Magnetic field of a bar magnet at an axial point
mé-on position). Let NS be a bar magnet of length 21
i of pole strength g,,. Suppose the magnetic field is
hie determined at a point P which lies on the axis of
\magnet at a distance r from its centre, as shown in-
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an axial point. :

Imagine a unit north pole placed at point P. Then
um Coulomb’s law of magnetic forces, the force exerted
iihe N-pole of strength g, on unit north pole will be
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Therefore, the strength of the magnetic field B at
imnt P is

= Force experienced by a
unit north - pole at gt/Jint—R_
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But q;” .21 =m, is the magnefc d]pﬁ 1 .:-..;.._.-;;l-‘!-i:_.r:;';:z:'-'
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For a short bar magnet, | < <, therefore, we hawe
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Clearly, the magnetic field at any axial point of magnetic
dipole is in the same direction as that of its magnetic dipole
moment i.e., from S-pole to N-pole, so we can write
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Magnetic field of a bar magnet at an equatorial
point (broadside-on position). Consider a bar magnet
NS of length 21 and of pole strength g, . Suppose the
magnetic field is to be determined at a point P lying on
the equatorial line of the magnet NS at a distance r
from its centre, as shown in Fig. 5.14.
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Fig. 5.14 Magnetic field of a bar magnet at
an equatorial point.

Imagine a unit north-pole placed at point P. Then
from Coulomb’s law of magnetic forces, the force exerted
by the N-pole of the magnet on unit north-pol€ is

Similarly, the force exerted by the S-pole of the
magnet on unit north-pole is
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As the magnitudes of F; and F, are equal, so their
vertical components get cancelled while the horizontal

components add up along PR.
Hence the magnetic field at the equatorial point Pis
B qua = Net force on a unit N-pole placed at point P

= FN"'CDS 0+ Fs cos 0

=2 F cos0 [ Eg=E.]
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where m=gq, .21, is the magnetic dipole moment.
Again for a short magnet, [ < <7, so we have

gm - 5 aleng PR | (2)

Clearly, the magnetic field at any equatorial point of a
magnetic dipole is in the direction opposite to that of its
magnetic dipole moment i.e., from N-pole to S-pole. So

we can write
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On comparing equations (1) and (2), we note that
the magnetic field at a point at a certain distance on the axial
linie of a short magnet is twice of that at the same distance on
its equatorial line.
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Torque on a magnetic dipole in a uniform magnetic
field. Consider a bar magnet NS of length 21 placed ina

uniform magnetic field B. Let qm be the pole strength
of its each pole. Let the magnetic axis of the bar magnet
make an angle 0 with the field B, as shown in
Fig. 5.21(a). |

Force on N-pole =q, B; along B

Force on S-pole =4, B opposite to B
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Fig. 5.21 (a) Torque on a bar magnet in a magnetic
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Field. (b) Relation between the directions of = =m ;B .

The forces on the two poles are equal and opposite.
They form a couple. Moment of couple or torque is
given by

t = Force x perpendicular distance

= q,, Bx2lsin 0=(qg,, x2I) Bsin 0

or  t=mBsin® | (1)
where m=gq, x2I, is the magnetic dipole moment of

the bar magnet. In vector notation,
T=m x_g .
The direction of the torque T s given by the right
tand screw rule as indicated in Fig. 5.21(b). The effect
of the _torqué 7 is to make the magnet align itself

parallel to the field B. That is why a freely suspended

magnet aligns itself in the north-south direction
because the earth has its own magnetic field which
exerts a torque on the magnet t_eﬁding it to align along
the field. '
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Potential energy of a magnetic dipole. As shown
in Fig. 5.21(a), when a magnetic dipole is placed in a
uniform magnetic field E at angle 0 with it, it expe-
riences a torque

1=mBsin 0

This torque tends to align the dipole in the
direction of B .

1f the dipole is rotated against the action of this
torque, work has to be done. This work is stored as
potential energy of the dipole. '“'

The work done in turning the dipole through 2
small angle d0 is

dW =1 d0 =mBsin 6 d0

If the dipole 1s rotated from an initial posHmomn
to the final position 6 =6, then the total wonk diome

will be
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W= [ dW = | mBsin 6 40 = mB[- cos e]
%
= —mbB(cos 6, — cos 0;)

This work done is stored as the potential energy U
of the dipole.

U=—mB(cosB —Cos 0, )

The potentlal energy of the dipole is zero when

m L B.So potenhal energy of the dipole in any orien-
tation 0 can be obtained by putting 6, =90° and 0,=0
in the above equation.

U = - mB(cos 6 — cos 90°)
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or Uﬁ_mBmSBﬁ«

Special Cases

1. When 0=0° U=-mBcos0°=_ mB
Thus the potential energy of a dipole is
minimum when m is parallel to B, In this state,

the magnetic dipole is in stable equilibrium.
2 When 6 =90°, U = — mB cos 90° =0,
3. When 8=180° U = — mB cos 180° = + B,

Thus the potential energy of a dipole is maximum

when m is antiparallel to B . In this state, the magnetic

dipole is in unstable equilibrium.



Current loop as a magnetic dipole. We know that
the magnetic field produced at a large distance r from
the centre of a circular loop (of radius g) along its axis is
given by
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where I is the current in the loop and A =n4? is its
area. On the other hand, the electric field of an electric
dipole at an axial point lying far away from it is given
by
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where p is the electric dipole moment of the electric
dipole.
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On comparing equations (1) and (2), we note that
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both B and E have same distance dependence [——)
Moreover, they have same direction at any far away
point, not just on the axis. This suggests that a circular

current loop behaves as a magneﬁf/ dipole of magnetic

moment, e e
m=1A
In vector notation,
— —
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This result is valid for planar current loop of any
shape. Thus the magnetic dipole moment of any current
loop is equal to the product of the current and its loop area.
Its direction is defined to be normal to the plane of
the loop in the sense given by right hand thumb rule.
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"/ Magnetic dipole moment of a revolving electron.
ccording to Bohr model of hydrogen-like atoms,

megatively charged ele.)\Ehri revolves around the posi-

fively charged nucleus/{This uniform circular motion
Wt the electron is equivalent to a current loop which
pussesses a magnetic dipole moment = IA. As shown in
Fi= 5.23(consider an electron revolving anticlockwise
d a hucleus in an orbit of radius r with speed v

nd time period T.

revolving electron.

Equivalent current,
= Charge. e e _.€U
Time-. L -2nrlv. 2%

Area of the current loop, A = nr ]
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Therefore, the orbital magnetic momemnt (INagmEmT

moment due to orbital motion) of the electron is
ev 2
p,=lA=——:.nr
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or = ) 1)

€ (As the negatively charged electron is revolving
anticlockwise, the associated current flows clockwise.
According to right hand thumb rule, the direction of
the magnetic dipole moment of the revolving electron
will be perpendicular to the plane of its orbit and in the
downward direction, Jas shown in Fig. 5.23

{, ( Also, the angular momentum of the electron due to
its orbital motion is

I =mor 5.(2)

The direction of I is normal to the plane of the

electron orbit and in the upward directicn)l as shown in
Fig. 5.23.

QL Dividing equation (1) by (2), we get
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The above ratio is a constant called gyromagnetic
ratio. Tts value is 8.8 x 10 Ckg™". So
e

= I
M 2m,
Vectorially,
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The negative sign shows that the direction of I is

opposite to that of w }.tAccording to Bohr's quantisation

condition, the angular momentum of an electron in any
_permissible orbit is integral multiple of 1 /27, where h
is Planck’s constant, i.e.,

I=-n—h _ wheren=1,2,3,.....
2n

g ¢eh
l 4mm,

 This equation gives orbital magnetic moment of an
electron revolving in n th orbit.

Bohr magneton. It is defined s the magnetic moment
associated with an electron due to its orbital motion in the
first orbit of hydrogen atom. It is the minimum value of i,
which can be obtained by putting n=1 in the above
equation. Thus Bohr magneton is given by

eh




Putting the values of various constants, we get
Tl6<ll CxE N0

4x3.14x911x 10" % ke
=9.27x 10°** Am?,

Besides the orbital angular momentum
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electron has spin angular momentum S due to its

spinning motion. The magnetic moment possessed by an
electron due to its spinning motion is called intrinsic mag-
netic moment or spin magnetic moment. It is given by
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The total magnetic moment of the electron is the
vector sum of these two momenta. It is given by
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