
The Architecture of a Simple

8-bit Computer

Marc Widmer

supervised by

Mario Häfeli

Maturitätsarbeit 2017

MNG Rämibühl

April 15, 2017

Abstract

This matura project consists of two parts: Building a simple 8-bit computer based on

the SAP-1 architecture and a documentation explaining my improved version of this

architecture. The paper firstly provides some basic knowledge necessary to understand

this computer architecture and then continues with an explanation of the different parts

which this architecture is made up with. In order to establish an understanding of how

the computer operates, the execution of a program will be discussed in great detail. The

explanation concludes by exploring its capabilities. The second to last section gives some

advice on building such a computer and is accompanied by the computer’s schematics in

the Appendix. The end will reflect on the problem of using breadboards for such a project

and enumerate possible improvements.

Contents

1 Introduction 2

2 Prerequisites 4

2.1 The Binary Numeral System . 4

2.2 Logic Gates . 6

2.3 Addition and Subtraction in a Digital Circuit 7

3 Architecture 9

3.1 Units . 10

3.2 Operation . 13

3.3 Capabilities . 23

4 Advice on Building a 8-bit Computer 26

5 Conclusion 27

6 Appendix 28

6.1 Schematics . 29

1

1 Introduction

In our modern world, computers are found almost everywhere. Yet most people know barely

anything about how they work. Being personally very interested in computer programming,

I wanted to know how a computer executes code on the lowest level. After spending

multiple evenings trying to find an answer on the internet, I was very disappointed as I

could not find a satisfactory explanation. Eventually, I stumbled over a Youtube video

[1] from someone called Ben Eater in which he presents his home-built 8-bit computer.

After watching another one of his videos [2], explaining how a simple program runs on his

computer, I was determined to build such a computer.

The result of this project was a 8-bit computer built on prototyping board called breadboards.

It has 16 bytes of memory used to store a program, which is capable of performing

automated computation with minimalistic conditional branching. It expands on the SAP-1

(Simple-As-Possible) computer which is a very basic model of a computer designed as

example architecture for beginners. As it is meant to demonstrate how a computer works,

it has arrays of LEDs at key points in the computer providing insight into what happens

within the circuits. It uses 7-segment displays to present the results of calculations in

decimal form.

Building the computer was the main part of this project yet this paper focuses on the

explanation of the architecture and its operation. Additionally I provide the necessary

plans to build it.

2

Figure 1: 8-bit computer

3

2 Prerequisites

2.1 The Binary Numeral System

Inside a computer there can either be a voltage or no voltage, represented by 1 and 0.

Therefore, a computer expresses numbers using the binary numeral system, also known as

base-2 numeral system. The binary numeral system uses positional notation with a radix

of 2. The decimal system also uses positional notation but with a radix of 10. This means

a binary number B is represented as

B = a02
0 + a12

1 + a22
2 + ...+ an2

n

where the coefficients ai are either 0 or 1.

For example, the binary number 00101001 equals 41 in the decimal system. The leading

zeros may be omitted. However, as this paper discusses a 8-bit computer, all binary

numbers are represented in 8-bit length.

For negative numbers one is used to place a minus sign in front of the number. When using

the binary system this works too, yet this cannot be implemented in a computer because it

cannot represent a minus sign. It can only represent a 1 or a 0. As a work around for this,

various methods exist by which negative numbers can be represented in binary and can

be implemented in a computer. The one used in this architecture is the so called "two’s

complement". This method is not as straight forward as other methods however it makes

the implementation of subtraction in a digital circuit fairly simple. To make a number’s

"two’s complement" there are two steps. Firstly, it has to be inverted. This means all the

ones have to be turned into zeros and all the zeros into ones. After this, 1 has to be added

to it. So for example the "two’s complement" of 00101001 is 11010111.

4

Calculations with binary numbers are performed in the same manner as with with decimal

numbers. As an example, you below find an addition and a subtraction of two binary

numbers using long addition. For the subtraction, the "two’s complement" of the subtrahend

is added to the minuend.

1 0 0 0 1 1 1 1

+ 0 0 0 01 11 1 0 0

1 0 0 1 1 0 1 1

1 0 0 0 1 1 1 1

+111 11 11 11 01 1 0 0

1 0 0 0 0 0 1 1

Table 1: Addition and subtraction in binary

The results seem to be correct yet one might be confused by the ignored last carry in

the subtraction. The reason for its neglection is that it exceeds the 8-bit limit of this

architecture and therefore creates a so called overflow. Ignoring overflow usually results in

a wrong result yet, when using the "two’s complement", this is meant to happen.

5

2.2 Logic Gates

The fact that computers are built up of transistors is well known and correct. However,

going down to the level of transistors to explain how a computer works makes everything

extremely complicated and confusing. For this reason, the explanation in this paper will

not dive to deeper levels than the level of logic gates. Logic gates are small electric circuits

considered as being the basic building block of digital logic. They take a certain number

of inputs, usually two, and have one output. The following listing explains the behaviour

of some of the most common logic gates.

• An AND gate outputs a high voltage if all of its inputs are high.

• An OR gate outputs a high voltage if one or more of its inputs are high.

• A XOR gate outputs a high voltage iff one of its inputs is high. Another common

name for this gate is exclusive OR gate.

• A NOT gate outputs the inverse of its input. They have only one input.

Figure 2: The common symbols of the before described logic gates in the order of
their description.

A more abstract but very common way of describing binary logic are truth tables (Table

2). These are tables with two sides, the left denotes all possible input combinations and

the right denotes the corresponding output.

A B Q

0 0 0

1 0 0

0 1 0

1 1 1

A B Q

0 0 0

1 0 1

0 1 1

1 1 1

A B Q

0 0 0

1 0 1

0 1 1

1 1 0

A Q

0 1

1 0

Table 2: Truth tables of the before described logic gates

6

2.3 Addition and Subtraction in a Digital Circuit

Addition is one of the most fundamental elements in a computer. Its implementation in a

digital circuit is called full adder and based on long addition as it is taught in primary

school. A full adder is an electronic circuit built up of logic gates which computes two

bits and a carry-in signal into a result and a carry-out. As each full adder performs its

computation on two bits, one bit of each adders, eight full adders are needed to add two

8-bit numbers. These full adders are cascaded together, meaning the carry-out signal of

one full adder is fed into the carry-in signal of the next full adder. This allows for the carry

signal to ripple through the full adder.

A full adder itself consists of two half adders, which are simple circuits capable of computing

only two bits into a result and a carry-out signal, hence lack the capability to handle a

carry signal.

Figure 3: One full adder (left) and one half adder (right)

The behaviour of a half adder can be described using a truth table (Table 3). A and B are

the two input bits, Q is the result and and Cout is the carry-out signal.

A B Q Cout

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

Table 3: Half adder truth table

7

Just as with the half adder, the below truth table (Table 4) depicts the behaviour of a

full adder. On the left side there are the input bits A, B and an additional carry-in signal

which is fed into the circuit. On the right are the result Q and the Carry out signal

A B Cin Q Cout

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

Table 4: Full adder truth table

An array of full adders can easily add two numbers but cannot subtract. This is where

the "two’s complement" comes into play as adding the "two’s complement" of a number

to another number results in their difference. Therefore, in order to subtract, all bits

of B have to be inverted and one added to it. In order to switch between addition and

subtraction, a new signal S is introduced.

For this circuit, every bit of B is connected to a XOR gate with the other input connected

to S. The XOR gates’ outputs now toggle between inverted B if S is 1 and not inverted

B if S is 0. The outputs of the XOR gates are connected to the second input of the full

adder array. The only missing piece is the addition of 1. This can easily be accomplished

by feeding the S signal into the carry-in of the first full adder, hence adding 1.

8

3 Architecture

A computer consists of different units, each of them with a specific set of functions. These

functions may be adding numbers, storing data or controlling other parts. What makes

them into a computer is that all these units work together in a well ordered manner. They

do this by passing data, respectively numbers, between them. The units may modify the

number before passing it on, pass on another number based on the original number or not

pass any new number. The exchange of data has to be controlled in some manner. This

achieved with a dedicated control unit, which follows the instructions given by the program

code. All of this put together forms a simple computer capable of performing automated

calculations.

Figure 4: Block diagram of the architecture. The arrows show possible data
movements. Additional signals are not depicted

9

3.1 Units

This section explains the functions of the different parts making up this computer architecture.

The exact build-up of all these elements is too complicated to be described here yet a deeper

understanding can be obtained by studying the schematics in the Appendix.

As already mentioned, a computer basically just moves data between different units. For

this transfer there are two dedicated structures: The bus and the clock unit.

The bus is a set of wires to which all the units except the clock are connected. This set of

common connections is used for bus transfer. In such a bus transfer one unit posts data

onto the bus and another one loads the data from the bus, thus transfer data via the bus.

As the bus in this architecture consists of 8 wires, it can transfer and therefore manipulate

numbers with a maximal size of 8 bits. Since it is simply a set of wires and does not

perform any actions, I omit calling it a unit.

The clock unit is an oscillator circuit, creating a clock signal which paces all operations

of the computer and therefore synchronises the data transfer between units. When given

the command, it inhibits this clock signal, thus halts all operations of the computer. The

clock unit is different from all other units as it does not transfer any data.

When a unit loads data from the bus, it always stores this data before manipulating it.

For storing data there are two structures: Registers and the memory.

Registers are the most common structure of this computer architecture and part of every

unit but the clock. Their purpose is to store a series of bits, put differently, a number in

binary. Since this is a 8-bit computer registers have a size of 8 bits unless otherwise noted.

Memory is a collection of registers. Every register, now called memory location, has an

address through which it can be accessed. Memory is only used in the memory unit

(MU), which is the unit that stores the program running on the computer. The memory

unit consists of two parts, the aforementioned memory with 16 memory locations and a

memory address register (MAR). The memory address register is 4 bits in size and

stores the address of the currently accessed memory location.

A program consists of a series of instructions and followed by variables if needed. Every

element of a program occupies one memory location, hence the memory of this computer

10

can store programs with a maximum of 16 instructions and variables. An instruction is

composed of 8-bits. The first four bits are the opcode, which stands for operation code

and specifies what operation should be executed The last four bits are the operand, which

stores additional information if needed for this operation. Variables may store numbers

needed in the program or serve as storage location for interim results.

The execution of a simple program starts with its first instruction (referring to the instruction

in the first memory location) and steps through one instruction after the other. In order

to keep track of which instruction should be executed next, there is a program counter

unit (PCU). The program counter unit stores the address of the first instruction and

is incremented by one for the execution of every instruction. For some more complex

programs, the address stored in the memory address register can be replaced with another

one, hence allowing for simple loops and other forms of conditional branching.

The arithmetic unit (AU)1 performs mathematical operations. This unit can add and

subtract two numbers which have to be stored in two registers beforehand. These two

registers are the accumulator (ACC) and the B register (BR), with the number stored

in accumulator serving as augend or minuend and the number stored in the B register

serving as addend or subtrahend. The numbers stored in these two registers are fed

into the adder-subtractor which performs the calculation. Its result is then stored in

the accumulator. Storing the result in the accumulator instead of a separate register

simplifies subsequent calculations as the result does not have to be explicitly loaded into

the accumulator for the next calculation to take place. The arithmetic unit can also

detect when a calculation results in a overflow. Together with the PCU, this detection

is used for the aforementioned manipulation of the program’s execution flow. The actual

build-up of the adder-subtractor is based on the circuit described in the section Addition

and Subtraction in a Digital Circuit.

The most complex unit is the control unit which, as the name implies, controls the entire

computer. This control unit can be divided into two parts: an instruction register

(IR) and a controller-sequencer. The instruction register stores an instruction from

the memory unit, passes on the opcode to the controller-sequencer and posts the operand
1Normally called ALU for arithmetic logic unit but, as this computer only performs arithmetic

operations, I omit the logic part

11

onto the bus when needed. The controller-sequencer decodes the opcode into a sequence

of steps needed to execute the given instruction. Every step is accompanied by a control

word, representing is a series of control signals that specify what parts of the computer

have to perform what action. These actions are usually one unit writing data onto the bus

and another unit reading data from the bus.

In order to present results to the operator, the computer has an output unit (OU). It

consists of a register, which stores the output, and a display capable of displaying positive

decimal numbers.

12

3.2 Operation

A program in its simplest form is a list of instructions telling a computer what to do.

The computer then executes one instruction after the other. In this architecture every

execution of an instruction consists of six steps called microsteps. The execution of the

individual microsteps is in response to the clock signal.

The first three microsteps are the same for every instruction and comprise the fetch cycle

in which the control units loads the current instruction. The actual instruction is executed

in the last three microsteps, forming the execution cycle. These microsteps are the steps

controlled by the controller-sequencer mentioned in the section Units.

The fetch cycle’s microsteps are as follows: In the first microstep, the program counter

posts the address of the current instruction onto the bus which is then fetched by the

memory address register. In the second microstep, the memory unit posts the instruction

stored at that address, and the instruction register fetches it. The controller-sequencer

then decodes this instruction into the three microsteps assigned to its execution cycle.

Before these will be executed, the third microstep advances the program counter by one.

As the execution cycle for every command is different, only the execution of the LDA

instruction, which loads a variable from memory into the accumulator, will be discussed

here. The operand of this instruction is a memory address, more precisely the memory

address of the variable that should be loaded. In the fourth microstep, the first microstep

of the execution cycle, the instruction register posts operand onto the bus, and the memory

address register reads it. Then, in the next microstep, the memory unit posts the variable’s

value, which is fetched by the accumulator. After these five microsteps all necessary

operations are completed and no further operation takes place in the sixth microstep.

After the execution cycle is finished, the fetch cycle for the the next instruction begins.

Just looking at one instruction does not show the operation of the computer very well. For

this reason, we will look at a program which adds the numbers 12 and 143 and displays

the result.

The program is depicted in table 5 and concisely explained underneath. The left half of the

table shows the program in mnemonic form whereas the right half is the actual machine

13

code. A table of all available instructions (Table 6) can be found in the next subsection

Capabilities.

Address Instruction Address Instruction

0 LDA [4] 0000 0000 0100

1 ADD [5] 0001 0010 0101

2 OUTA 0010 1001 0000

3 HLT 0011 1100 0000

4 12 0100 0000 1100

5 143 0101 1000 1111

Table 5: Program for adding two numbers
and displaying the result

LDA[4] Memory location 4 is accessed and its data (12) is loaded into the
accumulator.

ADD[5] Memory location 5 is accessed and its data (143) is loaded into the B register.
The Adder-Subtractor adds the two numbers and stores the result in the
accumulator.

OUT The content of the accumulator is loaded into the output unit and presented
on its display.

HLT The HLT signal inhibits the clock signal and stops the computer.

The Python function below should serve as reference to the machine code. The print()
function represents the OUT instruction.

def add i t i on () :
var x = 12
var y = 143
print (x + y)

Code 1: Addition example written in Python

The following pages will step through the program using pictures of the computer executing

this calculation and drawings where arrows show the data transfers. The arrangement of

the units in the drawing is similar to the actual computer, with the clock unit being

located above the program counter unit. The instruction register in the actual computer

displays only the operand and the drawing of the controller-sequencer shows the microsteps,

counting form left to right and 0 being the current one. Its important to note, that the

actual data transfers happen in response the clock signal, in other words, between the

images.

14

Figure 5: LDA[4] Microstep 1: PCU transfers current instruction address to MAR

Figure 6: LDA[4] Microstep 2: MU transfers instruction to IR

Figure 7: LDA[4] Microstep 3: PCU advances by one

15

Figure 8: LDA[4] Microstep 4: IR transfers operand (address) to MAR

Figure 9: LDA[4] Microstep 5: MU transfers number to AAC

Figure 10: LDA[4] Microstep 6: No operation

16

Figure 11: ADD[5] Microstep 1: PCU transfers current instruction address to MAR

Figure 12: ADD[5] Microstep 2: MU transfers instruction to IR

Figure 13: ADD[5] Microstep 3: PCU advances by one

17

Figure 14: ADD[5] Microstep 4: IR transfers operand (address) to MAR

Figure 15: ADD[5] Microstep 5: MU transfers number to BR

Figure 16: ADD[5] Microstep 6: AU transfers result to ACC

18

Figure 17: OUTA Microstep 1: PCU transfers current instruction address to MAR

Figure 18: OUTA Microstep 2: MU transfers instruction to IR

Figure 19: OUTA Microstep 3: PC advances by one

19

Figure 20: OUTA Microstep 4: ACC transfers result to OU

Figure 21: OUTA Microstep 5: No operation

Figure 22: LDA[4] Microstep 6: No operation

20

Figure 23: HLT Microstep 1: PCU transfers current instruction address to MAR

Figure 24: HLT Microstep 2: MU transfers instruction to IR

Figure 25: HLT Microstep 3: PC advances by one

21

Figure 26: HLT Microstep 4: Clock halts all operations. Program has finished

22

3.3 Capabilities

The already given explanations may give insight into how this computer architecture

works but hardly demonstrates its capabilities. This computer is capable of performing

automated calculations comprised of additions and subtractions. Such a calculation has

to be programmed into the computer’s memory using the instructions denoted in its

instruction set (see Table 6). The number of instructions and variables cannot exceed

16 since that is the maximal memory capacity.

Mnemonic Opcode Operand Explanation

LDA 0000 Variable Address Load variable into ACC
(accumulator)

LDAC 0001 4-bit constant Load 4-bit constant into
ACC

ADD 0010 Variable Address Add variable to ACC data
and store result in ACC

ADDC 0011 4-bit constant Add constant and store
result in ACC

SUB 0100 Variable Address Subtract variable and store
result in ACC

SUBC 0101 4-bit constant Subtract 4-bit constant and
store result in ACC

STR 0110 Variable Address Store number in variable

OUTA 0111 - Output number from ACC

OUTC 1000 4-bit constant Output 4-bit constant

OUT 1001 Variable Address Output variable

JMP 1010 Program Position Jump to position in program

JMPO 1011 Program Position Jump to position if overflow
occurred

HLT 1100 - Halt all operations

Table 6: Instruction set

Many instructions have different forms where one form uses a variable and another uses a

constant or similar. This can make programs more compact and allows for more complex

programs. Such complex programs could calculate a sequence and restart the sequence

calculation when the calculated elements exceed the 8-bit limit.

23

For example, the calculation of the fibonacci sequence [3].

Address Intruction/Data Address Instruction/Data

0 LDAC [1] 0000 0001 0001

1 STR [12] 0001 0110 1100

2 LDAC [0] 0010 0001 0000

3 OUTA 0011 0111 0000

4 ADD [12] 0100 0010 1100

5 STR [13] 0101 0110 1101

6 LDA [12] 0110 0000 1100

7 STR [14] 0111 0110 1110

8 LDA [13] 1000 0000 1101

9 STR [12] 1001 0110 1100

10 JMPO [0] 1010 1011 0000

11 JMP [3] 1011 1001 0011

12 0 1100 0000 0000

13 0 1101 0000 0000

14 0 1110 0000 0000

Table 7: Fibonacci sequence calculation.
Last three positions used as variables

The Python function (Code 1) is similar and should serve as a reference for the understanding

program in table 7. The print() function once again represents the OUT instruction. The

two programs are not the same because the loading of variable y is optimised in the program

for the 8-bit computer.

def f i b o n a c c i () :
var x , y , z
while (t rue) :
x = 0
y = 1
while (x < 255) :

print (x)
z = x + y
x = y
y = z

Code 2: Fibonacci sequence example written in Python

24

The example program in table 7 uses constants to initialise a loop. This loop then

calculates the individual elements. When the elements overflow, the calculation restarts.

The SAP-1 architecture, which this architecture is based on, could not run such a program

as its instruction set only consists of LDA, ADD, SUB, OUT, HLT. Therefore the SAP-1

architecture can only perform extremely limited calculations without any loops, conditional

branching, storing of interim results or constants.

25

4 Advice on Building a 8-bit Computer

In case you are interested in building an 8-bit computer there are two ways to tackle this

project. The first is to design all the circuits yourself and the second is to use the plans in

the Appendix.

Regarding the first option, the most important thing to do is to obtain a good overview

of the entire project. Then, it is all about working out how to build the computer. Due

to its complexity it is advisable to split the computer up into different pieces and instead

of trying to figure out everything at once. The focus should always be exclusively on

one single piece The workflow on each piece is always the same: Plan, build, test and

troubleshoot. For more complicated parts, I would even advise to build subsections of it

to make sure they work before planning the entire part.

As soon as multiple parts work correctly, they can be connected with each other to make

sure they also work together. As the computer starts to take form, you will maybe realise

that you have a critical design flaw. If this happens, do not rip the unit apart and rebuild

it right way but rather stop working on it for a while since it might not be a flaw of your

design but rather in your thinking at the moment. I ran into such situations numerous

times and then quite quickly redid that piece and then eventually had to change it back

again.

If one follows the plans given in the Appendix the procedure is practically the same but

just without the designing of the computer. It is still advisable to focus on smaller parts

first and testing them before building another one.

A problem you will most certainly run into are faulty connections and the thing is there will

always be some loose connections as breadboards simply do not provide good connections.

I found that the most efficient method to correct this is to move some of the wires ever so

slightly and then replace the ones which proofed to be faulty.

26

5 Conclusion

In the conclusion I’ll focus on the physical part of this project meaning the planing and

building of the computer. Planning the computer filled me with great pleasure as I enjoy

tackling problems of great complexity. One aspect that I liked particularly was to derive

how the different elements should work, especially the control unit as it is the most complex.

Building the actual elements needed more concentration as I expected. The first few test

parts looked terrible with connections all over the place so I quickly devised some layout

guidelines and became quite efficient at actually making the connection. Still, spending

hours connecting different integrated circuits with dozens of wires is a very cumbersome

process. And, as a newly built part generally malfunctions during testing or sometimes

does not work at all, this can create quite some frustration. This usually meant a few

more hours or entire afternoons probing the circuits with a multimeter, trying to find the

mistake(s).

Creating the schematic of the circuits turned out to be very time consuming. Nevertheless,

I consider this part to be necessary since I am planning on building a second version of this

8-bit computer using real, homemade circuit boards instead of breadboards. In addition, I

would also like to build a version with multiple buses rather than just one for instructions,

addresses and data. This would allow for a bigger addresses and therefore longer, more

complex programs. Another improvement would be to build an external device to access

the memory of the computer. This device could then store a couple of programs for the

computer and be used to program it automatically. Programming is currently done by hand

using small switches, which is prone to errors. Automating this process would eliminate a

great source of problems.

Even though there is still room for improvement, I’m very happy with the result of this

project. Actually seeing Alan, this is what I call my computer, perform calculations

mesmerises me. I gave my computer this codename in honour of Alan Turing, the father of

computer science and artificial intelligence, an ingenious mind behind Britains codebreaking

endeavours during the Second World War and a victim of the persecution of homosexuals

which led to his tragic suicide.

27

6 Appendix

This Appendix contains all necessary schematics. The given information is not explained

in any way. Due to their size many schematics cannot be depicted very well. For this

reason, all the schematics are available online underr

https://github.com/komplexon3/Alan

Mobile devices may scan the following QR code.

28

https://github.com/komplexon3/Alan

6.1 Schematics

1k

1k

1k

1k

1k

1k

1k¨

1k

1k

1k
1k

1k

1k

1k

1k

P$1P$1
P$2P$2
P$3P$3
P$4P$4
P$5P$5
P$6P$6
P$7P$7
P$8P$8

D14
D26
D310
D412

A01
A115
A214
A313

ME2
WE3

S1 5
S2 7
S3 9
S4 11

D14
D26
D310
D412

A01
A115
A214
A313

ME2
WE3

S1 5
S2 7
S3 9
S4 11

A1 2
A2 5
A3 11
A4 14

B1 3
B2 6
B3 10
B4 13

SELECT 1
STROBE 15

Y14
Y27
Y39
Y412

A1 2
A2 5
A3 11
A4 14

B1 3
B2 6
B3 10
B4 13

SELECT 1
STROBE 15

Y14
Y27
Y39
Y412

9 10 11 12 13 14 15 16
12345678

A0P$2
A1P$3
A2P$4
A3P$5
A4P$6
A5P$7
A6P$8
A7P$9

B0 P$13
B1 P$14
B2 P$15
B3 P$16
B4 P$17
B5 P$18
B6 P$19
B7 P$20

OE-P$12 DIR P$1

1 2

3 4

5 6

9 8

11 10

13 12

1 2

3 4

P$1P$1
P$2P$2
P$3P$3
P$4P$4

D1
D2
D3
D4

G1
G2
M
N

CLR
CLK

Q1
Q2
Q3
Q4

A1 2
A2 5
A3 11
A4 14

B1 3
B2 6
B3 10
B4 13

SELECT 1
STROBE 15

Y14
Y27
Y39
Y412

5678
1 2 3 4

74
LS
18
9

74
LS
18
9

74
LS
15
8

74
LS
15
8

ON

12345678

74
LS
24
5

74
LS
17
3

74
LS
15
8

1 2 3 4

ON

29

VCC

A0 P$2
A1 P$3
A2 P$4
A3 P$5
A4 P$6
A5 P$7
A6 P$8
A7 P$9

B0P$13
B1P$14
B2P$15
B3P$16
B4P$17
B5P$18
B6P$19
B7P$20

OE- P$12DIRP$1

A1 5
A2 3
A3 14
A4 12

B1 6
B2 2
B3 15
B4 11

C0 7

S14
S21
S313
S410

C49

A1 5
A2 3
A3 14
A4 12

B1 6
B2 2
B3 15
B4 11

C0 7

S14
S21
S313
S410

C49

1

2
3

4

5
6

9

10
8

12

13
11

1

2
3

4

5
6

9

10
8

12

13
11

P$1 P$1
P$2 P$2
P$3 P$3
P$4 P$4
P$5 P$5
P$6 P$6
P$7 P$7
P$8 P$8

A0P$2
A1P$3
A2P$4
A3P$5
A4P$6
A5P$7
A6P$8
A7P$9

B0 P$13
B1 P$14
B2 P$15
B3 P$16
B4 P$17
B5 P$18
B6 P$19
B7 P$20

OE-P$12 DIR P$1

D1
D2
D3
D4

G1
G2
M
N
CLR
CLK

Q1
Q2
Q3
Q4

D1
D2
D3
D4

G1
G2
M
N
CLR
CLK

Q1
Q2
Q3
Q4

P$1 P$1
P$2 P$2
P$3 P$3
P$4 P$4
P$5 P$5
P$6 P$6
P$7 P$7
P$8 P$8

D1
D2
D3
D4

G1
G2
M
N
CLR
CLK

Q1
Q2
Q3
Q4

D1
D2
D3
D4

G1
G2
M
N
CLR
CLK

Q1
Q2
Q3
Q4

P$1 P$1
P$2 P$2
P$3 P$3
P$4 P$4
P$5 P$5
P$6 P$6
P$7 P$7
P$8 P$8

D1
D2
D3
D4

G1
G2
M
N
CLR
CLK

Q1
Q2
Q3
Q4

74
LS
24
5

74
LS
28
3

74
LS
28
3

e

e

e

e

e

e

e

e

74
LS
24
5

74
LS
17
3

74
LS
17
3

74
LS
17
3

74
LS
17
3

74
LS
17
3

30

D
1

D
2

D
3

D
4

G
1

G
2

M N C
LR

C
LK

Q
1

Q
2

Q
3

Q
4

D
1

D
2

D
3

D
4

G
1

G
2

M N C
LR

C
LK

Q
1

Q
2

Q
3

Q
4

P$
1

P$
1

P$
2

P$
2

P$
3

P$
3

P$
4

P$
4

P$
5

P$
5

P$
6

P$
6

P$
7

P$
7

P$
8

P$
8

A0
P$
8

A1
P$
7

A2
P$
6

A3
P$
5

A4
P$
4

A5
P$
3

A6
P$
2

A7
P$
1

A8
P$
23

A9
P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

A0
P$
8

A1
P$
7

A2
P$
6

A3
P$
5

A4
P$
4

A5
P$
3

A6
P$
2

A7
P$
1

A8
P$
23

A9
P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

A0
P$
8

A1
P$
7

A2
P$
6

A3
P$
5

A4
P$
4

A5
P$
3

A6
P$
2

A7
P$
1

A8
P$
23

A9
P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

A
7

B
6

C
4

D
2

E
1

F
9

G
10

D
P

5
G
1

3
G
2

8

A
7

B
6

C
4

D
2

E
1

F
9

G
10

D
P

5
G
1

3
G
2

8

A
7

B
6

C
4

D
2

E
1

F
9

G
10

D
P

5
G
1

3
G
2

8

74LS173 74LS173

AT28C16

AT28C16

AT28C16

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

31

1k1k

1k

A0
P$

2
A1

P$
3

A2
P$

4
A3

P$
5

A4
P$

6
A5

P$
7

A6
P$

8
A7

P$
9

B0
P$

13
B1

P$
14

B2
P$

15
B3

P$
16

B4
P$

17
B5

P$
18

B6
P$

19
B7

P$
20

O
E-

P$
12

D
IR

P$
1

Q
1

3
Q
2

4
Q
3

5
Q
4

6

G
1

9
G
2

10
M

1
N

2
C
LR

15
C
LK

7

D
1

14
D
2

13
D
3

12
D
4

11

Q
1

3
Q
2

4
Q
3

5
Q
4

6

G
1

9
G
2

10
M

1
N

2
C
LR

15
C
LK

7

D
1

14
D
2

13
D
3

12
D
4

11

P$
1

P$
1

P$
2

P$
2

P$
3

P$
3

P$
4

P$
4

P$
5

P$
5

P$
6

P$
6

P$
7

P$
7

P$
8

P$
8

A0
P$

8
A1

P$
7

A2
P$

6
A3

P$
5

A4
P$

4
A5

P$
3

A6
P$

2
A7

P$
1

A8
P$

23
A9

P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

Q
A

3
Q
B

4
Q
C

5
Q
D

6
Q
E

10
Q
F

11
Q
G

12
Q
H

13

A
1

B
2

C
LK

8
C
LR

-
9

A
3

B
4

C
5

D
6

Q
A

14
Q
B

13
Q
C

12
Q
D

11

E_
T

10
E_

P
7

LO
AD

9
C
LR

1
C
LK

2

R
C
O

15

A
3

B
4

C
5

D
6

Q
A

14
Q
B

13
Q
C

12
Q
D

11

E_
T

10
E_

P
7

LO
AD

9
C
LR

1
C
LK

2

R
C
O

15

A0
P$

8
A1

P$
7

A2
P$

6
A3

P$
5

A4
P$

4
A5

P$
3

A6
P$

2
A7

P$
1

A8
P$

23
A9

P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

A0
P$

8
A1

P$
7

A2
P$

6
A3

P$
5

A4
P$

4
A5

P$
3

A6
P$

2
A7

P$
1

A8
P$

23
A9

P$
22

A1
0

P$
19

W
E-

P$
21

O
E-

P$
20

C
E-

P$
18

IO
0

P$
9

IO
1

P$
10

IO
2

P$
11

IO
3

P$
13

IO
4

P$
14

IO
5

P$
15

IO
6

P$
16

IO
7

P$
17

12

34

56

56

56

56

56

56

56

56

56

56

74LS245 74LS173 74LS173

AT28C16

74
LS

16
4

74LS161 74LS161

AT28C16

AT28C16

32

1k

R
ST

P$
4

D
IS

P$
7

TH
R

P$
6

C
O
N
T

P$
5

TR
IG

P$
2

O
U
T

P$
3

12

3

R
ST

P$
4

D
IS

P$
7

TH
R

P$
6

C
O
N
T

P$
5

TR
IG

P$
2

O
U
T

P$
3

12

3

A1
2

A2
5

A3
11

A4
14

B1
3

B2
6

B3
10

B4
13

SE
LE
C
T

1
ST

R
O
BE

15

Y1
4

Y2
7

Y3
9

Y4
12

12
3

1
2

3
4

555

+

555

+

74LS158

33

1k

1k

A
3

B
4

C
5

D
6

Q
A

14
Q
B

13
Q
C

12
Q
D

11

E_
T

10
E_
P

7
LO

AD
9

C
LR

1
C
LK

2

R
C
O

15

A0
P$
2

A1
P$
3

A2
P$
4

A3
P$
5

A4
P$
6

A5
P$
7

A6
P$
8

A7
P$
9

B0
P$
13

B1
P$
14

B2
P$
15

B3
P$
16

B4
P$
17

B5
P$
18

B6
P$
19

B7
P$
20

O
E-

P$
12

D
IR

P$
1

P$
1

P$
1

P$
2

P$
2

P$
3

P$
3

P$
4

P$
4

1 2
3

1 2
3

1
2

1
2

74LS161

74LS245

34

35

36

References

[1] Ben Eater (12.12.2015). Programming my 8-bit Computer.

https://www.youtube.com/watch?v=9PPrrSyubG0&t=9

[2] Ben Eater (12.12.2015). Stepping through a program on the 8-bit breadboard computer.

https://www.youtube.com/watch?v=35zLnS3fXeA

[3] Ben Eater (12.12.2015). Programming Fibonacci on a breadboard computer.

https://www.youtube.com/watch?v=a73ZXDJtU48&t=5s

[4] Albert Paul Malvino, Jerald A. Brown (1999). Digital Computer Electronics.

[5] Harry Henderson (2008). Encyclopedia of computer science and technology.

[6] Christine R. Wright (14.11.2016). The Binary System.

http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/

student-binary

[7] (7.11.2016). Cambridge Igcse Computer Studies Revision Guide - Chapter 9: Logic

gates.

http://education.cambridge.org/media/577240/cambridge_igcse_computer_

studies__revision_guide___cambridge_education___cambridge_university_

press_samples.pdf

37

https://www.youtube.com/watch?v=9PPrrSyubG0&t=9
https://www.youtube.com/watch?v=35zLnS3fXeA
https://www.youtube.com/watch?v=a73ZXDJtU48&t=5s
http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/student-binary
http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/student-binary
http://education.cambridge.org/media/577240/cambridge_igcse_computer_studies__revision_guide___cambridge_education___cambridge_university_press_samples.pdf
http://education.cambridge.org/media/577240/cambridge_igcse_computer_studies__revision_guide___cambridge_education___cambridge_university_press_samples.pdf
http://education.cambridge.org/media/577240/cambridge_igcse_computer_studies__revision_guide___cambridge_education___cambridge_university_press_samples.pdf

Eigenständigkeitserklärung

Der Unterzeichnete bestätigt mit Unterschrift, dass die Arbeit selbstständig verfasst und

in schriftliche Form gebracht worden ist, dass sich die Mitwirkung anderer Personen auf

Beratung und Korrekturlesen beschränkt hat und dass alle verwendeten Unterlagen und

Gewährspersonen aufgeführt sind.

Marc Widmer Ort & Datum

38

	Introduction
	Prerequisites
	The Binary Numeral System
	Logic Gates
	Addition and Subtraction in a Digital Circuit

	Architecture
	Units
	Operation
	Capabilities

	Advice on Building a 8-bit Computer
	Conclusion
	Appendix
	Schematics

