Starter

Match the following sequences to their names:
3, $9,15,21,27,33 \ldots$
$1,1,2,3,5,8 \ldots$,
$1,3,6,10,15,21 \ldots$
$1,4,9,16,25,36 \ldots$
$4,12,36,108,324 \ldots$
$1,8,27,64,125,216 \ldots$
$3,10,21,36,55,78 \ldots$

Recurrence Relations menenur

Oknow the names of the different types of sequence

Understand the subscript notation of a recurrence relation

Able to generate terms of a sequence given the nth term

Recurrence Relations

- Recurrence Relations describe the relationship between consecutive terms in a sequence
- Example: A sequence is defined by the nth term:

$$
U_{n}=2 U_{n-1}
$$

Given that $U_{1}=2$ write down the first four terms of the sequence

Recurrence Relations

- Example: A sequence is defined by the nth term:

$$
U_{n}^{\prime}=2 U_{n-1}
$$

U_{1} means the $1^{\text {st }}$ term
of the sequence
Given that $U_{1}=2$ write down the first four terms of the sequence
$>U_{1}=2$

$$
\begin{aligned}
U_{2} & =2 \times U_{2-1} \\
& =2 \times U_{1} \\
& =2 \times 2
\end{aligned}
$$

$$
U_{3}=2 \times U_{3-1}
$$

$$
U_{4}=2 \times U_{4-1}
$$

$$
=2 \times U_{2}
$$

$$
=2 \times U_{3}
$$

$$
=2 \times 4
$$

$$
=2 \times 8
$$

$$
\begin{array}{lll}
=4 & =8 & =16
\end{array}
$$

Recurrence Relations

- Example: A sequence is defined by the $n+$ th term:

$$
U_{n+1}=U_{n}^{2}-8 U_{n}+17
$$

Given that $U_{1}=4$ find U_{2} and U_{3}

$$
\begin{aligned}
& >U_{1}=4 \\
& U_{2}=U_{1}{ }^{2}-8 U_{1}+17 \\
& =4^{2}-8(4)+17=1^{2}-8(1)+17 \\
& =16-32+17 \\
& =1-8+17 \\
& =1 \\
& U_{3}=U_{2}{ }^{2}-8 U_{2}+17 \\
& =10
\end{aligned}
$$

Extension: Given, instead, that $U_{1}=2$, find U_{2}, U_{3} and U_{100}

- For each of the following, find U_{2}, U_{3}, and U_{4}
a) $U_{n}=10 U_{n-1}$
$U_{1}=4 \quad U_{2}=40 \quad U_{3}=400 \quad U_{4}=4000$
b) $U_{n}=5 U_{n-1}+3$
$U_{1}=2$
$U_{2}=13 \quad U_{3}=68$
$U_{4}=343$
c) $U_{n}=\frac{1}{2} U_{n-1}-2$
$U_{1}=6$
$U_{2}=1 \quad U_{3}=-1.5$
$U_{4}=-2.75$
d) $U_{n+1}=4 U_{n}+7$
$U_{1}=1 \quad U_{2}=11 \quad U_{3}=51 \quad U_{4}=211$
e) $U_{n+1}=U_{n}{ }^{2}-2 U_{n}$
$U_{1}=1 \quad U_{2}=-1 \quad U_{3}=3 \quad U_{4}=3$
f) $U_{n+1}=2-\frac{4}{U_{n}} \quad U_{1}=4 \quad U_{2}=1 \quad U_{3}=-2 \quad U_{4}=4$

Extension: Given, instead, that $U_{1}=3$ in e) and ff, find U_{100}

