Halide Crystal Growth

<u>V. Vaněček</u>¹. R. Král¹, J. Pejchal¹, P. Zemenová^{1,2}, A. Bystřický¹, V. Jarý¹, M. Nikl¹

¹ Institute of Physics CAS, Prague, Czech Republic

² UCT Prague, Prague, Czech Republic

Principle of scintillators

Scintillators

- detectors of radiation

- convertors the energy of ionizing radiation into VUV/UV/visible light

Application

- medical imaging, homeland security, high energy physics, etc.

Transport

- shallow traps/defects influence transport of charge carriers to luminescence centers

- slow components in the scintillation decay

	Cs₂HfCl ₆ ■			
m.p. [°C]	826			
Melting	congruent			
Phase transition [°C]	no			
Density [g/cm ³]	3.8			
Crystal. structure	cubic			
Space group	Fm-3m			

<u>doping</u>

(UO₂)²⁺, Te⁴⁺, Sn⁴⁺, Re⁴⁺ Os⁴⁺, Mo³⁺, Ir⁴⁺, Na^{+,} Ce³⁺, Eu²⁺

Application of Cs₂HfCl₆

- ✓ as cost-effective radiation detector (scintillators)
- ✓ highly proportional light yield
- even without doping with any intentional activator

Properties

	Cs ₂ HfCl ₆	TI:Nal	TI:CsI	Eu:Srl ₂	Ce:LaBr ₃
Density [g/cm ³]	3.8	3.4	4.5	4.6	5.3
m.p. [°C]	826	661	621	538	783
Cryst. structure	Cubic	Cubic	Cubic	Orthorhom.	Hex.
Eg [eV]	6.3	5.8	6.1	5.5	5.9
Zeff	58	50	51	49	47
Emission max. [nm]	380	410	540	430	360
Decay time [ns]	300 (5%); 4400 (95%)	230	1100	600-2400	35
Light yield [ph/MeV]	54,000	38,000	66,000	80,000- 120,000	61,000
Resolution [%] @662 eV	3-4	7	6	3-4	3
Hygroscopicity	low	yes	yes	yes	yes

Cs₂HfCl₆ growth

- Hygroscopic starting materials (CsCl, HfCl₄)
- Purification of starting materials
- HfCl₄ low sublimation point (320 °C) vs. Cs₂HfCl₆ congruent melting point (826 °C)
- High vapor pleasure in ampoules

Smaple preparation and transport

Halide µ-pulling-down apparatus

- Enclosed growth ampule
- Growth atmosphere control
- RF heating
- Remote control
- Capable of VB growth

Micro-pulling-down (mPD)

- Seeded growth
- RF heating with graphite crucible
- Crystal shape control
- Pulling rates 0.6 6 mm/h
- Diameter: 2-3 mm
- Length: 20 40 mm

mPD growth

Vertical Bridgman (VB) method

- Unseeded growth
- RF heating with graphite heater
- Silica glass ampules
- Pulling rates 0.6 1.2 mm/h
- Diameter: 7 mm
- Length: 20 40 mm

NaCl VB growth

- Cubic crystal structure
- Melting point 801 °C
- ► 3 samples
- 0.6 and 1.2 mm/h pulling rate
- ▶ 1. Nitrogen atmosphere
- 2. Perforated ampule
- ▶ 3. Growth under vacuum

As-grown Cs₂HfCl₆ crystal

- vertical Bridgman growth
- charges of Cs₂HfCl₆ from opened system: 2, 3, and 4
- 12 x 40 mm (D x L), colorless
- polycrystalline, homogeneous grains
- tip and bulk transparent
- tail nontransparent

Ascimat workshop, April 12-13 2018, Prague, CZ

6/21/2018

3

Cleaved samples direction <111>

Tail

[mol%]

22

78

13

Future plans

- Development of CHC growth by VB method
- Growth of undoped CHC single crystals
- Monovalent ns² cations doping (Tl⁺, In⁺)
- Tetravalent cations doping (Ti⁴⁺, Zr⁴⁺, Sn⁴⁺, Mo⁴⁺, W⁴⁺)
- Anion admixture (Cs₂HfCl_{6-x}Br_x etc.)
- Optical measurements (RL, PL, PLE, LY, DT, RT)
- Stability measurements (hygroscopicity)

Thank you for your attention!