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I propose that synchronization affects communication between neuronal groups. Gamma-band (30–90 Hz)
synchronization modulates excitation rapidly enough that it escapes the following inhibition and activates
postsynaptic neurons effectively. Synchronization also ensures that a presynaptic activation pattern arrives
at postsynaptic neurons in a temporally coordinated manner. At a postsynaptic neuron, multiple presynaptic
groups converge, e.g., representing different stimuli. If a stimulus is selected by attention, its neuronal rep-
resentation shows stronger and higher-frequency gamma-band synchronization. Thereby, the attended
stimulus representation selectively entrains postsynaptic neurons. The entrainment creates sequences of
short excitation and longer inhibition that are coordinated between pre- and postsynaptic groups to transmit
the attended representation and shut out competing inputs. The predominantly bottom-up-directed gamma-
band influences are controlled by predominantly top-down-directed alpha-beta-band (8–20 Hz) influences.
Attention itself samples stimuli at a 7–8 Hz theta rhythm. Thus, several rhythms and their interplay render
neuronal communication effective, precise, and selective.
Imagine a model of the human brain that is both complete to the

point of producing behavior that is indistinguishable from human

behavior and detailed to the point of atomistic resolution. This

hypothetical model would be an invaluable tool in place of imper-

fect experimental recordings from living subjects by providing

complete downloads from the model. However, those down-

loaded data would require analysis and interpretation, just like

experimental data, before any scientific insight were achieved.

Scientific insight is human insight, and human insight into the

brain proceeds just as human insight into anything else out there

in the world. The world provides a wealth of sensory data, in

which regularities, relations, and rules need to be found to arrive

at an understanding of the perceived processes. Such an under-

standing may be referred to as a mental model, which restricts

itself parsimoniously to the aspects crucial for capturing the

essence of the perceived. It might be characterized as abstract

and semantic, and it is certainly incomplete in the sense that it

discards the rich initial data for an intuitive or conceptual under-

standing of generative principles behind the data. To present

such a concept of neuronal processing, I will define as ‘‘neuronal

representation’’ the spatial activation pattern in a group of neu-

rons; as ‘‘neuronal communication’’ the transfer of one represen-

tation in a presynaptic, or sending, group to a new representation

in a postsynaptic, or receiving, group; and as ‘‘neuronal compu-

tation’’ the transformation that happens between the represen-

tations. This illustrates the central role of communication as

the process that implements computation and thereby creates

new representations.

Neuronal communication has classically been conceived of as

being determined by structural anatomical connectivity and by

activity-dependent changes to the anatomical (ultra)structure

of the connection. I propose that even in the absence of changes
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in (ultra)structural connectivity, neuronal synchronization as

an emergent dynamic of active neuronal groups has causal

consequences for neuronal communication. If neuronal commu-

nication depends on neuronal synchronization, then dynamic

changes in synchronization can flexibly alter the pattern of

communication. Such flexible changes in the brain’s communi-

cation structure, on the backbone of the more rigid anatomical

structure, are at the heart of cognition.

Communication through Coherence
Because the main thrust of the concept is that neuronal com-

munication is subserved by neuronal synchronization, often

quantified by the coherence metric, I have named the concept

‘‘Communication through Coherence,’’ or CTC. I formulated

the CTC hypothesis 10 years ago (Fries, 2005) and aim here to

provide a revised formulation of CTC that takes into account

the plethora of CTC-relevant data, which has been generated

in the meantime, and that further distils the essence of CTC.

The Essence of CTC

Here are the essential propositions of the CTC hypothesis: An

activated neuronal group tends to engage in rhythmic synchroni-

zation. Rhythmic synchronization creates sequences of excita-

tion and inhibition that focus both spike output and sensitivity

to synaptic input to short temporal windows. The rhythmic

modulation of postsynaptic excitability constitutes rhythmic

modulations in synaptic input gain. Inputs that consistently

arrive at moments of high input gain benefit from enhanced

effective connectivity. Thus, strong effective connectivity re-

quires rhythmic synchronization within pre- and postsynaptic

groups and coherence between them, or in short—communica-

tion requires coherence. In the absence of coherence, inputs

arrive at random phases of the excitability cycle and will have
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a lower effective connectivity. A postsynaptic neuronal group

receiving inputs from several different presynaptic groups re-

sponds primarily to the presynaptic group to which it is coherent.

Thereby, selective communication is implemented through se-

lective coherence.

The fundamental proposition, that a postsynaptic rhythm

modulates input gain, has received direct experimental support.

When optogenetic stimulation is used to drive fast-spiking

interneurons in somatosensory cortex with a 40 Hz pulse train,

the network resonates at gamma frequency, and the precise

timing of vibrissa deflections relative to the pulse train affects

both neuronal (Cardin et al., 2009) and behavioral (Siegle et al.,

2014) responses. Similarly, when a weak sustained muscle

contraction induces a corticospinal beta rhythm, transcranial

magnetic stimulation pulses applied to motor cortex lead to

muscle responses that depend on the phase of stimulation in

the beta rhythm (van Elswijk et al., 2010). Note that the transmis-

sion of spikes from one area to the next does not only depend on

coherence between the areas but also on synchronization within

the sending area, as has been demonstrated, e.g., between

areas V1 and V2 (Jia et al., 2013a; Zandvakili and Kohn, 2015).

The subsequent proposition, that strong effective connectivity

requires coherence between pre- and postsynaptic groups, has

also been supported. One study investigated the relation be-

tween the effective connectivity and the phase relation for pairs

of recording sites in visual cortex of awake cats and monkeys

(Womelsdorf et al., 2007). For each trial, the phase relation be-

tween gamma rhythms at the two recording sites was deter-

mined, and trials were sorted accordingly into phase-relation

bins. Across all trials within a phase-relation bin, effective

connectivity was then determined. This showed that effective

connectivity depends on the phase relation. Effective connectiv-

ity is maximal for the phase relation at which the two sites

typically synchronize. Phase relations supporting interactions

between the groups precede those interactions by a few milli-

seconds, consistent with a mechanistic role.

The final proposition, that selective communication is imple-

mented through selective coherence, has received experimental

support from studies using selective visual attention or selective

movement intention. One study tested this prediction in the

human motor system, assessing activity from bilateral motor

cortices with magnetoencephalography and corresponding spi-

nal activity through electromyography of bilateral hand muscles

(Schoffelen et al., 2011). During bimanual wrist extension, each

motor cortex showed coherence with its contralateral hand

muscle. One of the hands was cued as the response hand to

report an unpredictable visual go cue. The corticospinal connec-

tion that effectuated the subsequent motor response showed

enhanced corticomuscular coherence in the gamma-band (40–

47 Hz). This effect was observed in the absence of changes in

motor output or changes in local cortical gamma-band synchro-

nization. Thus, selective movement intention is implemented

by selective gamma-band coherence. Enhanced corticospinal

gamma-band coherence during movement preparation corre-

lates closely with shortened reaction times (Schoffelen et al.,

2005). Yet probably the most compelling evidence for selective

communication through selective coherence comes from

studies of selective visual attention, during which two neuronal
groups in a lower visual area compete to communicate with

one target group in a higher visual area. These studies will be

discussed in detail below.

Challenges for the Original CTC Hypothesis

While there is substantial experimental support, some studies

posed challenges to the original CTC formulation that motivated

the new CTC formulation. If the two communicating neuronal

groups are bidirectionally coupled, I originally proposed zero-

phase synchronization (see Figure 3 of Fries, 2005). To cope

with increasing delays for increasingly distant groups, I consid-

ered lower frequencies. However, recent studies have demon-

strated that neuronal groups in widely separated areas can be

coherent in the gamma band, i.e., at a relatively high frequency

(Bastos et al., 2015a; Bosman et al., 2012; Gregoriou et al.,

2009). At the same time, it became clear that even though the

areas are bidirectionally coupled, this gamma-band coherence

does not occur at zero phase, but with a systematic delay, i.e.,

with a directedness (Bastos et al., 2015b; Bosman et al., 2012;

Gregoriou et al., 2009; Grothe et al., 2012; Jia et al., 2013a; Zand-

vakili and Kohn, 2015). I had originally suggested such delayed

coherence, consistent with a directed entrainment, if the presyn-

aptic group projects unidirectionally to the postsynaptic group.

In the new CTC formulation, I suggest that unidirectional entrain-

ment occurs separately in both directions of a bidirectional

communication link, as I will explain in more detail below.

A second challenge to the original CTC came from the fact that

it had not specified precisely how postsynaptic excitability varies

with phase. Mathematical implementations of CTC that assume

a sinusoidal oscillation and a linear relation between phase and

excitability show that presynaptic groups, which are incoherent

to the postsynaptic group, might still have a substantial impact

(Akam and Kullmann, 2012). The new CTC proposes that excit-

ability is modulated by rhythmic synchronization in a way that

is neither sinusoidal nor linear, in agreement with mathematical

models entailing spiking excitatory and inhibitory neurons (Börg-

ers and Kopell, 2008; Cannon et al., 2014; Gielen et al., 2010).

The New CTC

I will illustrate the new CTC, from here on mostly referred to just

as CTC, for the case of visual cortical gamma-band synchroni-

zation. When visual cortex of an awake and attentive subject is

activated by an appropriate stimulus, the activated neurons

engage in rhythmic synchronization in the gamma-frequency

band (30–90 Hz) (Fries et al., 2001; Gray et al., 1989). This holds

during natural viewing (Figure 1; Boxes 1 and 2) (Brunet et al.,

2015). During the gamma cycle, excitatory neurons trigger local

inhibitory neurons within about 3 ms (Buzsáki and Wang, 2012;

Csicsvari et al., 2003; Fries et al., 2007; Hasenstaub et al.,

2005; Salkoff et al., 2015; Vinck et al., 2013). When the ensuing

inhibition of the local network decays, the gamma cycle starts

again with a new round of excitatory neuron spiking. Thus, there

is only a 3 ms window for excitation, whereas the longer rest of

the gamma cycle is dominated by inhibition (Figure 2A). The

spikes travel from the presynaptic neurons, through their

anatomical projections, to the postsynaptic neurons, where

they trigger excitatory neuron spiking followed by inhibitory

neuron spiking. The ensuing inhibition essentially closes the

door in front of other inputs, because it strongly reduces their

synaptic input gain.
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 221



Figure 1. Natural Viewing Induces a
Gamma-Band Rhythm in Visual Cortex
Raw LFP trace recorded as the voltage between
two neighboring electrocorticographic electrodes
on primary visual cortex of an awake macaque
monkey during one visual exploration of the
photograph of two oranges (adapted andmodified
from Brunet et al., 2015). Green vertical line in-
dicates stimulus onset, red vertical lines indicate
saccades. Insets show the stimulus and super-
imposed the eye position trace around that time
point in blue, and the eye position trace during
this exploration so far in gray. Prior to stimulus
appearance and free viewing, the monkey fixated
on a small central dot.
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The unequal duty cycle of short excitation followed by longer

inhibition leads to a nonsinusoidal gain modulation (Figure 2B),

and the nature of inhibition, involving perisomatic shunting

inhibition (Buzsáki and Wang, 2012), leads to a nonlinear gain

modulation. If time constants are similar between entrained

pre- and postsynaptic networks, the next round of synaptic in-

puts from the presynaptic network will be timed to the moment

when inhibition in the postsynaptic network decays. This is

because local excitation triggers local inhibition and thereby

starts a few-millisecond timer corresponding to the inhibitory

time constant. At the postsynaptic network, excitatory inputs

arrive with a delay, which starts the local timer in the postsyn-

aptic network with a corresponding delay. With precisely the

same delay, the next round of excitation arrives. This entrain-

ment of the postsynaptic group to the rhythmic input from the

presynaptic group automatically sets up a phase relation that

is optimal for CTC, as has been highlighted in mathematical

models (Börgers and Kopell, 2008; Cannon et al., 2014; Gielen

et al., 2010).

In the new CTC formulation, I propose that entrainment with

delay is the general mechanism that sets up phase relations

subserving CTC, both for unidirectional communication and for

bidirectional communication. Bidirectional communication is

implemented separately for the two directions, via unidirectional

entrainment per direction. Anatomical data actually show that for

each direction of communication, the communicating brain

areas have specialized neuronal groups, i.e., a given brain area

has neurons receiving inputs and different neurons sending out-

puts (Felleman and Van Essen, 1991; Markov et al., 2014). Thus,

the new CTC takes anatomical data on interareal projections

more closely into account and resolves the abovementioned
Box 1. Current Status of the Field

d Rhythmic synchronization, including gamma-band synchroni

species.

d Different rhythms coexist and are often synchronized to each

d Gamma and beta rhythms modulate input gain, and their coh

d Rhythmic synchronization in different frequency bands is h

projections.

d Patterns of synchronization change dynamically with stimulat

selective coherence implements selective communication.
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challenge arising from observed interareal delays. In addition,

systematic investigations of directed interareal influences as a

function of frequency revealed that influences in the two direc-

tions predominate in distinct frequency bands (Bastos et al.,

2015a), as explained in detail below.

The new CTC addresses challenges to the original CTC, but

one of the appealing predictions of the original CTC appears at

first to be lost with this revision. If, as originally assumed, delays

between sending and receiving groups are negligible, coherence

increases effective connectivity between the coherent groups in

both directions. That is, feedback from the receiving group is

likely to be more effective at the coherent sending group than

at the noncoherent sending group, even if it is anatomically

directed to both (Fries, 2005). Thus, CTC might render anatom-

ically nonselective feedback functionally selective to the appro-

priate sending group. If, as we now point out, delays are not

negligible, both feedforward and feedback signaling will incur

some delay. In the sending cortical column, re-entrant feedback

inputs will arrive several milliseconds after feedforward outputs

have been sent. Those re-entrant feedback inputs can only be

coherent with a delayed version of the original output. Intrigu-

ingly, such delayed versions have been described. Single neu-

rons in supragranular layers of macaque area V1 show visually

induced gamma-band synchronization with a systematic delay

of approximately 1 ms per 100 micron shift toward the cortical

surface (Livingstone, 1996). Recently, laminar current-source-

density analysis revealed that this gamma delay extends from

layer 4 toward both supra- and infragranular layers (Figure 3A)

(van Kerkoerle et al., 2014). Thus, interlaminar delaysmight delay

the supra- and infragranular gamma phase such that reentrant

feedback arrives at the excitable phase of the same, delayed,
zation, is widespread across the nervous system and across

other or nested into each other.

erence subserves effective connectivity.

ighly structured across areas, layers, and the corresponding

ion and behavioral context in a way that strongly suggests that



Box 2. Future Directions

d Does rhythmic synchronization, in particular gamma-band synchronization, occur generally in active neuronal groups, also un-

der fully natural conditions?

d Can we experimentally manipulate neuronal synchronization, while leaving other aspects of neuronal activity unchanged, and

show effects on neuronal communication?

d Throughwhich cell types andmechanisms do top-down influences affect the strength and frequency of gamma-band synchro-

nization?

d Cortical inhibition is very local, leading to local gamma rhythms; thalamic inhibitory neurons are collected and linked in the

thalamic reticular nucleus. Does this allow only one gamma across the thalamus, which needs to be entrained for cortical signal

propagation?
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gamma cycle (Figure 3B) (Bastos et al., 2015b). Note that inter-

areal anatomical projections have laminar origins and targets

that are consistent with the pattern of gamma flow suggested

in Figure 3 (Felleman and Van Essen, 1991; Markov et al.,

2014). For pairs of areas that are hierarchically very distant, re-

entrant feedback would arrive too late to hit a matching phase.

Intriguingly, we found that for those area pairs, gamma-band

influences exist essentially only in the feedforward direction, as

discussed in more detail below (Bastos et al., 2015a, 2015b).

In the following, I will argue that gamma-band coherence

establishes a communication protocol that is effective, precise,

and selective, with one section devoted to each of these three as-

pects. In two further sections, I will discuss the differential roles of

gamma and alpha-beta rhythms in feedforward versus feedback

signaling and the role of the theta rhythm in attentional sampling.

Gamma-Band Coherence Renders Communication
Effective
The gamma rhythm results in a rapid succession of excitation

and inhibition, and this is likely necessary to activate postsyn-

aptic neurons. A typical cortical neuron receives inputs from

thousands of neighboring neurons. Among those input neurons,

network excitation is faithfully tracked by network inhibition

(Renart et al., 2010). Therefore, individual neurons typically

receive excitation and inhibition in a balanced way (Haider

et al., 2006; Shu et al., 2003), including neurons in awakemonkey

visual cortex during visual stimulation (Tan et al., 2014). Network

excitation drives network inhibition with a small delay. During

gamma-band synchronization, this delay has been found to be

around 3 ms (Atallah and Scanziani, 2009; Csicsvari et al.,

2003; Fries et al., 2007; Hasenstaub et al., 2005; Vinck et al.,

2013). I suggest that the gamma rhythm generates fluctuations

in network excitation and inhibition that are sufficiently rapid,

such that excitation can essentially temporally escape its ever

chasing inhibition. The gamma rhythm concentrates inhibition

to certain parts of the gamma cycle, which appears necessary

to provide moments devoid of inhibition that allow postsynaptic

neurons to spike at all (Tiesinga et al., 2004). An important type of

inhibition is exerted by parvalbumin-positive (PV) interneurons

and is targeted to the soma and perisomatic region, where it

can powerfully antagonize and shunt dendritic excitation (Buz-

sáki and Wang, 2012). If this powerful shunting arrived in a

temporally unstructured manner, it would prevent postsynaptic

spiking at almost all times. Spiking is enabled by temporally

focusing shunting to certain time periods, while leaving others
devoid of it (Tiesinga et al., 2004). This time-sharing is achieved

by the gamma rhythm, which focuses perisomatic inhibition in

one part of the gamma cycle, and thereby leaves another part

free for neurons to respond to excitatory input. This excitatory

phase of the gamma cycle sees decaying inhibition and a tempo-

rally focused rise in excitation (Hasenstaub et al., 2005; Salkoff

et al., 2015; Vinck et al., 2013). Such synchronized excitation in

turn generates rapid postsynaptic depolarization, ideal to trigger

spikes (Azouz and Gray, 2003).

I would like to speculate that the rapid balancing of network

excitation by inhibition reduces the postsynaptic impact of

neurons, whose spike rate is modulated by the alpha rhythm.

The alpha rhythm is strong in cortex that is not activated by a

stimulus and/or not addressed by top-down influences like

attention (Fries et al., 2008; van Ede et al., 2011; Worden et al.,

2000). It has therefore been suggested that the alpha rhythm

provides inhibition (Jensen and Mazaheri, 2010). Yet inhibition

is involved in all classical EEG rhythms, including the gamma

rhythm. The crucial characteristic of alpha seems to be that it

blocks the communication of local activity to connected

neuronal groups (van Dijk et al., 2008; Zumer et al., 2014). I sug-

gest that the rapid balancing, which renders gamma ideal for

neuronal communication, likely renders alpha ideal to preclude

communication. In the gamma cycle, excitation rises within

few milliseconds, fast enough to lead to postsynaptic depolari-

zation before inhibition terminates it. By contrast, in the alpha

cycle, excitation rises over the course of about 50 ms, while

inhibition likely follows with the same 3 ms delay; in fact, the

spiking of putative excitatory and inhibitory V4 neurons does

not show a significant phase shift in the alpha cycle (Vinck

et al., 2013). Thus, alpha might be slow enough, such that

network excitation cannot escape network inhibition, which can-

cels postsynaptic effects and renders local activity functionally

invisible to remote projection targets. This might allow holding

local representations ‘‘on-stock’’ for flexible access by top-

down selection mechanisms.

Gamma-Band Coherence Renders Communication
Precise
Gamma-band coherence renders communication not only effec-

tive but also precise. The gamma rhythm times the inhibition in the

postsynaptic group to vanish just before another round of synap-

tic inputs arrives, and it focuses those synaptic inputs to arrive

simultaneously. This synchronous arrival of synaptic inputs is

an important component of a precise communication protocol.
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 223
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Figure 2. Communication through Coherence
(A) Two presynaptic neuronal groups in a lower visual area
provide input to a postsynaptic neuronal group in a higher
visual area. The lower groups represent two visual stimuli, an
apple and a pear. In each neuronal group, network excitation
(red) triggers network inhibition (blue), which inhibits the local
network. When inhibition decays, excitation restarts the
gamma cycle. The gamma rhythm of the apple-representing
presynaptic group has entrained the gamma rhythm in the
postsynaptic group. Thereby, the apple-representing pre-
synaptic group can optimally transmit its representation,
whereas the pear-representing presynaptic group cannot
transmit its representation.
(B) A simplified illustration in which network excitation and
inhibition are combined into network excitability. Red vertical
lines indicate excitatory neuron spiking and blue vertical lines
inhibitory neuron spiking.
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The CTC protocol conveys a neuronal representation manifest in

the spatial pattern of spike rates in the presynaptic neuronal

group. This presynaptic spike rate pattern translates into a spatial

activation pattern among the synaptic inputs to the postsynaptic

group. The synaptic input pattern, multiplied by the pattern of

synaptic strengths, determines the level of postsynaptic depolar-

ization and subsequent spike rate. The spike response should

ideally be a precise function of the neuronal representation

conveyed by the active set of synaptic inputs. Synaptic currents

(at least the dominant AMPA- and GABAA-receptor-mediated

currents) decay within a few milliseconds. If synaptic inputs

were jittered, even by merely a few milliseconds, this would

substantially compromise the precision of the postsynaptic

response, i.e., the degree to which it is determined by the presyn-

aptic spatial spike rate pattern. By decreasing such jitter, CTC

mechanisms likely increase postsynaptic response precision.

Essentially, CTC renders interneuronal communication pulsa-

tile, because communication happens only during a relatively
224 Neuron 88, October 7, 2015 ª2015 Elsevier Inc.
small fraction of the synchronization cycle. Pulsa-

tile communication results in pulsatile computation

and a pulsatile postsynaptic neuronal representa-

tion. An ideal test case of a neuronal stimulus rep-

resentation is the orientation selectivity of primary

visual cortex. A recent study investigated single

neurons in awake monkey V1 with regard to the

orientation selectivity of their firing rate responses.

Orientation selectivity was calculated separately

for spikes occurring at different times in the gamma

cycle (Figure 4) (Womelsdorf et al., 2012). The

gamma cycle was subdivided into several phase

bins. Spikes occurring close to the gamma phase

to which spikes synchronized on average showed

stronger orientation selectivity in their spike rates

than spikes occurring at other times. These data

suggest that the neuronal representation of visual

stimulus orientation pulsates with the gamma

cycle. Of course, spike rates themselves pulsate

with the gamma cycle, and the study controlled

that the pulsating neuronal representation was

not a trivial consequence of pulsating spike counts.

Thus, these results argue against the often-prac-
ticed distinction (and rivalry) between a rate code and a syn-

chrony code, but rather for an integration of those schemes

(Ainsworth et al., 2012). Specifically, the results suggest a

gamma-rhythmic pulsatile rate code, in which the spatial pattern

of spike rates holds representations, yet only during short tem-

poral windows in the gamma cycle.

While gamma-band synchronization primarily aligns the spike

output of a neuronal group in time, this alignment contains further

fine temporal structure (Havenith et al., 2011; Vinck et al., 2010,

2013). In visual cortex, neurons spike earlier in the gamma cycle

when they are driven by stimuli closer to their preferred stimulus

(Vinck et al., 2010). Thereby, in the cortical stimulus selectivity

map, a given stimulus results in a systematic gamma wave of

spiking, sweeping from the more to the less strongly activated

columns. Postsynaptically, the synaptic inputs from more

strongly activated neurons will arrive earlier and will thereby

have a larger influence before inhibition curtails further effects

(Börgers and Kopell, 2008; Cannon et al., 2014).
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Figure 4. The Gamma Cycle Implements Pulsatile Neuronal
Representations
(A–C) Awake monkey V1 single unit during visual stimulation with a drifting
grating (adapted and modified from Womelsdorf et al., 2012).
(A) Spike probability as function of the gamma phase in LFPs, which were
recorded simultaneously from separate nearby electrodes.
(B) The colored bar shows the partitioning of the gamma cycle into eight phase
bins containing equal numbers of spikes (aligned to the phase in the gamma
cycle to which spikes synchronized on average). Orientation tuning curves
calculated separately for the eight gamma phase bins show a strong modu-
lation of orientation selectivity with gamma phase, even though spike count
was equal.
(C) Orientation selectivity index (OSI) as function of the gamma phase bin, in
which the spikes occurred.

A

B

Figure 3. Interlaminar Delays Might Compensate for Interareal
Feedforward and Feedback Delays
(A) Analysis of current source density (CSD) derived from laminar recordings in
awakemonkey area V1 (adapted andmodified from van Kerkoerle et al., 2014).
Laminar CSD was averaged relative to troughs in the gamma-filtered LFP from
layer 4. The analysis reveals interlaminar gamma-band synchronization with
systematic delays as a function of distance from layer 4.
(B) The interlaminar delays might delay the supra- and infragranular gamma
phase such that reentrant feedback arrives at the excitable phase of the same,
delayed, gamma cycle (Bastos et al., 2015b). Cortical depth is indicated by
approximate position of the different cortical layers, abbreviated as L1–L6.
Arrows indicate the proposed flow of gamma-mediated signaling. Interareal
arrows conform to the known laminar pattern of feedforward and feedback
connections (Markov et al., 2014). Note that the CSD analyses do not reflect
the finding that gamma-band spike-LFP coherence is stronger in superficial as
compared to deep layers (Buffalo et al., 2011).
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Gamma-Band Coherence Renders Communication
Selective
In addition to rendering communication effective and precise,

coherence also renders communication selective. If one set

of synaptic inputs, constituting one neuronal representation,

succeeds in triggering postsynaptic excitation followed by inhi-

bition, this inhibition closes the door in front of other inputs.

Those other inputs are then unable to transmit the neuronal

representation that they constitute, and they are unable to

trigger inhibition themselves. Thereby, the winning set of

synaptic inputs conquers the perisomatic inhibition in the post-

synaptic neuronal group, entrains it to its own rhythm, and

thereby establishes a communication link that is selective or,
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 225
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in other words, exclusive (Börgers and Kopell, 2008; Gielen

et al., 2010).

CTC Implements Attentional Selection

This selective communication link is an ideal candidate mecha-

nism for implementing selective attention, concretely the selec-

tive routing of attended sensory representations. When, e.g.,

one out of several visual stimuli is attended, because it is behav-

iorally relevant, the early visual cortical representation of this at-

tended stimulus is preferentially communicated to postsynaptic

neuronal groups, at the expense of other, unattended, stimuli

(Reynolds et al., 1999). From lower to higher areas of visual cor-

tex, neuronal projections converge such that postsynaptic

neurons respond selectively to particular conjunctions of simpler

stimulus features; at the same time, this convergence renders

responses invariant, i.e., insensitive to stimulus dimensions like

the precise stimulus position, which are already represented

with high precision in early visual areas (Ito et al., 1995). This

increasing spatial invariance with increasing hierarchical level

is reflected in increasing receptive field (RF) sizes. Invariance ap-

pears necessary, because it readily offers a neuronal mechanism

of stimulus recognition unperturbed by stimulus deviations in

irrelevant details. Also, it avoids a combinatorial explosion that

would result, if object-selective higher-area neurons represented

particular sensory realizations of particular object tokens. Yet,

the convergence that produces both stimulus selectivity and

invariance unavoidably results in a situation in which a given

postsynaptic neuron often receives synaptic inputs containing

the representations of more than one perceptual object (Fries,

2009). When a single neuron in a higher visual area responds

with different firing rates to different stimuli, the simultaneous

presentation of both stimuli in the neuron’s RF results in a firing

rate that is a weighted average of the response to the isolated

stimuli (Reynolds et al., 1999). This is the case when attention

is directed away from both stimuli. However, when attention

is directed toward one of the two stimuli, the firing rate of the

postsynaptic neuron represents primarily the attended stimulus

(Reynolds et al., 1999; Zhang et al., 2011). In the same attention

tasks, presynaptic neurons in lower visual areas, whose smaller

RFs contain only one of the two stimuli, show only small effects

of attention on their firing rates (Luck et al., 1997). Thus, with two

visual stimuli, there are two sets of presynaptic neurons in lower

visual areas, with firing rates hardly affected by attention, and

postsynaptic neurons in higher visual areas, with firing rates

dominated by the attended stimulus. This can be modeled

elegantly if attention modulates the effective strength of the

synaptic inputs from lower visual neurons onto higher visual

neurons, i.e., the synaptic gain, and the respective models are

explicitly ignorant about the mechanism of gain modulation

(Reynolds et al., 1999; Reynolds and Heeger, 2009). I suggest

that CTC is an ideal mechanism to implement the attentional

modulation of input gain. As the term ‘‘input gain’’ conveys, the

attentional modulation acts on the sets of synaptic inputs

signaling the competing stimuli. At the postsynaptic neuron,

those sets of synaptic inputs are likely distributed over the den-

dritic tree and partly intermingled. If attention were to act some-

how directly on those synapses, e.g., through anatomical top-

down projections ending in synapses onto those synapses,

this would require intricate addressing of the synapses
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conveying the attended stimulus. By contrast, in the CTC sce-

nario, attentional top-down control does not address the synap-

ses signaling the attended stimulus, but rather it simply ad-

dresses the corresponding neurons in the lower area. The

rhythmic synchronization of those neurons manages to entrain

postsynaptic neurons and thereby achieves the increase in input

gain at the postsynaptic neurons.

This central prediction of the CTC hypothesis has recently

received direct support from two independent yet very similar

experimental studies (Bosman et al., 2012; Grothe et al., 2012).

We illustrate here one of the studies (Figure 5) (Bosman et al.,

2012). Macaque monkeys fixated while two stimuli, positioned

next to each other at the same eccentricity a few degrees away

from fixation, were presented either separately (Figures 5A–5D)

or simultaneously (Figures 5E–5H). During simultaneous presen-

tations, one of the stimuli was behaviorally relevant, the other

was irrelevant, and themonkey’s behavior indicated that the rele-

vant stimulus was attended and the irrelevant one ignored.

Neuronal recordings were performed simultaneously in the lower

visual area V1 and the higher visual area V4. The two stimuli acti-

vated two separate groups of neurons in V1 (Figure 5B), and

there were neuronal groups in V4 that were activated by either

stimulus to approximately the same degree (Figure 5D). When

one of the stimuli was presented separately, it induced a gamma

rhythm in its respective V1 neuronal group, which entrained the

V4 neuronal group (Figure 5C).Whenboth stimuli were presented

simultaneously, both stimuli induced a gamma rhythm in their

respective V1 neuronal group (Figure 5F). Crucially, when one

of the two simultaneously presented stimuli was attended, only

the corresponding V1 gammamanaged to entrain the V4 gamma

(Figure 5G). The ignored stimulus induced a gamma rhythm in V1,

which did however fail to entrain the V4 gamma. The CTC

hypothesis suggests that this selective entrainment of V4 gamma

by the attended V1 gamma is the cause for the selective routing

of the attended stimulus from V1 to V4. This proposal is also

supported by corresponding mathematical models (Börgers

and Kopell, 2008; Gielen et al., 2010).

These results raise important questions for further investiga-

tion. In particular, we will need to understand better how atten-

tional top-down influences result in the selective interareal

synchronization. In the CTC scenario, attentional top-down influ-

ences do not need to address the synapses to postsynaptic neu-

rons in a higher area, where the competing stimuli are difficult

to disentangle. Rather, attentional top-down influences can be

addressed to the presynaptic neurons in a lower area, which

are arranged in maps, with neurons of similar preferences

located close to each other. Attentional top-down control can

therefore address neurons belonging to the neuronal representa-

tion of a given stimulus often by simply addressing a spatially

coherent neuronal group. This holds most straightforwardly for

spatially specific attention. I would like to speculate that top-

down influences implementing attention to nonspatial stimulus

features similarly address neurons in areas, where those stim-

ulus features are represented in topographically ordered and

thereby easily addressable maps. Top-down influences among

neighboring areas might be refined by the above-discussed

mechanism that renders feedback from the receiving group

more effective at the coherent sending group than at the
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Figure 5. Selective Attention through Selective Interareal Granger-Causal Influences in the Gamma Band
Triplet recording of two sites in V1 (B and F) and one site in V4 (D and H), allowing the analysis of Granger-causal (GC) interareal influences (C and G) (adapted and
modified from Bosman et al., 2012).
(A–D) Two conditions with a single visual stimulus each, showing the stimulus selectivity of the recorded neuronal signals.
(A) Illustration of the two conditions. The stimuli were behaviorally relevant and therefore attended, as indicated by their halo. Red and blue frames are not shown
to the monkey, but are used to label the corresponding spectra in the following panels.
(B) Spectral power changes, relative to pre-stimulus baseline, for the two V1 sites. Each site showed visually induced gamma-band activity exclusively for one of
the two stimuli.
(C) GC influence spectra, showing the feedforward influences of V1 onto V4.
(D) Spectral power change, relative to prestimulus baseline, for the V4 site. The site showed visually induced gamma-band activity that was very similar for the two
stimuli.
(E–H) Same as (A)–(D), but for two conditions with two visual stimuli and selective attention to one of them. (F) In V1, selective attention enhances gamma peak
frequency (see also Figures 6A and 6B). (G) V1 exerts feedforward influence onto V4 almost exclusively through the gamma rhythm induced by the attended
stimulus. (H) V4 responds equally strongly to both conditions. Previous studies have demonstrated that spike rates of single neurons in V4 predominantly
represent the attended stimulus (Moran and Desimone, 1985; Reynolds et al., 1999), as indicated by the stimulus symbols above the panel.
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noncoherent sending group, even if it is anatomically directed to

both (Bastos et al., 2015b; Fries, 2005).

This still leaves open the question of how the top-down

addressed neuronal groups are brought into selective synchroni-

zation with the postsynaptic neurons in higher visual areas. A

parsimonious assumption is that attentional top-down influ-

ences modify gamma-band synchronization in the lower-area

neuronal group in such a way that it has a competitive advantage

in entraining the postsynaptic neuronal group (Lee et al., 2013).

This might be achieved by modulation in gamma-band synchro-

nization strength or frequency, and I will discuss evidence for

both in the following two paragraphs.

Selective Attention Modulates Gamma-Band

Synchronization Strength

The first option is that attentional top-down influence affects

the strength of gamma-band synchronization in the lower area.

Importantly, in this context, the lower area is simply the area
with RFs small enough to contain only one of the multiple stimuli,

because then the competition occurs at the input to the next

higher area. For example, two closely spaced stimuli might fall

into separate V1 RFs and compete inside the same V4 RF,

whereas two more separated stimuli might fall into different V4

RFsandcompete inside thesameRF in thesubsequent areaTEO.

When two stimuli are separated such that a local group of V4

neurons is activated by only one of them, selective attention to

that stimulus results in enhanced gamma-band synchronization

among the V4 neurons (Bichot et al., 2005; Fries et al., 2001),

which is predictive of shortened reaction times on a trial-by-trial

basis (Womelsdorf et al., 2006). This holds at least if gamma-

band synchronization is assessed by means of LFP power

(Taylor et al., 2005) or the coherence between multiunit activity

(MUA) (Fries et al., 2008). Yet, whenMUA, showing an attentional

enhancement of gamma-band synchronization, is broken

down into single units, a differential effect of attention is revealed
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 227
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(Vinck et al., 2013): attention decreases the gamma locking of the

less active or less stimulus-activated neurons, whereas it in-

creases the gamma locking of the more active or more stim-

ulus-activated neurons. This increased gamma-band synchroni-

zation among the most active units likely endows them with a

larger influence onto postsynaptic neurons (Azouz and Gray,

2003; Salinas and Sejnowski, 2001). It could thus be a mecha-

nism through which attentional top-down mechanisms lend the

lower-area neurons representing the attended stimulus a

competitive advantage in entraining postsynaptic neurons in

higher areas.

An interesting question is whether similar effects of attentional

top-down influences occur in primary visual cortex, V1. When

gamma-band synchronization in V1 is assessed as LFP power

or as spike-LFP coherence without differentiating between

more versus less active/activated neurons, inconsistent results

have been reported: different studies found decreases (Chalk

et al., 2010), an absence of a change (Bosman et al., 2012),

and increases (Buffalo et al., 2011; van Kerkoerle et al., 2014).

The overall weaker effect of attention on gamma-band synchro-

nization in V1 as compared to V4 might be due to (1) weaker

attentional influences, or (2) more pronounced stimulus selec-

tivity potentially leading to an attentional decrease of gamma

synchronization for a large majority and an increase only for a

small minority of single neurons. Because in V4 attention leads

to both gamma-synchronization increases (for strongly active/

activated neurons) and decreases (for weakly active/activated

neurons), it is possible that similar effects occur in V1 and explain

the diverse findings there so far.

Selective Attention and Stimulus Salience Modulate

Gamma-Band Synchronization Frequency

An additional mechanism that might lend a neuronal group a

competitive advantage in entraining postsynaptic neurons is an

enhanced gamma-band synchronization frequency. When two

simulated oscillators with slightly different intrinsic frequencies

are reciprocally coupled, they can synchronize fully or partially.

During periods of synchronization, the oscillator with the higher

intrinsic frequency leads over the one with the lower intrinsic

frequency (Cannon et al., 2014; Lowet et al., 2015) and thereby

exerts a relatively stronger influence. Correspondingly, when

two V1 gamma rhythms compete for entraining V4 gamma, it is

conceivable that the faster V1 gamma rhythm exerts a stronger

influence on V4, simply bymeans of its higher frequency (Cannon

et al., 2014).

The abovementioned recordings in monkey visual cortex

(Bosman et al., 2012) indeed revealed that selective attention

leads to a consistent increase in the V1 gamma peak frequency

by about 3 Hz (Figures 6A and 6B). Intriguingly, gamma peak

frequency systematically increases also with increasing stimulus

contrast (Figure 6D) (Hadjipapas et al., 2015; Jia et al., 2013b;

Lowet et al., 2015; Ray and Maunsell, 2010; Roberts et al.,

2013). Stimulus contrast and selective attention have closely

related effects on neuronal processing (Reynolds and Chelazzi,

2004; Reynolds and Heeger, 2009), with attention increasing

the effective contrast of an attended stimulus by about 50%

(Reynolds et al., 2000). If stimulus contrast invoked the same

gamma-frequency-enhancing mechanisms as selective atten-

tion, a 50% contrast enhancement should result in a 3 Hz
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gamma-frequency increase. This corresponds well to the finding

that a 50% contrast increase leads to a 4 Hz gamma-frequency

increase (Ray and Maunsell, 2010) (the study reported a linear fit

between the gamma frequency and log2 [contrast] with a slope of

6.8 Hz).

Interestingly, gamma peak frequency also systematically in-

creases with other stimulus properties that increase stimulus

strength and salience, namely with the elimination of superim-

posed noise (Figure 6E) (Jia et al., 2013b), with stimulus motion

(Figure 6G) (Friedman-Hill et al., 2000; Gray et al., 1990; Muthu-

kumaraswamy and Singh, 2013; Swettenham et al., 2009; van

Pelt and Fries, 2013), and with a stimulus location closer to the

fovea (Figure 6H) (Lima et al., 2010; van Pelt and Fries, 2013).

Also, stimulus onsets lead to higher gamma peak frequency

(Figure 6C), a phenomenon illustrated in many studies even

though not often reported explicitly (Fries et al., 2001; Hoogen-

boom et al., 2006). In addition, gamma peak frequency increases

also with decreasing stimulus size (Figure 6F) (Gieselmann and

Thiele, 2008; Jia et al., 2013b; Ray andMaunsell, 2011). The rela-

tion of stimulus size to stimulus salience is less clear. Yet, one

might speculate that larger stimuli might increasingly be treated

as nonsalient background. Gamma peak frequency increases

are not simply due to higher firing rates. When the salience of

drifting gratings is reduced by superimposing dynamic noise,

this is reflected in reduced gamma peak frequency (Figure 6E),

but not in firing rate changes (Jia et al., 2013b). Similarly, when

stimulus orientation is varied around the neuron’s preferred

orientation, this by definition changes firing rates, but it does

not change stimulus salience, and correspondingly, it also

does not systematically affect gamma frequency (Figure 6I)

(Friedman-Hill et al., 2000; Gray et al., 1990; Jia et al., 2013b).

At any given moment, gamma frequency is likely influenced by

several factors simultaneously. The described effects of stimulus

salience and attention likely interact with each other and with

further effects. For example, gamma frequency also increases

with stimulus repetition (Brunet et al., 2014).

I would like to speculate that the competitive advantage of the

faster V1 gamma is potentiated by a regular reset of gamma

phase by a theta rhythm, as has been found in awake monkey

visual cortex (Bosman et al., 2009). For the first few gamma

cycles after the reset, the faster gamma rhythm sends its inputs

to V4 a few milliseconds before competing slower gamma

rhythms (Figure 7). The earlier arrival of input from the faster

gamma allows these inputs to trigger inhibition of the postsyn-

aptic network and thereby to shut out competing inputs medi-

ated by slower gamma rhythms. In essence, stimulus salience

and top-down attention are translated into gamma frequency,

and theta-rhythmic gamma phase resets turn V1 gamma-fre-

quency differences into V4 input-latency differences, with the

earliest input representing themost salient and/or attended stim-

ulus (Bosman et al., 2012). After a few gamma cycles, once V4 is

entrained by the winning V1 rhythm, the interareal locking might

sustain the selection for the remainder of the theta cycle, even

when the two gamma rhythms precess against each other and

thereby produce arbitrary lead-lag relationships. The stability

of an established gamma-band entrainment against precession

has been suggested by mathematical models (Börgers and

Kopell, 2008).
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Figure 6. The Gamma-Band Peak Frequency Increases with Attention and Salience
(A and B) Dots show awake macaque V1 LFP power changes (scaled to peak at a value of one) induced by a grating stimulus, when it was nonattended (blue) or
attended (red), lines show Gaussian fits (adapted and modified from Bosman et al., 2012). (B) shows a detail of (A) at higher resolution.
(C) HumanMEG power change over early visual cortex as a function of time after stimulus onset. Note that the gamma peak frequency is higher at response onset
than during the sustained response (adapted and modified from van Pelt et al., 2012).
(D–F) Anesthetizedmacaque V1 LFP power, during visual stimulation with a grating of varying contrast (D), varying amount of superimposed noise (E), and varying
size (F), as indicated by inset color legends (adapted and modified from Jia et al., 2013b).
(G) Human MEG power change, estimated to emerge from primary visual cortex, during visual stimulation with a grating that is stationary (blue) or moving (red)
(adapted and modified from Swettenham et al., 2009).
(H) Awakemacaque V1 LFP power during stimulation with a large grating that activated a recording site with a peripheral RF (blue) and another recording site with
a foveal RF (red) (adapted and modified from Lima et al., 2010).
(I) Anesthetized macaque V1 LFP gamma peak frequency (red line and left y axis) as well as gamma power (blue line and right y axis) as a function of stimulus
orientation relative to the recording site’s preferred orientation (adapted and modified from Jia et al., 2013b).
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Stimulus salience, e.g., due to contrast or motion, is often

within a narrow range within a given visual object, yet changes

at object boundaries (Lowet et al., 2015). Moreover, visual

attention during natural viewing operates at the level of objects

(Nuthmann and Henderson, 2010). Thereby salience- and atten-

tion-dependent gamma frequency changes likely contribute

to synchronization of neurons activated by one object and de-

synchronization of neurons driven by different objects (Lowet

et al., 2015). Crucially, across the hierarchy of visual areas,

neuronal groups activated by the same visual stimulus naturally

see the same stimulus salience and attention and thereby have

the same gamma frequency. Where projections to higher areas

converge, the higher gamma frequency likely succeeds in selec-

tively entraining postsynaptic neurons.

Thus, both the frequency and the strength of gamma-band

synchronization might lend a competitive advantage to the
lower-area neuronal group that is activated by the attended

stimulus in entraining postsynaptic neurons in higher areas.

The selective entrainment of the higher area to the part of

the lower area representing the attended stimulus constitutes

the implementation of attentional selection. It is important to

make the distinction between the implementation of atten-

tional selection and the control of attentional selection. While

the control of attentional selection is exerted by frontal and

parietal areas through top-down influences onto visual areas,

the implementation of attentional selection is realized by

selective bottom-up influences of lower onto higher visual

areas. Therefore, as much as it makes sense that the imple-

mentation is through selective interareal gamma-band syn-

chronization, which is predominantly bottom-up, the control

is expected to be through top-down influences of frontoparie-

tal areas onto visual areas and/or higher visual areas onto
Neuron 88, October 7, 2015 ª2015 Elsevier Inc. 229



Figure 7. Theta-Rhythmic Phase Reset Turns Gamma-Frequency
Differences into Latency Differences
In the lower area, after a reset, the gamma rhythms representing different
stimuli start at the same phase. The gamma rhythm representing the attended
stimulus (green) is faster than the gamma rhythm representing the unattended
stimulus (orange). This frequency difference translates into a latency differ-
ence. The input from the attended representation reaches the higher area first,
transmits its representation, and triggers inhibition to shut out the competing
unattended representation.
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lower visual areas (Buffalo et al., 2010; Buschman and Miller,

2007).

Top-Down Influences Are Mediated
by Alpha-Beta-Band Rhythms
A recent study has investigated the top-down-directed influ-

ences among eight primate visual areas, including parietal and

frontal visual control areas. In the gamma band, bottom-up influ-

ences were stronger than top-down influences, yet the opposite

was the case for the beta band, in which top-down influences

were stronger than bottom-up influences (Figure 8A) (Bastos

et al., 2015a). This pattern of directed interareal influences

agrees well with another finding, namely that in primate visual

areas V1, V2, and V4, gamma-band synchronization is particu-

larly strong in superficial cortical layers, whereas alpha/beta-

band synchronization is particularly strong in deep cortical layers

(Figure 8C) (Buffalo et al., 2011). Superficial cortical layers are

the primary source of anatomical forward projections, and this

predominance increases with the number of hierarchical levels

that are bridged by the forward projections; deep cortical layers

are the primary source of anatomical backward projections, and

this predominance increases with the number of hierarchical

levels that are bridged by the backward projections (Markov

et al., 2014). Thus, the degree to which an anatomical projection

originates from superficial layers, measured by the supragranu-

lar labeled neuron proportion after retrograde tracing (SLN),

quantifies the degree to which a projection is of a feedforward

type (Barone et al., 2000). Consistent with the laminar differences

in gamma- versus beta-band synchronization, the anatomical

SLN metric correlates with the asymmetry in directed influences

(Figure 8B) (Bastos et al., 2015a). These data suggest that supra-

granular layers convey their signals through the gamma rhythm,

whereas infragranular layers use the beta rhythm. Note that weak

top-down projections can originate in supragranular layers and

weak bottom-up projections in infragranular layers, for areas

close to each other in the hierarchy (Markov et al., 2014). Corre-
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spondingly, for those neighboring areas, there are also weak

top-down gamma influences and weak bottom-up beta influ-

ences (Bastos et al., 2015a).

A similar dissociation with higher frequencies mediating feed-

forward and lower frequencies mediating feedback signals has

also been found outside visual cortex. One study investigated

Granger causality between lower and higher auditory cortex of

human patients with implanted electrodes and reported feedfor-

ward signaling in gamma and feedback signaling in delta to beta

bands (Fontolan et al., 2014). Yet, outside visual cortex also

counterexamples have been reported for parietal-auditory and

parietal-somatosensory influences (Brovelli et al., 2004; Roopun

et al., 2010).

Among visual areas, the notion that gamma mediates forward

and betamediates backward influences received further support

from a study using electrical stimulation in either V1 or V4 and

LFP recordings in the respective other area (van Kerkoerle

et al., 2014). When electrical stimulation (five pulses at 200 Hz)

was given to V1, this robustly induced enhanced gamma-band

LFP power in V4, consistent with a forward influence (Figure 8D);

when the same electrical stimulation was given to V4, then under

visual stimulation with a background stimulus, this induced

enhanced alpha-band LFP power in V1 (Figure 8E). The fre-

quencies related to top-down influences differ across the studies

between alpha and beta, and the precise reason or relative role

of the two neighboring bands is not yet clear.

These results predict that top-down beta-band influences

should be enhanced when a cognitive task requires stronger

top-down control. A task modulating top-down control is selec-

tive attention, in which both bottom-up stimulation and task dif-

ficulty are constant, and top-down influences should be specif-

ically enhanced toward the visual cortex representing the

attended stimulus. Indeed, top-down beta-band influences

among visual areas contralateral to the attended stimulus were

found to be larger than among ipsilateral areas (Bastos et al.,

2015a). This is consistent with a study reporting that attention

enhances 8–15 Hz coherence between areas V4 and TEO and

between those areas and the Pulvinar (Saalmann et al., 2012).

Enhanced top-down beta-band influences might lead to

enhanced bottom-up gamma-band influences (Bosman et al.,

2012; Grothe et al., 2012), and a recent modeling study suggests

a putative mechanism (Lee et al., 2013). Also during other tasks,

conditions expected to strengthen feedback influences resulted

in stronger synchronization in relatively lower frequency bands

(Arnal et al., 2011; Buschman and Miller, 2007; Kornblith et al.,

2015; von Stein et al., 2000).

Theta-Rhythmic Gamma-Band Synchronization
Implements Attentional Sampling
The experimental evidence presented and the considerations

discussed so far suggest that top-down attentional influences

are mediated by beta-band synchronization, that the selective

communication of the attended stimulus is implemented by

gamma-band synchronization, and that gamma is rhythmically

reset by a 4 Hz theta rhythm. The theta-rhythmic resetting entails

a modulation of gamma-synchronization strength, consistent

with several studies reporting gamma-strength modulation with

theta phase (Figure 9A) (Bosman et al., 2009, 2012; Bragin
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Figure 8. Feedforward Predominates in Theta and Gamma Bands,
Feedback in the Alpha-Beta Band
(A) Granger-causal influences between awakemacaque areas V1 and DP. The
influence in the V1-to-DP direction is through an anatomical feedforward-type
projection and predominates in the theta and gamma bands, indicated by
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et al., 1995; Canolty et al., 2006; Colgin et al., 2009; Schomburg

et al., 2014; Voloh et al., 2015). If we identify a gamma-synchro-

nized network with the attentional selection of the respective

stimulus, then the theta-rhythmic gamma resetting corresponds

to the termination of this attentional selection and a potential shift

of attention to another stimulus. Attentional shifts are expressed

overtly during natural viewing as gaze shifts, i.e., saccades.

Strikingly, saccades during natural viewing show intersaccadic

interval distributions with a strong Gaussian component at

145 ms (Figures 9B and 9C), consistent with a 7 Hz theta rhythm

(Otero-Millan et al., 2008).

Together, these data suggest that the theta rhythm constitutes

a visual (and maybe a general) exploration routine (Fries, 2009).

When the behavioral context allows the eyes to explore the

visual environment freely, they saccade at a theta rhythm.

When the context requires the eyes to fixate for prolonged

durations, the cortical theta phase modulates the strength of

gamma-band synchronization (Bosman et al., 2009), which we

identified as implementation of attentional selection. Thus, it is

conceivable that irrespective of saccades as overt expressions

of attention, selective attention samples visual input at a theta

rhythm.

A recent study lends direct support to this (Landau and Fries,

2012). Human subjects were required to fixate and report a

contrast decrement occurring at a random time per trial in one

of two gratings positioned in the right and left visual hemifield.

A task-irrelevant flash occurred around one of the gratings at a

random time relative to the to-be-detected contrast decrement

and shifted attention to the respective grating. This attentional

reset to one side was particularly successful when the flash

occurred in the right visual field. After right visual field flashes,

4 Hz theta rhythms were directly visible in the time courses of

behavioral performance at both stimulus locations, and the two

rhythms were in antiphase (Figures 9D and 9E). Another study

used a similar approach to investigate detection performance

at uncued locations, at which changes occurred with 25% prob-

ability, and which were either on the same or a different object

as the cued location, at which changes occurred with 75%

probability (Fiebelkorn et al., 2013). This revealed attentional

sampling of the uncued locations at 4 Hz and in antiphase. Yet
purple and orange backgrounds, respectively. The influence in the DP-to-V1
direction is through an anatomical feedback-type projection and pre-
dominates in the beta band, indicated by green background.
(B) The Spearman-rank correlation, across area pairs, between an anatomical
metric of the feedforward/feedback character of an interareal projection (SLN)
and an electrophysiological metric of the asymmetry in Granger-causal in-
fluences (DAI). A positive (negative) correlation value indicates that Granger-
causal influences in the respective frequency are stronger in the anatomically
defined feedforward (feedback) direction. (A) and (B) are adapted andmodified
from Bastos et al. (2015a).
(C) Spike-LFP coherence from awake macaque area V2, for recordings
from deep (blue) and superficial (red) layers. Spike-LFP coherence shows an
alpha-beta band peak for deep layers and both a theta and a gamma peak for
superficial layers (adapted and modified from Buffalo et al., 2011).
(D) Awakemacaque V4 LFP power during visual stimulation with a background
stimulus (black) and additional electrical stimulation in V1 (five pulses at
200 Hz), which leads to power enhancement in the gamma band (red).
(E) Awakemacaque V1 LFP power during visual stimulation with a background
stimulus (black) and additional electrical stimulation in V4 (five pulses at
200 Hz), which leads to power enhancement in the alpha-beta band (blue). (D)
and (E) are adapted and modified from van Kerkoerle et al. (2014).
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Figure 9. A Theta Rhythm Is Visible in Visual
Gamma, Saccades, and Attentional
Sampling
(A) V1–V4 coherence as a function of frequency
and of time in the 4 Hz theta cycle (adapted and
modified from Bosman et al., 2012).
(B) Histograms of intersaccadic intervals (ISIs) for
microsaccades and regular saccades during free
viewing of natural scenes.
(C) The histograms of (B) have been fitted with
ex-Gaussian functions. The resulting parameter
estimates are shown for microsaccades and
saccades observed during several viewing con-
ditions as indicated. Irrespective of condition, the
Gaussian component’s mean was around 145 ms,
corresponding to 7 Hz. (B) and (C) are adapted and
modified from Otero-Millan et al. (2008).
(D) Detection accuracy for equally probable
contrast decrements on two bilateral stimuli, after
an irrelevant flash at time zero.
(E) Spectral analysis of the time-resolved detec-
tion accuracy from (D). The amplitude spectra
reveal peaks close to 4 Hz. The 4 Hz phase relation
of detection accuracy contralateral versus ipsilat-
eral to the flash is shown in the inset, has amean of
222�, and is not significantly different from 180�. (D
and E) are adapted and modified from Landau and
Fries (2012).
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another very recent study demonstrated that the 4 Hz sampling

of two simultaneously attended stimuli does not only occur after

a reset event, but that it is present continuously during distrib-

uted attention (Landau et al., 2015). Subjects monitored two

equally relevant stimuli for an unpredictable small change, and

the gamma-band activities induced by the two stimuli were

subtracted from each other to reveal moment-by-moment atten-

tional biases to one or the other stimulus. The 4 Hz phase of this

gamma difference preceding the stimulus change predicted

whether subjects were better or worse in detecting the change.

This suggests that the gamma-band activities induced by the

two stimuli are enhanced at 4 Hz in alternation, whenever the

respective stimulus is attentionally sampled.

These results can be parsimoniously explained by an 8 Hz

attentional sampling process. If this process samples two stim-

uli, each stimulus is sampled four times per second, i.e., at a

4 Hz rhythm. This would predict that a single object would be

sampled at around 8 Hz and, e.g., three stimuli at around 8/3 =

2.7 Hz. Indeed, detection performance of a single location

fluctuates and can be partly predicted by the prestimulus phase

of the ongoing 7.1 Hz component of frontal EEG (Busch et al.,

2009). An elegant psychophysical study investigated human

tracking performance on one, two, and three moving targets

while varying temporal frequency of the tracked stimuli. This

revealed that temporal frequency limits fell from 7 Hz with one

target to 4 Hz with two targets and 2.6 Hz with three targets

(Holcombe and Chen, 2013). These results are consistent with

a 7–8 Hz sampling process that is divided over one, two, or three

stimuli.
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Conclusions
Based on the synopsis of the presented

evidence and considerations, I would

like to suggest the following scenario:
Local cortical neuronal groups synchronize by default in the

alpha band. During alpha-band synchronization, network excita-

tion fluctuates at 100 ms cycles, but is tracked by network inhi-

bition within 3ms. This curtails effective communication and ren-

ders the respective activity invisible to other neurons. It allows

holding ‘‘on-stock’’ local neuronal representation, which can

be accessed flexibly. It might be an important contribution to

making optimal use of the brain’s massively parallel processing

architecture. Attention samples from this internal store at a theta

rhythm. Attentional top-down influences are mediated by alpha-

beta-band synchronization. It is possible that top-down influ-

ences in alpha and beta bands have differential roles. Top-

down alpha influences might convey influences that reinforce

local alpha, e.g., for irrelevant background regions. Top-down

beta influences wake up the local circuit and modulate its

gamma-band synchronization by strengthening it among the

most stimulus-driven neurons, and by enhancing its frequency.

Visual scenes induce many local gamma rhythms with varying

strength and frequency, reflecting the bottom-up stimulus

salience and stimulus history. The resulting gamma landscape

in, e.g., V1 thus reflects stimulus properties, experience, and

top-down influences. At a given time point, one out of these co-

existing gamma rhythms succeeds in entraining postsynaptic

neuronal groups. This gamma entrainment allows to transmit a

stimulus representation and to selfishly shut out competing stim-

uli’s representations. The entrainment establishes a cycle-to-cy-

cle memory of the active link that maintains until it is terminated

at the end of a theta cycle. The presynaptic gamma rhythm al-

lows network excitation to escape its ever-chasing network
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inhibition. Inhibition is temporally focused, which allows excita-

tion in between inhibition, and which synchronizes excitatory

output to optimally drive postsynaptic neurons. The rhythmically

synchronous communication establishes a pulsatile computa-

tion. During each pulse, a spike-rate-based stimulus representa-

tion passes through the respective synapses to a postsynaptic

neuron. The temporal focusing in the pulse increases the

precision with which postsynaptic currents combine. Neurons

driven by preferred stimuli spike slightly earlier in the pulse,

with higher postsynaptic impact. Thus, several rhythms and

their interplay render neuronal communication effective, precise,

and selective.
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