Ortvay Rudolf verseny megoldások

2018/7. Feladat

Egy záróvizsgán az elromlott légkondicionálóból vízcseppek hullottak az asztalra. Ahogy a fotón is látható, a nagy csepp körül megfigyelhető volt egy apró cseppekből álló gyűrű. Hogyan keletkezik a gyűrű,és mitől függhet a sugara?

(Szabó István)

Szerkesztette: Gombkötő Ákos, Karácsony Márton A versenyre beküldött megoldások közül felhasználásra került: Karácsony Márton beküldött megoldása. A megoldást ellenőrizte: -

A releváns folyamat

A gyűrű kialakulását a cseppnek az ütközését követő, részleteiben igen bonyolult dinamikának tulajdonítjuk.

A következőket feltételezzük a megoldás során: Az asztal felülete kezdetben teljesen száraz, nem hidrofób, a felületi egyenetlenségek nem játszanak lényeges szerepet. A vízcsepp elektromosan semleges, a felületi feszültséget jelentősen befolyásoló anyagokat nem tartalmaz. A csepp felületén a zuhanás közben kialakuló kapilláris hullámokat nem vesszük figyelembe, a becsapódás pillanatában statikusan gömb-alakúnak feltételezzük. A nyomás és hőmérsékletviszonyokat hétköznapiaknak vesszük.

Legyen a csepp tömegközéppontjának sebessége v azelőtt a pillanat előtt, amikor érintkezne az asztal felületével, ha nem szorulna vékony gázréteg a csepp és a szilárd felület között. Mivel a csepp ütközése a száraz felülettel nehezen vizsgálható időfüggő folyamat, mi mindössze egy kvalitatív magyarázathoz elegendő szintű, illetve analitikusan vizsgálható modellre szorítkozunk.

Cseppek száraz felületekkel való ütközéséről általában

Amikor egy folyadékcsepp egy szárazfelülethez csapódik, általában jelentős részben szétterül a felület mentén, majd –ha az energiája elegendő volt ahhoz, hogy az egyensúlyi helyzetnél jobban szétterüljön– igyekszik visszahúzódni. A folyamat végeredménye a cseppmérettől, a becsapódási energiától, a felületi feszültségtől és viszkozitástól, valamint az egyensúlyi kontakt-szögtől függhet elsősorban [1].

Az ütközés néhány lehetséges végbemenetelét soroljuk fel alább.

-Lerakódás: Ha a csepp szétterül a sima felszínen, és ahhoz tapadva ott marad. Kicsiny cseppek alacsony energiájú ütközésénél, vagy nagy viszkozitású folyadékoknál fordulhat elő.

-Azonnali fröccsenés: Főleg durva felületekhez ütközésnél fordul elő. Ekkor már a csepp szétterjedésének elejétől további, kisebb cseppek képződése indul meg a szilárd-folyadék-gáz érintkezés vonala mentén. -Visszahúzódó felszakadás: Nedvesíthető felület esetén a csepp ellapulása után, a visszahúzódás során fűződnek le kisebb cseppek. Oka az érintkezési szögek dinamikájának sajátosságaiban rejlik. Erősebb folyadéktaszító felületek esetében már az ellaposodás során is történhetnek lefűződések.

-Koronafröccsenés: Főleg alacsony felületi feszültség esetén (részben a felület és folyadék közé szoruló vékony gázréteg hatására) a csepp szétterülésekor leválik egy vékony folyadékréteg a szilárd felületről, és erről történnek lefűződések.

-**Részleges, vagy teljes visszaugrás:** A csepp összehúzódása után vagy vékony függőleges ujjat növeszt, amelyen lefűződés megy végbe, vagy egészében visszapattan a felületről.

1. ábra. Jól látható koronafröccsenés gyorsfényképes felvétele. [2]

A gyűrű kiterjedésének durva becslése

2. ábra. A csepp (maximális kiterjedéshez tartozó) feltételezett alakjának keresztmetszete.

Az alábbiakban egy nagyságrendi becslést ismertetünk. A gondolat lényege, hogy a maximális kiterjedt csepp alakját közelítően hengernek vesszük, és feltételezzük hogy a perem mentén visszahúzódó felszakadás megy végbe. A gyűrű sugarát a henger sugarával azonosítjuk.

Ennek értelmében a becslés során R_{max} értékét kívánjuk meghatározni. Feltételezzük, hogy $d \ll R_0 \ll R_{max}$, ekkor a csepp felülete $A \approx 2R_{max}^2 \pi$, továbbá hogy a csepp mozgási energiája a felületi energia kialakítására fordítódik.

$$\frac{mv^2}{2} = \sigma \Delta A \approx \sigma (2\pi R_{max}^2 - 4\pi R_0^2)$$

A becslés kedvéért feltételezzük, hogy $R_{max}^2 d\pi \approx 4\pi R_0^3/3$, ennek megfelelően a felület-változás mértéke $\Delta A \approx 2\pi R_{max}^2 - 3d\pi R_{max}^2 d/R_0 \approx 2\pi R_{max}^2$. Ennek figyelembevételével:

$$R_{max}^2 \approx \frac{mv^2}{4\pi\sigma} = \frac{\rho R_0^3 v^2}{3\sigma}.$$
 (1)

Feltételezzük, hogy a légkondicionáló az asztal felett $h \approx 5m$ -rel helyezkedik el, és a csepp $R_0 \approx 0.003m$ átmérőjű. Úgy vesszük, hogy $v \approx \sqrt{gh}$. Ezekkel az adatokkal $R_{max} \approx 0.07m$, ami egy nagyságrenddel nagyobb, mint a csepp kezdeti sugara.

Bár a fenti számolás általános körülmények között még kvalitatívan sem megfelelő, de bizonyos speciális esetekben nem áll nagyon messze a valóságtól. Összevetés gyanánt, a (3.) képen szilikonolaj-csepp szimulált becsapódását láthatjuk alacsony nyomáson.

3. ábra. 1.6mm-es átmérőjű szilikonolaj-csepp száraz, szilárd felületnek csapódása 4m/s-os sebességgel. A gáz 34kPa nyomású. [2]

A kanonikus ütközés

Azon ütközéseket, melyek a fentebb felsorolt közelítések idealizációinak megfelelnek, kanonikus ütközésnek nevezzük [3].

A szakirodalomban a folyamatot négy, szinte minden esetben szerepet játszó dimenziótlan paraméterekkel szokás jellemezni.

Ezek a Reynolds-; és Weber-számok:

$$Re = \frac{\rho R v}{\eta} \qquad ; \qquad We = \frac{\rho v^2 l}{\sigma} \tag{2}$$

melyek rendre a folyadék inerciájának és viszkozitásának ill. felületi-feszültségének hányadosával arányos dimenziótlan mennyiségek. Itt az R csepp sugara, l az átmérője. ρ a víz sűrűségét, η a víz dinamikai viszkozitását, σ a felületi feszültséget jelöli.

Illetve a folyadék és gáz fázisok sűrűségeinek és viszkozitásainak arányai:

$$\frac{\rho}{\rho_g}$$
; $\frac{\eta}{\eta_g}$. (3)

A fenti egyszerű becslés során feltételezett paraméterekkel $Re\approx 46$, $We\approx 8200.$

Az alábbiakban tömören összefoglaljuk az ütközés legfontosabb, elkülöníthető jelenségeit.

1) Érintkezés a szilárd fázissal

Az egyik igen lényeges kérdés a folyadék és szilárd fázis közötti gázréteg felaprózódása, és a folyadék-szilárd érintkezési felület időbeli fejlődése. Az, hogy a molekuláris szintű érintkezés kérdése nemtriviális, először alacsony nyomású kísérletek kiértékelése során vetődött fel. Azt a sejtést hogy a folyadék-szilárd kontakt nem feltétlenül alakul ki rövid időskálán, optikai (teljes reflexión alapuló) módszerrel erősítették meg [3]. Ekkor vezették be a "gázrétegen korcsolyázás" kifejezést is.

Amennyiben a gázréteg néhány nm vastag, instabillá válik például a van der Waals erőknek tulajdonítható fluktuációkkal szemben, így az ennyire vékony gázrétegek alatti területeket gyakorlatilag azonosíthatjuk a szilárd-folyadék kontakttal. A mérések szerint viszonylag hamar kialakul egy nagyjából gyűrű alakú szilárd-folyadék érintkezés. A gyűrű alakú kontaktus körül izolált érintkezési pontok is megjelennek, számuk (kísérletileg relevás tartományon belül) növekszik a csepp sebességével.

Megjegyezzük, hogy haWe<4,lehetséges a csapp visszapattanása úgy, hogy egyáltalán nem jön létre érintkezési felület.

2) A központi buborék kialakulása

Megjegyezzük, hogy a "koronafröccsenés" és az "azonnali fröccsenés" mechanizmusai a gyakorlati esetekben fontos szerepet játszanak bármilyen fröccsenés esetén. A gáz fázis nyomásának egy –sebességtől függő– kritikus értéke alatt fröccsenés szinte egyáltalán nem jön létre [3]. Ez rámutat a csepp alá szoruló gázréteg dinamikájának fontosságára. A gázban olyan nyomáseloszlás alakul ki, amely megakadályozza a csepp-felület érintkezését. A gázréteg a mérések szerint kezdetben jó közelítéssel vékony (néhány μm vastag) korong alakú, majd a gyűrűszerű érintkezés kialakulása után (jellemzően, de nem feltétlenül egyetlen összefüggő) központi buborékot fog alkotni a csepp belsejében.

4. ábra. A központi buborék kialakulásának vázlata. [4]

3) A csepp ellapulása

5. ábra. Kísérletileg felvett magasság-sugár profilok különböző időpontokban. [3]

4) A csepp fröccsenése

Annak az eldöntése, hogy milyen paraméterek mellett történik fröccsenés, nem triviális. A szakirodalomban első közelítésben elfogadott, hogy ha a $K = We\sqrt{Re}$ fröccsenési paraméter –közönséges körülmények között– nagyobb mint ≈ 3000 , akkor bekövetkezik fröccsenés. Az általunk vizsgált esetben $K \approx 55000$, így szinte bizo-nyosak lehetünk benne, hogy a fröccsenés meghatározó szerepet játszik.

Az azonnali fröccsenés és a koronafröccsenés közötti egyik különbségtétel az, ha az ütközési terület köré adott sugarú hengert állítunk, és a rá fröccsenő cseppek elhelyezkedéseit vizsgáljuk. Kísérletileg azt találhatjuk,

Amennyiben fröccsenések nem történnek, a csepp eléri az R_{max} maximális sugarú kiterjedést, majd az inerciális, viszkózus és kapilláris erők egyensúlyának megfelelő R_0 -val jellemezhető alakot veszi fel. A szakirodalomban a $\beta = R_{max}/R_0$ arányra adnak becsléseket, ezek közül kettőt ismertetünk:

$$\beta - 1 \propto Re^{1/5}$$
; $\beta - 1 \propto We^{1/2}$

Ez a folyamat csak bizonyos paramétertartományokban adhat magyarázatot a cseppgyűrűre. Adott V_c kritikus sebesség felett fröccsenések játszódnak le, és okunk van feltételezni, hogy az adott elrendezés esetén a cseppgyűrű kialakulásához nem elegendő ezt a leegyszerűsítő folyamatot vizsgálni.

6. ábra. Koronafröccsenés (balra), és azonnali fröccsenés (jobbra). [3]

hogy számottevő függőleges irányú szórás csak korona-fröccsenés esetén mutatható ki. A feladatban szereplő

kép alapján azt a sejtést fogalmazzuk meg, hogy az azonnali fröccsenés mechanizmusa volt meghatározó. A fröccsenés e két típusa között azonban általában nem húzható éles határvonal, és mindkét esetben fontos szerepet játszik felülettel nem érintkező, "gázrétegen korcsolyázó" vékony folyadékréteg pontos dinamikája.

A korcsolyázó folyadékréteg ugyanakkor instabil, ujjasodás indul el benne. Az ujjak számára kísérletileg kapott [5] közelítő formula a következő:

$$N \approx \left(Re^{1/2}We^{1/4}\right)^{3/4} \left(\frac{\sqrt{\pi}}{2}\right)^{3/4}.$$
 (4)

Az általunk feltételezett paraméterekkel $N \approx 20$. Ha az ujjak vége lefűződik, arra számíthatunk hogy a cseppgyűrű is N darab cseppből áll össze. A fotón 30 cseppecskét számolhatunk össze, az eltérés pedig részben a csepp paramétereinek ismeretlen voltából, részben abból ered, hogy

7. ábra. Ujjasodás és lefűződés (szimuláció). [3]

a közelítő formula érvényessége elsősorban a nagyobb v sebességekre korlátozódik. A nagyságrendi egyezés ugyanakkor megerősíti, hogy a mechanizmust helyesen azonosítottuk be.

Megjegyzés: A fröccsenések szempontjából alapvető jelentőségű lefűződések dinamikájában fontos szerepet játszik az, hogy a folyadékréteg egy igen vékony gázrétegen korcsolyázik. A gázréteg vékonyabb mint a molekulák szabad úthossza, így jóval gyorsabb impulzustranszport játszódik le benne mint közönséges körülmények között, és a szokásos kontinuum-mechanikai közelítések is csak korlátosan teljesülnek. Ez azt jelenti, hogy a gázmolekulák ballisztikusan, gyakorlatilag hangsebességgel mozognak, és igen jelentős Σ_G feszültséget kelt [6].

$$\Sigma_G = \frac{\rho c V_e}{\sqrt{2\pi\gamma}},$$

ahol ρ a levegő sűrűsége a külső nyomáson, c a hangsebesség, V_e a folyadékréteg frontjának terjedési sebessége, és γ a gáz adiabatikus konstansa (jelen esetben ≈ 1.4). Az instabilitás kialakulására vonatkozó egyszerű

8. ábra. Az csepp geometriájának sematikus ábrázolása egy adott pillanatban. A piros vonallal körbekerített területen Kevin-Helmholtz instabilitás alakulhat ki, ami hozzájárul a cseppek leszakadásához.

egydimenziós kvalitatív modellt állíthatunk fel. Legyen a felület perturbációja $\eta = ae^{i(kx-\omega t)}$. Ekkor a perturbációra vonatkozó egyenlet:

$$\sigma k^2 \eta + \frac{\rho}{k} \frac{d^2 \eta}{dt^2} = -p_a \ ,$$

ahol ρ és σ a folyadék sűrűsége és felületi feszültsége, és p_a a külső, aerodinamikai eredetű, felületre ható feszültség, jelen esetben $p_a = -\Sigma_G k \eta$.

Ezen keresztül a perturbációra vonatkozó diszperziós relációt nyerünk:

$$\omega^2 = \frac{\sigma k^3 - \Sigma_G k^2}{\rho},$$

melyben $\Sigma_G \propto V_e$, mely időtől függ. Amikor tehát a folyadékréteg terjedési sebessége egy bizonyos értéket elér, a perturbációk frekvenciája képzetessé, a réteg instabillá válik. Különösen azon perturbációk jelentősége nagy, ahol a térbeli periódus összemérhető a folyadékréteg d vastagságával.

Hivatkozások:

- [1] https://en.wikipedia.org/wiki/Drop_impact
- [2] Zhenlong Wu, Yihua Cao: Dynamics of initial drop splashing on a dry smooth surface
- [3] C. Josserand, S. Thoroddsen: Drop Impact on a Solid Surface
- [4] Ji San Lee, Byung Mook Weon, Jung Ho Je, Kamel Fezzaa: How Does an Air Film Evolve into a Bubble During Drop Impact?
- [5] H. Marmanis and S. T. Thoroddsen: Scaling of the fingering pattern of an impacting drop
- [6] Yuan Liu, Peng Tan, Lei Xu: Kelvin-Helmholtz instability in an ultra-thin air film causes drop splashing on smooth surfaces
- [7] Lei Xu, Wendy W. Zhang, Sidney R. Nagel: Drop splashing on a dry smooth surface
- [8] Guillaume Riboux, José Manuel Gordillo: Maximum drop radius and critical Weber number for splashing
- in the dynamical Leidenfrost regime