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simpler function t. This gives an error or “remainder term” of {t}, the fractional
part. More precisely, we have

π(x) − π(
√

x) + 1 = x
∑

d

µ(d)

d
+ R = x

∏

p6
√

x

(

1− 1

p

)

+ R

where d runs over the products of distinct primes which are less than or equal to√
x and where the “remainder” R = R(x) is

R = −
∑

d

µ(d)
{x

d

}

.

At first glance, the best we can expect to do is to use the trivial bound {t} < 1
which leads us to bound the remainder by

|R| 6
∑

d

1 = 2π(
√

x),

which is absolutely enormous, much larger even than the number of integers [x] with
which we began. Of course, we have been particularly careless here, for example,
fruitlessly sifting out multiples of d even for many integers d which exceed x. Hence,
the above bound can certainly be improved somewhat. But not enough! In reality
R is genuinely large. In fact, using old ideas due to Tchebyshev and to Mertens
(see (2.21)), one knows that

∏

p6
√

x

(

1− 1

p

)

∼ 2e−γ

log x
,

so what we have been expecting to be our main term is actually wrong. Since, by
the Prime Number Theorem,

π(x) ∼ x

log x
,

we see that the quantity R we have been referring to as the remainder has order of
magnitude just as large as the main term.

1.2. Some Generality

At the moment we are in the rather depressing position of having a method
which fails to give us good estimates for the number π(x) of primes up to x, but
worse yet, the only reason we even know that it must inevitably fail is because
other techniques, coming from analytic number theory, succeed (in proving the
Prime Number Theorem), thereby telling us so. What possibility remains for the
value of the sieve is its capacity for generalization, giving some information in cases
where the finer analytic machinery is lacking. Therefore, to consider the situation
more generally is not merely a useful enterprise; it is the sieve’s only excuse for
being.

We thus consider a finite sequence of non-negative real numbers

A = (an) , n 6 x,

and a general set P of primes. For notational purposes it is convenient to introduce
the product

P (z) =
∏

p∈P
p<z

p.
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Our goal will be to estimate the “sifting function”

S(A, z) =
∑

n6x
(n,P (z))=1

an.

We shall proceed as in our original example, but in slightly different notation. We
need the most basic property of the Möbius function

(1.1)
∑

d|n
µ(d) =

{

1 if n = 1,
0 if n > 1.

We also use the simple observation that δ divides both a and b if and only if δ
divides (a, b), that is, the set of common divisors of two positive integers is just the
same as the set of divisors of their greatest common divisor. Hence,

∑

d|n
d|P (z)

µ(d) =

{

1 if (n, P (z)) = 1,
0 if (n, P (z)) > 1.

Inserting this coprimality detector and then interchanging the order of summation,
we obtain

S(A, z) =
∑

n

an

∑

d|(n,P (z))

µ(d) =
∑

n

an

∑

d|n
d|P (z)

µ(d)

=
∑

d|P (z)

µ(d)
∑

n≡ 0 (mod d)

an =
∑

d|P (z)

µ(d)Ad(x),

say. This is just once again, but in more general garb, the Legendre formula and
here, as before, we need information about the “congruence sums”

Ad(x) =
∑

n6x
n≡0 (mod d)

an

which give the mass of the subsequence running over the multiples of d, in other
words, over the subsequence Ad = (am) , m ≡ 0 (modd), and which, in our begin-
ning example, was just [x/d]. Specifically, we need a useful approximation formula.
We assume we can write this sum in the form

(1.2) Ad(x) = g(d)X + rd(x) ,

where X is a handy approximation to

A(x) = A1(x) =
∑

n6x

an ,

the total mass of our sequence, where g(d), the “density function”, has several nice
properties (g(d) = 1/d in our example) and rd(x) is a “remainder term” which is
small, at least on average over d (this was rd(x) = −{x/d} ≪ 1 in our example).
In other words, we need to count integers before we can count primes, and how well
we count the first determines how well we count the second.

On insertion of our approximation formula (1.2) the sifting function becomes

S(A, z) = X
∑

d|P (z)

µ(d)g(d) +
∑

d|P (z)

µ(d)rd(x) .
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The function g(d) acts like a probability, approximating the fraction of the total
mass which resides in the multiples of d. (It is useful to remember g(d) = 1/d
as being the prototype for such a function.) Because of this it is natural that we
assume that g(1) = 1 and that, for each d > 1, we have 0 6 g(d) < 1. This last
inequality will be needed in some places and is also natural in our situation. Indeed,
if for some d > 1 we had g(d) = 1, then virtually everything would be a multiple
of d. There would not be much point in looking for primes in such a sequence. We
shall also assume that g is a multiplicative function, that is, whenever (d1, d2) = 1
we have

g(d1d2) = g(d1)g(d2).

The essence of this is that we are assuming that divisibility by two relatively prime
integers are independent events. In practice, this is true only to a quite limited
extent and this fact is in large measure responsible for the failure of the sieve to
achieve more than it has.

Very often we only use (1.2) for d squarefree, but sometimes it helps to as-
sume (1.2) for all d. Because Ad is a subsequence of A it is natural to assume
that

(1.3) g(d1) 6 g(d2)

if d2|d1. In particular, g(pℓ) is non-increasing in ℓ for any p.

1.3. Some Examples

We consider some examples. In many of the most basic examples the sequence
A is just the characteristic function of an interesting set of integers. In such a case
we shall frequently not bother to distinguish between the function and the set on
which it is supported.

Example 1.1. We begin with a slight extension of our original example to the
set of integers in an interval. Thus, we consider

A = {m | x− y < m 6 x} , P = {all primes},

Ad(x) =
[x

d

]

−
[

x− y

d

]

, X = y,

g(d) =
1

d
, rd(x) = −

{x

d

}

+

{

x− y

d

}

, |rd(x)| 6 1.

Example 1.2. Now, for a little more variety, consider

A =
{

m2 + 1 6 x
}

, P = {p; p 6≡ 3 (mod 4)},
A(x) =

[√
x− 1

]

, X =
√

x ,

g(p) =

{

2/p, p ≡ 1 (mod 4),

1/2, p = 2,
|rd(x)| 6 2ν(d),

this last estimate following from the bound |rp(x)| 6 2 and the Chinese Remainder
Theorem. Here, there is no need to sieve by the primes congruent to three modulo
four since none of the integers in our set is divisible by such a prime. Equivalently,
we could achieve the same results sifting by the set of all primes and simply setting
g(p) = 0 for the additional primes. In this example, were we able to get a positive
lower bound for S(A,

√
x) we would be producing primes of the form m2+1. A proof
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that there are infinitely many such primes would settle an outstanding problem in
the subject.

Example 1.3. Moving to another famous conjecture, we consider the following:

A = {m(m + 2) 6 x}, P = {all primes},

g(p) =

{

2/p , p odd,

1/2 , p = 2,
|rd(x)| 6 2ν(d).

Here, were we to give a positive lower bound for S
(

A, x1/4
)

we would be producing
integers m(m + 2) where both factors are prime and differ by two. The twin prime
conjecture predicts that there are infinitely many such pairs.

Example 1.4. As an alternative approach via the sieve to attack the twin
prime conjecture, we consider the sequence:

A = {p− 2; p 6 x}, P = {odd primes},

Ad(x) = π(x; d, 2), X = π(x), g(d) =
1

ϕ(d)
,

where π(x; d, a) is the number of primes up to x which are congruent to a modulo
d and where ϕ(d), the Euler function, counts the number of reduced residue classes
modulo d. This sequence offers some advantages over the previous one for studying
the twin prime problem and it gives stronger results in that direction, although
this was not so in the earliest results. The most obvious advantage is that we
are starting from the beginning with the knowledge that one of our two numbers,
namely p, is a prime. On the other hand, the remainder term is more complicated,
namely rd(x) = π(x; d, 2) − π(x)/ϕ(d), and it is much more difficult to bound
it successfully. In the current state of knowledge, a reasonably good bound can
only be given on average over d; the most powerful bound of this type being the
Bombieri–Vinogradov theorem which we shall prove in Section 9.18. Again in this
example, if we were to be successful in giving a positive lower bound, this time for
S(A,

√
x), then we would be producing twin primes.

There are considerable generalizations to all of the above examples. One may
take a polynomial with integer coefficients, say in one variable (although not nec-
essarily so), and consider A to be the sequence of its values as the variable runs
through the integers in a segment, or the primes in a segment, or the primes in a
segment of an arithmetic progression. It is possible to give many other cases wherein
well–known problems concerning primes, for instance the Goldbach conjecture that
every even integer exceeding 2 is the sum of two primes, can be phrased in such
a manner as to follow from sufficiently strong sieve-theoretic estimates. Formulat-
ing them this way is, however, by far the easier part of the problem; producing
successful estimates is a very stern challenge indeed!

Not always will the target of the sieve be a set of primes. Perhaps the simplest
case is the following.

Example 1.5. Let

A =
{

m 6 x
}

, P =
{

p; p | q
}

,
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where q is a given positive integer. Now the target is the set of integers m 6 x with
(m, q) = 1. By the inclusion-exclusion argument in Section 1.1 the number of such
integers is

∑

d|q
µ(d)

[x

d

]

=
ϕ(q)

q
x + R

where

R = −
∑

d|q
µ(d)

{x

d

}

so |R| 6 τ(q). Note that, in the event that x is an integral multiple of q, the
remainder terms all vanish so we have an exact formula. We shall never be so lucky
again.

The precision in the above example comes from the fact that the sifting set of
primes is fixed. If instead we allow q to grow the problem again becomes difficult.
In two very basic situations we may take q to be the product of the primes p < z in
which case we have simply rephrased our original problem or we may take q to be
the product of primes p > z in which case we are counting integers without large
prime factors. We shall touch on the asymptotics for these examples much later,
in Section 12.2.

Another important sequence that appears as the target of a sieve is the set of
squarefree numbers. In this scenario, rather than sieving by a set of primes we sift
by squares of primes. For this purpose the basic formula is

∑

d2|n
µ(d) =







1 if n is squarefree,

0 otherwise.

Sieving them from the set of all positive integers is easy, so we consider a somewhat
more ambitious problem.

Example 1.6. Let

A =
{

m2 + 1 6 x
}

, P =
{

p ≡ 1 (mod 4)
}

.

Then, by the corresponding Legendre formula we have
∣

∣

∣

{

m2 + 1 6 x; m2 + 1 squarefree
}

∣

∣

∣
=

∑

d|P (x)

µ(d)Ad2(x) .

Splitting into classes m ≡ ν (mod d2) we find that

Ad2(x) =
ρ(d2)

d2

√
x + O

(

ρ(d2)
)

where ρ(q) is the number of solutions to the congruence ν2 + 1 ≡ 0 (mod q).

We have ρ(d2) = ρ(d) = τ(d) for d | P (x), so the above approximation is only

good for d 6 x
1

4 . For larger d the remainder term is too large. In reality Ad2 is
frequently empty. To treat the contribution from larger d, say d > D, we change
the role of the variables. We write

m2 + 1 = d2k 6 x ,

and we estimate the number of solutions in m, d for every given k 6 K = xD−2.
For fixed k this reduces to the counting of units in the real quadratic field Q(

√
k).
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Since the units (solutions to Pell’s equation) grow exponentially, the number of
these in the relevant range is O(log x). Therefore,

∑

d|P (x)

µ(d)Ad2(x) =
∑

d|P (x)
d6D

µ(d)

{

τ(d)

d2

√
x + O

(

τ(d)
)

}

+ O(K log x)

=
√

x
∏

p∈P

(

1− 2

p2

)

+ O
((

D +
x

D2

)

log x
)

.

Choosing D = x
1

3 we conclude that
∣

∣

∣

{

m2 + 1 6 x; m2 + 1 squarefree
}

∣

∣

∣
= cx

1

2 + O
(

x
1

3 log x
)

where c is a positive constant given by

c =
∏

p≡1(mod4)

(

1− 2

p2

)

.

We remark that the more general asymptotic formula for ℓ−free values of degree
ℓ polynomials was established by G. Ricci [139] in 1933.

In our next example the target is the set of integers which can be written as
the sum of two squares. The result is cleaner if we restrict to odd integers a2 + b2

with a, b relatively prime.

Example 1.7. Here we take

A =
{

n 6 x; n ≡ 1 (mod 4)
}

,

P =
{

p; p ≡ 3 (mod 4)
}

,

getting

S(A,P ,
√

x) =
∣

∣

∣

{

n 6 x; n = a2 + b2 odd with (a, b) = 1
}

∣

∣

∣
.

This problem (of estimating S(A,P , z)) is intermediate in difficulty between the
squarefree numbers and the primes. Whereas the first was easy enough to do right
here, the second we shall solve in Chapter 14, but only with techniques that are
well advanced.

As we have seen in the last few examples, there are many variations on our
original sieve format. An important one deals with the situation where we want to
sift out many residue classes for each prime in our set P . In essence, Example 1.3
deals with two residue classes for each odd prime. Now we present a problem in
which we wish to remove a great many more.

Example 1.8. Let

A =
{

n 6 x
}

,

P = the set of all primes,

Ωp =

{

ω (mod p); ω = 0 or
(ω

p

)

= 1

}

.

Note that the number of classes to be removed ω(p) = 1
2 (p + 1), if p > 2, is very

large. The problem is to estimate

S(A,P , Ω) =
∣

∣

∣

{

n 6 x; n (mod p) /∈ Ωp for each p 6
√

x
}

∣

∣

∣
.
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This counts the integers n 6 x which are quadratic non-residues for all primes
p 6

√
x. This is the problem which gave rise to the large sieve. We shall develop

the large sieve theory in Chapter 9 and apply it to obtain the upper bound

S(A,P , Ω)≪
√

x .

In slightly more general form this idea will be used to estimate the least quadratic
non-residue.

Finally, we just mention:

Example 1.9. Let

F = F1 . . . Fr

be the product of irreducible polynomials with integer coefficients and take A to
be the sequence of values F (n) or F (p). In this case, if r > 1 there is no chance to
find primes, but it might be possible to find integers with r prime factors, and it is
interesting to see how close one can come to this goal. Here, in general, it is not so
simple to describe precisely the density function g.

1.4. A Model of a Sifting Sequence for a Given Density

In this section we are going to create a sequence B =
(

bn

)

which satisfies the
sieve axioms for a given density function g of dimension κ = 1; see Section 5.5.
Naturally, we assume that g(d) is multiplicative with

(1.4) 0 6 g(p) < 1

and

(1.5) g(pα) > g(pα+1) > 0 ,

for any prime p and any α > 0. Given such a function g, we define the companion
function h, which is multiplicative with

(1.6) h(pα) =
g(pα)− g(pα+1)

1− g(p)
.

We call h the relative density function. Note that if g(d) is completely multiplicative
then h(d) = g(d). If g(d) is supported on squarefree numbers, then so is h(d) and

(1.7) h(p) =
g(p)

1− g(p)
,

hence the name “relative density function”.
For simplicity we assume that the function

(1.8) f(n) = h(n)n

satisfies the conditions of Lemma A.15, that is, (A.78), (A.82) and (A.83). Hence
we obtain

(1.9)
∑

n6x
n≡ 0(mod d)

f(n) = f̂(d)x + O
(

f̃(d)(x/d)θ
)

,

where f̂ is given by (A.91) and f̃ by (A.90).


