 = 2U_{n-1}$$

 U_1 means the 1st term of the sequence

Given that $U_1 = 2$ write down the first four terms of the sequence

∴ 2, 4, 8, 16 ...

Current term

Example: A sequence is defined by the nth term:

$$U_{n+1} = U_n^2 - 8U_n + 17$$

Given that $U_1 = 4$ find U_2 and U_3

Previous term

$$U_1 = 4 U_2 = U_1^2 - 8U_1 + 17 U_3 = U_2^2 - 8U_2 + 17$$

$$= 4^2 - 8(4) + 17 = 1^2 - 8(1) + 17$$

$$= 16 - 32 + 17 = 1 - 8 + 17$$

$$= 1 = 10$$

Extension: Given, instead, that $U_1=2$, find U_2 , U_3 and U_{100}

▶ For each of the following, find U_2 , U_3 , and U_4

a)
$$U_n = 10U_{n-1}$$
 $U_1 = 4$ $U_2 = 40$ $U_3 = 400$ $U_4 = 4000$
b) $U_n = 5U_{n-1} + 3$ $U_1 = 2$ $U_2 = 13$ $U_3 = 68$ $U_4 = 343$
c) $U_n = \frac{1}{2}U_{n-1} - 2$ $U_1 = 6$ $U_2 = 1$ $U_3 = -1.5$ $U_4 = -2.75$
d) $U_{n+1} = 4U_n + 7$ $U_1 = 1$ $U_2 = 11$ $U_3 = 51$ $U_4 = 211$
e) $U_{n+1} = U_n^2 - 2U_n$ $U_1 = 1$ $U_2 = -1$ $U_3 = 3$ $U_4 = 3$
f) $U_{n+1} = 2 - \frac{4}{U_n}$ $U_1 = 4$ $U_2 = 1$ $U_3 = -2$ $U_4 = 4$

Extension: Given, instead, that $U_1=3$ in e) and f), find U_{100}