Dosimetric materials applications – TSL and OSL

Petr Průša

Faculty of Nuclear Sciences and Physical Engineering

Czech Technical University in Prague

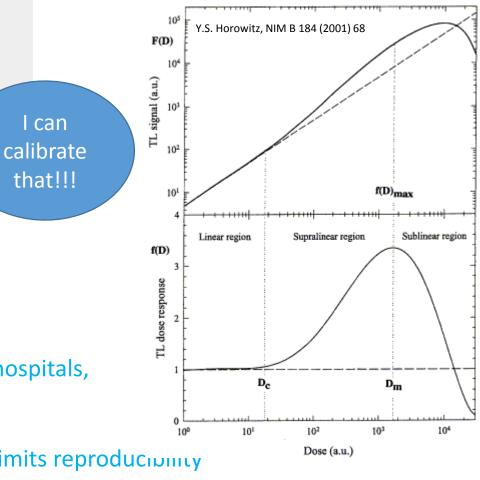
Always measurement of dose. Not always boring! Always measurement of dose. Not always boring!

List of (selected) applications

- Personal dosimetry
 - Dosimetry in space
 - Neutron dosimetry
- Emergency dosimetry
- Enviromental monitoring
- Dosimetry in medicine
 - Radiotherapy
 - Radiodiagnostics
- Thermoluminescence dating
- Aplications in biology, reactor engineering, industry...
 - High dose measurement exploit OSL/TSL materials but use alternative means of evaluation
 - Optical absorption
 - Different TSL peaks
 - Radiophotoluminescence
- Military applications (Dr. Janda)
- Education
 - Lectures on thermolumiscence materials especially

Personal dosimetry

- Task
 - Measurement of a dose obtained by individual worker
- Requirements and their reasons
 - Small dosimeter
 - Wearable
 - Finger dosimeter (extremity dosimetry)
 - Eye dosimeter
 - Measurement range at least 0.1 mSv 1 Sv (10 Sv for extremities]
 - Natural background
 - Very roughly 1 mSv/year (radon not included) \rightarrow 0.25 mSv/evaluation period
 - Worker limit
 - 20 mSv/year (whole body, eye)
 - 500 mSv/year (skin, extremities)
 - Death
 - Approximately 4 Gy



Personal dosimetry

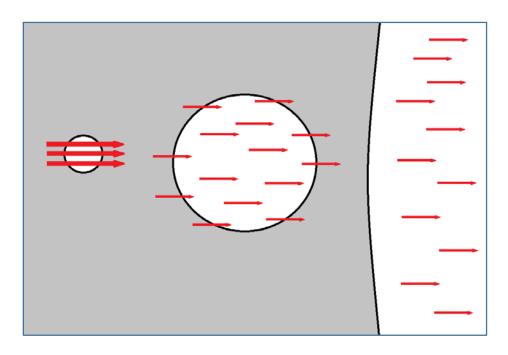
- Requirements and their reasons
 - Low fading
 - Maximally 5 % during evaluation period (1 or 3 months)
 - Possibility of one-time irradiation (anytime)
 - Cheap, re-usable, fast reading, simple evaluation
 - High number of radiation workers (e.g. 12 000 in Czech hospitals, 1 000 000 in EU)
 - Linear dose response
 - Supralinearity and sublinearity complicates calibration, limits reproducionary
 - Response independent of (survivable) temperature, humidity, angle, energy, dose rate...
 - Acceptable precision
 - Approximately ±30(40) %
 - Low precision is mostly due to complex relation of $\rm H_{\rm p}(10)$ and dosimeter dose

LUMDETR 2018 Summer School

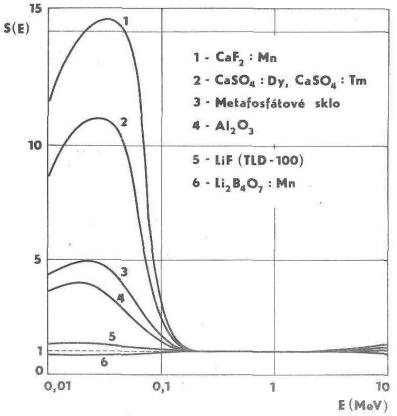
Just give me some time for all those necessary points

Personal dosimetry

• Limits are given in effective dose E

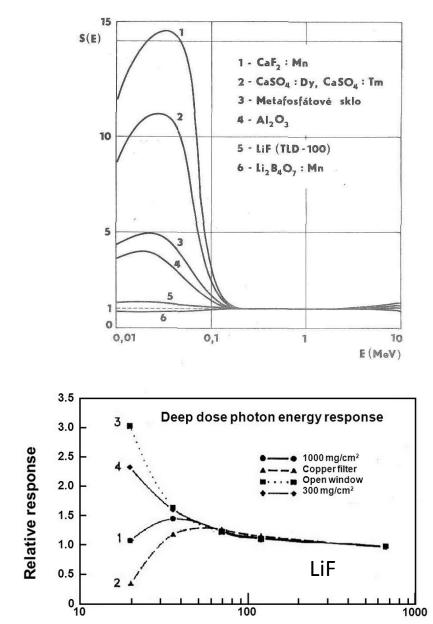

$$E = \sum_T W_T \cdot H_T = \sum_T W_T \sum_R W_R \cdot ar{D}_{T,R}$$

- $D_{T,R}$ dose in organ T from radiation R
- W_R radiation weighting factor
- W_T tissue weighting factor
- \rightarrow Should we measure $D_{T,R}$ for all organs and radiation type?
- Unrealistic!!!
- We measure Personal dose equivalent $H_p(10)$, $H_p(0.07)$ or $H_p(3)$
- Realistic assumption: $H_p(10) > E$

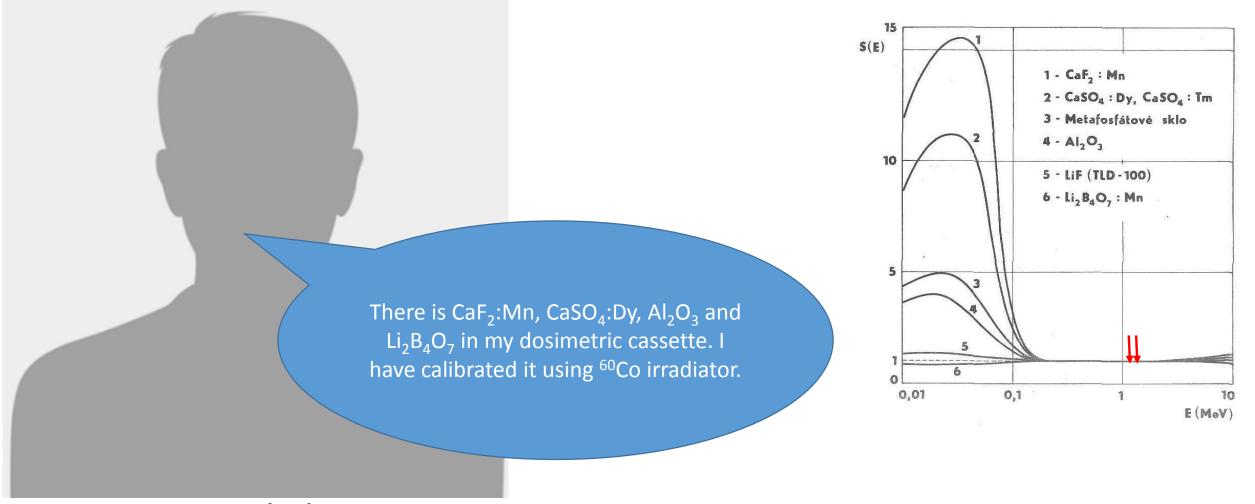


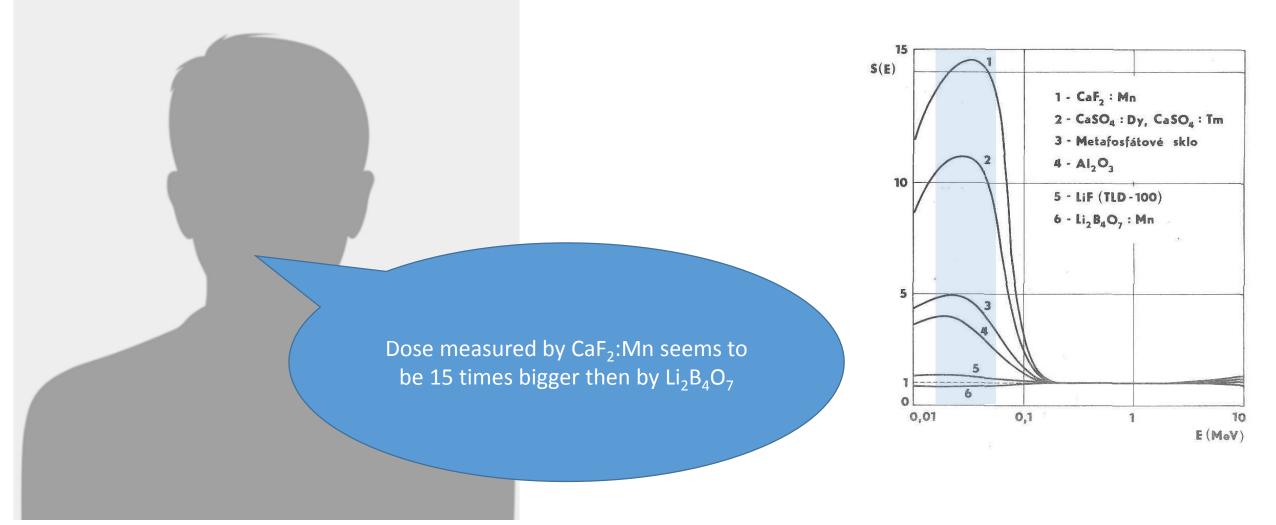
- For photon radiation and homogeneous irradiation
 - $E = H_p(10) = D$
- Approximation: R = c D
 - c calibration constant
 - D dose
 - R response
- So simple? Not at all...
- Dose
 - Absorbed energy / mass (Gy = J/kg)
- We measure D_{dos} dose in dosimeter
- We are interested in personal dose (in tissue) D_{T}
- We require $D_T = f D_{dos}$
 - Fortunately true
 - f (cavity correction factor) could be calculated or measured (calibration)

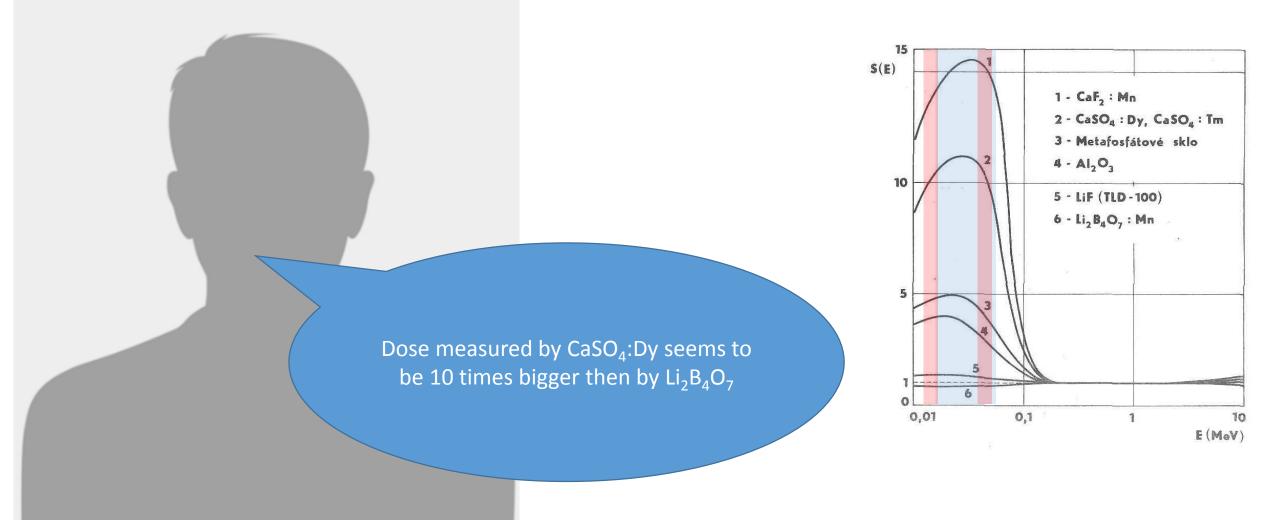
- Cavity theory (W wall = tissue; C cavity = dosimeter)
 - Assumption: photon beam / field is not attenuated
 - Otherwise detector irradiation is inhomogenous
 - Extreme: only shallow layer below surface is irradiated
 - High angular dependence
 - Small
 - $f = f_{small} = {}_{m}S_{C}/{}_{m}S_{W}$
 - Large
 - $f = f_{large} = (\mu_{En}/\rho)_C/(\mu_{En}/\rho)_W$
 - Intermediate (according to Burlin)
 - $f = d f_{small} + (1-d) f_{large}$
 - d = [1 exp(-Bx)] / Bx
 - B effective mass attenuation factor for electrons
 - x mean electron path in C
- Quantities dependent on photon energy
 - ${}_{m}S_{C',m}S_{W'}$ (μ_{E}/ρ)_C, (μ_{E}/ρ)_{W'}, B, x
 - \rightarrow f depends on energy

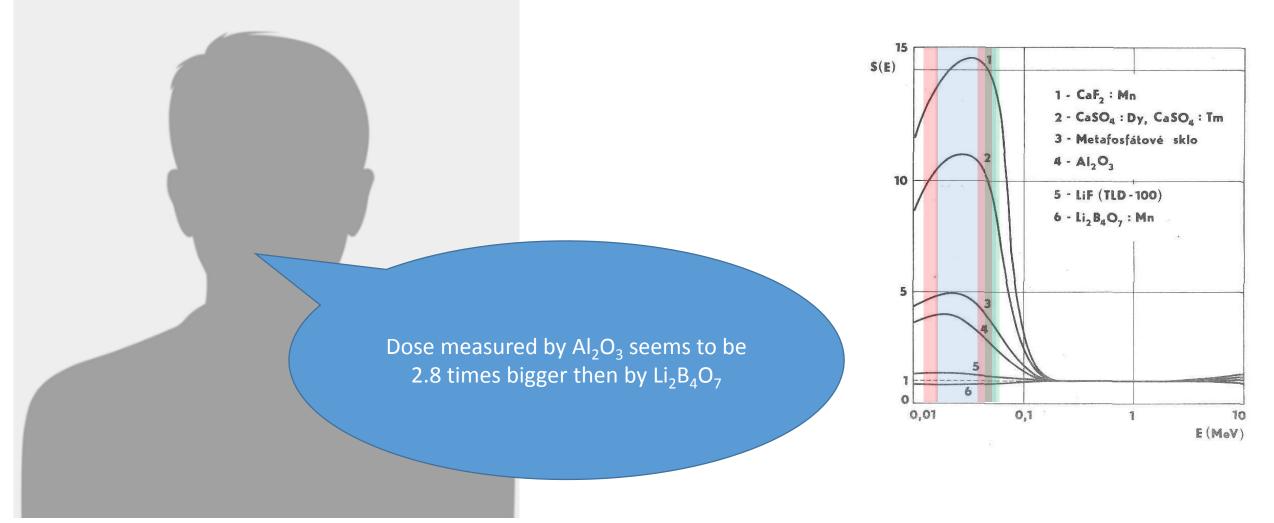


- Real TSL/OSL dosimeter could be considered small, intermediate or large cavity, depends on photon energy
- $D_T = f(E) D_{dos}$
- 😕 Energy E is generally unknown
- Solutions
 - Somehow make f constant
 - Compensate for the energetic spectrum
 - "Measure energy"


Personal dosimetry ("making f constant")


- f = d f_{small} + (1-d) f_{large}
 f = 1 if
 - $f_{small} = {}_{m}S_{C}/{}_{m}S_{W} = 1$
 - $f_{large} = (\mu_{En}/\rho)_{C}/(\mu_{En}/\rho)_{W} = 1$
 - d ≠ 1
 - Could be achieved for limited E interval
- So-called tissue equivalent materials
 - Close to tissue equivalence: LiF, Li₂B₄O₇
 - Far: far to many, e.g. CaF₂, CaSO₄
- Filtering methods




Photon energy - keV

J. Anderson, ASSESSMENT OF OCCUPATIONAL EXPOSURE DUE TO EXTERNAL RADIATION SOURCES AND INTAKES OF RADIONUCLIDES Personal Dosimeters, IAEA

LUMDETR 2018 Summer School

This is a simplified example for a discrete energy spectrum. However, such analysis is in principle applicable for complex spectra as well (in a slightly more complicated form)

- Constant f
 - More simple
 - Faster evaluation (1 dosimeter)
 - Cheaper
- "energy measurement"
 - Rough information on energy available
 - Complicated evaluation if two or more materials are used
 - instead: one material, several dosimeters with different filters (probably most common method)
 - E.g., plastic, **plastic**, Al+plastic, Cu+plastic
 - Higher Z materials could be involved

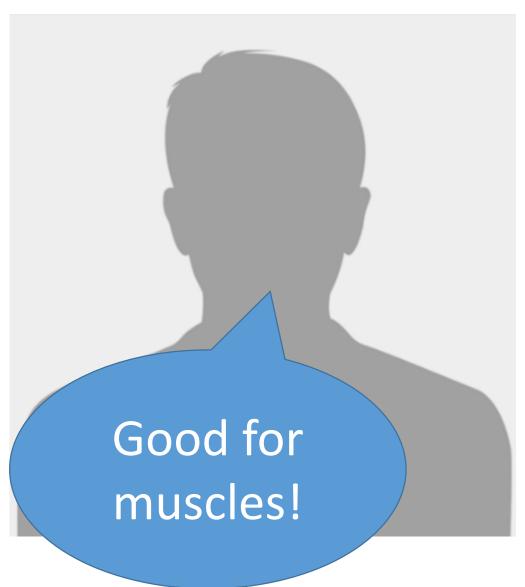
Personal dosimetry (materials used)

• TSL

- LiF:Mg,Ti (MTS)
- LiF:Mg,Cu,P (MCP)
- CaF₂:Mn
- Li₂B₄O₇
 - Hygroscopic, closest to tissue equivalence
- Others...
- OSL
 - BeO
 - Linear 0.01- units Gy, dose underestimation for low photon energies (filtering is the solution), extremely low fading
 - Al₂O₃:C
 - 0.05-10 Sv, reproducibility (10 % signal loss after 25 cycles)

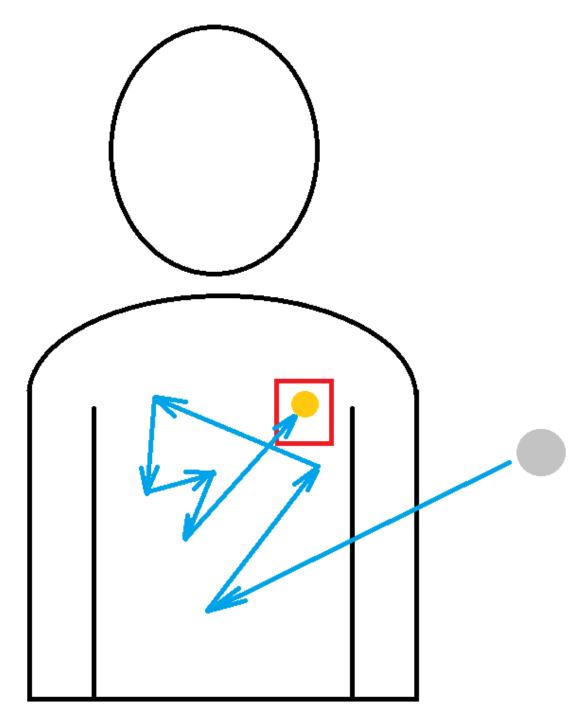
Personal dosimetry – advantages / disadvantages

- Advantages
 - Re-usable
 - Relatively cheap
 - Small
 - Simple measurement automatization
 - Large dynamic range
- Disadvantages
 - Hard to identify
 - One (or few) reading(s)
 - No possibility of contamination idetification
 - No possibility of ide
 - Fading (can be very small)
 - More filters → more detectors

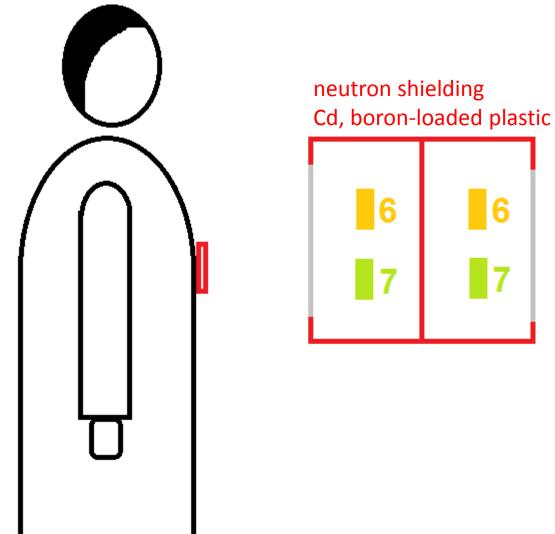

Personal neutron dosimetry – albedo dosimeter

- Some facts...
 - TSL materials sensitive to thermal neutrons are available: Li₂B₄O₇, LiF, CaSO₄:Dy,Li
 - ${}^{6}\text{Li} + n \rightarrow {}^{3}\text{H} + \alpha$
 - ${}^{10}B + n \rightarrow {}^{7}Li + \alpha$
 - ¹¹B and ⁷Li are insensitive
 - \rightarrow compensation principle could be applied
 - Compensation
 - 2 detectors ⁶Li enriched, ⁷Li enriched (⁶LiF / ⁷LiF)
 - Same response caused by γ and β radiation
 - Different response caused by thermal neutrons
 - R (⁶LiF) R(⁷LiF) = R(thermal neutrons)
 - Thermal neutrons are negligible contributors to effective dose

Detector of something unimportant. I love it.


Personal neutron dosimetry – albedo dosimeter

- Some other facts...
 - Fast neutrons are important contributors to effective dose (if present)
 - Moderation
 - Fast neutrons \rightarrow thermal neutrons
- Eureka!
 - Solution: Moderator in TSL dosimeter vicinity
 - How much moderator?
 - Several kg should be enough

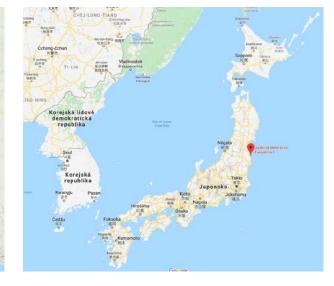

Actually...

Everyone carries several kg of moderator naturally...

Personal neutron dosimetry – albedo dosimeter

- R(thermal neutron) = R_{tn}
- Neutron $H_p(10) = C R_{tn}$
 - C calibration constant, (strongly) dependent on neutron spectrum
- Possibilities
 - 1) neutron spectrum is constant in time and known
 - One pair of dosimeters is enough
 - 2) spectrum of neutron source is known, but moderation is variable
 - Multi-element albedo dosimeter must be used
 - C is unambiguously dependent on ratio of responses albedo/direct
 - 3) different sources
 - Combination with other neutron dosimeters is necessary




Enviromental monitoring

- Requirements similar to materials for personal dosimetry...
 - Dose range 0.1 mSv tens of mSv
 - Tissue equivalence welcomed
 - Able to withstand environmental conditions (higher/lower temperature, humidity)
 - Longer exposure period (up to 1 year)
 - Very low fading required
- Complex calibration, evaluation and correction procedure
 - Several sets of control dosimeters
 - Fading irradiation at site, but shielded
 - Response to zero dose not at site, not irradiated
 - Calibration irradiated by known dose, not at site

Emergency dosimetry

- Idea:
 - Accidents do happen
 - Higher dose \rightarrow higher risk \rightarrow higher need of medical examination
 - → we should know individual dose (2 Gy level considered a value dividing people as OK/needing intensive care)
 - General public members do not have dosimeters
- Application of naturally occurring TSL/OSL materials
- Application of artificial materials not produced as TSL/OSL materials, but having TSL/OSL properties
- People are surrounded by materials of various dosimetric properties
 - Investigate those properties
 - Choose the best materials
 - Optimize the methods of their evaluation

Emergency dosimetry - requirements

- Common materials
 - In every household
 - Optimal: anything carried all the time/most of the time by everyone
- Reproducible response
- Adequate dose range
- \rightarrow difficult problem
- Examples
 - OSL S. Sholom et al. Rad. Meas. 46 (2011) 1866
 - Linear response of all materials up to 3 Gy
 - Nails MMD₂₄ (minimum measurable dose) after 24 h 0.2-10 Gy
 - Only "dirty" nails produces signal (sand?)
 - Teeth MMD₂₄ 0.15-8.0 Gy
 - People love their teeth, in vivo measurement technique must be developed
 - Buttons MMD₂₄ 0.09-0.3 Gy
 - Some sensitive, some not
 - Credit cards MMD₂₄ 0.05-2.0 Gy
 - Some sensitive, some not

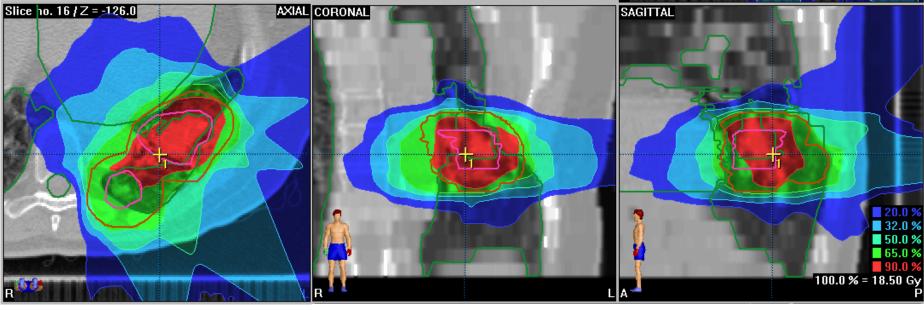
Emergency dosimetry

- Examples
 - S. Sholom, S.W.S. McKeever, RPD 170 (2016) 398
 - TL/OSL of mobile phones (integrated circuits in them)
 - Response linear up to 2 Gy
 - MMD 0.13-0.26 Gy
 - - If exposure time known, reconstruction possible
 - J.A. Ademola, C. Woda, E. Bortolin
 - TL response of tobacco dust
 - Probably contains some feldspar
 - Linear response 0.1-10 Gy

As a non-smoker, I find it unfair.

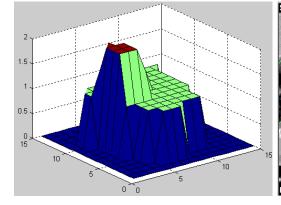
Radiotherapy (teletherapy)

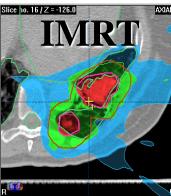
- Energies used
 - kV beams (x-ray tubes)
 - ⁶⁰Co (1.17 + 1.33 MeV)
 - MV beams (linacs)
- Particles used
 - Almost exclusively photons
 - Protons application is on the rise
 - Neutron capture therapy seems to be not promising
- Applied doses:
 - Inside target volume tens of Gy
 - Outside target volume lower doses
- Other requirements
 - Tissue equivalence needed?
 - Arguments for yes: dosimetric casing should be small, always more precise, scattered radiation is present
 - Arguments for no: energies are known, very small energy dependence in used energy region
 - Linearity of response
 - Small size
 - Application in field of high dose rate gradient (IMRT); spatial resolution
 - No influence on radiation field (in vivo measurement); small thickness
 - Precision: ± 3 % (D; H_p(10))


Radiotherapy

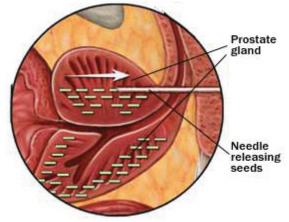
- Dose rates
 - Up tu Gy/min
- Contact with body
 - Temperature
 - Humidity
 - Body fluids
 - Sterilization
 - Non-toxic
- Measured quantities
 - Entrance absorbed dose
 - Machine output
 - Patient position
 - Exit absorbed dose
 - Delivered dose
 - Intracavitary absorbed dose
- Purpose

٠


- Irradiation plan verification
- Type of measurement
 - Phatom measurement
 - Simple
 - Antropomorfic
 - In vivo measurement


LUMDETR 2018 Summer School

WP34 Calibration Water Phantom



Radiotherapy – other modalities

- Brachytherapy
 - Used energies are small
 - Beta radiation is used
 - S. Kirov et al. Phys. Med. Biol. 40 (1995) 2015
 - ¹⁹²Ir dose distribution in water phantom; TLD-100 (LiF:Mg,Ti)
 - L.A. DeWerd et al. Rad. Meas. 71 (2014) 276
 - Determined precise energy dependence (1.04-1.13; $1.0 \approx {}^{60}$ Co)
 - ¹²⁵I, ¹⁰³Pd, ¹⁹²Ir used; measurement using TLD-100
- Nuclear medicine
 - Much more complicated
 - Short penetrating range of particles
 - Changing distribution of radionuclide in body through time
 - TL/OSL application has limited value

Radiodiagnostics

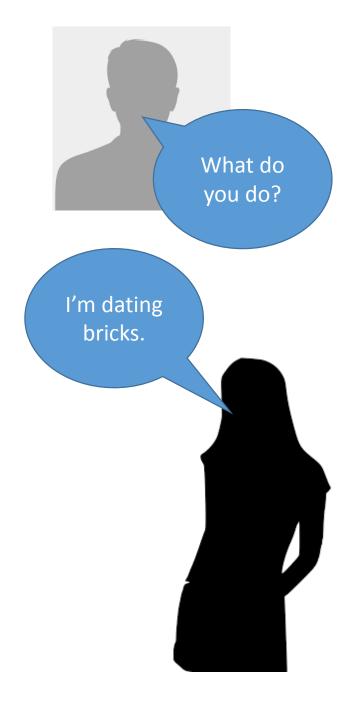
- Purpose
 - Determination of absorbed dose
 - \rightarrow intercomparison of departments using same modalities
 - \rightarrow Diagnostic reference levels determination
 - Justification, optimization (radiation protection)
- Energies
 - Up to 120 kV (skiagraphy, CT)
 - Around 200 keV (SPECT, Gamma camera)
 - 511 keV (PET)
- Doses
 - Abdominal CT, PET, SPECT approximately 10 mSv (Dual energy CT even higher)
 - Skiagraphy of joints, extremities 10μ Sv
- Measurements
 - In vivo
 - Antropomorphic phantoms
- Tissue equivalence important
 - Radiation field unchanged (energy in kV range)

CONCEPT-MIKE ADAMS ART-DAN BERGER WWW.NATURALNEWS.COM

CAUSE CANCER

DETECT

MAMMOGRAM 5000 CONTROL PANEL



Thermoluminescence dating

- t = $\frac{D}{\dot{D}}$
 - t object age
 - D measured dose
 - *D* dose rate

• t = 0

- Moment of annealing, i.e. trap emptying
- = heating of the object
 - Firing of pottery, bricks, etc.
 - Fire burial
 - Fire

Thermoluminescence dating

- D is tricky
 - Supralinearity?
 - Sublinearity?
 - Fading?
 - Plateau test
- \dot{D} is tricky
 - Was it constant through the ages?
 - How can we measure it?

•
$$\alpha$$

• β
• γ
• γ
• γ

• cosmic

Thermoluminescence dating

 $\overline{k\dot{D}_{\alpha} + \dot{D}_{\beta} + \dot{D}_{\nu} + \dot{D}_{cosmic}}$

 D_{β}

neg

cosmic

 $\overline{k\dot{D}_{\alpha}+\dot{D}_{\beta}}$

- Techniques to make it easier
 - Quartz inclusion
 - Quartz α activity is low
 - Take large inclusion
 - Remove layer irradiated by α from outside
 - Fine-grain
 - Use only small grains (< 10 μm)
 - Everything is irradiated homogeneously
 - Subtraction dating
 - Fine-grain quartz
 - For objects removed from original environment (museum)
 - Zircon inclusion
 - High α activity

Thermoluminescence dating - faking

- TL dating is prone to be deceived by fakes
- Example from:

https://www3.nd.edu/~nsl/Lectures/phys10262 2014/art-chap5-4.pdf

- What dose is equivalent to 1200 yrs (clay horse T'ang dynasty)?
- 6.11 Gy
- What to do?
 - Combine methods they should not contradict themselves
 - Problem: one method = one sample; many methods = many samples \rightarrow object gone
 - Combine with non-invasive methods (e.g. archeomagnetism)