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Abstract

This report provides a critical and argumented evaluation of the MTP-Argon2 PoW scheme
presented in Section 4.5 of [7], loosely based on the Argon2 [3] memory-hard password hashing
function, including the Dinur-Nadler [11] and Bevand [6] attacks. It also provides new proposals
which attempt to fix the known deficiencies and improve the memory hardness of the scheme.
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1 Introduction

Proof-of-Work (PoW) functions [13] are designed to be hard to compute but easy to check. There are
challenge-response (interactive) and solution-verification (no direct interaction between prover/miner
and verifier) protocol variants. Their hardness may be based on computations, memory accesses [1,
2, 12, 9] or possibly other criteria. Memory hardness claims have been made about latency, bandwith
or amount of memory required for a task. In [17], memory hard is defined as a function which
requires memory proportionally to its computation cost. In the context of crypto-currencies, the
solution-verification PoW scheme is an essential building block which allows to distribute the rewards
between miners which maintain the distributed ledger, aka blockchain. Finding schemes for which
ASIC or FPGA hardware implementations do not show an undue advantage over CPU or GPU
software implementations is key to avoid the kind of mining power concentration that has occurred
with Bitcoin. When ASICs are considered, requiring significant memory is seen as a good deterrent.

2 MTP-Argon2 PoW

The Egalitarian Computing paper [7] presents various applications loosely based on the Argon2 [3]
memory-hard password hashing function for Proof-of-Work. The presented scheme includes instanti-
ation settings for crypto-currency applications, time-lock puzzles and disk encryption. Although the
Argon2 function could be used directly for such purpose, its very high single execution cost is some-
how prohibitive for the verifier, thus schemes displaying smaller verifier cost but yet requiring large
memory are sought. We focus here on the PoW scheme introduced in the paper and the proposed
crypto-currency instantiation.

The proposed PoW construction initial step is similar to [10]: it builds a Merkle-Tree over an
array and pseudo-randomly selects a subset of leaves based on the root hash of the tree as proof of
computation. The feedback loop means that changing inconvenient leaves require recomputing the
root hash, thus would change the leaf selection function. If enough leaves are provided, it ensures
that most of the Merkle tree has been computed. However, unlike [10], the array is memory intensive
and the PoW does not end at the Merkle tree proof, which is rather intended as a proof of the
fixed-cost array computation. It adds a more classical iterative hash partial inversion search on top
of the construction, which also depends on the contents of the large array. The idea is to provide
some memory-hardness property by showing that the large array was computed and stored, and also
that a probabilistic iterative search was performed. The naming of the scheme (MTP-Argon2 PoW –
Merkle Tree Proof Argon2 Proof-of-Work) seems unfortunate, as the Merkle tree aspect of the proof
is unrelated to the actual PoW scheme and it does not actually use the Argon2 function.

2.1 Initial Description

The following notations are taken for the paper and used:

I challenge identifier, e.g. a 32 or 64 bytes hash of something. . .

T memory size in KiB, a power of 2 (why T?).

L length of one search, which induces the proof size and verifier cost.

d strength of PoW, number of expected zeros in final hash value.

Hs(x) a variable-size (s bytes) cryptographic hash function. The paper uses BLAKE2 [4] (1 ≤ s ≤ 64)
with an extension to larger sizes which costs about one call every 32 bytes (Section 3.2 of [3]).
For complexity purposes with BLAKE2, we count a unit of cost per 128-bytes block of input
data, which encompasses 12 calls to the underlying compression function.
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x′ = P (x) Permutation P performs 8 calls to compression function G loosely based on BLAKE2
internal round function (Annexe A of [3]). It takes 128 bytes at a time and uses 64-bits add
(+64) and xor (⊕64), 32-bits input 64-bit result multiplication (∗32 – deemed expensive on ASIC),
circular 64-bits shifts (�x) and left 64-bits shifts (aka multiply by 2).

B′ = F (B0, B1) a compression function which takes two 1 KiB inputs, produces one 1 KiB output
taken from Argon2, and which relies on 16 calls to Permutation P internally (Section 3.4 of [3]).
Total computation cost is about 128 compression function calls, or about cF = 11 BLAKE2
128-byte processing calls.

φ(i) a contextual indexing function which depend on the current iteration, on the phase of the compu-
tation, on the data dependent (d) or independent (i) variant, on the degree of parallelism. . . The
data-dependent variant relies on the previous element contents and implies an integer modulo
operation to select an element among the already computed ones, i.e. we have something like:
φ(i) = φd(X[i− 1]) mod (i− 1).

The initial description [7] of the PoW search algorithm (prover) is, from I, L and d:

1. Build memory X[1 . . . T ]:

(a) X[1] = H1024(I)

(b) X[i] = F (X[i− 1], X[φ(i)]) for i > 1

2. Compute Merkle-tree root Φ of X with H16

3. Choose Nonce N

4. Y0 = H?(Φ||N)

5. For 1 ≤ j ≤ L compute:

(a) ij = Yj−1 mod T

(b) Yj = H?(Yj−1, X[ij ])

6. If YL has d trailing zeros, the PoW search ends, otherwise go to Step 3

7. Final output is (Φ, N,Z) where Z is the opening (Merkle tree proof) of all X[ij ] memory
antecedents, namely the 2L elements X[ij − 1] and X[φ(ij)].

Step 1 and 2 constitute the initialization phase. The actual search loop is between Step 3 and 6.
Final Step 7 returns the PoW. The PoW verification part is then:

1. Check Merkle tree proofs Z

2. Compute X[ij ] with F and provided X values

3. Compute YL from N , Φ and computed X values and checks that it ends with d zeros

Memory accesses on Array X occur while building the array on Step 1 and at each iteration of the
search in Step 5b.

This algorithm description from the paper include some deficiencies, most of which probably due
to over-simplification and lack of proof-reading:

• Indexing function φ must access existing blocks in Array X, thus 1 ≤ φ(i) < i, so we must have
φ(2) = 1, hence from Step 1b it follows that X[2] = F (X[1], X[1]).

Compression Function F is taken from Argon2, and is such that F (B0, B1) = F ′(B0⊕B1), thus
X[2] = F ′(X[1]⊕X[1]) = F ′(0) is a constant independent of I.
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Function F is built on top of P which repeatedly combines integers without using any constant.
Adding, xoring, multiplying and shifting 0 leads to 0, so P (0) = 0, thus X[2] = F ′(0) = 0.

Indexing function φ(i) in the Argon2d variant depends on the first bytes of X[i − 1], so that
φ(3) = 2, thus X[3] = F (X[2], X[2]) = 0 (?)

By induction, we then have ∀i, 1 < i ≤ T,X[i] = 0.

• Step 5a computes ij ∈ [0, T ), but the index is used to access Array X which is defined on [1, T ].

• Step 5b uses H(Y,X) which is not fully defined and could be a weakness, see Section 3.7.

• Step 7 does not specify what to do if ij = 1 and there are no antecedents.

• Step 7 provision of Φ is redundant with the Merkle tree proofs and verification from Nonce N
which allows to recompute and check it.

• As noted in [11], the verification does not check that provided proofs are linked to Challenge I,
unless X[1] happens to be included in the solution, and even that is not enough.

• Also, the verification should check that all provided X values are used.

• The precise form of the Merkle tree proof and its associated verification for a set of leaves is
not specified, as also noted as Attack 2 and 3 in [6]. We will assume that this verification is
complete, that is the location, value and usage of all leaves is actually checked.

• The size of the intermediate hashes is not clearly specified, we assume that it is 16 bytes.

2.2 Amended Description

In order to fix the various issues raised above, we suggest the following PoW search algorithm, which is
an attempt at clarifying the initial description. The array and variable indexing starts from 0 following
usual conventions. From I, L and d, we compute:

1. Build memory X[0 . . . T − 1]:

(a) X[0 . . . 1] = H2048(I)

(b) X[i] = F (X[i− 1], X[φ(i)]) for i ≥ 2 and with 0 ≤ φ(i) < i− 1

2. Compute Merkle-tree root Φ of X with H16

3. Choose nonce N

4. Y0 = H16(Φ||N)

5. For 1 ≤ j ≤ L compute:

(a) ij−1 = Yj−1 mod T

(b) Yj = H16(Yj−1||X[ij−1])

6. If YL has d trailing zeros, the PoW search ends, otherwise go to Step 3

7. Final output is (N,Z) where Z is the opening (Merkle Tree Proof) of the L X[ij ] memory
antecedents namely X[ij − 1] and X[φ(ij)] if ij ≥ 2, or X[ij ] if ij < 2.

Computation Complexity The computation complexity in hash-block calls (with F counted as
11 calls) is 20 · T + 41 + 2d(9 · L+ 1) ∝ (2 · T + 2d−1L) (if we admit that 10 ≈ 9 for the nonce).
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Memory Access Complexity The memory accesses on Array X occur at Step 1, 2 and 5b. In
Step 1, there are 2 accesses for each built element, one being the element just built i − 1, and the
other pseudo randomly through φ(i). It must be noted that Function φ (Section 3.2 of [3]) is not
uniform: recent indexes are chosen more often with a quadratic probability, leading to improved cache
effects. The rational for this is not clearly expressed, but it may be to try to counter the fact that
the initial sweep for building X would use more often indexes at the beginning of the array. Hash of
leaves needed by Step 2 can be computed on the fly while building Array X. In Step 5b accesses are
pseudo-randomly uniform over all Array X. On average, the total number of array accesses during a
search is thus about 3T + 2dL, which is comparable to the computation complexity.

Partial Dependency on Challenge How to check that the proofs is indeed linked to Challenge I
is unclear, as noted in [11]. Including X[0] in Z is not enough if it is not shown that other array values
are linked to it as well. This issue will be addressed in Section 4.2 by using the challenge at every step
of the computation.

Crypto-currency Instantiation The suggested instantiation for crypto-currency, called MTP-
Argon2 in Section 4.5 of [7], is to use the Argon2d (data-dependent) variant with 4 parallel lanes
(point discussed in Section 3.8), use hash function BLAKE2 [4] for H, use H16 for the Merkle tree,
T = 221 so that Array X is 2 GiB, and L = 70, which leads to 225.3 + 2d+9.3 hash-block operations
and 222 + 2d+6.1 memory accesses on X.

Choice of BLAKE2 The choice of hash function BLAKE2 for a memory-hard PoW is reasonable.
It requires a small 336 bytes of RAM, which is not an argument when building a memory-hard PoW
scheme. However, BLAKE2 uses about half cycle-per-byte compared to SHA-3, which for memory-
hard PoW purpose where the expectation is to emphasize memory accesses seems a reasonable choice.

Choice of Length The proposed choice of Lengh L looks somehow arbitrary. In particular, there
is no clear indication on how it should change depending on other parameters (e.g. memory size T ,
possibly PoW strength d). The paper includes a proof that this choice induces a limited 1

12 advantage
for ASIC implementations with these particular parameters (although the proof seems to suggest that
a cheating test failure cost as much as non cheating test failures, which may not strictly the case as
a cheating test failure can be detected early when an inconsistent block is required?). Other security
criteria push towards a reasonably large L, but for the resulting proof size and verification costs.
First, it should be large enough so that computing only a fraction of X impairs the search algorithm
significantly. Equation (2) in [10], for a related problem, provides a relative cost lower bound is for a
provable Merkle tree computation which depends on the required number of proofs 2L and number of
leaves T . With these notations, the formula translates to:

f ≥ T
−1

2L+1
2L

2L+ 1

thus L ≈ −1
2·log2 f

· log2 T . Choosing f = 0.9 as [10] leads to L = 3.3 · log2 T = 69, which is consistent

with [7] choice, but also provides an interesting guideline if T changes. Second, it should ensure that
Step 1 initialization phase is negligeable compared to the search phase so that the search is progress
free, thus we want 2T � 2dL. This is also consistent with having a search cover most elements
T � 2dL.

Constraints on Strength As discussed in the previous paragraph, the consistency of the scheme
with respect to its objectives is that the search should cost more than the array initialization. Given
the other parameters, this leads to d ≥ 16. A trivial constraint is that Strength d is smaller than the
hash size it targets, the limit of the partial inversion being a full inversion of the hash function. With
a S = 16 bytes hash size, we understand that d ≤ 8 · S = 128. The actual choice for d in [16, 128]
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depends on the implementation speed, available computation power, and desired frequency of finding
a solution. For reference, bitcoin in 2017 typically requires under 270 relatively inexpensive SHA-256
operations for each block. A working memory hard scheme would be expected to be significantly
harder, although the reality of this is yet to be determined. BLAKE2 hardware efficiency is similar to
SHA-256 [15], and one candidate hash with defaults settings requires 631 invocations, so the relative
computation ratio over Bitcoin’s SHA-256 is about 29.3. A somehow large mining power operation
where dozen millions of cores would compute one billion candidate hash per second and find a hit
every few minutes leads to d ≤ 70. In the following, we will assume d ≤ 70 as large but still realistic
and d ≤ 100 as conservative.

Size of Proof The size of the resulting PoW is large: it involves about 2L 1 KiB blocks and
their associated Merkle tree proofs. Note that the Merkle tree proofs of a set of leaves of the tree is
smaller that the cumulated proofs for each leaf: assuming 16 byte hashes, it is about (some leaves may
occasionally overlap) 2 ·L ·16(log2 T − log2 2L)+L1

8 log2 T bytes (first part for the needed intermediate
hashes, second part for half the leaf positions as the others can be recomputed with φ). The overall
size is about 171 KiB (lower than the 180 KiB evaluation in [7]) and induces anyway a significant
burden on a crypto-currency chain.

The intention of the Merkle Tree Proof requirement is that it allows to check that the prover did
indeed build the array. However the attack paper [11] shows that this is not the case, as discussed in
Section 3.4. It mostly really shows that some Merkle tree computation did take place.

It is interesting to note the search state size, which is the current values of Nonce N (11 bytes?),
Iteration j (1 byte?) and current Hash Y (16 bytes?), that is about 28 bytes, which is quite small.
This will be discussed further in Section 3.5.

Number of Antecedants The proposed schemes suggests to include one level antecedents of the
needed array elements. The scheme could have considered going multiple levels, e.g. two levels and
recomputing both levels:

X[i] = F (F (X[i− 2], X[φ(i− 2)]), F (X[φ(i)− 1], X[φ(φ(i)− 1)]))

Alternately, the array element could depend on more previous array elements with limited additional
computing costs:

X[i] = F (X[i− 1], X[φ1(i)], X[φ2(i)], . . .) (1)

However, such changes would reduce search Length L for a constant number of proofs, which does not
seem desirable as it would reduce array accesses. A positive impact of adding dependencies is that
the Dinur-Nadler attack precomputations costs would be significantly enlarged. At the minimum,
the impact of such possible changes to the design should be evaluated carefully. We investgate such
options in our proposal Section 4.3.

3 Discussion

We discuss various issues about memory-hard schemes and their applicability as PoW schemes. We
measure the benefit of an attack as a couple (α, σ) with α the memory saving as a fraction of the
standard memory and σ the associated computation cost as a multiplier of the standard. We propose
that for a memory-hard PoW function, any scheme saving half the memory or above α ≥ 1

2 should
induce a significant σ ≥ 64 cost multiplier up to conservative Strength d ≤ 100.

3.1 MTP Proof of What?

The Merkle tree proof part of the PoW in [7] shows that most Array X elements at the leaf are so that
X[i] = F (X[i − 1], X[φ(i)]) holds. It does not follow that these elements where computed from the
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provided challenge, nor that they were stored in memory instead of being possibly recomputed when
doing the iterative search. At the minimum, this means that computing Array X and the Merkle tree
root hash are not necessary, as reusing a previous instance would work as well, as taken advantage by
the Dinur-Nadler attack discussed in Section 3.4.

3.2 Memory Saving Attack

Section 4.2 in [7] also presents a memory saving attack and argue that the resulting space-time
complexity is prohibitive for significant compressions.

Let us consider α = 1
2 compression of Array X where every two elements are discarded, the

other one being kept. When running the search loop the prover has 50% probability that a needed
element is available and can be processed directly, and 50% that is must be recomputed. The cost
of the recomputation it to apply F on the previous available element and the φ(i) element which
may in turn be available or not, and so on recursively. The average recomputation cost in F calls is:
1
2 · 0 + 1

2 · 1 + 1
4 · 1 + . . . ≈ 1. The average number of X accesses is: 1

2 · 1 + 1
2 · 2 + 1

4 · 2 + . . . ≈ 2.5. This
show that for a limited recomputation cost the memory requirement for an ASIC implementation can
be halved, and under some cache size this might be interesting even for CPU implementations. This
attack benefit is (0.5,≈ cX+cF

cX
≈ 2.2): half memory is saved but accessing an array element costs cF

on average instead of 0, which impact the overall search cost.
The good news is that this cost increases very quickly when the memory saving is increased

further (Section 5.1 in [3]). With α = 2
3 on average the recomputations have to randomly walk back

to the first blocks of Array X inducing about log2(T ) F computations per element. With α = 3
4 , and

T = 221, average cost per element is over 100,000 F computations (per a numerical simulation), as most
elements and their dependencies must be recomputed. These data are consistent with some memory
hardness claims of [7] and [3], although this does not prevent the Dinur-Nadler pre-computation attack
presented in Section 3.4.

One way to improve the resistance to memory compression could be to make F rely on more
previous elements, as outlined by Equation 1. For α = 1

2 and with 3 dependencies instead of 2,
the average recomputation cost in F calls would then be: 1

2 · 0 + 1
2 · 1 + 2 · 14 · 1 + 4 · 18 · 1 + . . ..

This construction diverges slowly along the hops, similarily to the one-in-three compression and two
dependent elements, thus induces significant recomputation costs. The exact average cost depends on
the various parameters (array size, number of dependencies, which elements are available) and on the
biased pseudo-random index functions. It can be computed with simulations.

3.3 Raw Recomputation Attack

A baseline attack which breaks the memory requirement is simply to recompute each value when
needed, recursively following dependencies. This seems to requires about log2 T

log2 1.5
elements space. The

cost of computing the ith element is about ci ≈ 1+ci−1+c 2
3
(i−1), as it depends on its previous element

and on a pseudo-randomly chosen one with a biased selector, and starting from c0 = 0, c1 = 0, c2 = 1.
This sequence growths steadily, the average cost per element with the default parameters is 2263.1

calls to F (per a numerical simulation). The attack benefit is about (≈ 1.0, cF · 2263.1): most memory
is saved, at the price of many computations. The Dinur-Nadler attack presented next improves
substantially over this baseline.

3.4 Dinur-Nadler Attack

A detailed and theoretically convincing cheating attack is presented in [11], which is somehow a
clever application of the block modification attack (Section 4.2 in [7]) with an added twist to allow
recomputing many blocks instead of storing them, at the price of some precomputations.

The paper shows that MTP PoW memory requirements claims [7] can be avoided by precomputing
a special Array X which mostly respects the F computations but the iterative construction is broken

7



at regular points which allow to reconstruct missing X values from a few kept values (named control
blocks in the paper), thus avoid storing the whole array. The attack is based on control blocks which
are kept stored, with a parametric t compression, so that T/t regularly spaced blocks are kept. These
control blocks could be pseudo-randomly generated from a specific nonce, lowering further the memory
requirements, although at the price of additional computations to rebuild X values when needed. The
reconstruction cost from control block is bounded by carefully choosing those so that φ(i) functions
happen to use control blocks as well, avoiding a deep recursion to rebuild missing values. The authors
also discuss a trade-off where the precomputation condition is relaxed, lowering the precomputation
cost, at the price of a more expensive search (Section 5.1 of [11]). We will not consider this trade-off
as our analysis is mostly driven by the search phase cost.

The special array X construction involves pre-computing suitable control blocks so that all follow-
ing (t − 1) blocks depend on the preceding block or another available control block. In [11] the cost
of this precomputation for each T/t sequence is evaluated to tt−2 calls to F , that is an overall chain
precomputation cost T · tt−3 (Equation (7) in [11]). We refine this evaluation to the following:

cF ·

(
t−2∑
i=1

i(t− 1)t−i + (t− 2)t(2−t)

)
· tt−2 · T

t
≈ cF · α(t) · T · tt−3 with 1 ≤ α(t) ≤ 1.25 (2)

The cost expression counts F costs. The summation computes the cost of failing to find a sequence
after i iterations starting from a chosen control block, weighted by their probability. The second is
the cost is the one which succeeds. The last block does not need to be computed, it is sufficient to
know that its dependencies are available. The following term is the number of expected iterations to
find one sequence and the final one the number of sequences to compute. For instance choosing t = 8,
this is equivalent to 1.14 · 221 · 23·5 · 11 ≈ 239.7 BLAKE2 calls.

However, when considering the search algorithm, the probability of finding available blocks on a
partial Array X is reduced in the iterative search to ( t−1t ) at each stage, which ends up being quite
costly if t is small as only ( t−1t )L iterations succeed in computing a final hash. The F calls cost to
compute one Ω is evaluated to cF · t · t2 · (

t
t−1)L (Equation (9) in [11], with t the average number of

iterations along L, t
2 the cost of recomputing a block, and the last term is the expected number of

attempts to compute one Ω hash). This search cost can be refined, based on cF and cX costs:(
L−1∑
i=0

(
1 + cXi+ cF

t

2
i

)(
1− 1

t

)i 1

t
+

(
1 + cXL+

t

2
cFL

)(
1− 1

t

)L)
·
(

1− 1

t

)−L
(3)

The summation computes the cost of stopping when computing Yj because it finds a control block for
which the attacker does not have suitable predecessors to produce as proof. The second part is the
cost for the computation which got through the whole loop. The final term is the expected number
of attempts to get one final value.

Table 1a shows numerical evaluation of the precomputation and search phase log2 costs of the
Dinur-Nadler attack, to be compared to 24.46 and d + 9.3 without cheating. Whether the resulting
scheme would really be beneficial depends on the specifics of the implementation and the expected
usage pattern. For the proposed parameters, the best achievable search cost is at least d+ 15.4, that
is about 215.4−9.3 = 26.1 ≈ 68.4 more BLAKE2 calls1 compared to the non cheating search. The
attack benefit, without taking into account precomputation costs which are assumed amortizable over
many challenges, is (≈ 1.0, 68.4): most memory is saved but at a significant cost. Table 1b shows
the same conservative evaluation for the scheme presented in Section 4.2, including the back sweep,
to be compared to 25.0 and d + 6.99 without cheating. However, unlike the preceding case the pre-
computation is challenge-specific, thus must be included in the attack cost. The analysis yields a
218.0 multiplier for t = 17 with a realistic d = 70 and a 98.0 multiplier for t = 22 with a conservative
d = 100. The attack benefit is thus at least (≈ 1.0, 98.0) for this design, and shows a larger margin
for more realistic settings. We show in Section 5.5 that such multipliers make the attack unbeneficial
even with favorable assumptions.

1Given the high cost of a precomputation for those settings, a more realistic assumption leads to a multiplier over 90.
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t log2 Eq (2) d+ log2 Eq (3)

4 26.78 d+ 35.61
6 32.48 d+ 26.13
8 39.65 d+ 22.02

10 47.86 d+ 19.81
12 56.85 d+ 18.47
20 98.01 d+ 16.28
25 126.68 d+ 15.82
30 156.99 d+ 15.58
35 188.64 d+ 15.47
40 221.41 d+ 15.41
45 255.15 d+ 15.40
50 289.75 d+ 15.40

(a) T = 221, L = 70, cF = 11, cX = 9, no back sweep

t log2 Eq (2) d+ log2 Eq (3)

4 27.32 d+ 38.19
6 33.02 d+ 26.49
8 40.19 d+ 21.35

10 48.41 d+ 18.55
12 57.39 d+ 16.83
20 98.55 d+ 13.91
25 127.22 d+ 13.25
30 157.53 d+ 12.89
35 189.18 d+ 12.69
40 221.95 d+ 12.57
45 255.69 d+ 12.51
50 290.29 d+ 12.48

(b) T = 225, L = 84, cF = cX = 1, with back sweep

Table 1: Attack Cost Numerical Evaluation in BLAKE2 Calls

Key enablers of this attack include that (1) φ is inexpensive and only depends on the first a few
bytes of an element, (2) F is independent of the challenge which allows costly pre-computations and
induces that the verifier does not really check that the computation was specific to the challenge.
Although the attack pre-computation cost seems prohibitive, in the context of a crypto-currency the
reward could also be large, especially as it only needs to be done once and can be reused afterwards
indefinitely. In order to thwart this attack, a simple counter measure, not mentioned in [11], is to
make F depend on the challenge so that the precomputation would have to be performed for each
challenge. We do so in Sections 4.2 and 4.3.

Moreover, as noted in [11], finding a cheating proof could make a blockchain unstable, as a full
recomputation of the proof from the parameters would not yield the validated PoW, thus some verifiers
may decide not to accept the proof and create a fork at such juncture while others would accept it.
We discuss this further in Section 3.8.

3.5 Parallel Searches

In the context of a probabilistic PoW the bottleneck of which is memory bandwidth, the prover
is interested in performing more computation per loaded data, or with data already available in
cache. In order to do that, the search paradigm can be inverted so that instead of fetching Array X
elements needed for updating the Y value for nonces, it rather fetches the Y values for which the array
elements are available, and scans the array in a round-robin fashion so as to make all parallel searches
progress. This algorithmic change is significantly profitable if the search state for a nonce is small.
The proposals below add a step to enlarge this search state beyond the (possibly) 28 bytes in [7].
This does not impact Array X memory requirement, but reduces the efficiency of a memory bandwith
limited implementation, and makes it harder to amortize the 2 GiB memory cost over several solvers.
A possible hardware implementation of such a solver is outlined in Section 5.6.

3.6 Memory-Hardness

Memory-hardness has been sought for based on latency, bandwidth and size.
Latency is usually significant when computing just one memory hard function. However, when

doing an extensive search, such as in password enumeration or PoW, several passwords or nonces can
be evaluated together and the latency of one is masked by the computation of others, so that the key
limiting factor is really the memory bandwidth and not its per access latency.

So bandwith and possibly cache hit ratio is the relevant factor for computing directly the function
values on a set of nonces. However, as discussed in Section 3.5, computing these functions with a
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enumerative progressive approach can reduce the bandwith requirement per function computation by
reusing data already in cache. If such implementation is possible for a given function, the required
memory for search states becomes the limiting factor, and once available the computations can proceed
at full (ASIC) speed. A key factor is the computation state size per nonce which also requires some
memory and limits the applicability of the approach. This point induces the added Step 6 in our
proposals (Section 4.

Another point is that if the ASIC profitability is very sensitive to memory, and as requiring a
significant memory size for the auxiliary array would push ASIC designers to compute more nonces
in parallel in order to amortize the array cost, then enlarging the search state memory requirement
would also help limit the benefit of such designs.

3.7 Hash Composability

The composability property of hash functions may change the memory requirements significantly. Hash
functions use an internal state which is updated as block of data are put in to be hashed, and the
actual hash extract part or all of this state. The initial state is H0, the final extraction is Hω, and the
Hπ(block) is the state updating function, so that for instance H(B1||B2) = Hω ◦Hπ(B2)◦Hπ(B1)◦H0.

When using such a composable hash function for memory hardness, a potential issue is that initial
blocks may be preprocessed so that only the hash function state needs to be kept and the actual block
content can be discarded, replacing a large memory block by a smaller hash state. In order to avoid
this issue, it is important that H(x, y) in [7] is really implemented as H(x||y) and that on each call
parameters are sorted so that the most recently known value is processed first by the hash function.

3.8 Parallel Function

The Argon2 [3] specification emphasizes the internal parallelism of the memory-hard hash function
with a parametric loosely interdependent number of lanes which induce some issues of its own (Attack 1
and 4 in [6]). Using parallelism makes sense for a password checking algorithm, as most devices are
now multi-core and expected to grow. On the verifier side, as it must fully recompute the value
to check for the password, taking advantage of parallelism provides both speed and yet consummes
resources. On the password cracking attacker side, parallelism will be used anyway to enumerate
passwords. Whether this property is desirable in a crypto-currency memory-hard PoW context is at
the least debatable. It could be chosen to make it highly parallel or not parallel at all.

The PoW scheme prover part first builds a large array, roughly with 4 degree of parallelism (4 lanes
suggested in [7]). This is a fixed cost (and time) to be incurred by each prover group before starting
the classical partial hash inversion search. It makes the search less progress free unless this phase is
negligeable compared to the search itself and can be amortized. Whether this is the case depends on
the detailed settings and implementations.

On the verifier side, the array construction is partially verified thanks to the MTP part of the
proof. However, as noted the verification is only partial: for instance the Dinur-Nadler attack does
not need to rely on computing the array memory and can be run in parallel to build the tweaked array.

So the alternative is:

1. Make the array construction fully sequential (i.e. 1 lane), which reduces some advantage of an
honest ASIC prover which will have to wait for the whole array to be available before starting
the partial hash inversion search, but at the price of making it harder to have a progress free
setting, and to keep only a partial check on the array construction.

2. make the array construction highly parallel, for instance with independent sequences of array
elements of some length, provided that it proovably does not reduce the memory requirements of
the scheme, which gives the ASIC prover some opportunity to take advantage of its hardware in
the array construction phase, but could also provide the verifier with the opportunity to actually
check that some sequences where computed by recomputing them.
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Having a fully verifiable proof seems an attractive property, so we would recommend to allow very
large paralleism for building T even if this also somehow favors large miners. Also, as this obviously
breaks the memory requirement property of the scheme, the idea is that it should be in the performance
interest of the solver to keep this memory over recomputations: it could be enough that fetching a
precomputed value, induring some storage cost and latency penalty doing so, significantly outweight
the cost of recomputing the value.

4 Proposals

We describe three memory-hard PoW schemes inspired by but trying to fix issues found in [7].

4.1 Constant Array

A key enabler of the attack [11] on MTP PoW is that it attempts – and fails – to check that Array X
was indeed computed without actually recomputing it.

In the context of crypto-currencies PoW, does it matter if the array depends on Challenge I? Not
necessarily. . . If not, then Array X may be fixed once and for all (i.e. constant), built from some
expensive scheme so as to deter on-the-fly ASIC derivations. This cost would be amortized over the
whole life of the currency and thus be negligeable. If no verification of the memory is necessary, the
whole Merkle-tree phase of the PoW is not needed, nor sending array elements, which removes most
of the weight of the PoW.

However, the search itself now needs to depend on Challenge I, which is achieved in the following
by using a Challenge I dependent hash function:

1. Let Array X[0 . . . T − 1] with elements of size x be

2. No-op, so that step numbering is compatible between versions

3. Choose Nonce N

4. Y0 = HS(N ||I)

5. For 1 ≤ j ≤ L compute:

(a) ij−1 = Yj−1 mod T

(b) Yj = HS(Yj−1||X[ij−1]⊕ I)

6. Ω = HS(YL|| . . . ||Y1−L mod 2)

7. If Ω has d trailing zeros, the PoW search ends, otherwise go to Step 3

8. Final output is N

The verification simply consists in computing and checking Hash Ω zeros from Challenge I and
Nonce N using a pseudo-random walk on constant Array X.

Complexity The computation complexity in hash-block calls is 2d
(
cX · L+ dS·L128 e+ 1

)
∝ 2dL,

where cX ≈ dx+S128 e is the cost for hashing one Array X element at Step 5b. With x = 1024 and
S = 64 this is 2d(10.5 · L + 1). With x = 64 and S = 64 this is 2d(1.5 · L + 1). The memory access
complexity on Array X is 2dL.

Length L must be large enough so as to deter storing only part of Array X and finding a sequence
of array elements which happen to be in this part. If only Fraction f of X is available, we want
fL � 1. On the other hand L is the verification cost which is desired as small as possible. Choosing
L = 32 or L = 64 looks like a reasonable option, provided that T � 2dL so that most array elements
are accessed in a search.

11



Size S We suggest S = 64 which is the maximum for one invocation of BLAKE2. Back sweep Step 6
makes one search state size at least LS bytes and adds a significant memory requirement (a few KB
per nonce) for parallel searches. It somehow ensures that the memory requirement is proportional to
the computation, although some trade-off is always possible: this memory is not strictly necessary,
as the Yj values could still be (re)computed from available data, but as keeping these values takes
less space than their dependencies, recomputations are not worth it. If some parallel pipelining takes
place, the average number of values needed is L

2 + 1 per search and should be considered to dimension
the memory requirements.

Array X Ideally, its contents should be fully incompressible random data. A possible construction
scheme for building a large constant Array X from entropy rich Constant C could be to use the Argon2
scheme [3] using at least two sweeps (t > 1) over C as a password.

4.2 Fully I-dependent Array, Tree and Search

Another key anabler of the attack [11] on MTP PoW is that compression Function F is fixed, thus
expensive precomputations can be done to build a special array independent of Challenge I and reuse
it for each PoW. In order to avoid this issue, a challenge-dependent function can be sought instead:
B3 = FI(B1, B2), so that pre-computations needed for an attack would have to be specific to each
challenge. This could also provides an indirect way to actually check that the computed Merkle tree
is fully specific to the challenge, as well as the underlying array, as checked FI element computations
and the full Merkle tree would now depend on I.

The updated search algorithm would be, from I, L and d:

1. Build challenge dependent memory XI [0 . . . T − 1] with elements of size x:

(a) XI [0 . . . 1] = H2x(I)

(b) XI [i] = FI(XI [i− 1], XI [φ(i)]) with 2 ≤ i < T and 0 ≤ φ(i) < i− 1

2. Compute Merkle-tree root Φ of X with HI
M (x) = HM (x||I)

3. Choose Nonce N

4. Y0 = HS(N ||Φ)

5. For 1 ≤ j ≤ L compute:

(a) ij−1 = Yj−1 mod T

(b) Yj = HS(Yj−1||XI [ij−1]⊕ I)

6. Ω = HS(YL|| . . . ||Y1−L mod 2)

7. If Ω has d trailing zeros, the PoW search ends, otherwise go to Step 3

8. Final output is (N,Z) where Z is the opening (Merkle Tree Proof) of the XI [ij ] memory an-
tecedents namely 2L elements XI [ij − 1] and XI [φ(ij)] if ij ≥ 2, or XI [ij ] if ij < 2.

Preferred Parameters Our preferred parameters, discussed below, are: T = 225, M = dd+13
8 e,

S = x = 64, L = 84, FI = HI .

Complexity Let cX ≈ dx+S128 e the cost for computing one Array X element hash at Step 5b or in
the Merkle tree, and cF the cost of calling FI once. The computation complexity in hash-block calls
is about (cF + cX + 1) ·T + 2d ·

(
(cX + S

128) · L+ 1
)
∝ 2dL (nearly). The memory access complexity on

Array X is about 3T + 2dL. With S = 16, x = 1024, cF = 11, cX = 9, T = 221, L = 70 we have about
225.4 + 2d+9.3. With S = 64, x = 64, cF = 1, cX = 1, T = 225, L = 84: we have about 226.6 + 2d+7.
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Length L In first analysis, choose L = 3.3·log2 T by applying the formula in [10], and only lower this
length with clear cryptographic arguments. Note that it may make sense to look for such arguments
because of the implied PoW size cost induced by a larger L.

Sizes T and x Changing Array X number of elements for a constant overall size could have inter-
esting effects. Consider doubling T ′ = 2T while symmetrically halving the element size. With the
proposed link between the number of proofs and the array number of elements, and assuming that the
ASIC resistance of the scheme stays the same, we have new Length L′ ∝ log2 T

′ ∝ 1 + log2 T ∝ L+ 1,
which reduces significantly the MTP proof size which is essentially the contents of 2L elements. How-
ever to keep the constraint that most array elements are accessed in a search and that the initial
phase is small compared to the search itself, in array accesses 2T ′ � 2d

′
L′, that is 4T � 2d

′
(L + 1)

which constraints the parameters harder. Also, the computation costs of hash operations is reduced
on smaller elements as it is proportional to data sizes. Choosing the best balance depends on imple-
mentation parameters (desired size, implementation speed, desired proof effort. . . ) and building an
updated compression function for the new size. A limit case could be T = 225 with 64 bytes array
elements, where BLAKE2 could be used directly as the element compression function, as discussed
below. Switching from FI to H has the benefit of using a standard hash function, but looses the de-
tailed tweaking of F to favor cpu-intensive operations such as large integer multiplications. Building
2 GiB Array X would then be slightly more expensive (16 hash calls per KiB instead of 11), Length L
would be slightly larger (84 instead of 70), and the search constraint would lead to d > 20 which
seems reasonable. The resulting proof size could be reduced under 50 KiB, most of which dedicated
to opening (Merkle tree proof) hashes.

Function FI A way to build FI would be to use a PI variant which would involve the challenge,
say by updating G to GI by adding some dependency on I. Another advantage would be to avoid
F ′(0) = 0 identity which tends to propagate. The limit case with element size x = 64 is to simply use
the hash function as F , for instance with FI(B1, B2) = H64(B1, B2⊕ I). An additional benefit is that
F is then a full blown cryptographic hash function, not a water down version.

Size M If the PoW size is an issue, and following [10], the Merkle-tree computation can use a smaller
hash size without ampering the overall security. With a simple criterion that one inversion to build
an array element should cost more than the whole PoW, for our preferred parameters this leads to
28·M ≥ 226.6 + 2d+7, which is roughly satisfied including a 26 = 64 margin if M = dd+7+6

8 e and if the
initial phase is negligeable as expected. For realistic d ≤ 70 this gives M ≤ 11, and for conservative
d ≤ 100, M ≤ 15. Note that collisions on Φ do not constitute a replay, as computations both before
and after depend on Challenge I.

Size S Again choose S = 64 which is the maximum for one invocation of BLAKE2. Step 6 makes
one search state size at least L · S bytes and adds a significant memory requirement (a few KiB per
nonce) for parallel searches. Note that this memory is not strictly necessary, as the Yi values could still
be (re)computed from available data, but at the price of L2 recomputations and Array X accesses.
As Yi values are smaller than their dependencies, their is no reason not to keep them (in register or
cache) in place of these and incur a recomputation cost.

4.3 MTP PoW Scheme Redesign: Itsuku

In this section, we propose a new design, named Itsuku, closely inspired by the MTP-Argon2 proposals,
but based on a different memory-hardness security principle and allowing a large parallelism for
building the array, allowing to lower the overall elapsed time cost on a parallel system. The key design
principle we follow is that the best attack benefit (α, σ) should have α ≥ 1

2 ⇒ σ ≥ 64, that is halving
the memory should induce a 64 or more search cost multiplier.
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The Array X building phase of Section 4.2 is replaced by a parallel generation which builds P
independent sequences of length ` = T

P .

1. Build challenge dependent memory XI [0 . . . T − 1] as :

(a) XI [p` . . . p`+ n− 1] = Hnx(p||I) for 0 ≤ p < P

(b) XI [p`+ i] = F Ix (XI [p`+ φ0(i)], . . . , XI [p`+ φn−1(i)])

for 0 ≤ p < P , n ≤ i < ` and assuming ∀k, 0 ≤ k < n, 0 ≤ φk(i) < i

The last phase is also updated to return the element themselves when they have no predecessors.
The choices involved, which determine whether the security constraint is met, are: the level of Paral-
lelism P , the number of dependencies n, the precise structure of Function F Ix depending on the number
of dependencies, the φk indexing functions, including how biased they could be. The cost multiplier
when halving memory is very sensitive to detailed changes: biaising more or less the φ functions results
in longer pseudo-random walks for recomputing values; the number of dependencies induces – or not
– a dense requirement on preceding elements, possibly triggering more recomputations; the pattern of
discarded elements profoundly influences the cost. In order to evaluate this elusive multiplier we have
relied on a numerical simulations and taken a large margin, whereas actually providing some proof
would be desirable.

Array Size T and Element Size x are still assumed as T = 225 and x = 64 to keep a 2 GiB
memory footprint. However, as discussed in Section 5.7, we advise to consider extending T to 226 or
227 to avoid efficient implementations allowed by improved technologies in the mid term.

Number of Dependencies n is a key parameter to trigger a dense recomputation when the array is
only partially available. The initial scheme chose n = 2, which allows a small multiplier for α = 1

2 . We
investigate n ≥ 3 in order to enlarge the multiplier in this case, so as to fulfill our security objective.
The larger the number of parameters, the more array elements are included in the PoW when providing
predecessors, thus the smaller the length parameter to achieve a given number of leaves.

Dinur-Nadler attack A side effect of added dependencies is that the Dinur-Nadler attack precom-
putations are much more costly, if at all possible. Its detailed evaluation depends on the actual index
functions. For instance, data independent φ3 suggested below makes it impossible to fall on a control
block for all i. If we assume independent pseudo-random φk,k>0 index functions, the probability that

the precomputation is stopped at each stage in Equation 2 is
(
1− 1

t

)n−1
, and the probability to be

successful up to the final stage is 1
t

(n−1)(t−2)
, which makes the precomputation overly prohibitive at

≈ cF · T · t(n−1)(t−2)−1. On the other hand, the search phase cost is reduced significantly as Length L
is smaller for a comparable number of proofs. The smallest cost multiplier for L = 28, n = 6, d = 70
is 80.8 with t = 6. For conservative d = 100 and n = 6, we need a larger L = 31 to reach a 69.9 cost
multiplier with t = 7.

Indexing Functions φk and Bias The multiplier simulations are very sensitive to the choice of
indexing functions φk with 0 ≤ k < n. We have considered the following debatable mixture of
data dependent and independent functions: φ0(i) = i − 1, φ1(i) = φ(i), φ2(i) = φ(i)

2 , φ3(i) = i−1
2

φ4(i) = φ(i)+i
2 and φ5(i) = 3·φ(i)

4 , where φ(i) is the quadratic-biased function defined in the Argon2
scheme, or possibly a cubic-biased version. Choosing n = 2 and P = 1 results in the Section 4.2
scheme.

Parallelism P Table 2 shows the average recomputation Cost cR in hash calls for accessing array
elements when every other element is available, depending on the array size and number of dependen-
cies. The value is the average of 5 to 100 simulations, depending on the computation time. Using a
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n
log2 ` 11 12 13 14 15 16 17 18

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 3.2 3.5 3.8 4.1 4.5 4.8 5.1 5.6
4 10.0 13.0 17.1 21.8 28.1 36.2 46.1
5 28.9 43.8 65.3 98.4 146.3 222.0
6 41.6 66.4 105.5 166.9 265.7

Table 2: Half Array Element Access Cost cR with Quadratic-biased φ

cubic-biased φ function typically enlarges these costs by another 1.5 factor. Other storage strategies
we have tested, such as keeping the first half and second half, resulted in much larger access costs: we
conjecture that the every other approach might the best possible one, or close to. The associated cost

multiplier for the search algorithm is
1+(cR+ 3

2
)·L

1+ 3
2
·L ≈ 2·cR

3 if cR � 3
2 , so we are looking for cR > 96. Small

number of dependencies do not allow to reach the target cost level. Without surprise, the greater the
number of dependencies or the array size, the higher the cost, hence the multiplier. Chosing an even
(for F Ix symmetry) but not too large (for reducing threshold effect on the number of leaves) number
of dependencies n = 6 and keeping a significant level of parallelism P = 210 or 211 leads to ` = 215 or
214, and a seemingly comfortable 178 to 112 cost multiplier, allowing a significant margin for better
storage strategies on the half size array. If the every other strategy is indeed the best possible one,
P = 212 would give ` = 213 and a large enough 71 cost multiplier. Note that this size seems too large
for the verifier to check array element values from the challenge.

Length L minimal value is derived from the expected number of leaves for the Merkle tree opening
n · L ≥ 168, which leads to L ≥ 28. Assuming that only data dependent φk,k>0 functions are chosen,
the Dinur-Nadler attack for d ≤ 100 suggested a slightly larger L = 31. This length is enough so
that even with a minor α = 1

4 not computed at all array saving, the search cost would be roughly
multiplied by (1− α)−L > 3000.

Hash Function F Ix is chosen so as to limit the cost of computing Array X to one hash call per
element, and to avoid simplifications in case the φk functions would collide for an index. The function
depends both on I and p so that each challenge and parallel segment has its own unique computations.
We suggest to rely on +64 modular addition on the array element considered as a vector of 8 unsigned
8-bytes integers to combine array elements so that only one hash call is needed:

XI [pt+ i] = Hx(p⊕
k<n

2∑
k=0

XI [pt+ φ2k(i)], I ⊕
k<n−1

2∑
k=0

XI [pt+ φ2k+1(i)])

Preferred Parameters for this variant are T = 225, S = x = 64, P = 210, n = 6, L = 31,
M =

⌈
d+13
8

⌉
and the above φk,0≤k<n and F Ix functions. If the choice of φk functions makes the Dinur-

Nadler attack impossible, for instance by including several data independent dependencies, L = 28
would reduce the proof size.

5 High-End Hardware Implementations

Instead of considering abstract implementations and time-area ratios as in [7], this section discusses
actual hardware designs for MTP scheme PoW solvers, and projects the possible result with improved
technology. First, we discuss an hypothetical BLAKE2 core (Section 5.1) and the reduced options for
storing 2 GiB ArrayX (Section 5.2). Then we take as a reference for possible future specialized harware
the NVIDIA Volta V100 GPU (12 nm process, June 2017) [16]: 21.1 billion transistors ≈ 5, 275 MGE
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accomodating on die 5,120 CUDA cores running at 727.5 MHz and about 45 MiB of SRAM, and
off die 16 GiB DRAM with 1 TB/s memory bandwidth assumed either way. We postulate that the
die area can be divided freely between computing cores or up to 628.8 MiB of 4T SRAM. Based on
such capabilities, we discuss the design of a dedicated special purpose processor where many BLAKE2
cores share a common memory for Array X. This hardware are evaluated for: MTP-Argon2 scheme
(cX = 9, L = 70) (Section 5.3); same with α = 1

2 array compression (Section 5.4); Dinur-Nadler
scheme (cF = 11) (Section 5.5); same with transposed implementation (Section 5.6); then these
various implementations and their possible evolution depending on technology changes are discussed
(Section 5.7); finally Section 5.8 shows expected performance for Algorithm 4.2 (cF = cX = 1, L = 84)
and Algorithm 4.3 (cF = cX = 1, n = 6, L = 31, P = 210).

5.1 BLAKE2 Core Hardware

In order to evaluate the area cost for a BLAKE2 core, we consider the VLSI implementations proposed
in 2011 for BLAKE-64 [15]. A high performance 8G (compression function) hardware is evaluated to
128 kGE and 15 cycles running at 298 MHz to process to process a 128 bytes input block (Table III
in [15]), that is 2.37 GiB/s. Taking this as a reference, and considering that BLAKE2 differs from
BLAKE-64 with less rounds (12 instead of 16), lower memory requirement and operation count per
round, we will assume a BLAKE2 hardware implementation with 100 kGE can run in 10 cycles at
300 MHz, which will be considered as 1 tick, i.e. a tick is one input block hashing and run at 30 MHz.
We consider this as representative of the time-area performance of the BLAKE2 hash function, with
possible smaller area leading to more cycles and vice-versa.

5.2 Hardware Memory

We assume that the SRAM (registers, caches) implementation on die requires only 4 transistors per
bit (4T SRAM), which is on the optimistic side. Storing 2 GiB of data would thus imply 17.2 GGE
on die or 68.8 billion transistors, way beyond todays technology, although maybe not that far away:
IBM foresees 30 billion transistor chips by 2019 [14]. As storing such an amount of data with very fast
accesses on die is not a realistic option for now, we will assume that any significant memory is stored
externally in DRAM, which raises the question of memory latency and bandwidth. However, search
states are significantly smaller and must be immediately available to avoid delaying computations,
thus would likely be stored in on die SRAM memory.

5.3 MTP-Argon2 Scheme Hardware

Let us consider a high-end fully-unrolled pipelined implementation of the initial MTP-Argon2 PoW
scheme, which could produce one candidate Ω at each tick: it requires 1 + cX · L = 1 + 9 · 70 = 631
BLAKE2 hash cores, that is about 63.1 MGE. The GV100 die could thus accomodate up to 83 PoW
solvers. Each solver would load x · L = 70 KiB of memory per tick (30 MHz), thus consumming
2.15 TB/s of memory bandwidth. As the available bandwidth is only 1 TB/s, it constitutes the
performance bottleneck, and most of the potential die area is not used. If the remaining area is
converted to cache, its effectiveness for random accesses at about 30.3% of the target memory would
help improve performance. Such a PoW solver would generate PoW candidates at about 21.5 MΩ/s.

This does not strike as an ideal design, as only 1% of the die is used for hash cores and the
remainder for a large cache. Also, it does not consider the typically 80-100 cycles memory latency [20]
to access DRAM for Array X. Such latency could be masked with about 8-10 threads, which would
require to replicate the small search state accordingly. The 2 GiB array is not a significant burden in
itself, as it is shared somehow by hundreds of mostly active BLAKE2 hash cores. The real limiting
factor is that the memory bandwidth can really accomodate about 300 (without on die cache) or 427
(with large on die cache) BLAKE2 cores, although the die could host up to 52,750 of them. The area
cannot be used efficiently for computing.
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5.4 Array Compression Hardware

Let us consider α = 1
2 Array X compression. As noted in Section 3.2, on average one F call and

2.5 elements are required per accesses to X. As the memory bandwidth was already the bottleneck of
the previous design, this approach will necessarily reduce performance, unless the compressed array can
be kept mostly in cache. In order to sustain the same throughput as the previous implementation each
PoW core would require cF · L = 770 additional BLAKE2 cores, the memory requirement is divided
by two but the memory bandwidth requirement is 2.5 higher. We are neglecting that this design
would also require implementating index Function φ which implies a integer modulo operator, adding
some complexity and latency to the computation. Our die would accomodate up to 37 PoW solvers
requiring each 4.89 TB/s, but the available bandwidth would be saturated for about 0.205 solvers.
Luckily, converting the remainder area into cache can help improve throughput significantly, especially
as it represents a significant part of the 1 GiB compressed memory. This overall architecture would
produce 13.9 MΩ/s, about half the performance of the preceding implementation. Similarly to the
preceding case, only a small part of the die is dedicated to computing.

5.5 Dinur-Nadler Attack Hardware

Let us now consider the Dinur-Nadler Attack. As noted on Table 1a, if the precomputation cost is fully
neglected, which is not realistic, the computation cost is multiplied by at least 68.4, thus 52,750 on
die BLAKE2 cores would produce at most 52750

631 · 68.4 = 1.22 Ω per tick. We neglected the index access
function which would be also needed. A more realistic although still quite optimistic evaluation,
which amortize the precomputation on one d = 70 proof produced every 10 minutes over 10 years (219

proofs), yields a 116.2 multiplier for t = 21, leading to 0.72 Ω per tick. The memory requirement being
much lower, we assume it could be stored on die in cache, thus memory (DRAM) bandwidth would
not be an issue. The overall architecture would produce about 36.7 MΩ/s (68.4 multiplier limit) or
21.6 MΩ/s (116.2 multiplier). This design improves throughput by 0.5% (quite optimistic) to 71%
(unrealistic) over the standard implementation. Although most of the area is dedicated to computing,
the throughput improvement is limited because of the large cost multipliers. On these settings, the
Dinur-Nadler attack brings few benefits in practice, even with favorable assumptions.

5.6 Transposed Search Hardware

We now investigate the transposed search algorithm outlined in Section 3.5. Its main benefit is to
reduce the bandwidth requirement which is the bottleneck of both the standard and compressed
implementations. As noted before, the search state size is 28 bytes, to which we add 4 bytes to
manage a data structure which would allow to order searches per next array element to process, using
some simple array and linked-list scheme. We will dedicate area for 576 MiB of search states on die,
accomodating on average 9 search states for each 221 elements, leaving 8.5% of die area available for
up to 4,429 BLAKE2 cores.

When sending one array element, 9 search states on average can be incremented using 9 BLAKE2
operations each, thus with available cores we can handle a throughput of about 4429

9 · 9 ≈ 54.7 elements
per tick, which translate to 1.53 TB/s bandwith to fetch them. This is yet again above the bandwidth
limit, but for a much larger number of cores, which are thus active at about 65.5%. The overall
throughput is about 137.8 MΩ/s, as BLAKE2 cores are quite actives and the memory bandwidth,
although still the bottleneck, is much less so. Throughput could be improved a little by allocating
remainder transistors to caching memory. The critical bandwidth efficiency is improved as 9 search
states share loading one array element. Moreover, as the memory access pattern is known in advance,
data can be prefetched and deep threading is not needed.

This design allows to feed thousands of hash cores with the available bandwidth. Although it is
much more efficient than previous implementations, most of the area is still dedicated to cache, and
under 10% is really used for computing.
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5.7 Comparison of MTP-Argon2 Scheme Hardware Implementations

The throughputs achieved by the preceding hardware implementations of MTP-Argon2 PoW solvers
are: 21.5 MΩ/s for the standard implementation, 13.9 MΩ/s for the α = 1

2 compressed implemen-
tation, 21.6–36.7 MΩ/s for the (quite optimistic to unrealistic) Dinur-Nadler attack implementation
and 137.8 MΩ/s for the transposed implementation. The Dinur-Nadler attack is not really practical
in this setting, given the very large precomputation cost needed to achieve limited benefit. For other
implementations, hundreds to thousands of active BLAKE2 cores share a common memory, amortizing
the burden of Array X size. Memory bandwidth is the key limiting factor, which gives a significant
advantage to the transposed implementation as loading an array element is shared by several hash
computations. However, these designs do not look very efficient as only 1-10% of the area is dedicated
to hash computations, and the remainder for cache.

These evaluations are sensitive to hypotheses which may not be fulfilled when technology evolves:
whether the array fit on die, the available transistors and the memory bandwidth constraint.

On Die Array As soon as the array can fit on die, any BLAKE2 core that can be crammed next
to it could be fed most of the time (well, probably not without any limit, that we ignore to simplify
our argument), improving the throughput. An hypothetical 100 billion transistor chip by 2026, about
5 times larger than the area considered by the previous design, could use about 2

3 of its area for
2 GiB SRAM memory, leaving area for 300,000 BLAKE2 cores generating 14.2 GΩ/s, thus providing
a handsome 100-fold throughput improvement. Even before this event, a smaller 50 billion transistor
chip would bring a performance milestone by hosting an α = 1

2 compressed array on die, leaving area
for 150,000 BLAKE2 cores generating 3.2 GΩ/s, thus providing an honest 23 speedup. To avert such
implementations, a memory-hard PoW scheme design must ensure that the array, or even half of it
for these settings, cannot fit on a die. As available die area grows with time, the array size should
scale accordingly. Starting with a 4 or 8 GiB array could be both compatible with todays CPU and
GPU hardwares and provide a larger margin against future on die storage.

More Transistors In the mean time, assuming a constant memory bandwith, transistor count
improvements add more cache and cores. The transposed implementation scales roughly linearly,
feeding 9 BLAKE2 cores per 64 MiB search state cache increments for each element transfered. A
30 billion transistor chip by 2019 would allow for up to 894 MiB of on die SRAM, fitting 13 states
per array element (832 MiB) instead of 9 and up to 5,206 BLAKE2 cores on the remaining area. At
the maximum memory bandwidth, 976 M elements can be loaded per second, feeding (×13) 12.7 G
memory states per second requiring (×9) 114.3 G BLAKE2 hash computations per second, which
needs 3,809 BLAKE2 cores running at 30 MHz. The throughput would reach 181.1 MΩ/s, a 31.4%
improvement compared to our 21.1 billion transistor chip.

Memory Bandwidth is the bottleneck of all our hardware designs but the Dinur-Nadler attack
implementation. Memory latency was assumed to be maskable by appropriate threading. Although
cores, cache and memory improve directly from better integration, the limiting factor of memory
bandwidth is less obvious, as it is mostly about fitting more memory bus lanes and handling the flow
of requests. If we assume that some novel technology could break the current limits, or that a specially
designed PoW solver could provide significantly better bandwidth, then the next in line bottleneck
is the number of cores. Under CPU-bound conditions, the standard implementation would run at
2,508 MΩ/s, the compressed implementation at 1,129.6 MΩ/s, the Dinur-Nadler implementation
would still optimistically run at 21.6–36.7 MΩ/s and the transposed implementation would raise to
210.6 MΩ/s. At such performance level, the memory size, shared between dozen thousands of cores,
is not a real issue.

The MTP-Argon2 hardware implementations show threshold effects depending on the origin of the
performance bottleneck. A memory bandwith bottleneck with a small search state makes the trans-
posed approach the most effective. As available on die memory rises, the compressed implementation
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where half the array fits on die becomes the leader, followed by the standard implementation once
the full array can be hosted. The Dinur-Nadler implementation would only come ahead by lowering
the available memory bandwidth. Performance results are similar with our proposals as shown in
Section 5.8, although the transposed approach cannot be implemented and the margin against the
Dinur-Nadler attack is larger.

5.8 Algorithm 4.2 and 4.3 Implementations

We now discuss the implementation of the algorithm variant presented in Section 4.2 and 4.3, with
x = S = 64 and a back sweep. We do not take into account Array X challenge-dependent initialization,
which is somehow assumed as negligeable compared to the search cost.

For Algorithm 4.2, one pipelined PoW solver (L = 84) would require 1+ 3
2 ·L = 127 BLAKE2 cores

and consume x ·L = 5,376 bytes per tick (161.28 GB/s) of memory bandwidth. As before, the DRAM
access latency should be masked by using perhaps θ = 9 threads. However with this scheme the search
state memory is significantly higher, as each PoW solver requires at least S ·(L2 +1)·L = 225.75 KiB per
thread (computed with hash size and average number of live values). From that state, only the current
64-bytes hash for each L first hash cores really needs to remain on die for most of the computation to
mask the L concurrent accesses, the reminder L

2 hashes on average can be either kept on die or could
be exported to RAM and brought back when the final back sweep must be computed. However, this
would consume more bandwidth which is already the performance bottleneck. Thus the full state of 9
threads should be kept on die, requiring 2 MiB per solver, which is larger than the PoW solver itself.
The throughput computations take into account that the significant remaining area is converted to
cache, thus lowers the bandwidth requirement. The best cost multiplier of the Dinur-Nadler attack
including pre-computation cost is 98.0 for conservative Strength d = 100. This is not enough to make
the scheme advantageous compared to the standard implementation.

A transposed implementation is much more problematic than the previous case because of the large
S · (L2 + 1) + 12 = 2764 bytes average search state size and the larger number 225 of array elements,
which would imply 86.4 GiB for just one search state per element. Even if only one current hash is
kept and other state hashes could be offloaded to DRAM, the search state is still S+12 = 76 bytes per
array element, inducing a still unpractical 2.375 GiB for one search state per element: As the search
state is larger than one element, the transposed search which provided the best throughput on the
MTP-Argon2 PoW standard scheme cannot yield any benefit. Assuming S = x kills the possibility of
a transposed search.

Scheme
cores Max PoW solvers

Ω/tick MΩ/s
per solver die area mem bw

Algorithm 4.2 + full on die thread cache 127 179.6 6.2 8.9 267.7
same + partial on die thread cache 127 402.4 3.1 4.5 134.1
α = 1

2 compression and mem cache 211 250.0 2.5 6.4 191.6
Dinur-Nadler Attack (×98.0) 12446 4.2 – 4.2 127.1

Table 3: Algorithm 4.2 implementations, including cache effects

Table 3 summarizes the various implementations for Section 4.2 PoW variant. The standard
implementation is the best one by a large margin, even assuming a conservative multiplier for the
Dinur-Nadler attack. Similarly to the previous case, all implementations but the Dinur-Nadler attack
are bounded by memory bandwidth, and most die area is used for caching rather than for computation.

Table 4 shows evaluations for Section 4.3 variant. The α = 1
2 Array compression is prohibitive

with n = 6 because of the computation cost and the added bandwidth requirement.
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Scheme
cores Max PoW solvers

Ω/tick MΩ/s
per solver die area mem bw

Algorithm 4.3 + full on die thread cache 48 1098.9 16.8 24.0 720.0
Dinur-Nadler Attack (×69.9) 3355 15.7 – 15.7 471.6

Table 4: Algorithm 4.3 implementations, including cache effects

6 Memory-Hard Crypto-Currency PoW Schemes

As noted in the introduction, crypto-currencies such as Bitcoin rely on a PoW function to randomly
share the reward for the maintainance of the distributed ledger, a.k.a. blockchain. Relying on a simple
computation-bound hash function has centralized the bitcoin mining market around a select group of
miners who can afford the specialized mining hardware. A consequence of mining power concentration
is that it can be open to cheating strategies which allow a participant to receive more rewards than
their mining power should entitle them, and their relative efficiency makes competition unprofitable.
Thus PoW schemes impervious to FPGA or ASIC implementations are sought, focusing in particular
on memory-bound approaches. Memory bound has been defined in term of latency, bandwidth or size.
The standard approach is to combine hashing and memory access in some pseudo-random way. We
discuss here two particular schemes: the CryptoNight [18] and Wild Keccak [8] hash functions.

6.1 CryptoNight

The CryptoNight hash function [18] proposed for CryptoNote [19] builds a scratchpad of pseudo-
random data with numerous read/write operations and hashes the result to get the final value. The
first phase applies Keccak [5] (aka SHA-3) to build some pseudo-random data, which are then encrypted
with repeated AES simple round iterations using various keys to fill a 2 MiB (221 bytes) scratchpad.
The second phase updates the scratchpad by iterating 219 AES rounds using a pseudo-random walk
on the scratchpad seen as 217 blocks of 16 bytes, thus overwriting each block 4 times on average.
The third and final phase uses XOR, AES and some part of Keccak to sweep over the scratchpad
and compute a hash of the whole thing, ending with a pseudo-randomly chosen hash function among
BLAKE, Groestl, JH, Skein. The overall structure is similar to the Argon2 password hashing scheme.

The provided specification lacks any discussion for the choices of various parameters (e.g. why 219

iterations. . . should it rather be 218 or 220?) and a justification for the apparent over-complication: no
full AES is used, the Keccak permutation is used at some point, then other unrelated hash functions
are invoked. No doubt the authors had some idea in mind, that they should have shared with the
reader. Using only partial or modified cryptographic algorithms means that the security properties
expected and studied for the full designs cannot be ensured, thus the whole security should be re-
analysed very carefully. No clear complexity/cost analysis is provided, in particular an analysis of
potential performance bottlenecks would be welcome. On the whole, it is plausible that the 2 MiB
scratchpad is really needed to compute the final value, without shortcut. However, the same property
could probably have been obtained with a simpler and more argumented approach.

From a crypto-currency perspective, we think that the approach is not ideal: The CryptoNight
is certainly an expensive hash function (maybe equivalent to 218 full AES calls?) which requires
2 MiB. However, verifying the results require the same amount of computation and memory, which
we believe are both too expensive on this side: A memory-hard PoW scheme should not require the
same memory constraint for the verifier. Moreover, even if 2 MiB is very expensive for ASIC, it is still
doable, especially as technology improves: the step is higher for a miner, but once achieved benefits
are ripe nevertheless.
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6.2 Wild Keccak

The Wild Keccak hash function [8] has been proposed for the Boolberry project. It aims at reducing the
memory-hardness on the verifier side while keeping a high requirement for the miner. For this purpose,
a global scratchpad is built with data coming from the blockchain itself, and is then extended as the
chain moves forward, targetting a 90 MiB per year growth. The hash function itself is a modification
of Keccak [5] where internal state update operations are modified and intertwined with memory
dependencies accessing the currency state. We agree with the authors who state: It is debatable if
this modification will keep all cryptographic properties of hash function. . . such changes should be
discussed in depth. Each hash computation involves 1100 accesses to 32-bytes block of scratchpad.
The paper lacks an analysis of how much of the stratchpad would be used in a typical search and
more generally an analysis of performance bottlenecks. A proof-of-concept implementation shows a
25− 45 µs per hash computation, depending on the scratchpad size.

In the crypto-currency context, we agree that relying on the blockchain data is potentially a good
idea to build a relevant scratchpad, provided that data is pseudo-random. Another benefit is that it
paves the way to a future growth of the requirement, although only a linear one. However, this also
means that the verifier needs this data: the verification cannot be performed using the block itself
and the light weight verifier property is only partially obtained.

6.3 PoW Schemes Comparison

We compare CryptoNight, Wild Keccak, MTP initial and present proposals.
All proposed schemes but the present MTP variants rely on weakened cryptographic primitives:

CryptoNight uses AES simple rounds and the Keccak permutation, Wild Keccak modifies the internal
operations and mixes them with other data, the MTP initial scheme devises a special F block combining
function based on a simplified version of the BLAKE2 compression function, stripped of constants
and with different operators. Weakening the cryptographic primitives without a clear analysis of
the consequences does not help building trust, thus we think that such design choices should be
avoided. If deemed necessary, accessing memory and using expensive operators should be performed
out of the primitives so that their security properties are unaltered. More generally, CryptoNight
and Wild Keccak are really specifications which lack precise and extensive cryptographic arguments
and justifications. Although this does not mean that they are weak, providing such discussions and
chosing genuine primitives that keep their native security properties would help build confidence in
these schemes.

The PoW function computation cost, essential for verification, is very large for CryptoNight, say
hundreds of thousands of calls, just one call for Wild Keccak, and a few dozens to a few hundreds for
the MTP variants. We think that this number should be kept reasonably low. CryptoNight and Wild
Keccak would benefit from a precise performance bottleneck analysis, taking into account potential
hardware implementation, which we have provided for MTP variants.

The underlying PoW properties, inherited from key design choices, are significantly different. The
verifier needs to store or rebuild the memory scratchpad with both CryptoNight and Wild Keccak,
enduring significant memory costs, while the MTP variants design rely on the Merkle-tree proof to
only convey part of the array, which is thus not fully needed for verification. As a consequence of this
property, the proof is significantly larger with MTP variants, typically dozens of kilobytes, compared
to only a few bytes for the former. Moreover, the array building cost must be amortized on a significant
number of searches so as to be negligeable and have a near progress free scheme.

For a memory-hard scheme, a key overall design option is the memory size requirement. It is
remarkable in itself that the different proposals vary so widely on that point: CryptoNight deems
2 MiB as enough, Wild Keccak starts with about 100 MiB, and the initial MTP scheme variant
requires 2 GiB. We think that even more is needed to provide enduring resistance to the scheme.
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7 Conclusion

This report brings new memory-hard PoW proposals based on [7] and which attempt to counter known
attacks [11, 6] on the scheme. Key contributions, which are steps toward a better memory-hard MTP
Argon2-based PoW scheme, include:

• to consider starting from a larger than 2 GiB array and include a way to increment its size as
hardware capabilities evolve.

• to use a constant Array X if possible, allowing a small PoW as the whole MTP part is avoided.

• otherwise, a criterion to choose L depending on T .

• to make compression Function F dependent on Challenge I through FI , with a limit case where
FI = HI .

Even if the Dinur-Nadler attack is not practical, such dependency ensures that any pre-computation-
based attack would have to be specific to the challenge, which is a good property.

• to make Merkle tree computation dependent on Challenge I through HI .

• to enlarge the search state size per nonce, and a way to do so with a back sweep hashing on
intermediate search hashes.

• to consider using a larger number of smaller elements for Array X, thus reducing the proof size
and making a transposed search uninteresting once x = S.

• a variant built around a clear security criteria: that any implementation which saves half the
memory or more should endure a 64-fold computation cost up to conservative PoW Strength
d ≤ 100.

• which allows to build Array X in parallel, making the scheme more progress free.

• a criterion to reduce the hash size for the Merkel Tree depending on d, which helps reduce the
proof size.

• particular instantiations:

– T = 225, x = S = 64, FI = HI , n = 2, L = 84, P = 1,M =
⌈
d+7+6

8

⌉
– and the variant . . . P = 210, n = 6, L = 31

• a coarse hardware evaluation loosely based on current high-end GPU technology of the various
algorithms and attacks, which shares Array X among many (100’s to 1000’s) BLAKE2 cores,
and suggests that the performance bottleneck is memory bandwidth rather than size.

• a refinement of the evaluation of the Dinur-Nadler attack costs.

Following [7], we recommand that an ASIC-expensive hash function, involving costly operators
available in general purpose CPU and GPU such as large width multiplication or division, should be
designed. From this perspective BLAKE2 could probably be improved upon, as the design criteria
and selection process for hash functions are usually in the opposite direction, trying to minimize the
hardware footprint by using simple logical operators. Such a function combined to the above PoW
design would help achieve a better specialized hardware resistant scheme. A simple way to build such
a function is to take an existing efficient hash function and add a xor layer which uses these operators,
e.g. with h(s, x0...15) the compression function which updates 64-byte internal State s with 128-byte
input x, build y0...7 as yi = (xi · x2i + xi+1) mod

(
x2i+1|29i

)
and then perform h′(s, x) = h(s, x) ⊕ y,

adding 32 integer arithmetic and 16 logical operations on 64-bit integers.
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This report is argumentative and qualitative in nature and lacks proven justifications for some
aspect of the proposals. In particular, we relied on numerical evaluations for some costs because they
depend on biased pseudo-random functions. The Python implementations used may have bugs that
could change the resulting figures significantly. Moreover, as the simulations were quite slow, the
number of iterations was not as high as required for good precision. The source code for these scripts,
used for Tables 1a, 1b and 2, are available on request.

PoW functions are an ecological hazard: avoid them if you can.
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