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PARSIMONIOUS GRAPHS: 

A STUDY IN PARSIMONY, 

CONTEXTUAL TRANSFORMATIONS, 

AND MODES OF 

LIMITED TRANSPOSITION 

Jack Douthett and Peter Steinbach 

ABSTRACT 
Connections between parsimonious structures and modes of limited transposition 
from three set classes are explored. A graph-theoretic approach proves useful in illus- 
trating the symmetries inherent in parsimonious structures and modes of limited trans- 
position. Four parsimonious graphs called mode graphs are constructed. Each mode 
graph consists of several components, and the vertices in each of these components 
represent triads or seventh chords embedded in a particular mode of limited transpo- 
sition. Two parsimonious methods of modulating between modes of limited transpo- 
sition are explored, one by bridging and the other by coupling components of mode 
graphs. Bridging techniques of modulation lead to two tori, one for triads and the other 
for seventh chords. In both tori, contextual transformations are evident in their struc- 
tures, and the torus for triads is equivalent to the toroidal version of the Oettingen/Rie- 
mann Tonnetz. Coupling techniques of modulation lead to the graphs known as Cube 
Dance and Power Towers. Analytical implications of patterns of chord sequences 
embedded in parsimonious graphs are also discussed. 
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1. Introduction 

Thanks to the 1993 SUNY-Buffalo Working Group, its 1997 sequel, 
and recent works by Klumpenhouwer (1994), Hyer (1995), Lewin (1996), 
Cohn (1996, 1997), and Clampitt (1997), new techniques are emerging 
that yield fresh insight into the complexities of voice leading, especially 
in the music of the late-nineteenth and early-twentieth centuries.1 The res- 
urrection of the theories of Hugo Riemann, initiated by Lewin (1982 and 
1987, 175-80) and Hyer (1989), has played an important role in the devel- 
opment of these new techniques. Neo-Riemannian Theory puts forth a 
group-theoretic approach to Riemann's ideas, and contextual transfor- 
mations that operate on consonant triads are fundamental to this theory. 
Three of these transformations, Parallel, Leittonwechsel, and Relative 
(the PLR family of contextual transformations), transform the modality 
of a consonant triad by inverting the triad about an axis that leaves two of 
its pitch classes fixed, and Cohn (1997) exploited this property to advance 
the concept of parsimony (law of the shortest way). 

Parsimonious structures (e.g., Tonnetze) generally have high degrees 
of symmetry and are independent of tonal centers. As a result of the meta- 
morphosis from the tonally centered eighteenth-century diatonicism to 
the tonal indeterminacy of the late nineteenth century, these symmetric 
structures have become important theoretical and analytical tools. With 
this new emphasis on symmetry, it is not surprising to discover that pitch- 
class collections from set classes 6-20, 8-28, and 9-12-pitch-class sets 
abundant in their degrees of symmetry-are associated with parsimony 
(for convenience, we will refer to these collections as modes of limited 
transposition2); Cohn discusses some of these relationships in his recent 
articles. 

In this paper we take a graph-theoretic approach to the above and con- 
struct parsimonious graphs whose vertices represent either triads or sev- 
enth chords. In Section 2 the relation definition provides the needed tool 
to construct these graphs. Parsimonious graphs known as mode graphs 
are constructed in Section 3. These graphs consist of several components, 
and the vertices in each of these components represent chords embedded 
in a particular mode of limited transposition. In Section 4 modulating 
between modes of limited transposition by bridging parsimonious chords 
in different components of a mode graph will be investigated, and this 
leads to the construction of two tori. One of these tori is equivalent to the 
toroidal version of the Oettingen/Riemann Tonnetz, and hence, all the 
contextual transformations (Parallel, Leittonwechsel, and Relative) can 
be seen on this torus.3 Moreover, these transformations have analogs 
apparent in the other torus, and these transformations are examined as 
well. A second method of modulating between modes of limited trans- 
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position via a coupling chord is discussed in Section 5, and the graphs 
known as Cube Dance and Power Towers illustrate this type of modula- 
tion. In the concluding section the definition of parsimony will be relaxed 
a bit, and the graphs resulting from the loosening of this definition will 
be investigated. Analytical implications of patterns of chord sequences 
embedded in parsimonious graphs are also discussed in this section. 

2. The Relation Definition and Parsimony 

The definition of parsimony is still evolving and, at present, not com- 
pletely consistent. Richard Cohn (1997) restricts the definition of parsi- 
mony to trichords, and in the context of the usual modulo 12 system he 
confines his attention to the set class of consonant triads. Two triads are 
parsimonious if they have precisely two pitch classes in common. This 
results in the displacement of the remaining pitch class by interval class 
1 or 2 (a half step or a whole step). Adrian Childs (1998) considers par- 
simonious seventh chords from the set class 4-27. In this case, two sev- 
enth chords are parsimonious if they have two pitch classes in common, 
and the remaining pitch classes can be paired so that the pitch classes in 
each pair differ by interval class 1. The differences between these ap- 
proaches are obvious, but they are consistent in that common tones are 
required to remain fixed, while the other tones are allowed to move by no 
more than interval class 2. With this in mind we make the following def- 
inition: 

Relation Definition: Let X and Y be two pcsets. We say X and Y are 
Pm,n-related (written X Pm,n Y) if there exists a set {xk }m+n-' and a bijec- 
tion t: X -4 Y such that X\Y (the set of pcs in X that are not in Y) = 
{xk) o ~-1, T(x) = X if X XX n Y, and 

=(xk+ l1(modl2) if 0O k 
< 

m - 1 
(xk) xk -+ 2(mod12) if m ? k 

< 
m + n - 1. 

To put this definition in musical terms, when X and Y are conceived as 
chords, the tones common to both X and Y remain fixed, and of the 
remaining tones (there will be m + n of them), m of them move by a half 
step and n by a whole step.4 Figure 1 depicts four different scenarios for 
consonant triads and how they relate in accordance with this definition. 
Note also that this definition implies that Pm,n-related chords have the 
same cardinality (since t is bijective), but they need not be in the same 
set class.5 

This relation definition leads to a somewhat flexible interpretation of 
parsimony. For example, for Cohn, parsimonious chords are consonant 
triads that are either P1,0- or P0,1-related, while Childs defines a parsimo- 
nious pair as seventh chords in set class 4-27 that are P2,0-related. This 
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C P1,o e c Po,1 E6 c 
P2.0 

a C PI, A 

a b c d 

Figure 1. Pm,n-related Consonant Triads 

C 
* E7 

Pio 
c 

P A,0 

Figure 2. Graph of T7 induced by P1,0 and P2,0 

flexibility is convenient in that it permits one to explore parsimonious 
structures of varying types and degrees, depending on particular objec- 
tives.6 In Sections 3, 4, and 5 our definition of parsimonious chords will 
be confined to chords that are either P1,o- or P0,1-related. We will employ 
these two types of parsimony (P1,o-parsimony and Po,1-parsimony) sepa- 
rately or together, depending on our objectives. In the last section we will 
admit P2,0-related chords into our definition of parsimony. 

Parsimonious graphs are graphs whose vertices represent members of 
a given family of chords and whose vertex adjacency is governed by 
some parsimony-related rule. For example, consider the family 7 = 
{C,Ab,G,c,E7 }, and suppose the rule governing adjacency on this family 
is that two vertices are connected by an edge if their corresponding 
chords are PI,o- or P2,0-related. Then since C P2,0 Ab P1,o c P1,o C and G 
and E7 are not P1,o- or P2,0-related to any chord in 7, the graph of T7 
induced by P1,o and P2,0 consists of a triangle whose vertices represent C, 
Ab, and c and two isolated vertices representing G and E7 (Figure 2). We 
will also consider the union of parsimonious graphs to be a parsimonious 
graph. 

Although we will focus on graphs that are essentially independent of 
diatonic influence, it should be noted that some parsimonious graphs are 
strongly influenced by diatonicism. Most notably, the graph of set class 
7-35 induced by P1,0 is the cycle offifths and belongs to a family of gen- 
eralized cycles offifths referred to by Cohn as unidirectional P-cycles.7 
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3. Mode graphs 

We begin by constructing four basic parsimonious graphs. Since each 
of these graphs is separated into components whose vertices represent 
chords embedded in a particular mode of limited transposition, these 
graphs will be referred to as mode graphs. The modes of limited trans- 
position associated with these graphs are the hexatonic (from set class 
6-20), octatonic (8-28), and enneatonic (9-12) sets. The prefixes to the 
names assigned to these mode graphs indicate the associated modes of 
limited transposition. The parsimony that induces the first two mode 
graphs (one for triads and the other for seventh chords) is restricted to 
P1,0-parsimony, and the construction of the second parallels that of the 
first. Both types of parsimony are needed to induce the last two graphs, 
and these graphs will parallel in construction as well. 

HexaCycles 
Let T1 be the family of all trichords whose step-interval sequences are 

permutations of 3, 4, and 5. Whence, T1 is the set class of all consonant 
triads. We call the graph of T1 induced by P1,o HexaCycles, and its com- 
ponents are hexatonic cycles for triads (Figure 3). As discussed by Cohn 
(1996) the consonant triads in each of these cycles coincide with those 
embedded in the hexatonic set listed below the cycle. 
OctaTowers 

To parallel this construction for seventh chords, let 61 be the family of 
all tetrachords whose step-interval sequences are permutations of 2, 3, 3, 
and 4. It follows that 61 is the family of all dominant, half-diminished, 
and minor seventh chords, and the graph of 61 induced by P1,o, which we 
call OctaTowers, consists of three octatonic tower components (Figure 
4). Each tower consists of four quadrilaterals joined in a circuit. In this 

c a e6 b Bl d a 

C 
E 

EG F# B A C6 
e g bW c) 

(0,3,4,7,8,11) {2,3,6,7,10,11) {1,2,5,6,9,10} {0,1,4,5,8,9) 

Figure 3. HexaCycles 
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Fm7 CIm7 Am7 

F*7 AIPAb7 Cq7 E7 A7 C7 

A 7 Akn B7 E47 Em7 G7 C Cm7 EQ 7 

B Bm7 D7 G47 J Gm7 B 7 E"7 Em7 F#7 

D47 Dm7 F7 B647 B C7 q7 F#7 FI 7 A7 

(0,2,3,5,6,8,9,11) (1,2,4,5,7,8,10,11) 10,1,3,4,6,7,9,10) 

Figure 4. OctaTowers 

case, the seventh chords in each octatonic tower coincide with those em- 
bedded in the octatonic set listed below the tower. 

OctaCycles 
To construct this graph, it is necessary to partition T1 into three sub- 

families, TI1,1, T1,2, and T1,3, such that each subfamily consists of the con- 
sonant triads embedded in a particular octatonic set. The graph Octa- 
Cycles is the union of the graphs of Tl,k (k=1,2,3) induced by P1,o and P0,1 
(Figure 5). These cyclic components are called octatonic cycles, and the 
triads in each cycle can be found embedded in the octatonic set listed 
below the cycle. 
EnneaCycles 

In this case 61 must be subdivided into four subfamilies, 61,1, 61,2, 91,3, 
and S1,4, such that each subfamily consists of the seventh chords embed- 
ded in a particular enneatonic set. It is easily verified that these subfami- 
lies partition S1. The graph EnneaCycles is the union of the graphs of S1,k 
(k=1,2,3,4) induced by P1,o and Po,1 (Figure 6). These cyclic components 
are called enneatonic cycles, and the enneatonic set in which the seventh 
chords in each of these cycles are embedded is listed under the cycle. 

4. The tori 

One method of modulating between modes of limited transposition is 
to bridge components of a mode graph. This is done by joining parsimo- 
nious chords in separate components with an edge. This transforms the 
above mode graphs into two tori, one for triads and the other for seventh 
chords. 
The Chicken-Wire Torus 

The torus (graph) of T1 induced by P1,o and Po,1 is called the Chicken- 
Wire Torus because of its hexagonal faces (Figure 7a). To realize this 
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torus, bend the upper and lower edges around so they meet, thus making 
an open-ended cylinder. Then pull the left and right ends of this cylinder 
around to form a donut, but before joining the ends, twist one end of the 
cylinder one-third of a revolution so that the corresponding triads on each 
end line up (Figure 7b).8 This twist plays an important role in the group 
symmetries of this graph, to be discussed at the end of this section. 

This graph is the geometric dual of the Tonnetz; that is, the Chicken- 
Wire Torus can also be constructed by mapping each face in the Tonnetz 
to a vertex and joining vertices with an edge if their corresponding faces 
in the Tonnetz share an edge. It can also be verified that the Tonnetz is the 
dual of the Chicken-Wire Torus. Thus, each torus can be obtained from 
the other, and hence, the Chicken-Wire Torus and the Tonnetz must con- 
tain equivalent information. The Chicken-Wire Torus, however, provides 
a different perspective. 

In the Chicken-Wire Torus, the edges represent transformations from 
the PLR family of contextual transformations. The solid edges represent 
the P (Parallel) transformation and connect triads (represented by ver- 
tices) that are P1,0-related and have the same root; the dotted edges rep- 
resent the L (Leittonwechsel) transformation and connect triads that are 
P1,0-related and have different roots; and the dashed edges represent the 

F QC A 
d f 6 c# f# a 

D 
Ak, 

B6 E F# c 

b 9 g e e6 c 
B G 

{ 0,2,3,5,6,8,9,11) { 1,2,4,5,7,8,10,11) } { 0,1,3,4,6,7,9,10) 

Figure 5. OctaCycles 

Ab7 B7 D7 F7 

C••7 
Am7 E/A7 

Bm7 IF# Dm7 QC+7. Fm7 

Cm7 A?" E m7 B7 
lF#m7 

D47 C#7j F*7 

C7 E7 E7 G7 F#7 BP7 Q7 A7 
E"7 Em7 G07 Gm7 B 7 B m7 A47 Am7 

{(0,2,3,4,6,7,8,10,11) { 1,2,3,5,6,7,9,10,11 ) (0,1,2,4,5,6,8,9,10) (0,1,3,4,5,7,8,9,11 
Figure 6. EnneaCycles 
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c 
- 10 bk0--- C# 8 a6 

S --- 6 14 e. 

E 11 - D 9 a.. - C 
G G 2 d - F 0 c. 

C7 
- 

5 ---4 E 

10 

e6 I 8 

R--- P L .......... 

)ZJo 

Figure 7. Chicken-wire Torus 

R (Relative) transformation and connect triads that are P0,1-related. The 
cycles of alternating dotted and solid edges are hexatonic cycles (the com- 
ponents of HexaCycles), and since the dotted and solid edges represent 
the L and P transformations, respectively, these are the cycles induced by 
the binary-generated chain of transformations <PL>. The dashed edges 
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are hexatonic bridges, since they connect parsimonious triads embedded 
in different hexatonic sets. Note that the transformation represented by 
the bridges is the Relative transformation; thus, the triads incident to each 
hexatonic bridge are P0,1-related. 

The three 8-cycles (cycles of length 8) of alternating dashed and solid 
edges are the octatonic cycles (the components of OctaCycles) and are 
induced by the binary-generated chain of transformations <PR>. Since 
the dotted edges connect parsimonious triads in separate octatonic 
cycles, they are the octatonic bridges (for triads). It follows that the tri- 
ads incident to an octatonic bridge (Leittonwechsel) are P1,0-related. 

There are two other generated chains of transformations to be noted. 
The 24-cycle of alternating dotted and dashed edges (a hamiltonian 
cycle, since it passes through each vertex in the Chicken-Wire Torus 
exactly once) is induced by the binary-generated chain <LR>. This cycle 
is the union of all the hexatonic and octatonic bridges. As such, the triads 
in this cycle move quickly through the hexatonic and octatonic sets, rest- 
ing only briefly in any one set. 

The last chain to be discussed here is the ternary-generated chain 
<LPR>. This chain induces the twelve hexagonal faces (6-cycles) in the 
Chicken-Wire Torus. The triads in each of these cycles have a single pitch 
class in common, and this pitch class becomes the name of the hexagonal face. 

Note that if the hexatonic bridges (Relative) are cut from the Chicken- 
Wire Torus then the torus reduces to HexaCycles, and if the octatonic 
bridges (Leittonwechsel) are cut, the torus reduces to OctaCycles. Cut- 
ting P reduces the torus to the 24-cycle induced by <LR> (the union of 
the hexatonic and octatonic bridges). As can be seen from the above, the 
Chicken-Wire Torus provides a convenient picture that shows how con- 
sonant triads interact within the web of modes of limited transposition 
and parsimonious voice leading. 
The Towers Torus 

The Towers Torus is the torus of S61 induced by P1,o and Po,1 shown in 
Figure 8. Its name comes from the fact that the circuits of quadrilaterals 
(square faces) hinged by minor seventh chords are the octatonic towers 
in Figure 4. To realize this torus, bend the upper and lower edges around 
so they meet, thus making an open-ended cylinder. Then pull the left and 
right ends of this cylinder around to form a donut. But before joining the 
ends, twist one end of the cylinder one-fourth of a revolution so that the 
corresponding chords on each end line up. As in the case of the Chicken- 
Wire Torus, this twist is important to the group symmetries of the Tow- 
ers Torus, which will be discussed at the end of this section. 

There are Parallel*, Leittonwechsel*, and Relative* contextual trans- 
formations for seventh chords that are analogous to the unstarred trans- 
formations for triads. In the Chicken-Wire Torus the transformation P 
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Fgm7 1,4 Cm7 8,11 Am7 3,6 

., 

Ebm7 

E•.7. 
F#7 B67/ Q7 F*7-/ A767 C7 / 

1,6 --- 1 --,8 3,8 3,10 

/ 1,10 
.. 

5,8 / 0 

EF.m7 
110 Bm7 5,8 Fm7 Cm7 

C-7 

, 

E67 G4 6, D7B\/ F7•• 
A47 / 

3,10 5,10 -- 0,5 - - - 

0,7 

S 7,10 2,5 / 0,9 
Cm7 

' 
Gm7 ,Dm7 ,.Am7 A7 C7 E7 . G7 B47,/ D7 F*7/ 

0,7 2,7 
- 2,9 , 4,9 

. 4,7 / 2,11 / 6,9 Am7 Em7 
..Bm7 

, Fnm7 

F#•7 , A7 C#Q7/ E7 A•7/ B7 ••E 7/ 
4,9 -,11, -- 6,11 1,6 

S 14 811 3,6 
F#m7 C.#m7 

A.m7 
E m7 

E7 7 F#7 B•7 C7 F 7/ A• 7 C, /. " 1,6 - -- " 1,8 - - - . 
3,8 - - - 3,10 

L2 

* R* 

Figure 8. Towers Torus 

(Parallel) exchanges triads that have the same root (see solid edges in 
Figure 7). In the case of seventh chords there are two Parallel* transfor- 
mations. The transformation PT exchanges the half-diminished and minor 
seventh chords that have the same root, and P* exchanges the minor and 
dominant-seventh chords with the same root (see solid edges in Figure 
8). In the Chicken-Wire Torus the L (Leittonwechsel) transformation 
exchanges root-distinct P1,0-related triads (see dotted edges in Figure 7). 
For seventh chords there are two Leittonwechsel* transformations; LT 
exchanges root-distinct P1,0-related half-diminished and minor seventh 
chords, and L* exchanges root-distinct P1,0-related dominant and minor 
seventh chords (see dotted edges in Figure 8). Finally, the Relative trans- 
formation R exchanges triads that are P0,1-related (dashed edges in Fig- 
ure 7) and the Relative* transformation R* exchanges two seventh-chords 
that are P0,1-related (see dashed edges in Figure 8). 
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Whereas the Towers Torus gives no information about the hexatonic 
sets, it does provide new insights into the seventh chord interaction be- 
tween the octatonic and enneatonic sets. In fact, the roles that the octa- 
tonic and enneatonic sets play in the Towers Torus are analogous to those 
of the hexatonic and octatonic sets in the Chicken-Wire Torus. The dashed 
edges (Relative*) are octatonic bridges (for seventh chords) and join Po,1- 
related seventh chords that are in separate octatonic towers (Figure 4). 
The four 9-cycles of dashed and solid edges are the enneatonic cycles 
(Figure 6) and the dotted edges (Leittonwechsel*) are enneatonic bridges. 
Thus, seventh chords incident to an enneatonic bridge are P1,0-related. 

Although more complex, many of the chains of transformations for 
seventh chords also parallel the chains for triads. The two binary-gener- 
ated chains <P*L*> and <PL*2> parallel the chain <PL> in that all induce 
cycles of pairwise P1,0-related chords embedded in modes of limited 
transposition. These starred chains split (but do not partition) the octa- 
tonic towers into two subfamilies of seventh chords. The cycles induced 
by <P*LT> partition the subfamily of half-diminished and minor seventh 
chords into three 8-cycles of pairwise P1,0-related seventh chords. The 
seventh chords in each cycle are those embedded in a particular octatonic 
set. The cycles induced by <P*L*> partition the subfamily of dominant 
and minor seventh chords into three 8-cycles of pairwise P1,0-related sev- 
enth chords similarly embedded in the octatonic sets. These cycles can 
be observed in the Towers Torus by following the cycles of alternating 
dotted and solid edges in Figure 8. 

The ternary-generated chain <P*P*R*> is analogous to the <PR> 
chain. The cycles induced by this chain partition Towers Torus into the 
four enneatonic cycles, similar to the way that the cycles induced by the 
<PR> chain partition the Chicken-Wire Torus into the three octatonic 
cycles. 

Paralleling the cycle of triads induced by <LR>, the two 18-cycles 
induced by the ternary-generated chain of transformations <L*L*R*> are 
the union of all the octatonic and enneatonic bridges. Whence, the sev- 
enth chords in these cycles pass quickly through the octatonic and en- 
neatonic sets, settling only briefly in any particular set. 

There are two other ternary-generated chains, <L*P*R*> and <PTL*R*>. 
The cycles induced by these chains are 36-cycles and appear to have no 
particularly relevant analog in the Chicken-Wire Torus. Although they are 
similar to the cycle of triads induced by the <LR> chain in that they are 
hamiltonian cycles, they lack the more important property of being the 
union of the octatonic and enneatonic bridges. 

There are also cycles of interest induced by longer chains of transfor- 
mations. For example, the seventh chords in each 4-cycle face and 6- 
cycle face (the squares and hexagons in the Towers Torus) share the pair 
of pitch classes that name the face of the corresponding square or hexa- 
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gon. The corresponding chains of transformations generating these 
cycles are <P*L*P*L*> and <P*LtR*P*L*R*>. In the sense that these 
cycles define the names of the faces, they are analogous to the cycles 
induced by the <PLR> chain of transformations in the Chicken-Wire 
Torus. There are also forty-eight 10-cycles in which the seventh chords 
share a single pitch class. 

Also paralleling the Chicken-Wire Torus, if the octatonic bridges 
(Relative*) are cut from the Towers Torus the resultant graph is Octa- 
Towers, and if the enneatonic bridges (Leittonwechsel*) are cut this torus 
reduces to EnneaCycles. Whence, just as the Chicken-Wire Torus pro- 
vides a convenient way to observe the interaction of parsimonious triads 
and their relationship to the hexatonic and octatonic sets, so does the 
Towers Torus present a convenient way of observing the interaction of 
parsimonious seventh chords and their relationships to the octatonic and 
enneatonic sets. 

Symmetries of the Tori 

Symmetries of a graph are adjacency-preserving vertex permutations, 
and the symmetries of the Chicken-Wire Torus (Figure 7), the Towers 
Torus (Figure 8), and the Tonnetz are all governed by the chromatic 12- 
cycle of pitch classes. It is well known that the group of symmetries of 
this 12-cycle is the dihedral group D12 and consists of 24 permutations in 
three different ways: 

(1) 12 rotations of the cycle are transpositions by fixed intervals. On 
the Chicken-Wire Torus these are even translations (major-to- 
major) of the lattice along the <LR> 24-chain. The motion is sim- 
ilar on the Tonnetz, since this Tonnetz is the geometric dual of the 
Chicken-Wire Torus (the groups of symmetries of geometric duals 
are isomorphic). On the Towers Torus of seventh chords, this 
transposition is achieved by a horizontal translation (m7-to-m7) of 
the lattice. 

(2) 6 reflections of the chromatic cycle occur on axes passing through 
and fixing two opposite (tritone) pitch classes. These are half-turns 
of the Chicken-Wire Torus about the center of a hexagonal face or, 
equivalently, about the midpoint of an R edge, exchanging major 
and minor triads.9 On the Towers Torus these are half-turns about 
a m7 vertex or about the midpoint of an R* edge, mapping m7-to- 
m7 (self-inverse) and exchanging dominant and half-diminished 
seventh chords. 

(3) 6 reflections of the chromatic cycle occur on axes passing through 
opposite edges of the cycle, fixing no pitch classes. These are half- 
turns of the Chicken-Wire Torus about the midpoint of an L edge 
or, equivalently, a P edge, again exchanging major and minor tri- 
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ads. On the Towers Torus these are the half-turns about the center 
of a hexagonal face or a square face, with maps as in (2). 

All 24 symmetries preserve the Parallel, Leittonwechsel, and Relative 
edge types of the Chicken-Wire Torus. On the Towers Torus, (2) and (3) 
exchange the Leittonwechsel* edge types (L* and L*) and exchange the 
Parallel* edge types. Because these lattices are twisted to form the tori, 
no other symmetries exist. At a glance the Chicken-Wire Torus suggests 
a possible reflection of the lattice about a vertical or horizontal axis, but 
(because of the twist) this reflection produces immediate contradictions 
such as the exchange of <PR> 8-chains for <LR> 24-chain. Without this 
twist the symmetries would total 144. Similar problems are encountered 
with reflections about vertical or horizontal axes of the Towers Torus. A 
left glove turned inside out is no longer a left glove and cannot map auto- 
morphically to its original state. 

5. Cube Dance and Power Towers 

Another method of parsimonious modulation between modes of lim- 
ited transposition is to introduce a chord that belongs to none of the com- 
ponents in a given mode graph but is P,,0-related to chords in two or more 
of its components. Thus, one passes from one component to the next 
through an intermediate coupling chord. The following graphs, Cube Dance 
and Power Towers, illustrate this technique.'0 
Cube Dance 

We start with HexaCycles (Figure 3) and look for trichords with the 
greatest potential to couple hexatonic cycles via P1,0-relations. One class 
of trichords that stands out in this search is the set class of augmented tri- 
ads, since altering any pitch of an augmented triad up or down by a half- 
step produces a consonant triad. Whence, each augmented triad is P1,0- 
related to six consonant triads. By allowing the augmented triads to 
interact with the hexatonic cycles via P1,0-parsimony, each of these cycles 
is transformed into a cube as illustrated in Figure 9a. In this figure, the 
cycles with bold edges are hexatonic cycles. Note that each augmented 
triad is common to precisely two cubes. The union of these cubes gener- 
ates the graph known as Cube Dance (Figure 9b)."1 Equivalently, if q is 
the family (set class) of all augmented triads and T2 = Tlu?4 then Cube 
Dance is the graph of T2 induced by P1,o. 

The numbers inclosed in squares that surround this graph are the sum 
classes of the three triads of like modality adjacent to the numbers. Sum 
classes are discussed in detail by Cohn (1998). 

From this graph it is easy to see how the augmented triads serve as the 
couplings between hexatonic cycles and function nicely as a way of mod- 
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Figure 9. Cube Dance 

ulating between hexatonic sets. In fact, the augmented triad coupling two 
hexatonic cycles can also be found embedded in both associated hexa- 
tonic sets (a common trichord). Any triad in a given hexatonic cycle can 
move through a coupling augmented triad to a neighboring hexatonic 
cycle in three ways or back to a triad within its own cycle in three ways. 
If the transition is to a neighboring hexatonic cycle then the coupled con- 
sonant triads are related by inversion, and if the transition is within a sin- 
gle cycle, they are related by transposition. 
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Power Towers 
Power Towers is the seventh-chord analog of Cube Dance. We start 

with OctaTowers (Figure 4) and look for tetrachordal couplings for the 
octatonic towers. For the same kind of reasons that augmented triads 
served well as coupling trichords for hexatonic cycles, diminished sev- 
enth chords are ideal coupling tetrachords for octatonic towers. If ?D is 
the family of all diminished seventh chords and S2 = 

SlueD, 
then the 

graph of 62 induced by P1,o is called Power Towers (Figure 10).12 
As in the case of Cube Dance, the numbers inclosed in squares that 

surround this graph are the sum classes of the transpositionally equiva- 
lent seventh chords adjacent to the numbers and are discussed by Cohn 
(1998). 

This graph illustrates how diminished seventh chords function as cou- 
plings between octatonic towers, thus providing a way to modulate be- 
tween octatonic sets. Similar to the augmented triad in Cube Dance, the 
diminished seventh chord coupling two octatonic towers is embedded in 
both associated octatonic sets. Diminished seventh chords are only adja- 
cent to dominant and half-diminished seventh chords, and if the coupled 
seventh chords are in different towers they are related by inversion, and 
if they are within the same tower they are related by transposition. 

Although augmented triads and diminished seventh chords as cou- 
pling chords offer maximum connectivity between components of the 
mode graphs, diminished triads, major seventh chords, and many other 
trichords and tetrachords can also serve as coupling chords. 

6. Applications and extensions 

Cohn's recent articles on maximally smooth cycles and hexatonic sets 
(1996) and on neo-Riemannian operators (1997) include many interest- 
ing analyses of passages by Beethoven, Brahms, Franck, Liszt, Mahler, 
Schubert, and Wagner. In the latter article, Cohn plots several of the tri- 
adic sequences found in the works of these composers on the Tonnetz, 
which, as discussed in the fourth section, is equivalent to the Chicken- 
Wire Torus. If a sequence of triads plotted on either of these graphs pro- 
duces a simple pattern then there is an implied musical structure. When 
plotted on the Chicken-Wire Torus the following three sequences (origi- 
nally plotted in Cohn 1997 on the Tonnetz) are simple illustrations of this. 

The first example is a sequence from the first movement of Brahms's 
Concerto for Violin and Cello. The sequence is (Ab, g#, E, e, C, c, Ab, g#). 
It is clear from the Chicken-Wire Torus (Figure 7) that this sequence fol- 
lows one of the zigzag patterns of alternating dotted and solid edges 
around the small diameter of the torus. This pattern implies that the se- 
quence is a hexatonic cycle, and the triads in this sequence are those 
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embedded in the hexatonic set listed below the corresponding cycle in 
Figure 3. 

Another example comes from the Andante of the overture to Schu- 
bert's Die Zauberharfe, where the sequence (c, Eb, eb, Gb, f# A, a, C, c) 
can be found. Placing this sequence on the Chicken-Wire Torus it is easy 
to see that it follows the alternating solid and dashed edges around the 
large diameter of the torus. It follows that the triads in this sequence are 
those embedded in the octatonic set listed below the corresponding octa- 
tonic cycle in Figure 5. 

Cohn (1991, 1992, and 1997) has also observed a remarkable 
sequence of 19 triads in the second movement of Beethoven's Ninth Sym- 
phony (mm. 143-76) generated by the binary chain <LR>; the sequence 
is (C, a, F, d, B, g, Eb, c, Ab, f, Db, bb, Gb, eb, B, g#, E, c#, A). From a dia- 
tonic standpoint, this sequence passes quickly through the keys, without 
establishing any particular tonality. But what can be said of its relation- 
ship with hexatonic and octatonic sets? Recalling that the <LR>-gener- 
ated cycle (the alternating dotted and dashed edges on the Chicken-Wire 
Torus) is the union of all the hexatonic and octatonic bridges (Section 4), 
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this sequence passes even more rapidly through the hexatonic and octa- 
tonic sets, resting for no more than two consecutive triads in any one set. 
This sequence is notable in that there is no more efficient way of avoid- 
ing modes of limited transposition. 

As of yet a search for analytical examples of P1,0- and Po0,-related sev- 
enth chords has not been made. However, Lewin (1996) and Childs (1998) 
have given us insight into the works of Chopin, Scriabin, Wagner, and 
Stravinsky by exploiting P2,0-parsimony for seventh chords. For example, 
Lewin (1996) applies P2,0-parsimony to the famous Wagnerian sequence 
(F07, E7, Ab07, G7, D07, B7), which appears at the opening of the Pre- 
lude from Tristan. The first seventh chord in this sequence is P2,0-related 
to all the others in the sequence, and many of the other pairs are P2,0- 
related as well. Without going into depth here (see Lewin [1996, 207- 
-209] for details), Lewin constructs a sequence of local graphs (graphs 
that involve only the seventh chords in the sequence) based on P2,0-Par- 
simony. These graphs reveal the presence of a high degree of symmetry 
at every stage of this sequence except at the last stage, which is the only 
graph that includes the B7 chord. Lewin observes that at this stage the 
high degree of symmetry is disrupted in preparation for a tonal cadence. 

The (global) graph of the family (set class) of all dominant- and half- 
diminished-seventh chords induced by P2,0 reveals a surprising connec- 
tion between the seventh chords and octatonic sets in this example. 
Childs's (1998) categorization of all possible P2,0-related pairs of half- 
diminished and dominant seventh chords is useful in the construction of 
this graph. His categorization reveals that the set class 4-27 can be parti- 
tioned into six subfamilies, each consisting of four pairwise P2,0-related 
seventh chords equivalent under transposition. With some work the graph 
of the set class 4-27 induced by P2,0 can be realized as a (twisted) torus 
whose cross-sections consist of the six subfamilies mentioned above 
(Figure 1 la).13 We call this graph Pipeline. For clarity, only four of the 
twelve edges connecting each pair of cross-sections are shown in Figure 
1 la, and the tube section and panel in Figure 1 lb show how the other 
eight connecting edges join the pair. 14 The seventh chords in each cross- 
section can be found embedded in the octatonic set listed below them. 

If a non-musical observer were asked to use Pipeline to trace the Tris- 
tan sequence and determine a pattern, the observer might note the fol- 
lowing: 

The path oscillates between an even-numbered cross-section (cross- 
section 2) and the odd-numbered cross-section to its right (cross- 
section 3), except at the last seventh chord, which appears in the 
cross-section to the left of the initial even-numbered cross-section 
(cross-section 1). 
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On the surface, this observation might seem to have little or no musical 
significance. However, because of the parsimonious organization mani- 
fested in Pipeline, the above non-musical observation is equivalent to the 
following analysis: 

The first five seventh chords of this sequence continually modulate 
between a pair of octatonic sets by bridging back and forth between 
half-diminished seventh chords in one octatonic set (cross-section 2) 
and dominant seventh chords in another (cross-section 3). In each of 
the first five seventh chords, precisely three of the pitch classes are in 
the intersection of the two associated octatonic sets; thus, only one pitch 
class determines in which octatonic set each seventh chord is embed- 
ded. Suddenly, at the last seventh chord in this sequence there are three 
departures from this pattern: the last seventh chord is embedded in the 
same octatonic set as its immediate predecessor; the last dominant sev- 
enth chord is embedded in an octatonic set that has previously been 
reserved as the source for only half-diminished seventh chords; and the 
last seventh chord contains three pitch classes not in the intersection of 
the two associated octatonic sets (these three departures are all a result 
of the last dominant seventh chord being in the first cross-section). 
These departures from the previous pattern suggest a change in direc- 
tion, and the sequence prepares for a tonal cadence.15 

This analysis holds any time the pattern observed by the non-musician 
appears in Pipeline. 

At this point it is uncertain whether this graph-theoretic interpretation 
is equivalent to or in addition to the sequential symmetry observed by 
Lewin. In support of the former, Lewin (1996, 209) points out that simi- 
lar sequential symmetries can be found in other Wagnerian passages, 
including one from the opening of the Immolation Scene with the 
sequence (A7, G07, C7, B607, E67, C#07, C#7). It is easy to see from 
Figure 1 la that this sequence also follows the same pattern as that 
observed by the non-musician. Thus, the analysis given for the first Tris- 
tan sequence applies to this one as well.16 

P2,0-parsimony also induces some interesting triadic structures. For 
example, we call the graph of T2 induced by P2,0 Weitzmann's Waltz (Fig- 
ure 12). The four hexagonal structures consisting of consonant triads are 
the graph-theoretic representations of octahedra, and the consonant triads 
in each are those that make a Weitzmann region (sum-class corner) dis- 
cussed by Cohn (2000, 1998).17 Although each consonant triad can be 
found embedded in two enneatonic sets, there is precisely one enneatonic 
set in which all six consonant triads of a given octahedron are embedded, 
and these enneatonic sets are listed alongside their corresponding octa- 
hedra in Figure 12. Modulating between enneatonic sets is accomplished 
by coupling pairs of octahedra with augmented triads that are P2,0-related 
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Figure 12. Weitzmann's Waltz 

to consonant triads in the octahedra being coupled. As in the case of Cube 
Dance and Power Towers, if the consonant triads being coupled are in the 
same octahedron, the triads are related by transposition, and if they are in 
neighboring octahedra they are related by inversion. Also note that the 
tonic-dominant relationship for minor keys is a P2,0-parsimonious one 
(e.g., a P2,0E). It follows that, although Weitzmann's Waltz is clearly not 
a diatonic structure, there is at least a hint of diatonicism in this graph. 

From a theoretical point of view, parsimonious graphs provide a 
visual representation of group actions on families of chords. This can 
prove useful to those who have a limited background in group theory as 
well as those whose background is more extensive. For those with a lim- 
ited background, these graphs offer a convenient way of seeing (literally) 
parsimonious organization within families of chords, thus providing an 
intuitive sense of the complexities of group actions on these families. For 
those with a more extensive background, parsimonious graphs can pro- 
vide a way of discovering relationships between group structures and 
families of chords. Such discoveries can lead to an understanding of how 
seemingly disparate structures relate to one another, as suggested by our 
discussion of the tori in Section 4 and in endnotes 9, 13, and 16. 

The visual aspects of these graphs can also prove useful in analysis. 
Simple patterns observed in these graphs imply a musical structure in- 
volving an interaction between parsimony and modes of limited transpo- 
sition, and this structure can be grasped by an understanding of the 
graph's construction. In some cases (as in the given examples of se- 
quences from Wagner's Tristan) these musical structures might other- 
wise be difficult to observe. This suggests that parsimonious graphs 
might prove useful in revealing other musical structures previously hid- 
den in the complexities of late nineteenth- and early twentieth-century 
voice-leading. 
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NOTES 

1. Cohn (1996, 9-11) illustrates very convincingly the shortcomings of a traditional 
approach, given the tonal indeterminacy of much late nineteenth-century music. 

2. We call collections from these set classes modes of limited transposition because 
of their limited number of distinct transpositions. Although there is no intended 
connection between our modes of limited transposition and those of Messiaen, it 
should be noted that collections from set classes 8-28 and 9-12 are, in fact, Mes- 
siaen's second and third modes of limited transposition. 

3. The original Oettingen/Riemann Tonnetz was constructed to accommodate just 
intonation and, hence, the lattice filled two-dimensional Euclidean space. As dis- 
cussed in Cohn 1997, in pitch-class space the Oettingen/Riemann Tonnetz can be 
realized as a lattice on the surface of a torus. 

4. This notation is a generalization of the notations employed in Lewin 1996 and 
Childs 1998. What Lewin refers to as DOUTHm and Childs as P, is Pm,o. Thus, 
Pm,,-relations take into account whole-step motion as well as half-step motion. 

5. Callender (1998) defines parsimony in terms of sequences of pitch-class sets. His 
definition permits pitch-class splitting (e.g., E goes to Eb and F) and fusing (Eb and 
F go to E), thus allowing parsimonious comparisons of pitch-class sets with dif- 
ferent cardinalities. As Callender illustrates in his analyses of passages from works 
by Scriabin, the ability to make such comparisons offers an important flexibility 
not possible with the relation definition we present in Section 2. Although not 
needed for our objectives in this paper, it is also possible to extend the relation def- 
inition to accommodate pitch-class splitting and fusing; simply allow t to be a sur- 
jective map from the larger set onto the smaller set when the pitch-class sets dif- 
fer in cardinality. The benefits and/or problems created by this extension have not 
yet been explored. 

6. With respect to parsimonious degree, one could make an argument, for example, 
that Po,1-parsimony and P2,0-parsimony are of the same degree, since each has a 
total half-step displacement of 2; P0,1-parsimony displaces one tone by a whole 
step while P2,0-parsimony displaces two tones by a half step each. 

7. One of the major topics of discussion at the 1993 meeting of the SUNY-Buffalo 
Working Group was P-cycles (also known as Cohn cycles). These cycles are com- 
ponents of graphs of set classes induced by P1,o. In the general setting these cycles 
are not restricted to the usual modulo-12 system, and few set classes in any sys- 
tem are capable of generating graphs with cyclic components. Because of the 
pitch-class motion between adjacent sets around these cycles, Cohn divides these 
cycles into two categories; unidirectional P-cycles and toggling P-cycles. A uni- 
directional P-cycle is a type of generalized cycle offifths in that the induced graph 
is a single cycle of "closely-related keys," linking these cycles to the theory of 
maximally even sets developed in Clough and Douthett 1991. Clampitt (1997, 
139) has shown that the graph of a set class induced by P1,0 is a unidirectional P- 
cycle if and only if the set class consists of maximally even sets such that the sizes 
of these sets and the cardinality of the chromatic universe in which they are 
embedded are coprime. If the induced graph consists of more than one cyclic com- 
ponent then the components of the graph are toggling P-cycles. The components 
of the graph we call HexaCycles (Figure 3), discussed in Section 3, are toggling 
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P-cycles. In his article on Cohn functions, Lewin (1996) has constructed an algo- 
rithm that, when restricted to P1,0-related sets, generates all set classes whose 
induced graphs consist of P-cycles. 

8. The Chicken-Wire Torus also appears in the toroidal structures generated by the 
psychological test data on neo-Riemannian transformations discussed in Krum- 
hansl 1998. 

9. For example, half-turns about the centers of the tritone faces 1 or 7 or about the 
midpoints of the R edges incident to d and F, or ab and B, leave these faces and 
edges fixed (see Figure 7a). The other faces map by name in the same way the 
pitch classes map on the 12-cycle when reflected about the (1-7)-axis. 

10. Our intent in this section is to illustrate how a graph-theoretic approach can be use- 
ful in observing and understanding how modes of limited transposition, parsi- 
mony, and coupling modulations function together. Other properties inherent in 
these graphs and in other related structures have been investigated in Cohn 1994, 
2000, and 1998. 

11. The name Cube Dance was first suggested by Carol Krumhansl at the 1993 meet- 
ing of the SUNY-Buffalo Working Group. 

12. As originally presented by Douthett at the 1993 meeting of the SUNY-Buffalo 
Working Group, French-sixth chords were also included in this graph. With the 
inclusion of both French-sixth and diminished seventh chords, each of the three 
octatonic towers is transformed into a 4-cube (4-dimensional cube), and Power 
Towers becomes a 4-Cube Trio (three 4-cubes joined at diminished seventh chords 
to form a circuit). 

13. To put this in terms of Childs's C transformations, each family of four seventh- 
chords that make up a cross-section in Pipeline is an orbit of the set class 4-27 
under the group of C transformations. To put this in terms of the Parallel*, Leit- 
tonwechsel*, and Relative* transformations, these families are the collection of 
orbits of the set of half-diminished seventh chords under the group generated by 
PIL* (={ (PIL*)k} -o) and the orbits of the set of dominant seventh chords under the 
group generated by P*L*. Whence, these transformations partition these families 
into "half-diminished" and "dominant" orbits. By employing the work of Cohn 
(1998) there is yet another way to characterize these families. They are the six sum 
classes of set class 4-27. Precisely how these three characterizations relate to one 
another has not yet been worked out. 

14. Note that not every pair of consecutive seventh chords in the Tristan sequence con- 
sists of P2,0-related seventh chords; one pair contains P0,1-related seventh chords, 
and those in another pair are P4,0-related. Technically, the adjacency rule should 
include Po,1- and P4,0-related pairs as well. However, these inclusions would un- 
necessarily complicate Pipeline by increasing the number of edges between adja- 
cent cross-sections, and it would have no effect on our observations and analysis 
that follow in the text. 

15. The curious reader might find it interesting to compare our analysis with that of 
Boretz (1972, 159-217). 

16. It can be seen from Cohn's (1998) work on sum classes that there is another obser- 
vation equivalent to that made by the non-musician and the analysis following that 
observation. Considering only the seventh chords in set class 4-27, the sequences 
mentioned oscillate between seventh chords whose total pitch-class sums (modulo 
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12) are 3 (or 7 or 11) and seventh chords whose sums are 1 (or 5 or 9, respectively) 
until the last seventh chord, whose total pitch-class sum is 5 (or 9 or 1, respec- 
tively). 

17. When introduced by Douthett at the 1993 meeting of the SUNY-Buffalo Working 
Group, this graph was called the Anniversary Waltz. After observing the connec- 
tion between the octahedra in this graph and Weitzmann regions we have decided 
to change its name to Weitzmann's Waltz. 
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