
Bachelor of Science Thesis

Generating Compelling Procedural
3D Environments and Landscapes

Oscar Blomqvist Pierre Kraft Hampus Lidin

Rimmer Motzheim Adam Tonderski Gabriel Wagner

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden, June 2016

Generating Compelling Procedural 3D Environments and Landscapes
Oscar Blomqvist
Pierre Kraft
Hampus Lidin
Rimmer Motzheim
Adam Tonderski
Gabriel Wagner

© Oscar Blomqvist, 2016.
© Pierre Kraft, 2016.
© Hampus Lidin, 2016.
© Rimmer Motzheim, 2016.
© Adam Tonderski, 2016.
© Gabriel Wagner, 2016.

Supervisor: Staffan Björk, Department of Interaction Design and Technologies
Examiner: Arne Linde, Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Telephone +46 (0)31-772 1000

The Author grants to Chalmers University of Technology and University of Gothenburg the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet. The Author warrants that he/she is the author to the Work, and
warrants that the Work does not contain text, pictures or other material that violates copyright
law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Typeset in LATEX
Department of Computer Science and Engineering
Gothenburg, Sweden, June 2016

ii

Generating Compelling Procedural 3D Environments And Landscapes
Oscar Blomqvist
Pierre Kraft
Hampus Lidin
Rimmer Motzheim
Adam Tonderski
Gabriel Wagner
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Bachelor of Science Thesis

Abstract

The game industry of today puts a lot of pressure on game developers. More than ever, the ex-
pectations of what developers can deliver are high, with increased computational power common
in video game consoles and gaming PCs. For big budget games, the company or companies be-
hind it often need to rely on hundreds of graphical designers to populate the gaming world with
interesting content. This creates problems for small-scale independent game companies with
limited resources, who want to compete on the game market. In order for smaller game com-
panies to create comparable gaming worlds with substantially fewer developers, one technique
they might use to achieve this is called procedural content generation (PCG). This technique
utilizes the performance of a computer to generate assets based on mathematical algorithms.
In this thesis project the goal has been to create an open source PCG engine for game developers
to use, in which procedural content generation plays an integral part. Implemented as a pipeline,
the input to the engine yields deterministic output based on what modules are used with it. The
modules can work on many different scales, from creating flowers to generating 3D landscapes.
With a conveyor belt style approach, it is possible to generate large worlds filled with interesting
content in a linear, deterministic way.
The result of the project consists of a handful of modules capable of generating 3D terrain with
multiple biomes, with interpolation techniques to blend the different landscapes together. An
L-system for generating trees has been implemented as well, along with a module for scattering
objects in the game world in a natural way. The pipeline is connected to an external rendering
engine. However, the modules have not been successfully integrated with the pipeline.

Keywords: game developer, independent, procedural, generation, pipeline, deterministic, mod-
ules, algorithms.

iii

Sammanfattning

Dagens spelindustri sätter stor press på spelutvecklare. Förväntningarna av vad utvecklare kan
leverera blir allt större, allteftersom datorer och spelkonsoler blir snabbare och kraftfullare.
För storskaliga spel så krävs det att företaget eller företagen bakom det ofta behöver förlita sig
på de hundratal grafikdesigners som fyller spelvärlden med intressant innehåll. Detta skapar
problem för småskaliga, oberoende spelföretag med begränsade tillgångar, som vill konkurrera
på spelmarknaden. För att dessa spelföretag ska kunna jämföra sina spelvärldar med de från
storskaliga spel, finns det en teknik som småföretagen kan använda som kallas procedurell
generering av grafiska objekt (procedural content generation på engelska, förk. PCG). Denna
teknik utnyttjar prestandan hos en dator för att generera grafikobjekt och annat innehåll baserat
på matematiska algoritmer.
I detta kandidatarbete har målet varit a skapa en PCG-motor med öppen källkod för spelutveck-
lare att använda, vari procedurell generering spelar en viktig roll. Motorn implementeras som
en pipeline bestående av flera moduler. Data som skickas in till motorn ger deterministisk
utdata baserat på vilka moduler som används ihop med motorn. Modulernas uppgifter kan ar-
beta på olika storlekskalor, från att skapa enskilda blommor till att generera hela 3D-landskap.
Med detta rullbandslika tillvägagångssätt, är det möjligt att generera stora spelvärldar fyllda
med interesant innehåll på ett linjärt, deterministiskt sätt.
Resultat från projektet består av en handfull moduler kapabla till att generera 3D-miljöer med
olika biom, med interpoleringstekniker för att sammanfoga de olika terrängerna. Ett L-system
för att generera träd har också blivit implementerat, tillsammans med en modul för att sprida
objekt i spelvärlden på ett naturligt sätt. Motorns pipeline är sammankopplad med en extern
renderingsmotor. Emellertid så har modulerna inte blivit integrerade med motorn.

Nyckelord: spelutvecklare, oberoende, procedurell, generering, pipeline, deterministisk, mod-
uler, algoritmer.

Acknowledgements

All of the group members would like to thank our supervisor Staffan Björk, for providing us
with advise and feedback throughout the project, and for putting up with us on the afternoon
meetings.

v

Dictionary

API - acronym for Application Programming Interface.
Asset - a graphical object used in the game world, such as a building

or a tree.
Barycentric coordinates - Barycentric coordinates are triples of numbers (t1, t2, t3)

that shows where a point P is located in a reference to
a triangle. The barycentric coordinates of P are defined as
the distance to each vertex of the triangle in relation to its
opposite edge [1].

Bitmap image - an image format where each pixel is defined by color and
transparency.

Chunk - a sub-set of data.
Interface bridge - an intermediary software component to make one API com-

patible with another.
LOD - acronym for Level Of Detail. The term is used for graphical

objects with multiple layers of detail, e.g. the resolution of
bitmaps or the number of polygons in a polygon mesh.

MVP - acronym for Minimum viable product. This is a product
with just enough functionality to satisfy the core use cases,
and that allows for validated learning about the product
and its continuous development.

Noise - a collection of random values, represented as numbers.
Perlin worms - worm like structures generated using Perlin noise.

Voxelized - rendered as voxels.

vi

Contents

List of Figures viii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Project goals . 3

1.3.1 PCG engine . 3
1.3.2 Rendering . 3

2 Theory of PCG Algorithms 4
2.1 Generating random data . 4
2.2 Noise . 5

2.2.1 Coherent noise . 5
2.2.2 Combined noise . 6

2.3 Terrain representation . 7
2.3.1 Heightmaps . 7
2.3.2 Voxels . 8

2.4 Bilinear interpolation . 9
2.5 Voronoi diagrams . 9
2.6 L-systems . 10
2.7 Random distributions . 13

2.7.1 Random scattering . 13
2.7.2 Poisson disc distribution . 13

2.8 Dividing arbitrarily large worlds . 14
2.8.1 Challenges . 14
2.8.2 Solutions and restrictions . 15

3 Execution 16
3.1 Core structure . 17
3.2 Landmass module . 17

3.2.1 Chunking Voronoi diagrams . 18
3.2.2 Using multiple Voronoi diagrams . 18
3.2.3 Using a single Voronoi diagram . 19
3.2.4 Voronoi diagram indexing . 19
3.2.5 Site generation . 21
3.2.6 Large scale features . 21

vii

Contents

3.3 Combining landscapes . 22
3.3.1 Biome interpolation . 22
3.3.2 Voxel Interpolation . 23

3.4 Terrain module . 23
3.4.1 Generating a terrain surface . 24
3.4.2 Generating and visualising voxel terrain 25
3.4.3 Generating terrain from biome attributes 26
3.4.4 Removing floating voxels . 28

3.5 Tree module . 29
3.6 Object placement module . 31

4 Results 35
4.1 Core structure . 35
4.2 Landmass module . 36
4.3 Terrain module . 38
4.4 Tree module . 39
4.5 Object placement module . 40

5 Discussion 42
5.1 Results and alternative methods . 42

5.1.1 Core structure . 42
5.1.2 Landmass module . 43
5.1.3 Terrain module . 43
5.1.4 Tree module . 44
5.1.5 Object placement module . 44

5.2 Validity . 45
5.3 Future work . 45

6 Conclusion 47

Bibliography 49

A Terrain Examples I
A.1 Plains, mountains and hills . I
A.2 Tunnels . I
A.3 Caverns . I
A.4 Pillars . II

B L-system Examples III

C Pseudocode VI

D Site Generation Comparison IX

viii

List of Figures

2.1 Visualization of 2D simplex noise, generated using simplex noise implementation
by Gustavson [23] and plotted using Matlab. 6

2.2 Turbulence noise created by modifying simplex noise. The modification was
squaring the noise value for each octave before adding them together. The result
is a connected net of ridges. 7

2.3 The game world of Minecraft consists of large blocks, called voxels. The terrain
is generated using PCG techniques. CC0 1.0 [25]. 8

2.4 Geometric visualization of bilinear interpolation. CC BY-SA 3.0 [27]. 9
2.5 Example of Voronoi diagram and the use of Lloyd’s algorithm. 10
2.6 A D0L-system represented with turtle graphics. These are iterations 1, 3 and 5

of L-System 2.1. 11
2.7 The orientation of the turtle is controlled by the symbols associated with a given

direction vector ~L, ~H or ~U . 12
2.8 Random distribution of points. Randomly distributed points tend to group in

unnatural ways, as can be seen in the figure, which in many cases is unsuitable
for realistic object placement. 13

2.9 Random-scattered points. Each point is placed in a square grid and then moved
randomly within the square it is placed. The result is still somewhat grid like as
some columns can still be discerned. 14

2.10 Poisson distributed points. Characterized by each point being at a minimum
distance from every other point, creating a packed yet spaced distribution. . . . 14

3.1 An overview of the PCG engine. The game engine is connected via a dedicated
interface bridge. The world generation is initialised by a seed, which is provided
by the connected game engine. The seed is then transformed in all the modules
into different types of data, until it arrives to the end of the pipeline. Finally,
the data is converted into a suitable data format for the connected game engine. 17

3.2 An example of restricted site generation. One cell must contain a single site,
where the site can be anywhere in the cell. 18

3.3 The three stages of the algorithm for connecting multiple Voronoi diagrams with
each other. 20

3.4 Two different surfaces that have been generated with simplex noise. The terrain
to the left, which uses a lower frequency and fewer octaves, could be used for
plains. The right one, which uses a higher frequency and more octaves, is more
suitable for hills or mountains. 24

ix

https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

List of Figures

3.5 A terrain that is composed of 9 chunks arranged in a square (3 × 3). Since the
noise functions are continuous across the chunk borders the resulting surface is
seamless. Note that this is a larger rendering of the hills presented in Figure 3.4. 25

3.6 Demonstration of the effects of height interpolation. Both terrains use exactly
the same chunk data and noise functions (the plains function from Figure 3.4).
The only difference is that the right example uses height interpolation while the
left one doesn’t. 25

3.7 Voxel terrain using different simplex noise types. 26
3.8 Demonstration of terrain interpolation between two different sets of biome at-

tributes. The yellow terrain is purely plains and the red terrain is purely moun-
tains. The orange terrain is interpolated, which results a smooth transition from
plains to mountains. Note that the hills in the middle are a natural product of
the system. 27

3.9 Comparison between two methods of heightmap-to-density conversion. For the
sake of illustration the chosen heightmap is completely flat. In the left example
no smoothing is used, which results in a clearly visible flat surface. The right
terrain, however, uses linear dampening which results in a less unnatural terrain. 28

3.10 A tree rendered with a polygon mesh using the tree module. 30
3.11 Poisson distributed points in a 256× 256 area. Left image unpruned with points

of radius 2. Middle image is the same as first image but after pruning using noise
which can be seen in the rightmost image. 31

3.12 Poisson distributed entities of three different types represented in different colors
and sizes. Dark green has radius 2, brown radius 4 and blue radius 6. 32

3.13 Poisson distributed entities in two layers. Upper layer with radius 7 (brown)
with minimum group distance 14 which is visualized using dark green circles.
In bottom layer light green entities of radius 2 are placed. The group distance
between bottom and top layer is 0, which can be seen as the smaller entities can
be closer to big entities than big entities can be to other big entities. Some bugs
are visible in the right and left borders of the image where bigger entities do
overlap. Due to the time limitation of the project the source of the bug was not
found. 32

3.14 Entities distributed using Poisson disc distribution. Light green entities have self
spawn chance Ps = 0 chance and population value N = 500, dark green entities
have Ps = 85% leading to clusters. Red entities have Ps = 0 and N = 1 which
can be seen in their low numbers in the figure. Light green entities have the
highest population value and subsequently dominate in numbers. 34

4.1 Rendering of the 2D representation of the landmass. 37
4.2 Voxel terrain generated using the terrain module. Three primary terrains have

been used and interpolated on the surface layer: plains, regular mountains and
ridged mountains. In the underground layer caverns and tunnels have been used.
The terrain was plotted using Matlab. 39

4.3 The results of the tree module, using L-systems to construct trees. 40

x

List of Figures

4.4 A simulation of a simple forest made using the feature placement module. Top
layer consists of trees, represented by white and brown circles surrounded by
bright green circles which represent tree crowns. No trees have overlapping
crowns. In the bottom layer grass (small green dots) and flowers (small colored
dots) have been placed. Grass has a visibly higher chance of being placed,
leading to grass dominating the ground. Additionally flowers have a high chance
of placing other flowers around, leading to the small clusters of flowers seen in
the figure. Grass and flowers can not overlap with tree trunks but are allowed
to grow under the crowns, a product of layering the entities. 41

B.1 An abstract tree constructed with L-System B.1 from iteration 1 through 6. . . IV
B.2 A more realistic tree constructed with L-System B.2 from iteration 1 through 4. V

D.1 Uniform random distribution. IX
D.2 Uniform random distribution with one iteration of Lloyd relaxation. X
D.3 Uniform random distribution with five iterations of Lloyd relaxation. XI
D.4 Hexagonal grid. XII
D.5 Hexagonal grid with random scattering. XIII

xi

1 Introduction

Digital games today are ever increasing in scope and detail which poses some challenges to the
gaming industry. More and more people are required to develop a game, with projects often
exceeding hundreds of graphical designers and programmers [2]. These kind of games are often
referred to as AAA games, or triple-A games, which is a classification of the highest budget
games on the market. An example is the franchise Assassin’s Creed from Ubisoft who are able
to release a new Assassin’s Creed title every year.
The small scale game companies have a hard time keeping up with the high expectations of
consumers, due to having smaller workforces compared to triple-A game companies. The small
companies often compensate for large stunning worlds with innovate game mechanics, level
design and storytelling instead, making them stand out in other areas. These games are often
referred to as indie games, or independent games, and could often be seen as the opposite of
triple-A games, although in some cases its hard to differentiate the two.
The production costs of triple-A games are increasing, and its becoming more difficult for
companies to meet the consumer demands [3]. One technique that is sometimes employed
is called procedural content generation, or shortened as PCG. This technique relies on the
computational power of hardware to generate the game world assets, instead of having large
amounts of people handcrafting every single asset in the game. Another advantage of PCG is
that new and varied content can be generated easily. By consistently having the user provided
with new content, the game experience is kept interesting.
An example where PCG can be used is for terrain landscapes. The landscape generator could
make use of mathematical phenomena and algorithms in order to create mountain chains,
valleys and large open fields. The generator would only take a single input, called a seed, which
is processed in logical steps incomprehensible to the human mind, and the output generated
appears random in a structured, natural manner. The process can be deterministic, meaning
that a certain seed input will always generate the same output. This is important in order to
produce content “on the fly”, without having to store any data other than the seed and the
algorithms producing the content.

1.1 Background

The first big game using PCG was Beneath Apple Manor [4] released in 1978. Back then the
lack of memory restricted games from having rich game environments. PCG was a way to enrich
game maps without using up memory. Early examples of this include Rogue [5] and Diablo [6],

1

1. Introduction

which uses the technique to generate the caves that the player traverses. As computers became
more powerful, using PCG for reducing memory load was no longer as common. But this also
resulted in games becoming larger and larger. Nowadays hundreds of designers are involved to
create high budget games. The use for PCG has subsequently changed from freeing up memory
to reducing the work load, being useful whenever extensive variation is required.
In Borderlands [7] for example, PCG is used to generate (seemingly) endless combinations of
weapons that the player can acquire in the game [8]. The most recent PCG game at the time of
writing this paper, is No Man’s Sky [9]. The game is set in a science-fiction inspired universe,
with several galaxies in which the player can travel around. Each galaxy has billions of star
systems with orbiting planets, and every one of them is filled with life, in the form of animals
and plants, which the player can discover. This would be a massive amount of work without
the aid of PCG. In fact, it would be practically impossible for any-sized team of developers to
come close to handcraft even just a small fraction of what’s generated in No Man’s Sky.
There are currently some PCG tools to generate terrain and game assets. Voxel Farm [10] is a
fully featured tool for generating and rendering procedural worlds, although it has a commercial
license and seems to have limited support for endless worlds. SpeedTree [11] is a tree and
vegetation generator tool used by many triple-A game companies, that integrates with game
engines, such as Unity [12] or Unreal Engine [13]. There are also various smaller plug-ins for
game engines that help with generating content procedurally. However, to our knowledge there
are currently no frameworks that can generate an endless world from start to end.

1.2 Purpose

The purpose of this project is to start the development of an API, with the ability to generate
interesting procedural environments for games. When finished, the API will act as an extension
library, that must be integrated with an existing (although arbitrary) game engine in order to
render the content. The API is also meant to be modular, allowing developers to create their
own modules for the library, that can alter the generation process and ultimately the game
world output
Furthermore, finding the most optimised methods of generating content will not be the major
concern in this project. The main purpose is to generate interesting and compelling assets.
However, when facing two or more ways of performing a certain task, speed will be considered
when choosing the most suitable method.
Finally, the API is intended to be free for game developers, hobbyists or anyone interested
in the technology. Free is emphasized as not only being free of charge, but as what is called
free software, i. e. software that anyone can access, modify and share. With this freedom,
it is possible to have several experienced, independent engineers contributing on the future
development of the API. The belief is that the developers of the game industry would have a
personal interest in this type of technology, which would drive the development further. In this
project however, there will be no attempt to create, or obtain, a community around the API,
but rather open the doors for the future.

2

1. Introduction

1.3 Project goals

This project will focus on building the foundation of the principles that have been discussed.
The goals of the implementation can be further divided into two tasks. The first task of the
project is to build the engine structure that will produce deterministic game world data. This
includes the core, in the form of a pipeline, and a set of modules. The pipeline will handle all
the input and output of the modules and the possible metadata about the generated content.
The second task is to connect the API with an existing game engine, to show that the pipeline
is able to transfer the generated content from the modules.

1.3.1 PCG engine

The main task for this project is to develop an engine which is able to generate arbitrary
assets, with a core pipeline of interchangeable modules to define the generation process. As a
reasonable restriction, this project will only explore the generation of three-dimensional assets
and voxelized terrains. The engine will therefore consist of a handful of basic modules, in order
to showcase and validate the functionality of the core. The PCG engine will not be dependent
on a specific existing game engine, but rather on the game engine specific interface bridges,
that will have to be built to incorporate the PCG engine with the game engine. It should also
be able to continuously stream all the data necessary to render the world.
The initial stages of the pipeline will focus on generating the general terrain and landscape of
the world. This includes generating landmass, height maps and biome data. This information
will be used to create the actual terrain, in this case represented as voxel data. The later parts
of the pipeline will fill the world with objects and generate more specific terrain components,
such as rivers and caves. As for techniques used for the environment generation, the terrain
will be generated using noise functions. To procedurally generate interesting objects, L-systems
will be investigated. This technique could be particularly useful for (but not limited to) trees
and vegetation.

1.3.2 Rendering

While the main project task is to create an engine with PCG functionality, the next task is to
render the generated worlds using an existing game engine. A custom rendering engine that
has been developed by project member Rimmer Motzheim will be used to render the output of
the PCG engine. However, when testing the individual modules, temporary rendering means
will be used.

3

2 Theory of PCG Algorithms

Before moving on to discuss the chosen methods of generating a procedural world, some general
concepts and algorithms must be introduced. Most of these methods have the same aim: achiev-
ing interesting, non-repeating and realistic content. Realistic, in this case, does not necessarily
mean obeying all laws of physics, but being somewhat familiar and making aesthetic sense.
A good example would be islands that are floating in the sky. There are two fundamentally
different ways of approaching this [14].
The first approach is to use an algorithm that produces the desired content by imitating the end
result. These methods are called ontogenetic. For example, waves in the ocean look a lot like
the mathematical sine-wave. Therefore one could generate a procedural ocean by combining dif-
ferent sine functions. This approach does not take any consideration of the underlying physics,
but can still produce very realistic content. The main advantage is usually the generation
speed, since the real world aesthetics are mimicked in an optimised way.
The other group of methods are called teleological and they take the opposite approach. They
generate realistic content by using physical laws and processes as the basis. The previous
example of generating ocean waves could use the Navier-Stokes equations1, combined with
tidal forces and heat currents in the ocean. This method could generate incredibly realistic
waves, at the cost of performance.
In the following sections, techniques for generating random data will be discussed, followed
by some different graphical representation techniques for terrain. Furthermore, algorithms for
producing various environmental attributes will be explored, followed by some methods for
dividing up an arbitrarily large, generated world.

2.1 Generating random data

Procedural generation works by having a process or an algorithm which generates some specific
content, following some set rules and a given input. The strength of using procedural generation
lies in being able to generate large amounts of content using computer performance instead of
creating the content by hand. However, a purely deterministic procedural process will always
generate the same result. Introducing some random factors in the process can lead to seemingly
infinite amounts of variation of the generated content, avoiding repetition. Using purely random
factors leads to content having no controllable reproducibility, which may not be desirable in
some cases. Since the PCG engine in this project is specified as being deterministic, methods

1A set of equations that govern fluid dynamics.

4

2. Theory of PCG Algorithms

for making a process random, but reproducible are required.
A very common way to produce random numbers is to use pseudo-random number generators,
or PRNGs for short. These generators consist of algorithms that emulate truly random number
generators (RNGs). Because PRNGs are based on mathematical operations, as opposed to
RNGs, they are entirely deterministic2 and depend entirely on their initial state. The initial
state, which can be a number or a vector of numbers, is commonly referred to as a seed.
One of the earliest examples of a PRNG is the Middle-Square Algorithm, presented by John von
Neumann in 1951 [15]. Today there are modern PRNGs that are much more sophisticated, for
example xorshift generators [16] and the Mersenne Twister [17]. It is important to remember
that they can never be truly random, and are therefore bound by certain limitations (that vary
between algorithms). Also, it is never safe to assume that the standard random generators of
modern languages implement one of the “good” algorithms. Java, which is one of the most
popular languages in programming, uses a linear congruential generator [18].

2.2 Noise

When talking about noise one commonly refers to white noise, which can be recognised as the
black and white dots on an old television set when there was no signal. When represented with
numbers, white noise is a series of random uncorrelated values. For example a one dimensional
white noise function could be a function that for a given input returns a decimal value between
0 and 1. Uncorrelated means that two noise values f(x1) and f(x2) will have no correlation
unless x1 = x2.
Noise is a common method to use for randomness, since it can be defined by deterministic
PRNGs, allowing for reproducibility. However, a surface generated using white noise would
be very spiky and not resemble natural terrain. Instead what is desired is something that is
seemingly random, but with the property that nearby points generate similar noise values.

2.2.1 Coherent noise

In 1983 Ken Perlin created a type of noise called Perlin noise. Unlike regular noise, which is
generated using only a seed, Perlin noise is generated using a seed and some other input. Perlin
noise is deterministic in regard to the input used to generate the noise. For example, in two
dimensions a noise value could be a function f of some coordinates x and y which will, given
a specific seed, always return the same value f(x, y).
In addition of being deterministic, Perlin noise is also coherent. This means that the noise
value f(x, y) is not significantly different from a noise value in f(x + ∆x, y + ∆y), for small
∆x and ∆y. The result is a type of semi-random noise.
In 2001 Ken Perlin developed a new type of noise called simplex noise, which is an improvement
and a successor to Perlin noise. Simplex noise has a lower computational complexity, scales
better for higher dimension of input and fixed some problems that Perlin noise had [19].
Coherent noise has three main characteristics:

2Given the same parameters and initial state.

5

2. Theory of PCG Algorithms

• A small change in input generates a small change in the output.
• A big change in input generates a random output.
• The noise value generated from an input is deterministic, meaning the output will change

only if the input changes.
These properties make coherent noise more aesthetically pleasing in graphical applications. Ken
Perlin created Perlin noise to help artists create more complex and natural looking textures,
like smoke or marble textures, using computer graphics [20]. An example of a smoke texture
generated using simplex noise can be seen in Figure 2.1. With time many new applications
have been found for Perlin and simplex noise, such as generating landscapes. A noteworthy
example is the game Minecraft [21], which uses a system based on 3D Perlin noise to create a
seemingly infinite game world [22].

Figure 2.1: Visualization of 2D simplex noise, generated using simplex noise implementation
by Gustavson [23] and plotted using Matlab.

2.2.2 Combined noise

Noise can be combined by adding the noise from different or the same function. This can
increase what can be called the resolution of the noise.
One method which is widely used is multi-octave noise. Increasing an octave means adding
noise of double the frequency to the previous noise. This can be repeated as many times as
required, resulting in the sum:

fN(x) =
N∑

i=0
f(2ix) (2.1)

where fN(x) is the total octave-noise of order N (one less than the number of octaves) and f(x)
is the noise value, in the coordinate x. It is practical to normalise by N + 1 for fN to remain
in the original range of f(x).

6

2. Theory of PCG Algorithms

Another useful combination of coherent noise functions is ridged, or turbulent, noise. This
method results in clear, coherent and narrow bands (Figure 2.2). This is accomplished by
squaring the noise value over multiple octaves:

fN(x) =
N∑

i=0
f(2ix)2 (2.2)

Figure 2.2: Turbulence noise created by modifying simplex noise. The modification was
squaring the noise value for each octave before adding them together. The result is a connected
net of ridges.

2.3 Terrain representation

While there are many different ways to create terrain, both procedurally and by hand, the final
result needs to be rendered by a computer. In real-time rendering, such as in games, the only
way to draw a scene with acceptable performance is through the GPU, which means that the
terrain needs to be converted to triangles. This gives some constraints to how the final result
can be stored in memory, since the representation needs to be able to be triangulated.
The most common ways of storing terrain are through direct final geometry (polygon mesh),
heightmaps, and voxels. Direct geometry is the most straightforward, since the stored data
can be drawn directly by any GPU. It also gives full control to artists, as they can directly
modify the final geometry, but requires the most storage space and largest memory bandwidth.
Heightmaps are most commonly used for terrain that can be represented adequately with only
a scalar height at each point, while voxels can represent terrain with 3D-features such as
overhangs.

2.3.1 Heightmaps

A heightmap is, as the name suggest, a map from coordinates (x, y) to the surface elevation z
in that coordinate. In other words, it is a 2D projection of a 3D terrain, which can be stored
as a bitmap image. The main advantages of this are:

7

2. Theory of PCG Algorithms

• Light memory usage.
• Easily modified (can even be drawn by hand).
• Very efficient rendering and LOD.
• Fast collision detection.

There are however some limitations with heightmaps, one of them being the inability to repre-
sent complex 3D formations such as caves, overhangs, bridges, etc. It is also quite difficult to
modify the terrain after it has been generated.

2.3.2 Voxels

The other commonly used representation is by using voxels. A voxel describes a cell in a three-
dimensional grid. Therefore any shape can be described with this representation as long as the
cell size is small enough. This form of data representation was massively popularised by the
game Minecraft, but has actually long been used in many gaming and non-gaming applications,
e. g. for storing the data from MRI-scans.
Since a voxel is such a general concept it can contain any data. For example, Minecraft assigns
a “block type” to every voxel, which describes its material (water, air, grass, rock, etc.). In
medical applications, they can store vector information such as blood flow rate. It is however
important to try to minimize amount of data stored in each voxel since a world will consist of
extremely many voxels. A quick example: if each voxel stores 1 byte of data and represents a
size of 1 m3 the memory requirements for storing a 1000 m× 1000 m× 200 m world are 200MB.
Figure 2.3 shows how Minecraft renders its terrain. The voxel nature of Mincraft’s representa-
tion is clearly visible in the form of cubes. It is important to note that voxels do not have to
be rendered this way. A technique called iso-surface extraction can be used create a polygon
mesh from voxel data. An algorithm which implements iso-surface extractions is Marching
Cube Algorithm, presented by Lorensen and Cline in 1987 [24].

Figure 2.3: The game world of Minecraft consists of large blocks, called voxels. The terrain
is generated using PCG techniques. CC0 1.0 [25].

8

https://creativecommons.org/publicdomain/zero/1.0/legalcode

2. Theory of PCG Algorithms

2.4 Bilinear interpolation

In some situations, it is desirable to have a way to smooth out discontinuous or non-smooth
consecutive data points by interpolating between them. Interpolation is done by determining
the value of an unknown data point by looking at existing data points. One of the most basic
interpolation methods is linear interpolation. Linear interpolation finds the value of a point P
by looking at two points, A and B, that are located on the opposite ends of a straight line that
goes through P. By calculating the average of A and B, weighted by their distance to P, the
value of P is deduced [26].
Bilinear interpolation can be seen as an extension of linear interpolation, where the idea is to
perform linear interpolation in two directions. The value of a point P is therefore calculated by
looking at four known points surrounding P, and the interpolated value is acquired by taking
the weighted average of these four points (Figure 2.4).

Figure 2.4: Geometric visualization of bilinear interpolation. CC BY-SA 3.0 [27].

2.5 Voronoi diagrams

When generating large continents and oceans for large scale terrains, Voronoi diagrams can be
used. Voronoi diagrams can describe simple shapes like squares and hexagons, but it can also
form highly complex, unstructured graphs.
Voronoi diagrams are defined as planes partitioned into polygons based on a set of predefined
points called sites (Figure 2.5a). The polygons are defined as the subset of the plane whose
points are closer to a particular site than to any other site. This will indeed divide the plane
into several polygons, each subsequently having exactly one site contained in them. Therefore,
by having a larger set of sites, the partitioning will become more detailed. The diagram can
then be used to “fill in” each polygon with either land or ocean. To calculate a Voronoi diagram,
Fortune’s algorithm [28] can be used.
To get somewhat regularly sized cells in the Voronoi diagram, a low discrepancy random gen-
erator is needed. Lloyd’s algorithm, also known as Voronoi iteration [29], is a technique that
gives this effect in the form of blue noise, which is usually characterized as noise with few
low-frequency components [30].

9

https://creativecommons.org/licenses/by-sa/3.0/legalcode

2. Theory of PCG Algorithms

The algorithm is simple; it takes the set of sites in a Voronoi diagram and reposition them in
the centroids of the respective polygons. This is repeated as many times as required, making
the sites more evenly spaced (Figure 2.5b).

(a) A Voronoi diagram is defined as a plane
subdivided into polygons. The polygons
are defined as the set of points which are
closer to a particular site than to any other
site.

(b) The same diagram with the sites of first
iteration of Lloyd’s algorithm marked as
crosses. The dashed polygons indicate the
Voronoi diagram of the new relaxed sites.

Figure 2.5: Example of Voronoi diagram and the use of Lloyd’s algorithm.

2.6 L-systems

The modelling of biological structures, such as plants and trees, can be done using a technique
called Lindenmayer-systems (L-systems). L-systems was introduced by Aristid Lindenmayer
in 1968 [31] and it suggested a framework of formal rules and definitions used to generate linear
or branching filaments. Since then, several suggestions and variations have been made to the
L-system, and it still is a popular way of modelling plants and trees using computer graphics.
In the most basic definition, an L-system consists of a set of symbols and rules. These rules
are called productions and they are performed during each iteration of the generation. The
structures are represented with symbols, that may or may not have a production defined to it.
If they do, then these symbols are classified as variables, meaning that they will change after
each iteration. If no production is defined for a symbol, then it is called a constant, and are only
used as a building block to the structure. The generation begins by initialising the generation
string to the axoim, which is one of the variables in the L-system. Then, during each iteration,
the corresponding production rules are applied to each symbol in the generation string. This
basic type of L-system is referred to as a deterministic, context-free L-system (D0L-system).
A variation to this is a stochastic L-system. Stochastic L-systems provide another degree of
complexity to the generation, where a symbol may have two or more productions defined. Each
production will then have a certain probability of being chosen, and thus it provides a way of
generating many different structures of similar types.
To be able to draw structures onto a canvas, a turtle interpreter can be used. A turtle interpreter

10

2. Theory of PCG Algorithms

holds a state of its position and orientation. Some or all variables in the L-system are assigned
an action that either outputs a graphical change on the canvas, alters the state of the turtle,
or both.
For example, consider the example in L-system 2.1. This D0L-system has the axiom ω and the
two productions p1 and p2. The + and − symbol are interpreted by the turtle as changing its
state by rotating itself around a specific axis by the angle δ. Since we have a two-dimensional
L-system in this case, + means rotate counter-clockwise by 45° and − means rotate clockwise
by 45°. The [and] symbols respectively, are push and pop operations for the turtle state. In
other words, [saves the turtles current position and orientation to the top of a separate stack,
and] overloads the turtles current position and orientation with the values from the top of the
stack. The variables F and X simply means draw forward from the current position and in
the current direction. In Figure 2.6 you can see the turtle drawings of the different iterations
of the L-system. For more two-dimensional L-system examples, refer to Appendix B.

δ = 45°
ω : X

p1 : X → F + F [X]− F − F [−X] + F [−X] +X

p2 : F → FFF

L-system 2.1: Example of a D0L-system with axiom X and two productions p1 and p2. The
rules are applied to the generation string (initially the axiom) linearly each iteration. The
generation string can then be interpreted by the turtle.

Figure 2.6: A D0L-system represented with turtle graphics. These are iterations 1, 3 and 5
of L-System 2.1.

The turtle interpreter can be expanded to draw in 3D space instead of on a flat canvas. Thus
the state of the turtle has to be re-imagined. The position is trivial, since it only requires
adding one extra coordinate. The orientation is however slightly more complicated. We define
its orientation by keeping track of three vectors, that points in the turtles left (~L) , heading
(~H) and up (~U) directions, respectively [32]. Together they form the turtles orientation matrix[
~L ~H ~U

]
(illustrated in Figure 2.7).

11

2. Theory of PCG Algorithms

&
^

L
→

/

\

H
→

U
→

+

y

x

z

Figure 2.7: The orientation of the turtle is controlled by the symbols associated with a given
direction vector ~L, ~H or ~U .

The turtle can be rotated by performing the matrix multiplication
[
~L′ ~H ′ ~U ′

]
=

[
~L ~H ~U

]
R,

where R is one of the following rotation matrices:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (2.3)

Ry(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 (2.4)

Rz(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (2.5)

By having one extra dimension, the number of ways the turtle can be controlled increases.
Below are the definitions of the symbols [33] in Figure 2.7:

+ : Turn left by angle δ, using the rotation matrix Rz(δ).
− : Turn right by angle δ, using the rotation matrix Rz(−δ).
\ : Roll left by angle δ, using the rotation matrix Ry(δ).
/ : Roll right by angle δ, using the rotation matrix Ry(−δ).
& : Pitch down by angle δ, using the rotation matrix Rx(δ).
ˆ : Pitch up by angle δ, using the rotation matrix Rx(−δ).

12

2. Theory of PCG Algorithms

2.7 Random distributions

Most game environments need to be populated by various objects. Which objects that are
needed depend on the environment, for example a forest has trees and grass. Nevertheless,
some method of placing these objects is required. This is usually done by a level designer, who
often manually places each object. It is also possible however, to use a procedural approach.
The most basic way of procedurally producing coordinates, or points, is using random dis-
tribution. However, purely random distributions will usually have clumped points or empty
spaces (Figure 2.8). For a natural placement of objects, such as trees, the desired result is an
evenly spaced distribution. Two popular methods of producing spaced distributions are random
scattering and Poisson disc sampling.

Figure 2.8: Random distribution of points. Randomly distributed points tend to group in
unnatural ways, as can be seen in the figure, which in many cases is unsuitable for realistic
object placement.

2.7.1 Random scattering

Random scattering can be described as placing points in an ordered structure relatively close
to the desired result, for example in a square or hexagonal grid. Each point is then moved a
random distance within an allowed area. In the case of a square grid the allowed area would
be a grid cell. This method produces a collection of points which are closer to a purely random
distribution, but with restraints on minimum distance between points (Figure 2.9).

2.7.2 Poisson disc distribution

Poisson disc sampling works by placing out an initial starting point and then start placing new
points around it. The newly placed points are then used as starting points to place the next
batch of points. New points are placed within the interval [r, 2r], where r is the distance from
their starting point. Another restriction on new points is that they can only be placed if they
are no closer than r from all other points. The result is a collection of points which are no
closer than r and no further than 2r to their surrounding points (Figure 2.10).
An example where Poisson disc sampling is useful is in the simulation of a patch of foliage.
Each plant needs to be a certain minimum distance from all other plants for a plant to thrive.
In the case of a forest with trees the minimum distance could be the size of each trees crown,

13

2. Theory of PCG Algorithms

Figure 2.9: Random-scattered points. Each point is placed in a square grid and then moved
randomly within the square it is placed. The result is still somewhat grid like as some columns
can still be discerned.

Figure 2.10: Poisson distributed points. Characterized by each point being at a minimum
distance from every other point, creating a packed yet spaced distribution.

so that each tree does not compete for sunlight. Other plants could perhaps be based on water
availability to simulate a natural growth pattern.

2.8 Dividing arbitrarily large worlds

It is often desirable to only generate a subsection of the world, as the generated world can be
arbitrarily large and thus potentially larger than any computer can store in memory. Generating
a subsection of the world can also be used to increase performance and reduce loading times.
In this report, the technique of only generating a “chunk” of the world is called chunking,
although the concept have been used by previous games, such as Minecraft. In this section,
research within the project about chunking will be discussed, with what was found to be the
most optimal solution to meet the project goals.

2.8.1 Challenges

Even though only smaller parts of the world are generated, it should seem to the end user as
if the world is endless and fully existing when the world is explored. New parts need to be
generated and connected to the existing parts in a seamless way.
An issue with chunking is that one part of the world can be dependent on other parts of the

14

2. Theory of PCG Algorithms

world. Let’s say part A is dependent on part B. This means that before the system can generate
part A, part B needs to be generated. If part B also is dependent on part A, there is a circular
dependency which cannot be fulfilled, as both parts need to wait for the other before they can
be generated.

2.8.2 Solutions and restrictions

To ensure continuity, the generation rules can be set up so that all parts will fit together with
any other part. While possible, this creates a huge constraint on the generation process.
Another way to achieve seamless transitions between parts of the world, is to use a generation
technique that is deterministic for a specific set of coordinates. Having the constraint that every
part of the world needs to be generated deterministically is a challenge and limits the system,
but after extensive research it was found that this is the only feasible solution. The optimal
approach is often a combination of deterministic and non-deterministic techniques, where the
non-deterministic techniques, e.g. simulations, are run locally on smaller world segments. For
example, the large scale terrain components such as trees can be generated deterministically
using noise, while smaller elements such as rocks and flowers can be generated using simulations.
When using simulations second problem with chunking is encountered, which is that one part
can be dependent on another part. As described above, a danger with this is that two parts can
implicitly become dependent on each other, creating a circular dependency. One method for
avoiding this is to have a system where the simulations are categorized in different levels, and
where one simulation can only be dependent on data from simulations below its own level. These
dependencies can be modelled as a dependency graph, where chunks can have dependencies to
earlier simulations in adjacent chunks. As an example, to determine what climate a chunk has,
moisture data from adjacent chunks needs to be extracted. Since moisture is one level below
climate, this is consistent with the rules.
In order for the world to be deterministically generated, all of the dependencies need to be
accounted for and calculated. To achieve this, there has to be a constraint that limits the area
of influence of every simulation. Without this rule, the whole world needs to be evaluated in
order to find out if there are any simulations that will influence the part that is currently being
generated. As the system should be able to handle arbitrarily large worlds, this obviously does
not work. This limits the use of large scale simulations, for example creating tunnels using
Perlin worms, and to combat this problem there needs to be a trade-off between simulation
freedom and the number of dependencies that have to be evaluated.
When combining deterministic techniques with simulations that have these constrains (limited
area of influence and no circular dependencies), it is possible to ensure that the world can be
generated using chunking. Each part will fit seamlessly with adjacent parts, and while there are
a lot of things that influence generation time, there will be only a finite number of dependencies
that needs to be evaluated.

15

3 Execution

In this chapter we present the different steps taken during the different parts of the project.
The decisions and methods are based on the project goals and the topics discussed in Chapter 2.
However, not all the tasks that were planned for made it into the final product. Secondary
tasks like LOD and textures have not been examined as closely as the main tasks. All API in
the PCG engine have been written in C++, making it accessible on multiple platforms.
The engine structure was discussed early in the project and the model that was brought forward
was a core pipeline, that could have interchangeable modules attached to it. The modules can
specify any type of generation that is of interest. The pipeline then handles the output of a
module and passes it along to the next module as input (Figure 3.1). The sample modules
which have been implemented in this project include the generation of landmasses, oceans,
lakes, biomes, trees and placement of game objects.
There are some concrete steps involved in the world generation process. These are divided into
four stages: landmass generation, terrain generation, feature generation and object placement.
The landmass stage generates a large-scale 2D representation of the world. Mountains, valleys,
oceans and other large areas are specified with a rough base height. Additionally, data about
the biomes such as plains, forests, desert, etc. is also provided in this stage. The terrain stage
then uses this data as a reference to generate a detailed 3D world. Furthermore, it blends
biomes together using different interpolation techniques.
The feature stage generates all detailed assets that may be found in the game world. These
include trees in the forest biome, large rocks in the desert, etc. The last stage that has been
implemented in this project is object placement, which is responsible for placing the features
in the game world, depending on what type of biome is used.
Due to the modular structure of the implementation, it was natural to divide the project team
into independent subgroups, each assigned to a specific module. The groups were responsible
for their own modules, and made the major decisions. Nevertheless, the groups have worked
together to give each other feedback and solve project-wide problems.

16

3. Execution

seed

meta data

raw data

landmass

meta data

raw data

terrain

meta data

raw data

features

meta data

raw data

object placement

pipeline

game
engine

game world

Figure 3.1: An overview of the PCG engine. The game engine is connected via a dedicated
interface bridge. The world generation is initialised by a seed, which is provided by the con-
nected game engine. The seed is then transformed in all the modules into different types of
data, until it arrives to the end of the pipeline. Finally, the data is converted into a suitable
data format for the connected game engine.

3.1 Core structure

We created an initial plan of building a pipeline based on tiled bitmaps, where each stage in
the pipeline generates data that is drawn to one bitmap with a specific scale. The stages after
would then be able to use this data as input, without being able to read the data written at
their own level.
After implementing a simple pipeline in this way using bitmaps, we found out about another
way of building the base terrain using Voronoi diagrams. Since using diagrams makes it much
easier to generate certain large-scale features such as rivers through walking the graph, we
decided to change the implementation to use Voronoi diagrams instead.
The initial plan was also to create a simple interface from the framework to game engine Unreal
Engine 4 (UE4). This turned out to have some difficulties, mostly due to UE4 not really being
compatible with endless worlds, and its shader system. Because of this, we decided to focus
more on creating the pipeline itself, and wait with integrating it to a game engine.

3.2 Landmass module

The first stage in the pipeline generates the base shape of the terrain through Voronoi diagrams
(Section 2.5). However, since there were problems with the implementation, we resorted to use
the boost library [34] instead, which provides a broad spectrum of functionality, including
Voronoi diagram generation. This helped to get results on the landmass generation quicker and
to move on to other tasks.
In this section, it will be discussed how Voronoi diagrams are used for arbitrarily large game
worlds, by splitting up the graphs into chunks. These chunks are able to generate their part

17

3. Execution

almost independently, with only a little bit of information from the other chunks, making it
possible to generate just a subset of the game world.

3.2.1 Chunking Voronoi diagrams

As discussed in Section 2.8, every part of the pipeline has to be made in steps that can be
split into chunks. However, Voronoi diagram does not have a natural way to be divided, which
makes chunking a bit more difficult.
To ensure that a chunk of a Voronoi diagram is accurate, that chunk is marked as an area of
interest. The accuracy of the chunk generation can be guaranteed by including every site, such
that the polygons in the area of interest provide sufficient information to generate that chunk.
In the general case, finding which sites needs to be included to guarantee accuracy requires all
sites to be generated and compared.

Figure 3.2: An example of restricted
site generation. One cell must contain
a single site, where the site can be any-
where in the cell.

Comparison between the sites can be eliminated com-
pletely by restricting the way they are generated. By
dividing the world into a square grid, each cell in the
grid can be assigned a site generator. Each generator
can only generate sites that reside in the area of its
assigned grid cell (Figure 3.2). Ensuring that each gen-
erator generates at least one site makes it possible to
calculate which generators has to be included to guar-
antee that the area of interest is accurate. Therefore,
the maximum distance between a site and a point on
the border of the cell of width w is

√
2× w, i. e. when

a site resides in one of the corners.
Since each generator generates at least one site, the
accuracy of the area of interest can be guaranteed by
including every generator such that their distance to
the area of interest is less than or equal to

√
2×w, i. e.

every generator inside the area of interest and those
two steps away should be included. The number of sites that are included but won’t affect the
diagram can be decreased by filtering out the generated sites that are further away than

√
2×w

from the area of interest. By using even stricter rules on the site distribution this distance can
be reduced significantly, further explored in Section 3.2.5.

3.2.2 Using multiple Voronoi diagrams

The first idea for defining terrain was to use multiple Voronoi diagrams and interconnect them
during graph traversal. Each diagram is associated with one grid cell. Each cell is considered
a separate area of interest and sites are included in the diagram accordingly, i. e. sites from
the generator associated with the cell and each cell less than

√
2 number of cells away. As

mentioned this distance can be reduced so that only the direct neighbours need to be included.
This approach has a great advantage in that adding and removing grid cells does not depend
on the rest of the world and thus has a constant time complexity per cell. Another benefit

18

3. Execution

is that the diagrams can be created using methods that don’t allow for insertions after the
diagram is created. Deletion is a constant operation; just remove the diagram associated with
the generator.

3.2.3 Using a single Voronoi diagram

Another idea for defining terrain was to have the whole terrain defined a single Voronoi diagram.
The necessary sites would then be added and removed as needed for the area of interest to
be accurate. As Takao et al. [35] have shown this technique could lead to an average time
complexity of O(n) for adding one site.
The area of interest can be extended and shrunk by adding or removing all sites for a grid
cell. Adding multiple sites at the same time has potential for faster insertion times as the seek
time can be reduced. As this approach was not the one we choose speed improvements were
not further investigated. Nevertheless the sites can be added one by one, with an average time
complexity O((n + k)k) where n is the number of points already in the diagram, and k is the
number of points to be added per grid cell.
Another important aspect is whether parts of the structure can be discarded when they’re not
in view anymore. Being able to unload parts of the structure is important to free memory
and to reduce work. Mostafavi et al. [36] shows that a point can be deleted from the Voronoi
diagram in O(n), where the complexity stems from searching the diagram for the point to
remove. As the sites in one grid cell will be interconnected in the diagram there is no need for
more searches when the first point to be removed is found. Deletion of all the sites in a grid
cell can therefore be done in O(n).

3.2.4 Voronoi diagram indexing

Graph traversal when using multiple Voronoi diagrams, as discussed in Section 3.2.2, requires
a method to traverse between diagram neighbours and in effect the whole graph. This method
needs to detect when the traversal should switch to a graph and find where to continue the
traversal once the switch has been made. A method for performing these operations without
any special representation of the graph will be presented first, followed by an alternative storage
representation with improved speed.
Detecting which graph to traverse when traversing vertices is as simple as calculating which
grid cell the vertex is in. Traversing is done in the same way as for the cells in the Voronoi
diagram, but instead the sites are used. Edges can be traversed similarly but need a tie breaker
when its two vertices are located in different grid cells. Implementing a strict order on the
vertices a and b, e. g. xa < xb and ya < yb, and using only the minimum or maximum point of
the edge breaks the tie.
Neighbouring graphs don’t share any data structures and traversal can therefore not be im-
mediately continued once a switch between graphs has been made. Considering a switch from
graph A to graph B, to continue traversal in B, the current edge or vertex in A has to be
found B. In the case of the vertices vA in A and vB in B, finding vA in B is done by searching
linearly among the vertices of B, such that vA and vB have the same position. In the case of
the edges eA in A and eB in B, finding eA in B is done by searching linearly among the edges

19

3. Execution

of B, such that the vertices of eA and eB are in the same positions, respectively. Since vertex
coordinates are stored as floating-point numbers, the appropriate error marginal has to be used
when comparing the coordinates.
We define a graph element as either a cell, edge, or vertex. A storage format for interconnected
Voronoi diagrams needs to assign ownership to a diagram for each graph element, so that shared
graph elements are not duplicated, which would otherwise make it difficult to uniquely assign
metadata. The storage format also needs to not be circularly dependent on the diagrams
neighbours. Assigning ownership is made in the same way as presented for traversal and
references to graph elements need to convey this ownership.
Constructing a connected Voronoi diagram without creating circular dependencies is a multi-
step process. The algorithm models this as a state-machine with three stages: buildV ertices,
buildEdges, and connectEdges (Figure 3.3). The output of the final step, connectEdges, is a
grid cell with a Voronoi diagram that can reference the vertices and edges of its neighbours.
buildEdges creates edges which references the vertices of the grid cell and its neighbours. The
data structure stores which edges are in each Voronoi cell and vertex, but buildEdges can only
add references to edges that belong to this grid cell. Edges which could not be referenced
are stored and the references are later added by connectEdges which has the neighbour edges
available. buildV ertices creates the unconnected Voronoi diagram and stores every vertex that
belong to the grid cell. A pseudo-code program can be seen in Appendix C.

(a) Here the buildVertices and buildEdges
stages are shown. The former calculates
the vertices (white crosses) of the Voronoi
diagram cluster around the green grid cell,
based on the generated, cell restricted sites
(black dots). The latter calculates how
edges are connected between the vertices.

(b) The connectEdges stage is responsible
for selecting and storing only the edges that
are used by the Voronoi diagram in the
green grid cell.

Figure 3.3: The three stages of the algorithm for connecting multiple Voronoi diagrams with
each other.

20

3. Execution

The algorithm uses a simple data structure, inspired by Alumbaugh and Jiao [37], which stores
the relations as indices, which include which grid cell the item can be found in and at what
index. This allows for unloading of grid cells, as recreation of the grid cell will produce the
same indices and neighbour references, and will therefore still be correct. It does not store edge
direction, but direction can be added easily by a simple modification or by encoding it in the
metadata.

3.2.5 Site generation

Having well distributed sites is a requirement to create good looking Voronoi diagrams. The
goal is to create a diagram without recognizable patterns and without artifacts like Voronoi
cells that look like a square or are too small. Patel [38] recognizes that random numbers
have a tendency to clump up, creating artifacts, and recommends using Lloyd relaxation to
decrease the discrepancy. We evaluated Lloyd relaxation but did not find the results completely
satisfactory. The diagram was either considered too irregular and with artifacts, or too regular
without variation. Lloyd relaxation is also a slow process, requiring the Voronoi diagram to be
recreated multiple times.
Satisfactory results were found by adding random scattering to a structure looking close to
the sought after shape. A hexagonal grid is a good base as it has a shape that feels or-
ganic and is easy to create. We found that the random scattering has to spread the sites
enough to create cells with different amount of edges, as it is very easy to spot a pattern oth-
erwise. However, the random scattering has to be limited so that no sites are generated to
close to each other, which would create artifacts. A uniform random distribution within the
range [−hexcellsize/3, hexcellsize/3] was found satisfactory. The distribution of sites is very
controlled, lowering the maximum distance needed in Section 3.2.1 to 11

3 × hexcellsize. For
examples of the different site generation methods, see Appendix D.

3.2.6 Large scale features

One of the goals of this project was to explore what methods can be used to create large
scale features such as mountains and long rivers. Voronoi diagrams were early identified as the
primary tool we wanted to investigate, inspired by the work of Patel [38]. Patel demonstrates
a small island with pleasant rivers created by selecting random vectors on mountain corners as
the river starting point. The river is created by recursively following the edge with the biggest
downward slope. Patel defines height as the distance from the coast leading to an island with
a mountain in the middle, and gives each vertex the property that the following the edge with
the most slope will always lead to the ocean.
Our implementation uses coherent noise which does not have this property, making river cre-
ation more problematic. Using Patel’s method in our system leads to a situation where small
valleys will trap the river, making it stop and form a lake too early. A broader search for river
candidates can be performed, but this will produce rivers that flows in unexpected directions
given there are no modifications to the landscape. A simulation based approach has the poten-
tial to create the best results as the world can be modified to fit around the rivers. Allowing
for modifications near grid cell borders creates unaligned transitions between grid cells, since

21

3. Execution

the simulations in each grid cell can’t be guaranteed to modify the terrain in the same way at
a certain point.
Creating a protected area around grid cell borders where modifications are toned down and
eventually eliminated, gives the simulation complete control where modifications are safe to
perform, and enables a smooth transition between grid cells. The protected area will unfor-
tunately not be able to contain rivers that cross the cell border, creating a dry patch around
every grid cell.
To allow for simulations that cross grid cell borders, a pipeline step could be added which
proposes world modifications for the grid cell and its neighbours. An integration step which
merges the proposed changes would make the final decision. By having the constraint that a
grid cell only can influence the closest part of neighbouring grid cells, the area of proposed
modifications from several grid cells won’t overlap, limiting the simulations area of influence.
The final technique using simulations that was considered takes inspiration from the LOD
concept. Mutual dependencies between neighbours are resolved by allowing dependencies to
be unresolved when outside the area of interest. Unresolved dependencies lead to temporarily
inaccurate results, which shouldn’t lead to problems as long as the inaccuracy is contained
outside the area of interest. Containing the inaccuracy outside the area of interest requires
the same dependency management as the other methods. Simulations that are both inherently
mutually dependent between neighbours and can have their dependencies easily computed are
a rare case, making it a niche solution.

3.3 Combining landscapes

Landscape interpolation refers to seamless transitions from one landscape type to another,
without any artifacts or sharp edges (unless that is desired). Several interpolation techniques
were evaluated, which are covered in this section.

3.3.1 Biome interpolation

The output of the landmass stage consists of a tiled Voronoi diagram with attributes in each
vertex and edge. These attributes represent world data such as height and landscape type. In
order to generate voxel chunks with a smooth transition between the different landscape types,
we need to represent the attribute set as a continuous function defined on each point in the
world.
There are multiple ways of evaluating this function. One way is by triangulating the cells
in the Voronoi diagram, then sampling the vertex attributes of the closest triangle at each
position through interpolation using the barycentric coordinates. However, there are multiple
problems with this approach: the triangulation is expensive, and the sampling would result
in visible interpolation slopes. Instead, we decided to use a vertex-based interpolation. This
is performed by calculating the vertex closest to the center of each voxel chunk, and then
interpolating the attributes of that vertex and its direct neighbours based on the position of
each voxel column. The resulting constants for each voxel are used as input to the terrain
generator.

22

3. Execution

3.3.2 Voxel Interpolation

Since the project uses voxels to create landscapes, the generator uses different systems to
determine what type of voxel should be in all of the world coordinates. To achieve a seamless
transition between two such systems, the voxel type evaluation needs to be interpolated. In
order to perform this interpolation, all of the systems that handles voxel evaluation needs to
share either input data or output data. While developing the terrain module, the team tried
several different techniques for interpolating the voxel evaluation.
The first method that was evaluated was to have all voxel placement systems share parameters.
When the system interpolates between two biomes, all of these parameters are interpolated,
which results in a biome that is a mix between the two interpolated ones. The downside with
this technique is that if two biomes should be interpolated, they need to share parameters.
This is a big constraint as it limits the system to one type of voxel evaluation interface, if all
of the biomes should be able to be interpolated. The alternative is to use different interfaces,
and accept the fact that some biomes can not be interpolated with each other.
Secondly, we tried using voxel density interpolation. Instead of interpolating the parameters,
the method interpolates the output data. This technique works very well with systems that
naturally produce a value representing the voxel density as output, such as 3D noise. Some of
the systems, however, simply produces output data as boolean values, that is if a voxel should
be placed at some coordinates or not.
The last evaluated method is a variation of density interpolation, but instead of density this
method outputs a height value, which then is interpolated. The main disadvantage with this
method is that it requires the voxel evaluation algorithm to produce landscapes with a single
height value, such as 2D noise.
The team weighted the advantages and drawbacks of all these methods, and came to the
conclusion that density interpolation was the best option. To solve the problem that some
systems did not produce density data, we modified these systems to produce “fake” density.
For example, normally 2D noise only produces boolean data. In order to fix this we modified
these systems to output a density, represented as a float between 0 and 1, depending on the
coordinates relation to the height.

3.4 Terrain module

The terrain module is responsible for converting the previously generated 2D-data (such as
height and biome information) to an actual terrain. The following sections will bring up the
successive versions of the module, where each iteration focused on tackling a specific problem
(such as voxelisation, chunking, interpolation).
Another important part of the terrain generation process was to design algorithms which pro-
duced interesting noise. In other words finding ways to combine, modify and control noise to
produce the desired results. While there is a lot of thought and logic behind most methods,
in the end it involved a fair amount of trial and error to fine-tune all the parameters. Some
of the generated terrains, together with a short explanation of the algorithm, can be found in
Appendix A.

23

3. Execution

3.4.1 Generating a terrain surface

The first milestone in the terrain generation was to generate and visualise a 2D surface, in other
words a heightmap. Because the pipeline was still under construction we created a simple test
program to simulate input data (base height and biome information) and render the terrain
(using Matlab).
To generate interesting terrain details, we needed access to noise functions. After some research
we decided to use simplex noise. We found an open domain C++ implementation of simplex
noise based on the Java version created by Stefan Gustavson [23]. It was extended with ad-
ditional functionality such as octave noise, ridge noise and, most importantly, the ability to
choose a seed.
Once we had access to working simplex noise it was extremely straightforward to create different
terrains. The following method was used to calculate the surface:

actual height = base height + noise offset(x, y) (3.1)

Figure 3.4 shows two different terrain types that were generated using this method.

Figure 3.4: Two different surfaces that have been generated with simplex noise. The terrain
to the left, which uses a lower frequency and fewer octaves, could be used for plains. The right
one, which uses a higher frequency and more octaves, is more suitable for hills or mountains.

This system was easily extendable to an arbitrary amount of chunks. In the simplest case,
where each chunk had the same base height, the boundaries between chunks is completely
indistinguishable (Figure 3.5). The reason for this is that simplex noise is continuous in the x
and y coordinate, so as long as each height is calculated using its position in the world, not
locally on the chunk, the terrain will be continuous. In this case we simply decided that origin
of the world was in the corner of chunk (0,0). This allowed us to calculate the world position
of a point on chunk (a,b) with the following formula:

(world x,world y) = (a · chunk width + local x, b · chunk width + local y) (3.2)

In the case where chunks had different base height values, there was a clear border between
chunks (Figure 3.6a). To solve this problem, we calculated a new base height for each point
by interpolating the base heights of the surrounding chunks using bilinear interpolation (Fig-
ure 3.6b). While the interpolated case looked much better, there were still some small artifacts.
This effect was much less visible with more varied terrains. Since we decided that the height in-
terpolation should be handled by the pipeline, this method was deemed satisfactory for testing
purposes.

24

3. Execution

Figure 3.5: A terrain that is composed of 9 chunks arranged in a square (3 × 3). Since the
noise functions are continuous across the chunk borders the resulting surface is seamless. Note
that this is a larger rendering of the hills presented in Figure 3.4.

(a) Without interpolation. (b) With interpolation.

Figure 3.6: Demonstration of the effects of height interpolation. Both terrains use exactly the
same chunk data and noise functions (the plains function from Figure 3.4). The only difference
is that the right example uses height interpolation while the left one doesn’t.

3.4.2 Generating and visualising voxel terrain

Up to this point we had only generated 2D surfaces. However, as stated earlier, the goal was
to generate voxel terrain with details that were impossible to represent with a heightmap.
Therefore, the next milestone was generating and visualising voxel terrain. The input data
remained exactly the same, but the output was now a 3D array of values which was once again
rendered using Matlab.
The terrain generation module needed some modifications to work with voxels. Instead of
a heightmap it populated a 3D array of boolean values where true represented ground and

25

3. Execution

false represented air. To determine the value of each voxel a terrain generation function was
called.
Even though the terrain was voxelized it was possible to use the heightmap methods developed
earlier. For each point we simply checked whether it was above the calculated height. Ff it was
we set it to air, otherwise it was set to ground (Figure 3.7a).
The true usefulness of voxels is however much more apparent when 3D noise is used in the
generation. In this case the noise function is used as a density, so a point becomes solid if the
noise is above (or below) a certain threshold (Figure 3.7b).

(a) Terrain generated using 2D simplex
noise. In essence, the first step was to gen-
erate a heightmap where each point repre-
sented a voxel column. Then, all blocks be-
low the calculated surface height were set
to solid and the rest to air.

(b) Terrain generated using 3D simplex
noise. The value in each point was treated
as a density and only the voxels above
a threshold value were set to solid. No-
tice the complex geometry (such as over-
hangs) which would be impossible to rep-
resent with a heightmap.

Figure 3.7: Voxel terrain using different simplex noise types.

3.4.3 Generating terrain from biome attributes

Combining different biomes had been an recurring problem during the project as described in
Section 3.3. The final solution that was agreed upon was that the biome in a point is entirely
described by a set of continuous attributes. This required a fundamental change to the terrain
module because it was no longer possible to completely separate the generation of different
biomes (since all possible attribute combinations were technically possible). Instead, a single
function, which we referred to as the world biome function (WBF), generated all the terrain.
This forced us to rethink the way in which voxel types were assigned. Previously, the only
requirement on a generator function was to be able to assign a type to the voxel which it was
evaluating. This meant that a generators method of assigning voxels was could be entirely
arbitrary. When the WBF was introduced, it took over the responsibility of assigning voxel
types. Therefore, the previously developed terrain generation functions had to be modified to
be able to co-exist. Simply keeping them as they were and trying to interpolate their output
voxel types was impossible since the continuity of the underlying functions (which is crucial for
good interpolation) was lost in the conversion to a voxel type.
Instead we needed a way to combine the different generators before actually evaluating a voxel

26

3. Execution

type. Fortunately, we realised that all of our previously created generator functions could
be categorised as either density-type (where they evaluated voxel type based on a generated
density) or heightmap-type (where they evaluated voxel type based on a generated surface
height). Furthermore, combining same-type generators proved straightforward.
heightmaps could be combined with the following formula:

H(x, y) = HB(x, y) + p1 · h1(x, y) + p2 · h2(x, y) + . . . (3.3)
where H is the final surface height, HB is the base height, pi is the strength of biome attributes
i and hi is the height offset function that is associated with attribute i.
Analogously, density function generators were combined using the following method:

D(x, y, z) = p1 · ρ1(x, y, z) + p2 · ρ2(x, y, z) + . . . (3.4)

where D is the final density, pi is the strength of biome parameter i and ρi is the density offset
function that is associated with parameter i.
The main advantage of this approach is that the output is guaranteed to be continuous, as long
as the underlying offset functions (hi and ρi) generate continuous terrain. Another advantage
is that the effect of one parameter can be defined independently of the other parameters. For
example, lets say that i = 1 represents plains and i = 2 represent mountains. Then h1 could be
a low frequency simplex noise with a small amplitude, while h2 could be a high frequency, high
amplitude noise function (just like in Section 3.4.1). Independently, these functions generate
plains and mountains, but when combined they produce something more akin to hills (Figure
3.8). The same logic can be applied to the density functions.

Figure 3.8: Demonstration of terrain interpolation between two different sets of biome at-
tributes. The yellow terrain is purely plains and the red terrain is purely mountains. The
orange terrain is interpolated, which results a smooth transition from plains to mountains.
Note that the hills in the middle are a natural product of the system.

After finding a solution for inteprolating same type generators we needed to find a good method

27

3. Execution

of interpolating different type generators. First we attempted to convert the heightmap to a
density matrix before the voxelisation, which could then be combined with the density matrix
generated by the density functions. So the first step was to calculate the surface height (H)
with equation (3.3). Then this was converted to a density value with the following function:

Ds(x, y, z) =

1 ifz < H(x, y)
0 ifz > H(x, y)

(3.5)

Finally this was combined with the density modification functions by using a modified version
of equation (3.4):

D(x, y, z) = Ds(x, y, z) + p1 · ρ1(x, y, z) + p2 · ρ2(x, y, z) + . . . (3.6)

While this approach managed to combine the two types reasonably well, the hard cutoff intro-
duced by equation (3.5) was sometimes visible in the terrain. To smooth the transition from
air to ground, a linear dampening was used:

Ds(x, y, z) =


1 if z < h(x, y)− l
0.5 + h(x,y)−z

l
if h(x, y)− l < z < h(x, y) + l

0 if z > h(x, y) + l

(3.7)

where l is the distance where dampening is applied. A comparison of the same terrain with
and without this smoothing is shown in Figure 3.9.

(a) Without dampening (b) With dampening

Figure 3.9: Comparison between two methods of heightmap-to-density conversion. For the
sake of illustration the chosen heightmap is completely flat. In the left example no smoothing
is used, which results in a clearly visible flat surface. The right terrain, however, uses linear
dampening which results in a less unnatural terrain.

3.4.4 Removing floating voxels

When generating voxels using 3D noise there are sometimes, depending on the noise function
and the parameters, voxels that “float” in the air. In some instances this might be desirable,

28

3. Execution

such as when generating alien landscapes. However, when generating more earth-like terrains,
that should comply with our planets laws of physics, these floating voxels need to be removed.
One approach to removing floating voxels is inspired by Kruskal’s algorithm as it divides the
voxels into partitions. All voxels that are adjacent to each other are assigned to the same
partition. The next step is to decide which partitions that are considered to be “connected
with the ground” and deleting the rest of the voxel belonging to the rest of the partitions.
A simplified description of how to divide the voxels into partitions is as follows:

1. Assign all the voxels to its own partition.
2. Pick a random voxel.
3. Do a breadth-first search over the graph of the voxels. Voxels are considered connected

with adjacent voxels.
4. For every voxel, combine its partition with all adjacent voxels.
5. Repeat steps 2-4 until all voxels has been checked. The voxels should now be divided into

partitions so that all adjacent voxels are included in the same partition.
The next problem is to choose which partitions that should be kept and which that should be
removed. It is safe to remove all of the partitions that doesn’t have any voxels at the edge of
the chunk. It is trickier to remove floating voxel clusters that are traversing several chunks.
This can be seen as a simulation problem over several chunks, which is covered in Section 2.8.
As mentioned in this section, any simulation needs to have a limited area of influence. In the
case of removing voxels, the system needs to have a limited number of chunks that is checked
to determine if a voxel partition is part of the ground or not.

3.5 Tree module

Prior of doing any implementation of the L-system that was described in Section 2.6, some
reading was done on the subject. Arguably the most common source of the underlying theory
of L-systems can be found in the book The Algorithmic Beauty of Plants by A. Lindenmayer
et al. [33]. This book covers virtually all the basic and advanced mathematics behind algorith-
mic patterns specifically found in plants. Much of the implementation of the module draws
inspiration from the ideas presented in this book.
After having gained a fundamental understanding about modelling L-system structures, partic-
ularly the tree-like ones, the implementation efforts were straightforward. The string generation
was done by simply traversing the string (initially set to the axiom of the L-system) and re-
placing each character with its corresponding rule. The L-system mechanics were wrapped in a
struct type (TreeLSystem), allowing the ability to subclass and override the production rules.
This way a new tree type could easily be created by having a convenience constructor that
initialises the TreeLSystem parent type with the appropriate production rules, branch lengths,
etc.
Some other attempts were made by replacing the string type of the generation, by having a
dedicated type to perform the task. This idea was dropped early, since it became apparent that
the string type had more flexibility.

29

3. Execution

The turtle was implemented as a method, which is called from a TreeLSystem instance. The
characters with meaning, i. e. [,], +, −, \, /, &, and ,̂ were wrapped in an enum type. The
push and pop operations uses a stack to save the turtle state. The rotations were done by using
rotation matrices for objects in three-dimensional space. As the turtle traverses through the
string, the data structure for the tree builds up by adding to it, branch by branch.
The first attempt when constructing the data structure for the trees was to make each branch
a mesh, i. e. a collection of polygons. To have it rendered and tested, an interface bridge
for the SceneKit API for the Swift and Objective-C languages was implemented. Fortunately,
C++ is easily bridged to Objective-C through Objective-C++, and Swift is directly compatible
with Objective-C code, so the rendering was easy to set up (Figure 3.10). Matlab was used to
debug the L-system structure and render only the endpoints of the branches, making it a sort of
connect-the-dots picture in 3D. The rendering verified that the L-system worked as expected,
so the rules could now be tweaked to yield more realistic results.

Figure 3.10: A tree rendered with a polygon mesh using the tree module.

The next attempt was to migrate from the polygon based structure of the trees and use tiny
voxels instead, making it more consistent with the terrain module. Due to using voxels, some
other problems appeared. The branches were approximated to cylinders, and therefore it was
necessary to have a way to approximate a circle in the discrete space that voxels reside in.
One algorithm to use is Bresenham’s circle algorithm, which approximates one arc of the circle.
This arc can be duplicated and rotated so that it forms a full circle. This algorithm is then
applied to each slice of the cylinder.
Another problem that arose out of the use of voxels, is that they don’t rotate very well. In
order to make the voxels “snap” into the voxel grid, a specialised rotation operation has to be
used. The approach that was used to solve this is to shift each slice using the closely related
Bresenham’s line algorithm. This algorithm is applied to the rotated axis of the branch, so
that each slice of the cylinder has a corresponding point in the axis.

30

3. Execution

3.6 Object placement module

We looked at different options for placing objects, starting with finding out how some current
games place objects into their worlds. The methods that we found most prevalent are random
scattering and Poisson disc sampling. We considered Poisson disc sampling to be the better
candidate because it produced better looking results. A more detailed description of these
algorithms can be found in Section 2.7.
After researching the algorithm we found an implementation in C++ on Github [39]. The
implementation worked by placing one point at a time until the space available was filled, in
other words points would cover as much ground as possible. To allow for spaces where no
entities are placed, we added an algoritm that we call pruning (Figure 3.11). Pruning works
by using a so called mask which holds data about where things may and may not grow. The
mask was represented using a 2D array of floating-point values values between 0 and 1. To
determine whether or not an entity should be removed, a random number was generated, and
if the random number was above the corresponding mask value it was removed. If the mask
value was 1 there was a 100% chance of removal, and similarly if it was 0 instead there was 0%
chance of removal.

Figure 3.11: Poisson distributed points in a 256×256 area. Left image unpruned with points
of radius 2. Middle image is the same as first image but after pruning using noise which can
be seen in the rightmost image.

The implementation was fairly simple and needed to be modified further to suit our needs.
The modifications can be summarized as giving each point more metadata. First we gave each
point a type, or an ID. The IDs allowed for identification after the algorithm was finished, an
example where this was useful was in graphical representation to tell each entity apart. At this
stage points were instead referred to as entities. We added a minimum distance to each type
of entity, instead of a global minimum distance. This allowed for different “sizes” of entities,
which was a natural step to represent, for example, trees and grass, which vary greatly in size
(Figure 3.12).
With added metadata the complexity of the algorithm went up. One problem we faced was
allowing different entities to be at different minimum distances from each other. A good example
to understand the reasoning behind this requirement would be that grass can grow under a tree
but not inside the tree; the minimum distances are the tree trunk and grass size. Contrary,
trees will not grow so that their crowns grow into each other; the minimum distance is the size
of the tree crowns. To solve this we grouped similarly sized entities into layers. Large entities

31

3. Execution

Figure 3.12: Poisson distributed entities of three different types represented in different colors
and sizes. Dark green has radius 2, brown radius 4 and blue radius 6.

were placed first, and smaller entities were allowed to grow between the larger (Figure 3.13).
Because entities were now placed in layers, it came naturally to prune each layer individually
before starting on the next layer. This opened up for having areas with no large entities but
many smaller. For a real world example this could simulate glades in a forest.

Figure 3.13: Poisson distributed entities in two layers. Upper layer with radius 7 (brown)
with minimum group distance 14 which is visualized using dark green circles. In bottom layer
light green entities of radius 2 are placed. The group distance between bottom and top layer is
0, which can be seen as the smaller entities can be closer to big entities than big entities can
be to other big entities. Some bugs are visible in the right and left borders of the image where
bigger entities do overlap. Due to the time limitation of the project the source of the bug was
not found.

In later stages of experimentation with the algorithm, we found that interesting results were
produced when parameters were added to control the distribution of entities. We added two

32

3. Execution

main parameters called population (N) and self spawn chance (Ps). These parameters gave us
more control over the expected number of entities of each type. As explained in Section 2.7,
the algorithm works by placing an entity, which can be called the origin entity, then placing
new entities around it.
In an example with an origin entity of type A with a high self spawn chance, there would be
a high probability of entities with type A to be placed around the origin entity. This would
lead to clusters of entities with a high self spawn chance, as can be seen with the dark green
entities in Figure 3.14. As long as the chance to self spawn was not 100% eventually a different
type of entity needed be placed. The type of the new entity was selected by random, but still
controlled using the spawn chance. This was done using the population value. The value could
be seen as a statistical “number of entities to be placed”.
The population value was used to create an interval between 0 and 1 for each entity. So for
example in the case of two entities, the population value could be 40 and the second 60. The
corresponding intervals would then be [0, 0.4) and [0.4, 1]. This would give the first entity a
40% chance of being placed and the latter 60%. Selection was done by generating a random
decimal value between 0 and 1, and then using binary search to find the entity with an interval
containing the generated number. Self spawn chance also played a big role in the number of
entities spawn of a type, therefore this was accounted for when calculating the intervals of each
entity. First the total population needed to be calculated which was done using the formula:

Ntotal =
∑

Ni(1− Ps,i) (3.8)

after which the interval for entity Ai could then be calculated using:

ai = bi−1 (3.9)

bi = Ni(1− Ps,i)
Ntotal

(3.10)

where ai is the start of the interval and bi the end. For the case i = 0, a would be 0.
The effects of the population values can be seen in Figure 3.14, where red entities have a very
low population value and light green have a high population value.

33

3. Execution

Figure 3.14: Entities distributed using Poisson disc distribution. Light green entities have self
spawn chance Ps = 0 chance and population value N = 500, dark green entities have Ps = 85%
leading to clusters. Red entities have Ps = 0 and N = 1 which can be seen in their low numbers
in the figure. Light green entities have the highest population value and subsequently dominate
in numbers.

34

4 Results

This project has ended with results in several different forms. The “actual” product that
was envisioned came in the form of the core structure, consisting of the pipeline, along with
a handful of modules. The pipeline has been integrated with Rimmer Motzheim’s custom
rendering engine, which he had worked on prior to this project. However, the modules have
not yet been integrated into the pipeline, due to the many problems that arose during the
development.
The four modules that have been implemented, namely the landmass, terrain, object placement
and tree modules, have all yielded individual results. The modules have been rendered in
Matlab, OpenGL Utility Toolkit (GLUT) and Apple’s SceneKit to showcase their attributes for
this report.

4.1 Core structure

The basic usage structure of the final framework is best described as a pipeline of stages, where
each stage can contain multiple sub-tasks for that category. There are multiple reasons for this
choice:

• Using a pipeline structure allows dividing the task at hand into several distinct stages.
This makes it easier for a user to understand the process of generating the world by only
having to think about the input and output of one stage at a time.

• By limiting stages within the pipeline to reading data from the stages before only, we can
automatically prevent users from inadvertently creating recursion within their generators.
Any form of dependency to data at the same stage would immediately cause an infinite
recursion.

• Dividing the generation into stages makes it easier to implement LOD management, which
is all but required to be able to handle large worlds. Each pipeline stage has its own base
LOD it operates on.

This pipeline defines the full state of the world generator, and is walked through for each
generated point in the world. Between each main configurable stage in the pipeline there is a
conversion stage that takes care of converting the output format of the previous stage to the
correct input format of the next stage. This allows the user code to focus on the generation
itself without thinking about making it work together.
The pipeline itself is wrapped in a manager structure that manages storing and loading the

35

4. Results

generated data. Since the world generator has no concept of a bounded world, the manager
has to transparently manage tiling and chunking of the data from each stage, as well as storing
it at the appropriate LOD. Through the manager it is possible to load and store data at any
point in the virtual world, even if that point is outside of any area that has been used before.
For this reason the data structures used by this manager have to be very efficient, and they
form some of the most error sensitive code.
Due to the flexibility and configurability of the framework, these parts are the only ones that
are required to use it. However, the framework also contains a set of additional helpers, default
implementations and common functionality that most projects will want to use. Some of the
most used include:

• A world manager that can be integrated in a game or engine, which will manage the set
of currently visible chunks based on game data. This includes generating new parts of
the world and paging out chunks that are too far away.

• A voxel generator that converts voxel data created by the pipeline to geometry that can
be rendered by the game. Note that the framework has no requirement of using voxels
- this is a common use case, but any sort of geometry generation can be bound to the
pipeline.

• A common structure that can be used as the core for the generation of most world
types. This includes being able to define different biome types, generating those types
through attributes in the landmass stage, interpolating between the different biomes and
generating terrain through noise functions.

Two more important attributes of the framework are that it is independent of any game engine,
and it doesn’t take control from the user over the work flow. It is implemented simply as a set
of functions and classes that are called by a game using it, and it is the game that decides what
happens next. The framework only provides functionality that can help with that decision.

4.2 Landmass module

The first stage in the pipeline is called the landmass stage. The main use of this stage is to
define the base shape and attributes of the terrain at a large scale, where details are filled in by
later generators. In our implementation, the initial land shape is represented through a Voronoi
diagram with a set of attributes on each vertex. Using a Voronoi diagram makes it easy to
implement a multitude of walking simulations that would be difficult to implement in a grid-like
structure. Since the generator needs to be able to generate a subset of the world independently,
it uses a grid of Voronoi tiles that are connected lazily. Landmass generation uses a linear
generation workflow for each generated tile, where each tile is in one of the following stages:

• Firstly, a set of source points is generated using one of the point distributors. Most use
cases use the random scattering distributor, which gives the best semi-uniform distribution
for most world types.

• A Voronoi diagram is created from the generated points. This diagram is stored until the
tile has generated enough data, after which the source diagram is not needed anymore.

• A final set of vertices is calculated from this tile’s diagram and the diagrams of its neigh-

36

4. Results

bouring tiles.
• A set of tile edges is created from the vertices and neighbouring diagrams. This includes

information about which edges end in a neighbouring tile.
• The edge set is connected to the edges of neighbouring tiles. This allows later simulation

stages to walk over the tile boundary without any handling of special cases.
• Finally, a set of simulation stages defined in the main pipeline are performed on the final

structure. Each simulation can read the graph structure and any attributes defined by
previous simulations, while it also writes one or more attributes to the graph. These
simulations are performed in the same way as the above stages, where each neighbour in
a tile has performed all simulations prior to the current one. This allows simulations to
transparently use attributes defined by previous ones.

The main output of this stage is the graph shape and its attributes. These attributes are used
by the next pipeline stage to generate the actual terrain. Examples of attributes that can be
added to graph vertices are height, precipitation, landscape type, and more. The graph also
supports defining attributes on edges, which can be used as source data for the generation
of large-scale features such as rivers and roads. An unlimited number of attributes can be
defined, although a large number can make the later generation very complex. A 2D renderer
was created to visualize the properties which helps in debugging (Figure 4.1).
One important aspect that makes this system work in the general case is that for each stage in
the generation of a Voronoi segment, all of its neighbours are generated recursively up to the
previous stage. This allows attribute generators to use the source data for not only their own
segment, but for all neighbouring segments as well. This facilitates a multitude of use cases
without any special handling of dependencies between segments, and allows simulated features
to use a continuous set of source data. Note though that, like everything in the simulation,
only data from previous stages can be used.

Figure 4.1: Rendering of the 2D representation of the landmass.

37

4. Results

4.3 Terrain module

After the base land shape has been generated, the actual terrain has to be generated from it.
The input to this stage is a tile of graph data from the landmass module. This tile is then
divided into many smaller chunks, where each chunk contains a section of terrain that can
be generated independently when needed. For each chunk, the pipeline calculates the graph
vertex closest to the center of that chunk. This vertex and its direct neighbours are then used
to interpolate the attributes from the landmass graph.
Our implementation generates the final terrain using voxels. Voxels are easy to integrate into the
pipeline, since the voxel generator can take the provided interpolation vertices and interpolate
the corresponding attributes based on the position of each voxel in a chunk. These interpolated
values are then sent to the terrain generator.
To actually generate a voxel its position and interpolated attributes are passed to the world
biome function (WBF), which is responsible for producing all terrain. Based on these param-
eters the WBF uses a number of voxel evaluation algorithms. Their combined output is then
evaluated to decide the actual type of the generated voxel.
The main advantage of this system is that as long as the WBF maintains continuity in all
biome parameters, the terrain can be interpolated by simply blending the input parameters. It
is a very flexible solution, but it puts a lot of responsibility on the WBF, since it needs to make
sure that the output terrain is continuous. It also goes well with the stated goal of modularity
since the terrain generation can easily be modified by changing the workings of the WBF.
Our example implementation of the WBF consisted of two main steps. First a terrain surface
height was calculated by evaluating the parameters that affect surface height. The following
equation was used:

H(x, y) = HB(x, y) + p1 · h1(x, y) + p2 · h2(x, y) + . . . (4.1)

The next step was to apply 3D terrain modifications. First the surface height value was con-
verted to a density by applying a linear fallof over the length l around the surface with the
following equation.

ρs(x, y, z) =


1 if z < h(x, y)− l
0.5 + h(x,y)−z

l
if h(x, y)− l < z < h(x, y) + l

0 if z > h(x, y) + l

(4.2)

Then all the density affecting parameters were allowed to apply their 3D terrain modifications:

D(x, y, z) = p1 · ρ1(x, y, z) + p2 · ρ2(x, y, z) + . . . (4.3)

Last of all, the final density was converted to a material, in our case air if it was lower than
0.5 and otherwise ground. Figure 4.2 demonstrates some of the main features of this system.
These features are seamless blending between different terrain, terrain layers (e. g. surface and
underground) and complex details such as caves.

38

4. Results

Figure 4.2: Voxel terrain generated using the terrain module. Three primary terrains have
been used and interpolated on the surface layer: plains, regular mountains and ridged moun-
tains. In the underground layer caverns and tunnels have been used. The terrain was plotted
using Matlab.

4.4 Tree module

The resulting tree module implements an L-system for one specific tree structure, although
minor variations occur within this system, i. e. the width, length and rotations of the branches
have some noise added to them. The L-system and its string generation are implemented as
structures of actual strings from the C++ std::string library. Furthermore, the 3D turtle
that was mentioned in Section 2.6 reads each character in a generated string and interprets
the symbols defined in the same section. Rotations are implemented directly in the module,
reducing the need of external libraries such as Generic Math Template Library (GMTL) [40].
The generated string is then sent to a voxel generator which transforms the instructions encoded
in the string to a collection of 3D coordinates and colors. This data would normally be passed
on to another module, but has in this case been extracted from the module directly and then
been rendered in Xcode (Figure 4.3a, the rules are shown in L-system B.3).
As a bonus example, the L-system 2.1 from Section 2.6 has been modified to be rendered in
3D (Figure 4.3b).

39

4. Results

(a) A tree generated by the tree module
and rendered in Xcode with SceneKit using
an Objective-C/Swift interface bridge.

(b) The abstract tree con-
structed with a modified ver-
sion of L-system 2.1 from
Section 2.6 generated in the
tree module.

Figure 4.3: The results of the tree module, using L-systems to construct trees.

4.5 Object placement module

The final version of the object placement module is based on Poisson disc distribution. The
module is currently made for placing a predefined struct called an entity. Entities contain
data used in the algorithm. The module supports having groups of entities where different
groups can have an added minimum distance. In an example of a simulated forest it allows
for grass to grow under the crowns of trees but keeping trees from having overlapping crowns
(Figure 4.4).
The algorithm needs a set of input. The first step is instantiating entities to be placed by
algorithm. Instantiating an entity is done by giving it an ID, a self spawn chance and spawn
chance. Lastly an entity must be assigned to a group by setting its group ID variable. It is
possible to have only a single group, in which case all entities will be placed on the same layer.
The fields and structure of an entity can be seen in appendix C.2.
A group is defined by setting the minimum distance a group has to every other group including
itself. For the algorithm to be able to prune entities a 2D decimal array must be provided, i. e.
a mask. If no pruning is desired the algorithm will work without it. The last input is what is
referred to as k value by Robert Bridson in his paper about Poisson disk sampling [41]. The k
value is the number of tries to place an entity, around a previously placed entity, the algorithm
makes.

40

4. Results

Figure 4.4: A simulation of a simple forest made using the feature placement module. Top
layer consists of trees, represented by white and brown circles surrounded by bright green
circles which represent tree crowns. No trees have overlapping crowns. In the bottom layer
grass (small green dots) and flowers (small colored dots) have been placed. Grass has a visibly
higher chance of being placed, leading to grass dominating the ground. Additionally flowers
have a high chance of placing other flowers around, leading to the small clusters of flowers seen
in the figure. Grass and flowers can not overlap with tree trunks but are allowed to grow under
the crowns, a product of layering the entities.

41

5 Discussion

In the next following sections, the results will be discussed. The choice of methods will also
be discussed to see if the result could have been improved in some way. The validity and
generalisation of the engine will also be discussed, that will answer if the technology can be
used in a wider spectrum of applications. Furthermore, future improvements that can emerge
from the contributions of the game developer community will also be discussed.

5.1 Results and alternative methods

The work that has been done in the project has produced some satisfying results. Although
our initial ambition was to create a fully functional engine with all the modules integrated, the
project results are a good start on the path to a free PCG engine. In the following sections,
it will be discussed if there was anything that could be improved with the methods chosen to
tackle a specific problem, or if other methods would have produced different results.
The project workflow, where each subgroup could work independently, allowed for extensive
research to be made for each module. However, due to the modules not being combined with
the pipeline until the end of the project, several complications arose. If the modules had been
continuously integrated from the beginning, by having a ladder of subgoals, this problem might
have been reduced. On the other hand, it would have slowed down the early development, since
everything was dependent on the pipeline.

5.1.1 Core structure

Having the generation framework as a separate entity that doesn’t dictate anything about its
usage, makes it flexible in where it can be deployed. It has no coupling to any game engine
or rendering method, so it can be used for almost any use case. This can be a problem with
frameworks that require using them in a certain way or in a certain context.
One consequence of this approach, which some may see as a drawback, is that the framework
cannot be used stand-alone. This means that in order to use and render worlds with the
framework it first needs to be integrated in a supporting game infrastructure, which initializes
the pipeline and uses it to generate world data. Our expectation is that if a larger number of
users start building projects using the framework, then a common infrastructure will arise with
bindings to multiple common game engines.

42

5. Discussion

5.1.2 Landmass module

The main advantage of using Voronoi diagrams as the source for the land shape is that the
graph naturally gets an irregular shape, and paths through the graph will not be straight. This
makes it easier to generate interesting terrain, especially when it comes to large-scale features
(such as rivers) that affect a large part of the terrain.
A major drawback of the Voronoi generation pipeline was that it was very complex and difficult
to implement, and took such a large amount of time that we were unable to create a full demo
combining each part in the end. This makes it doubtful if the use was worth it for this project,
compared to the initial bitmap implementation. Most features of the Voronoi approach can be
simulated in other ways for a grid structure, which may make for a simpler implementation
overall. Voronoi diagrams are most useful when graph traversal is needed, e. g. in simulations.
Simulations were deemed as a method that should be avoided as much as possible, further
questioning the use of Voronoi diagrams.
Simulations could have been avoided by using other methods that would have yielded similar
results. E.g. Tarboton et al. [42] discusses the fractal nature of river networks, which could
potentially be exploited to deterministically generate rivers without dependencies to neighbour
data. Making a fractal river fit in the world requires modification of the surrounding terrain.
Modifications can be deterministically calculated, solving the dependency problem, but the
method creates new problems in making fitting modifications.

5.1.3 Terrain module

The general advantages and disadvantages of using voxels have already been discussed in Sec-
tion 2.3. In our case we feel that voxels is the optimal choice, as it works well with representing
a wide variety of different landscapes. However, since performance is the main drawback and
we have not been able to do any live tests, the cost might prove to be too high.
Nevertheless, we are quite satisfied with the general approach of the terrain generation. De-
scribing a terrain as a set of continuous parameters allows, in theory, any imaginable terrain
with good looking interpolation. Our implementation has just scraped the surface, with only
a couple of biome attributes and no special transitions. For example, in some cases it would
be possible to generate a cliff when mountains meet plains instead of gradually transitioning
to hills.
Since the system is allowed to use many different types of voxel generation methods, one of the
drawbacks is that sub-optimal interpolation techniques are sometimes needed. The advantage
of allowing this however, was a great deal of freedom as our only constraint was that the
method should be deterministic and output voxel density data. Limiting the system to use
one generation method, for example 3D noise, would make it a lot harder to produce certain
landscapes.
All of our terrain generation functions have one thing in common: they use simplex as the only
noise source. While this was enough for prototyping purposes, we feel that including other
types of noise could improve terrain diversity and allow for some features that are currently
difficult to produce. For example, some terrain features that required a combination of up to
20 different simplex variations could probably be generated much more easily with a different

43

5. Discussion

noise function. Besides simplifying the development, this would also improve performance, as
long as the new functions are as fast, since each call costs approximately the same amount of
time.
Our method of removing floating voxels has some compromises, necessary to produce results
in a timely fashion. To determine if a voxel-partition is part of the ground, the algorithm
is allowed to look at the voxel data of the adjacent chunks to determine if the voxels in the
partition should be removed or not. By only checking neighbouring chunks, voxel partitions
that in fact are part of the ground can potentially be removed, or in the same manner floating
voxel chunks can potentially be kept.
By increasing the range of the chunks that are checked to determine if a voxel partition belongs
to the ground or not we can increase the probability that the correct voxels are kept or removed.
The downside is that this will decrease performance and increase memory usage. Note that the
range has to be finite, if not the algorithm could potentially have to continue indefinitely in an
infinite world.

5.1.4 Tree module

The major drawback of our implementation is that the use of voxels do not work as well with
L-systems as it would with polygon meshes instead. It is more difficult to rotate voxels in 3D
so that they fall naturally into a discrete space. With meshes, these issues don’t exist, since
the coordinates of the vertices are stored in float values (continuous space) instead of the int
values used for voxels (discrete space).
The variational possibilities of our implementation the L-system lies only in the lengths and
widths of the branches. It would be an improvement to extend the module to support multiple
production rules per variable, making it a stochastic OL-system. To make the generation
deterministic in the sense that it generates the same output for the same input, a specific
PRNG could just be used when choosing between productions. This approach would make it
possible to have variations in the structure itself, yielding in a larger variational output.
The positive thing about the use of L-systems is that it is highly parametrised. Theoretically
any structure can be produced only by altering the production rules, and the appearance can
be changed by using other attributes for branch length ratio, different probabilities for the
productions, etc.
While L-systems are versatile enough to generate many different biological structures, other
methods can also be used. One method that would translate better with the use of voxels is
simulating Laplacian growth. Although it is rarely used in computer graphics, Theodore Kim
et al. [43] have managed to develop an algorithm that exceeds in performance compared to
previous algorithms.

5.1.5 Object placement module

The object placement module is strictly a proof of concept in its current state. No optimization
efforts have been made. Because the pipeline would need to place any objects during run-time a
slow algorithm would cause severe lag. Small changes like comparing squared distances instead

44

5. Discussion

of calculating the square root and fast-estimate versions of sine/cosine functions could speed
up the algorithm.
Additionally, finding a good solution of handling collision detection, i. e. checking for nearby
entities, would help. In the final version of the module a so called bucket grid is used. Each
cell contains a bucket (or list) of entities and is the size of the largest entity. A bucket can
contain only one of the largest entities, or many smaller entities. This scales very poorly with
size difference of the smallest and biggest entity. As an example with two entities A and B the
maximum amount of entities n in a bucket is:

n = size(A)
size(B) (5.1)

where A is the bigger entity. So for a large difference in size the the time complexity increases
greatly. A solution might be to have many grids with cells of different sizes. A natural example
would be having a grid for each layer of entities, which are already grouped by size. This would
mean the maximum number of entities ni per grid Gi would be smaller. This is of course under
the assumption that the groups are made with this i mind, keeping similarly sized entities
together.
Lastly the algorithm has some bugs which remain unsolved. In some fringe cases entities can
be placed outside the allowed area. When this happens the minimum distance is sometimes
disregarded, leading to entities overlapping when the should not be able to. The bug needs to be
solved before an implementation is made with the pipeline as it would prove very unaesthetic,
but for testing purposes the bug does not cause any real problems.

5.2 Validity

The modules has turned out to be more interconnected than expected. It is not easy to make
a module completely generalised. During the development of the system we found that it was
convenient to do more in the earlier stages of the pipeline. One example of this was when we
decided to do the biome interpolation before the terrain generation module, thus having the
WBF expect pre-interpolated data. This arguably reduces modularity, as it adds a constraint
to the WBF input.

5.3 Future work

The most basic and critical improvement of the system is to connect all individual modules
and make them work with each other. Another important upgrade is to make the system easy
to integrate with a wide variety of game engines, such as Unity and Unreal Engine.
There are also several ways to improve the existing base modules. For example, all the tech-
niques used in the terrain module were based on noise and therefore ontogenetic. It would be
very interesting to experiment with improving the realism by simulating environmental effects.
Erosion algorithms could be used to simulate the effect of wind and rain on mountains.

45

5. Discussion

There are several features that are not yet supported by the system. Two of the more essential
unsupported features are textures and voxel smoothing. Less important, but desired, features
includes sky-boxes, and LOD at different stages of the pipeline.
Some of the improvements mentioned above, especially module integration, could be considered
as part of the MVP. But by its modular nature there are numerous of extensions and refine-
ments which could further improve the system. As mentioned in Section 1.2, the framework is
meant to be distributed as free software, which would enable anyone to access the source code.
By letting independent developers add and edit features, there could potentially be a large-
scale collaboration to improve the framework. This would could give the framework far more
functionality and features than what a small team of developers could add. This is however
not something we would actively pursue beyond distributing the software.

46

6 Conclusion

This project has only been the start of the idea of having an open source tool for procedural
content in graphics computing. The main goal was to build a foundation based on the concep-
tual model that was brought forward during the project. A core structure was built to allow
for the modularity that the goals promised. Several modules were implemented as well, both
as to serve as a base for the system and as a proof of concept.
The landmass module was created with the task of producing a large scale two-dimensional
representation of the world. Early in the project, Voronoi diagrams were chosen as a suitable
solution for this task, and thus this technique was implemented with satisfactory results. In-
terpolation between different biomes was initially done by using triangulation between three
cells. Later on it was changed so that the interpolation was based on the vertices, producing
smoother interpolation thanks to the fact that it uses more control points. The landmass mod-
ule produced satisfactory result, but in the choice of using Voronoi diagrams was questionable.
They were overly complex and offered few advantages compared to simpler solutions.
The team came to the conclusion early in the project that voxels was a good way to represent the
world in the base modules. Therefore the terrain module was developed with the functionality
to produce 3D landscapes with voxels by the use of different noise functions. Additionally,
techniques to improve the results of the noise functions, such as removing voxels that seemed
misplaced, were investigated. Good looking transitions between different landscapes proved to
be very difficult. The initial idea of patching together independently generated terrains was
scrapped in favor of a system where all the terrain was continuously described by the same
set of parameters. This solution might seem highly constraining, but it turned out to be very
robust while still allowing a high diversity in the generated landscapes. In the end the team felt
that the terrain module worked well and could create adequate terrain with sufficient flexibility.
L-systems was from the very beginning perceived as an interesting solution for creating ob-
jects. This technique was explored in the tree module, that utilize L-systems to generate trees.
Initially polygon meshes where used to represent the trees. Later on the trees were made by
voxels. This had some drawbacks with the rotations of the branches with discrete coordinates,
but it was consistent with the terrain module which also usesd voxels. Overall the tree module
was able to create adequate trees, and L-systems were established as a good and versatile object
creation technique.
Several techniques were explored for object placement, such as random distribution and random
scattering. As a result of this research it became clear that Poisson disc sampling was a good
solution and it was implemented in the object placement module. Furthermore, the module was
extended with solutions for handling objects of different sizes, as well as further improvements
of grouping similar objects together in a realistic manner. While the object placement tool

47

6. Conclusion

needs to be refined, the method of using Poisson disc sampling with some special placement
rules was considered to work well.
Not all bits and pieces were able to be integrated fully into the pipeline, leaving the complete
implementation a bit fractured. The lesson learnt here is that procedural generation is hard,
since it involves so many unforeseeable results between the generation steps. Making it all tie
together, and at the same time make it at some level general, is a challenging task.
The future development of the engine could benefit from the open source model. Experienced
programmers could give input on the architecture of the pipeline and the generalisations made
for the modules. Having the engine open source would allow for developers to add any features
or functions they might require, allowing the engine to grow where needed. With time the
toolkit could be considered a valuable resource in game development.

48

Bibliography

[1] Eric W. Weisstein. Barycentric Coordinates. en. url: http://mathworld.wolfram.com/
BarycentricCoordinates.html.

[2] Mark Hendrikx et al. “Procedural content generation for games”. In: ACM Transactions
on Multimedia Computing, Communications, and Applications 9.1 (Feb. 2013), pp. 1–
22. issn: 15516857. doi: 10.1145/2422956.2422957. arXiv: 1005.3014. url: http:
//dl.acm.org/citation.cfm?doid=2422956.2422957.

[3] George Kelly and Hugh McCabe. “A survey of procedural techniques for city genera-
tion”. In: ITB Journal (2006), pp. 87–130. url: http://www.citygen.net/files/
Procedural_City_Generation_Survey.pdf.

[4] Don Worth. Beneath Apple Manor. The Software Factory. 1978.
[5] Michael Toy and Glenn Wichman. Rogue. 1980.
[6] Blizzard North. Diablo. Blizzard Entertainment. 1997.
[7] Gearbox Software. Borderlands. 2K Games. 2009.
[8] Julian Togelius et al. “What is procedural content generation?” In: Proceedings of the

2nd International Workshop on Procedural Content Generation in Games - PCGames
’11. New York, New York, USA: ACM Press, June 2011, pp. 1–6. isbn: 9781450308724.
doi: 10.1145/2000919.2000922. url: http://portal.acm.org/citation.cfm?doid=
2000919.2000922.

[9] Hello Games. No Man’s Sky. Hello Games. 2016.
[10] Voxel Farm Inc. Voxel Farm. 2010.
[11] Interactive Data Visualization, Inc. SpeedTree.
[12] Unity Technologies. Unity. 2005.
[13] Epic Games. Unreal Engine. 1998.
[14] Wikidot. Teleological vs. Ontogenetic - Procedural Content Generation Wiki. url: http:

//pcg.wikidot.com/pcg-algorithm:teleological-vs-ontogenetic.
[15] John Von Neumann. “Various techniques used in connection with random digits”. In:

J. Res. Nat. Bur. Stand. 12 (1951), pp. 36–38. url: https://dornsifecms.usc.edu/
assets/sites/520/docs/VonNeumann-ams12p36-38.pdf.

[16] George Marsaglia. “Xorshift RNGs”. In: Journal Of Statistical Software. Vol. 8. 14. 2003,
pp. 1–6. url: http://www.jstatsoft.org/v08/i14/paper.

49

http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://dx.doi.org/10.1145/2422956.2422957
http://arxiv.org/abs/1005.3014
http://dl.acm.org/citation.cfm?doid=2422956.2422957
http://dl.acm.org/citation.cfm?doid=2422956.2422957
http://www.citygen.net/files/Procedural_City_Generation_Survey.pdf
http://www.citygen.net/files/Procedural_City_Generation_Survey.pdf
http://dx.doi.org/10.1145/2000919.2000922
http://portal.acm.org/citation.cfm?doid=2000919.2000922
http://portal.acm.org/citation.cfm?doid=2000919.2000922
http://pcg.wikidot.com/pcg-algorithm:teleological-vs-ontogenetic
http://pcg.wikidot.com/pcg-algorithm:teleological-vs-ontogenetic
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
https://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf
http://www.jstatsoft.org/v08/i14/paper

Bibliography

[17] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”. In: ACM Transactions on
Modeling and Computer Simulation 8.1 (Jan. 1998), pp. 3–30. issn: 10493301. doi: 10.
1145/272991.272995. url: http://dl.acm.org/citation.cfm?id=272991.272995.

[18] Oracle. Random (Java Platform SE 8). url: https://docs.oracle.com/javase/8/
docs/api/java/util/Random.html (visited on 05/03/2016).

[19] Ken Perlin. “Improving noise”. In: ACM Transactions on Graphics 21.3 (July 2002),
pp. 2–3. issn: 07300301. doi: 10.1145/566654.566636.

[20] Ken Perlin. Noise and Turbulence. url: https://mrl.nyu.edu/~perlin/doc/oscar.
html.

[21] Markus Persson. Minecraft. 2011.
[22] Markus Persson. The Word of Notch. 2011. url: http://notch.tumblr.com/post/

3746989361/terrain-generation-part-1 (visited on 05/28/2016).
[23] Stefan Gustavson. “Simplex noise demystified”. In: Linköping University, Schweden

(2005), p. 17. doi: 10.13140/RG.2.1.3369.6488.
[24] William E. Lorensen. “Marching cubes: A high resolution 3D surface construction algo-

rithm”. In: ACM SIGGRAPH Computer Graphics 21.4 (Aug. 1987), pp. 163–169. issn:
00978930. doi: 10.1145/37402.37422. url: http://dl.acm.org/citation.cfm?id=
37402.37422.

[25] Allinonemovie. Minecraft screenshot. [Image]. url: https : / / pixabay . com / sv /
minecraft-berg-videospel-block-655158/.

[26] Digital Image Interpolation. url: http://www.cambridgeincolour.com/tutorials/
image-interpolation.htm (visited on 05/16/2016).

[27] Cmglee. Bilinear interpolation visualisation. [Image]. url: https://en.wikipedia.org/
wiki/File:Bilinear_interpolation_visualisation.svg.

[28] Steven Fortune. “A sweepline algorithm for Voronoi diagrams”. In: Algorithmica 2.1-
4 (Nov. 1987), pp. 153–174. issn: 01784617. doi: 10.1007/BF01840357. url: http:
//link.springer.com/10.1007/BF01840357.

[29] David H. Laidlaw and Joachim Weickert. Visualization and Processing of Tensor Fields.
Springer Science & Business Media, 2009, p. 181. isbn: 978-3-540-88377-7. doi: 10.1007/
978-3-540-88378-4. url: http://link.springer.com/10.1007/978-3-540-88378-4.

[30] Don P. Mitchell. “Generating antialiased images at low sampling densities”. In: ACM
SIGGRAPH Computer Graphics 21.4 (Aug. 1987), pp. 65–72. issn: 00978930. doi: 10.
1145/37402.37410.

[31] Aristid Lindenmayer. “Mathematical models for cellular interactions in development. II.
Simple and branching filaments with two-sided inputs.” In: Journal of theoretical biology
18.3 (1968), pp. 300–315. issn: 00225193. doi: 10.1016/0022-5193(68)90080-5.

[32] Harold Abelson and Andrea DiSessa. Turtle Geometry. MIT Press, 1986, p. 497. isbn:
9780262510370.

[33] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants
(The Virtual Laboratory). The Virtual Laboratory. New York, NY: Springer New York,
1991, p. 240. isbn: 0387972978. doi: 10.1007/978-1-4613-8476-2.

50

http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dl.acm.org/citation.cfm?id=272991.272995
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
http://dx.doi.org/10.1145/566654.566636
https://mrl.nyu.edu/~perlin/doc/oscar.html
https://mrl.nyu.edu/~perlin/doc/oscar.html
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://dx.doi.org/10.13140/RG.2.1.3369.6488
http://dx.doi.org/10.1145/37402.37422
http://dl.acm.org/citation.cfm?id=37402.37422
http://dl.acm.org/citation.cfm?id=37402.37422
https://pixabay.com/sv/minecraft-berg-videospel-block-655158/
https://pixabay.com/sv/minecraft-berg-videospel-block-655158/
http://www.cambridgeincolour.com/tutorials/image-interpolation.htm
http://www.cambridgeincolour.com/tutorials/image-interpolation.htm
https://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg
https://en.wikipedia.org/wiki/File:Bilinear_interpolation_visualisation.svg
http://dx.doi.org/10.1007/BF01840357
http://link.springer.com/10.1007/BF01840357
http://link.springer.com/10.1007/BF01840357
http://dx.doi.org/10.1007/978-3-540-88378-4
http://dx.doi.org/10.1007/978-3-540-88378-4
http://link.springer.com/10.1007/978-3-540-88378-4
http://dx.doi.org/10.1145/37402.37410
http://dx.doi.org/10.1145/37402.37410
http://dx.doi.org/10.1016/0022-5193(68)90080-5
http://dx.doi.org/10.1007/978-1-4613-8476-2

Bibliography

[34] Boost C++ Libraries. 2012. url: http://www.boost.org/ (visited on 05/15/2016).
[35] Takao Ohya, Masao Iri, and Kazuo Murota. Improvements of the incremental method for

the Voronoi diagram with computational comparison of various algorithms. 1984. url:
http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.27_04_306.pdf (visited on
05/10/2016).

[36] Mir A. Mostafavi, Christopher Gold, and Maciej Dakowicz. “Delete and insert operations
in Voronoi/Delauney methods and applications”. In: Comp. Geosci 29.4 (May 2003),
pp. 523–530. issn: 00983004. url: http://www.sciencedirect.com/science/article/
pii/S0098300403000177.

[37] Tyler J. Alumbaugh and Xiangmin Jiao. “Compact Array-Based Mesh Data Structures”.
In: Proceedings of the 14th International Meshing Roundtable. 2005, pp. 485–503. doi:
10.1007/3-540-29090-7_29. url: http://link.springer.com/10.1007/3-540-
29090-7%7B%5C_%7D29.

[38] Amit Patel. Polygonal Map Generation for Games. 2010. url: http : / / www - cs -
students.stanford.edu/~amitp/game- programming/polygon- map- generation/
(visited on 05/10/2016).

[39] Sergey Kosarevsky. poisson-disk-generator. url: https : / / github . com /
corporateshark/poisson-disk-generator.

[40] Allen Bierbaum, Kevin Meinert, and Ben Scott. GMTL Programmer’s Guide. url: http:
//ggt.sourceforge.net/gmtlProgrammersGuide-0.6.1.pdf.

[41] Robert Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions”. In: Engineering
(2006). doi: 10.1145/1278780.1278807.

[42] David G. Tarboton, Rafael L. Bras, and Ignacio Rodriguez-Iturbe. “The fractal nature
of river networks”. In: Water Resources Research 24.8 (Aug. 1988), pp. 1317–1322. issn:
00431397. doi: 10.1029/WR024i008p01317. url: http://doi.wiley.com/10.1029/
WR024i008p01317.

[43] Theodore Kim et al. “Fast Simulation of Laplacian Growth”. In: IEEE Computer Graphics
and Applications 27.2 (Mar. 2007), pp. 68–76. issn: 0272-1716. doi: 10.1109/MCG.2007.
33. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4118496.

51

http://www.boost.org/
http://www.orsj.or.jp/~archive/pdf/e_mag/Vol.27_04_306.pdf
http://www.sciencedirect.com/science/article/pii/S0098300403000177
http://www.sciencedirect.com/science/article/pii/S0098300403000177
http://dx.doi.org/10.1007/3-540-29090-7_29
http://link.springer.com/10.1007/3-540-29090-7%7B%5C_%7D29
http://link.springer.com/10.1007/3-540-29090-7%7B%5C_%7D29
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
http://www-cs-students.stanford.edu/~amitp/game-programming/polygon-map-generation/
https://github.com/corporateshark/poisson-disk-generator
https://github.com/corporateshark/poisson-disk-generator
http://ggt.sourceforge.net/gmtlProgrammersGuide-0.6.1.pdf
http://ggt.sourceforge.net/gmtlProgrammersGuide-0.6.1.pdf
http://dx.doi.org/10.1145/1278780.1278807
http://dx.doi.org/10.1029/WR024i008p01317
http://doi.wiley.com/10.1029/WR024i008p01317
http://doi.wiley.com/10.1029/WR024i008p01317
http://dx.doi.org/10.1109/MCG.2007.33
http://dx.doi.org/10.1109/MCG.2007.33
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118496
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4118496

A Terrain Examples

A.1 Plains, mountains and hills

A heightmap of plains, mountains and hills can be generated directly from 2D simplex octave
noise with different parameters (Table A.1). By substituting the regular 2D simplex noise from
the previous section with turbulent noise (Section 2.2.2) something more akin to mountain
ranges can be generated.

Table A.1: Noise parameters to generate different terrains

Landscape Octaves Frequency gain Persistence
Plains 2 0.002 0.4
Hills 3 0.004 0.5

Mountains 4 0.006 0.6

A.2 Tunnels

Turbulent noise can also be viewed as a 2D projection of a tunnel system. In the simplest
form a flat tunnel system at height h and with tunnel radius r can be created by the following
algorithm:

• Use the turbulent noise to decide the layout of a tunnel network.
• Check if the evaluated point is withing the desired height, that is |z − h| < r.
• If the above conditions are fulfilled, set the voxel to air.

More sophisticated tunnels can be created by randomizing the tunnel height h (for example
with regular simplex noise), and using the intensity of the turbulent noise to decide the tunnel
radius. Also some 3D noise can be used to make the tunnels less uniform.

A.3 Caverns

The trick for creating caverns is to control regular 3D noise with a non-random height based
function dh(z). The purpose of this function is to decrease the likelihood of generating solid
voxels in the middle of the cavern and to increase it when approaching the caverns upper or

I

A. Terrain Examples

lower bounds. A very simple example of such a function is:

dh(z) = (z − 0.5 · hcavern

0.5 · hcavern
) (A.1)

This will linearly decrease the likelihood of a voxel being solid near the middle of a cavern.
This can easily be modified to produce the wanted distribution. For example changing it to
dh(z)2 will introduce a sharper transition to solid near the roof and floor of the cavern.

A.4 Pillars

In the beginning of the project, pillars were often brought up as an example of difficult terrain
to generate and interpolate. The following algorithm, however, produces something resembling
pillars at least, with parameters hs and hp (surface and pillar height, respectively).

• Use 2D simplex noise with a high cutoff to create a mask of the pillar locations
• If hs ≤ z ≤ hs + hp make the voxel solid
• (optional) Use 3D simplex noise to erode the pillar to achieve a more weathered look

II

B L-system Examples

Below are some examples on various L-systems. Figure B.1 and B.2 depict the turtle drawing
of the respective L-systems.

δ = 90°
ω : X

p1 : X → F [+F − [X]]X
p2 : F → XF

L-system B.1: A two-dimensional DOL-system with two productions.

δ = 10°
ω : X

p1 : X → F [+ + + + + + F − Y] + F [−−−− Y +M]F −X
p2 : Y → F [−−−−−− F + Z]− F [−− F − Z]F + Z

p3 : Y → FX

p4 : F → FF

L-system B.2: A two-dimensional DOL-system with four productions.

Phyllotactic angle: 18°, branching angle: 10°.

ω : F

p1 : F →Y [∧ ∧ ∧ ∧ F∗] + + + + + +[∧ ∧ ∧ ∧ F∗]
+ + + + + +[∧ ∧ ∧ ∧ F∗] + + + + + [∧ZF∗]

p2 : Y →Y ∧ Z& + ++

L-system B.3: A three-dimensional DOL-system with two productions. The symbol Z has
no production rule, and simply means “draw forward”, as all the other letters. The ∗ symbol
means “draw a leaf”.

III

B. L-system Examples

Figure B.1: An abstract tree constructed with L-System B.1 from iteration 1 through 6.

L-system B.3 was used to produce the results in Section 4.4. The phyllotactic angle is the angle
that children branches spread around the parent branch. This is the same as the angle for the
turtle to turn left and right, namely the + and − symbols, respectively. Thus, the turtle turn
by 18° for each of these symbols, in the corresponding direction. The branching angle is the
angle between the axises of a parent branch and a child branch. This is the same as the rest of
the orientation symbols for the turtle. Thus, 10° is used for all the remaining symbols.

IV

B. L-system Examples

Figure B.2: A more realistic tree constructed with L-System B.2 from iteration 1 through 4.

V

C Pseudocode

1 GridCel l :
2 s tep = Nothing
3 diagram = new VoronoiDiagram ()
4 v e r t i c e s = Vertex []
5 edges = Edge []
6 vertexEdges = EdgeIndex []
7 c e l l E d g e s = EdgeIndex []
8 unconnectedVertexEdges = UnconnectedEdge [] []
9 unconnectedCel lEdges = UnconnectedEdge [] []

10
11 b u i l d V e r t i c e s :
12 i f (s tep >= V e r t i c e s) :
13 return
14 step = V e r t i c e s
15
16 p o i n t s = g e t S i t e s ()
17 foreach (n in neighbours) :
18 p o i n t s . addAll (n . g e t S i t e s ())
19 diagram . create_from (p o i n t s)
20
21 index = 0
22 foreach (v in diagram . v e r t i c e s where i s I n T h i s G r i d C e l l (v)) :
23 v e r t i c e s . add (v)
24 v . index = index
25 index++
26
27 bui ldEdges :
28 i f (s tep >= Edges)
29 return
30 b u i l d V e r t i c e s ()
31 step = Edges
32
33 foreach (n in neighbours) :
34 n . b u i l d V e r t i c e s ()
35
36 index = 0
37 foreach (v in diagram . v e r t i c e s where i s I n T h i s G r i d C e l l (v)) :
38 p o s i t i o n = 0
39
40 foreach (e in v . edges) :
41 i f (i s I n T h i s G r i d C e l l (e)) :
42 edge = new Edge (createVertexIndex (e . v0) , c reateVertexIndex (e . v1))
43 edges . add (edge)
44 edge . index = index
45 vertexEdges [v . index] . add (new EdgeIndex (th i s , index))
46 index++
47 e l se :
48 g r i d c e l l = f indGr idCe l lFor (e)
49 ue = new UnconnectedEdge (g r i d c e l l , e . v0 , e . v1 , p o s i t i o n)
50 unconnectedVertexEdges [v . index] . add (ue)
51
52 p o s i t i o n++
53
54 index = 0
55 foreach (c in diagram . c e l l s where i s I n T h i s G r i d C e l l (c)) :

VI

C. Pseudocode

56 c e l l = new C e l l ()
57 c e l l s . add (c e l l)
58
59 p o s i t i o n = 0
60 foreach (e in c . edges) :
61 i f (i s I n T h i s G r i d C e l l (e)) :
62 c e l l E d g e s . add (new EdgeIndex (th i s , e . index))
63 e l se :
64 g r i d c e l l = f indGr idCe l lFor (e)
65 ue = new UnconnectedEdge (g r i d c e l l , e . v0 , e . v1 , p o s i t i o n)
66 unconnectedCel lEdges [index] . add (ue)
67
68 p o s i t i o n++
69
70 index++
71
72
73 createVertexIndex (v) :
74 g r i d c e l l = f indGr idCe l lFor (v)
75 i f (g r i d c e l l != t h i s) :
76 return new VertexIndex (g r i d c e l l , g r i d c e l l . f indVertexIndex (v))
77 e l se :
78 return new VertexIndex (th i s , v . index)
79
80
81 connectEdges :
82 i f (s tep >= Connections)
83 return
84 bui ldEdges ()
85 step = Connections
86
87 foreach (n in neighbours) :
88 n . bui ldEdges ()
89
90 foreach (i in 1 . . vertexEdges . s i z e) :
91 each (uv in unconnectedVertexEdges [i]) :
92 index = uv . g r i d c e l l . f indEdgeIndex (ue . v0 , ue . v1)
93 vertexEdges . addAt (ue . p o s i t i o n , new EdgeIndex (ue . g r i d c e l l , index))
94
95 foreach (i in 1 . . c e l l E d g e s . s i z e) :
96 foreach (ue in unconnectedCel lEdges [i]) :
97 index = ue . g r i d c e l l . f indEdgeIndex (ue . v0 , ue . v1)
98 c e l l E d g e s . addAt (ue . p o s i t i o n , new EdgeIndex (ue . g r i d c e l l , index))
99

100 d e l e t e unconnectedVertexEdges
101 d e l e t e unconnectedCel lEdges
102 d e l e t e diagram

Listing C.1: Algorithm for connecting Voronoi diagrams

VII

C. Pseudocode

1 Entity :
2 i n t id
3 i n t group
4 i n t count
5
6 f l o a t x
7 f l o a t y
8 f l o a t r ad i u s
9

10 f l o a t selfSpawnChance

Listing C.2: Entity structure.

VIII

D Site Generation Comparison

Figure D.1: Uniform random distribution.

IX

D. Site Generation Comparison

Figure D.2: Uniform random distribution with one iteration of Lloyd relaxation.

X

D. Site Generation Comparison

Figure D.3: Uniform random distribution with five iterations of Lloyd relaxation.

XI

D. Site Generation Comparison

Figure D.4: Hexagonal grid.

XII

D. Site Generation Comparison

Figure D.5: Hexagonal grid with random scattering.

XIII

	List of Figures
	Introduction
	Background
	Purpose
	Project goals
	PCG engine
	Rendering

	Theory of PCG Algorithms
	Generating random data
	Noise
	Coherent noise
	Combined noise

	Terrain representation
	Heightmaps
	Voxels

	Bilinear interpolation
	Voronoi diagrams
	L-systems
	Random distributions
	Random scattering
	Poisson disc distribution

	Dividing arbitrarily large worlds
	Challenges
	Solutions and restrictions

	Execution
	Core structure
	Landmass module
	Chunking Voronoi diagrams
	Using multiple Voronoi diagrams
	Using a single Voronoi diagram
	Voronoi diagram indexing
	Site generation
	Large scale features

	Combining landscapes
	Biome interpolation
	Voxel Interpolation

	Terrain module
	Generating a terrain surface
	Generating and visualising voxel terrain
	Generating terrain from biome attributes
	Removing floating voxels

	Tree module
	Object placement module

	Results
	Core structure
	Landmass module
	Terrain module
	Tree module
	Object placement module

	Discussion
	Results and alternative methods
	Core structure
	Landmass module
	Terrain module
	Tree module
	Object placement module

	Validity
	Future work

	Conclusion
	Bibliography
	Terrain Examples
	Plains, mountains and hills
	Tunnels
	Caverns
	Pillars

	L-system Examples
	Pseudocode
	Site Generation Comparison

