
Framework for Real-Time Editing of
Endless Procedural Terrains

Johan Klokkhammer
Helsing

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: July 2014

Norwegian University of Science and Technology

Problem description

Game developers commonly re-implement terrain generating code for each project
they are working on, thus using up valuable development time. Furthermore,
terrain generating code is often written in compiled languages, and this usually
requires the code to be recompiled and the application relaunched each time a
change has been made to the generator. Games and other virtual environments
often use terrains generated using the implicit procedural techniques of Perlin and
Musgrave.

These techniques have also been applied to heightmap-generating software and
3D-modeling software. Such programs commonly offer a node editor letting the
user visually edit an expression tree consisting of common procedural algorithms
and mathematical functions. The results of the changes can often be viewed in real
time. These packages, however, do not let you run the generation on the client. A
heightmap has to be generated in its entirety first; and can then be imported by
the game or application as a non-procedural model. Hence, many of the desirable
properties of procedural generation are lost in the process, such as the ability to
generate infinite worlds or a new world each time a game is started.

The goal of this project is to combine the ease of use of visually editing an
expression tree in a node editor with the ability to generate terrain on demand
at the player’s computer. An open-source library capable of serializing and de-
serializing graphs of functions will be developed, as well as a visual node editor
interfacing with the library. The node editor should be capable of displaying
generated terrains in real time. This will enable non-programmers to edit terrain
efficiently, while retaining the ability to perform generation in-game. A reference
plug-in for a real-time engine will be developed to demonstrate the potential of the
framework. Existing game engines as well as the NTNU HPC-Lab Snow Simulator
will be considered as candidates for the reference plug-in.

Assignment given: 15 January 2014
Advisor: Anne C. Elster, IDI, NTNU

Abstract

Procedural content generation is the act of creating video game content auto-
matically, through algorithmic means. In online procedural generation, content is
generated as the game is running on the consumer’s computer.

Online procedural generation of terrains has become an important feature in
many recent video games. The technique enhances the replayability and vastness
of virtual worlds by offering a unique and endless terrain for each play session.

Procedural terrain generation is commonly achieved through noise synthesis.
Adding, multiplying and filtering layers of noise at different frequencies and am-
plitudes, can lead to complex and realistic terrain models. This process of filtering
and combining noise and other functions to create a final terrain function is usually
done by issuing calls to a noise generating library in a programming or scripting
language, such as C++ or Lua.

The process requires a programmer to write code, compile the code, run the
program, observe the results, and then start over editing the code. This is a
tedious, non-intuitive and time-consuming design process. Consequently, game
designers are often forced to accept sub-optimal results because of time constraints
or lack of control over the generation process.

Our framework, Noise Modeler, consists of a GUI application and a library
for modeling terrains for endless-world creation. In this project, noise and other
functions are composited through a visual flow-graph editor similar to the ones used
by procedural shader editors and offline terrain generators. This novel framework
enables non-programmers to edit models for procedural heightmap terrains while
observing the effect of changes immediately in a real-time preview.

Designed terrains can be serialized to human-readable text files, consuming
only a few kilobytes. By using our library, a game engine can load these text files
in order to generate terrain data on-demand on the GPU.

To our knowledge the Noise Modeler framework is therefore unique in its cause.
It may be limited in features, and rough around the edges in terms of usability,
but it clearly outperforms existing noise libraries, and has terrain specific features
and heightmap previews not present in procedural shader editors.

Sammendrag

Prosedyrisk innholdsgenerering (procedural content generation) er et begrep for
det å generere spillinnhold automatisk ved hjelp av algoritmer. I online prosedyrisk
generering genereres innholdet mens spillet kjører p̊a spillerens datamaskin.

Online prosedyrisk generering av terreng har blitt en viktig del av mange nylige
dataspill. Teknikken kan forlenge levetiden og størrelsen til et spill ved å tilby en
unik og uendelig virtuell verden hver gang spillet startes.

Prosedyrisk terrenggenerering oppn̊as vanligvis ved å syntetisere og filtrere syn-
tetisk støy. Ved å legge sammen, multiplisere og kombinere støy ved forskjellige
frekvenser og amplituder, er det mulig å lage komplekse og realistiske terrengmo-
deller. Denne prosessen — best̊aende av filtrering og kombinering av støy og andre
funksjoner for å lage det endelige terrenget — blir ofte opn̊add ved hjelp av funk-
sjonskall mot et bibliotek for syntetisering av støy gjennom et programmerings-
eller script-spr̊ak.

Prosessen krever at en programmerer skriver kode, kompilerer koden, kjører
programmet, observerer resultatet, og deretter redigerer kode igjen. Dette er tid-
krevende, tungvindt, og ikke intuitivt. Resultatet er at spilldesignere ofte blir tvun-
get til å godta terrengmodeller de ikke er helt fornøyd med grunnet tidsnød, eller
manglende kontroll over genereringsprossessen.

V̊art rammeverk, Noise Modeler, best̊ar av et grafisk brukergrensesnitt og et
bibliotek for modellering av terreng for uendelige prosedyriske verdener. I det-
te prosjektet blir støy og andre funksjoner kombinert gjennom et visuelt redige-
ringsverktøy for grafer ikke ulikt tilsvarende verktøy for design av prosedyriske
teksturer. Dette nye rammeverket gjør det mulig for ikke-programmerere å lage
modeller for prosedyrisk generering av høydedata-terreng. Endringer p̊a modellen
kan observeres i en forh̊andsvisning som oppdateres i sanntid.

Designede terreng kan serialiseres til et tekstformat som er forst̊aelig for men-
nesker. Formatet bruker kun et par kilobyte for å representere et terreng. Ved å
bruke v̊art bibliotek, kan en spillmotor laste disse tekstfilene for å generere terreng-
data n̊ar det etterspørres. Genereringen blir utført ved hjelp av klientens grafikk-
prosessor.

Noise modeler, er derfor — s̊a vidt vi vet — et unikt verktøy. Det mangler
riktignok en del funksjoner, og har et brukergrensesnitt som trenger justeringer i
forhold til brukervennlighet, men rammeverket er klart raskere enn eksisterende
støygenererende biblioteker og har terrengspesifikke funksjoner man ikke finner i
prosedyriske shader-verktøy.

ii

Acknowledgments

I wish to thank my supervisor Dr. Anne C. Elster for her valuable assistance and
advice during the project.

Gratitude is also given to Colt McAnlis for letting me use one of his screenshots
of a vector displacement terrain in this thesis, and Philip Trettner for his screenshot
of the Upvoid Engine.

I would also like to thank NTNU and NVIDIA’s CUDA Research Center and
NVIDIA CUDA Teaching Center program for their contributions to the IDI/NTNU
HPC-Lab.

Finally, I wish to thank Hanna H. Kamperud for her support throughout my
study.

iii

Contents

Abstract i

Sammendrag ii

Acknowledgments iii

List of Tables ix

List of Figures x

Listings xii

Glossary xiii

1 Introduction 1
1.1 Benefits of generating terrains procedurally 2
1.2 Current approaches . 2
1.3 Thesis goals . 3
1.4 Research questions . 4
1.5 Thesis outline . 4

2 Background 5
2.1 Procedural content generation . 6
2.2 Terrain models . 8

2.2.1 Heightmaps . 8
2.2.2 Vector displacement fields 9
2.2.3 Layered heightmap . 10
2.2.4 3D meshes . 10
2.2.5 Voxel grid . 10
2.2.6 Overview of common game engines and their supported ter-

rain models . 11
2.3 Fractal terrains . 13

iv

CONTENTS

2.3.1 Stochastic interpolation . 13
2.3.2 Implicit procedural techniques 14
2.3.3 Noise . 15
2.3.4 Value noise . 16
2.3.5 Perlin noise and other types of gradient noise 16
2.3.6 Simplex noise . 19
2.3.7 Approximating fBm with noise 20
2.3.8 Other uses of noise . 21

2.4 Simulating erosion . 23
2.5 Noise libraries . 25

2.5.1 libnoise . 25
2.5.2 Accidental Noise Library . 25

2.6 Offline terrain generators with procedural features 26
2.6.1 World Machine . 26
2.6.2 Lithosphere . 26

2.7 GeoGen . 27
2.8 Procedural shader editors . 28
2.9 OpenGL . 29

2.9.1 The rendering pipeline . 29
2.9.2 Vertex shader . 30
2.9.3 Fragment shader . 30
2.9.4 Geometry shader . 30
2.9.5 Tessellation shaders . 30
2.9.6 Compute shaders . 31
2.9.7 The OpenGL shading language 31
2.9.8 Noise generation on the GPU 31

2.10 Terrain rendering . 32
2.10.1 Level-of-detail algorithms 32
2.10.2 Geometry Clipmaps . 33
2.10.3 Continuous distance-dependent level of detail 34

2.11 Qt . 35

3 Method 36
3.1 Novelty of approach . 36
3.2 Concepts . 38

3.2.1 Terrain representation . 38
3.2.2 Modules . 38
3.2.3 Module types . 39
3.2.4 User types . 39
3.2.5 Signal types . 40
3.2.6 Metadata . 40

v

CONTENTS

3.2.7 Formal model . 40
3.2.8 Comparison to libnoise and ANL concepts 41

3.3 Framework requirements . 42
3.3.1 Real-time performance . 42
3.3.2 Portability and modifiability 44
3.3.3 List of framework requirements 45

3.4 Architecture . 45
3.4.1 Framework overview . 46
3.4.2 Library architecture . 47
3.4.3 The Noise Modeler application 50

3.5 Parallel computation of implicit terrains 50
3.6 Development process . 52
3.7 Verification . 53

4 Implementation 55
4.1 Serialization . 55

4.1.1 The JSON format . 55
4.1.2 Noise Modeler documents 56
4.1.3 Module types . 56
4.1.4 Modules . 57
4.1.5 Serialization example . 57

4.2 Library design . 60
4.3 User interface . 62

4.3.1 Graph editor . 63
4.3.2 Inspector . 64
4.3.3 List of module types . 64
4.3.4 Real-time previews . 64
4.3.5 Intended workflow . 65

4.4 GPU evaluation . 65
4.4.1 Generating GLSL code . 65
4.4.2 GLSL Noise implementation 69
4.4.3 Implementing fBm and multi-fractal algorithms 69

4.5 Rendering terrain previews . 71
4.5.1 Texture preview . 71
4.5.2 Heightmap 3D preview . 73

5 Results and Discussion 79
5.1 Benchmarking . 79
5.2 Implemented and missing features 83

5.2.1 Real-time preview . 83
5.2.2 Generator functions . 84

vi

CONTENTS

5.2.3 Lack of erosion algorithms 85
5.3 Run-time complexity of generated GLSL code 86
5.4 Pilot testing . 88
5.5 Software quality . 90

5.5.1 Supporting new evaluation platforms 90
5.5.2 Supporting additional terrain types 90

5.6 Utility as a game development tool 91

6 Conclusions and Future Work 94
6.1 Future work . 95

6.1.1 Improvement of heightmap rendering 95
6.1.2 Platform support . 95
6.1.3 Other terrain paradigms . 96
6.1.4 Integration with existing frameworks 96
6.1.5 More advanced built-in modules 96
6.1.6 Combine with generate-and-test algorithms 97

Bibliography 98

A Noise Modeler User’s Guide 103
A.1 Introduction . 103

A.1.1 Licensing . 103
A.2 Installation . 103

A.2.1 System requirements . 103
A.2.2 Prebuilt binaries . 104

A.3 Building from source . 104
A.3.1 Build dependencies . 104
A.3.2 Building on Linux . 104
A.3.3 Building on Windows . 106

A.4 Tutorial . 107
A.5 User interface . 111

A.5.1 Saving documents . 111
A.5.2 Opening documents . 111
A.5.3 Tabs . 112
A.5.4 Module type list . 112
A.5.5 Graph editor . 113
A.5.6 2D preview . 114
A.5.7 3D preview . 115
A.5.8 Inspector . 116

A.6 Module types . 117
A.7 Using the library to generate terrains online 117

vii

CONTENTS

A.7.1 Loading a graph from JSON 117
A.7.2 Generating a GLSL elevation function from a user type . . . 118
A.7.3 Dynamically creating heightmap textures using a GLSL func-

tion . 119

B Poster Submission for SIGGRAPH 2014 121

C Benchmark code 123

D Noise Modeler Library API Reference 134

viii

List of Tables

2.1 Some game engines and their supported terrain models. Static/-
dynamic indicates whether terrains are editable during run-time.
All engines support block-like voxel terrains through their scripting
languages. 12

5.1 Benchmark results. Generating a 8192 × 8192 patch of heightmap
terrain. ∗ The results are for a 4096 × 4096 texture, because Intel HD 4000

does not support 8192× 8192 framebuffers. 82
5.2 Benchmark configurations. All machines ran Arch Linux (updated

28 May 2014) with kernel version 3.14.4. 82
5.3 Support for various common generation algorithms in different frame-

works. 85

A.1 Built-in module types. Function<D> denotes that there is one defi-
nition for each dimensionality. “Variable(D)” denotes a D-dimensional
vector, if there is no parenthesis, the type is a scalar. 120

ix

List of Figures

2.1 Heightmap terrains . 8

2.2 Vector displacement terrains . 9

2.3 Two types of voxel terrains. 11

2.4 Two iterations of one-dimensional midpoint displacement 14

2.5 Generation of two-dimensional value noise using cubic interpolation.
We can clearly see that the noise has artifacts related to the grid
direction . 16

2.6 A type of gradient noise called simplex noise, an improved version
of Perlin noise which eliminates axis-aligned artifacts and reduces
computational complexity. 17

2.7 Interpolation functions for Perlin noise. 19

2.8 Gradient 2D-noise construction . 20

2.9 Approximating fBm with noise. The top row shows simplex noise
with a doubling in frequency and a halving in amplitude for each
successive image. The bottom row shows the sum of the images in
the top row. 21

2.10 fBm-based terrain algorithms rendered by the PTG framework. . . 22

2.11 Running thermal erosion on a hybrid multifractal terrain. 24

2.12 A screenshot of World Machine. A preview of the terrain is shown
in the top left, and a flow-graph editor is shown in the middle. . . . 27

2.13 Geometry clipmaps as seen from above. Each color represents a
LOD-level. All LOD-levels have the same number of vertices in
width and length. 33

2.14 The CDLOD algorithm. Each square represents a heightmap of
width 128. The circles indicate the distances at which each LOD-
level is activated. 34

3.1 A function calculating the absolute value of fBm represented by two
different graph metaphors. 42

3.2 Use-case diagram for the framework. 46

x

LIST OF FIGURES

3.3 Architecture overview. The arrows show dependencies. Blue boxes
are part of the framework, while yellow boxes show potential third-
party software. 47

3.4 Use-case diagram for function graph library 48
3.5 Detailed framework architecture including dependencies and pack-

age modules. The arrows indicate dependencies. 49

4.1 Class diagram for the library. 61
4.2 A screenshot of the Noise Modeler application. 63
4.3 Screenshots of heightmap previews 72
4.4 Side-by-side comparison of the terrain preview using different frag-

ment shaders. 78

5.1 The benchmark terrain, rendered by the real-time preview in Noise
Modeler. 80

5.2 The benchmark terrain function, as shown in Noise Modeler. 81
5.3 A terrain designed by the primary test subject 89
5.4 A two-dimensional terrain with an underground cave system de-

signed with Noise Modeler. The terrain is seen from the side, with
the ground in white and the air and caves in black. This terrain
may be used by side-scrolling games such as Terraria, Starbound or
Worms. 91

5.5 A few terrains designed with Noise Modeler. The bottom row shows
how user types may be used to combine a mountain terrain and a
river network. 93

A.1 Screenshot of the application right after it has been started 107
A.2 Use your mouse scroll wheel while hovering over text boxes to easily

adjust values. 108
A.3 The default module graph. 109
A.4 Click the fBm module so it can be edited in the inspector. 110
A.5 Adjusting the gain of fBm . 110
A.6 Row of open tabs. The current tab, “Terrain”, is highlighted. 112
A.7 Module type list . 112
A.8 The graph editor . 113
A.9 2D texture preview of the terrain. 114
A.10 3D preview of the terrain. 115
A.11 The inspector showing an add1 module, a one-dimensional addition

module. Only the “rhs” (right-hand-side) value is editable. “lhs” is
gray and cannot be edited because it is currently connected to the
output of another module. 116

xi

Listings

2.1 Hashing using a permutation array 18
2.2 Two-dimensional noise-based fBm algorithm in C++ 20
4.1 Example terrain function . 57
4.2 The structure of code generated by generateFromLinks 66
4.3 GLSL generated for a 2D fBm module 67
4.4 GLSL implementation of fBm . 70
4.5 GLSL implementation of ridged multifractal terrain 70
4.6 Vertex shader for texture preview 72
4.7 Generation of fragment shader for texture preview 73
4.8 Vertex shader for 3D preview . 74
4.9 Simple fragment shader for 3D preview 76
5.1 Generated code for a multiplication module, stripped of comments. 87
C.1 libnoise, uncached benchmark . 123
C.2 libnoise, cached benchmark . 124
C.3 ANL, uncached benchmark . 125
C.4 ANL, cached benchmark . 126
C.5 nmlib benchmark . 126

xii

Glossary

ANL Accidental Noise Library, a library for compositing procedural noise.

API Application Programming Interface.

Biome Climatically and geographically contiguous areas with similar climatic
conditions.

CUDA Compute Unified Device Architecture, a parallel computing platform de-
veloped by NVIDIA for their graphics processing units.

DAG A Directed Acyclic Graph.

fBm Fractional Brownian Motion.

Flow graph A directed acyclic graph, describing how outputs of algorithms flow
to the inputs of other algorithms, in order to compute a final result.

Functional composition Combining the outputs of one or more simple functions
as the inputs of another function.

Genotype An unexpanded procedural model. May be considered as a blueprint
for the expanded model, the phenotype. For example, the parameter values
and seed of a procedural algorithm can be considered a genotype.

GLSL OpenGL Shading Language. A programming language for the programmable
parts of the OpenGL rendering pipeline.

GPL GNU General Public License. A copyleft free software license.

GPU Graphics Processing Unit.

GPGPU programming General Purpose Graphics Processing Unit program-
ming. Using GPU hardware for non-graphical applications.

Heightmap A heightmap is a two-dimensional grid of elevation data.

xiii

LISTINGS

JSON JavaScript Object Notation, a lightweight data-interchange format.

LGPL GNU Lesser General Public License. A copyleft free software license that
allows dynamic linking with software not release under the LGPL/GPL li-
censes.

LOD algorithm Level-Of-Detail algorithm, an algorithm for choosing the ap-
propriate level-of-detail of a 3D model, often based on factors such as screen
resolution and the observer’s position

MIT License A permissive free software license.

Noise When not specified otherwise, noise refers to procedural gradient noise,
such as Perlin or Simplex noise, which are continuous functions varying be-
tween -1 and 1 in a seemingly random way.

Offline procedural content generation Content generation is performed as a
part of the development of the software.

Online procedural content generation Content generation is performed dur-
ing run-time.

OpenGL Open Graphics Library, a cross-language, cross-platform API for ren-
dering graphics.

PCG Procedural Content Generation refers to creating game content automati-
cally, through algorithmic means.

Phenotype The result of expanding the genotype. The output of a procedural
algorithm. In the context of terrain, this might be a heightmap.

QML Qt Modeling Language, a JavaScript-based declarative user interface markup
language for the Qt framework.

Qt A cross platform GUI application framework.

SIMD architecture Single Instruction Multiple Data architecture is a type of
processor architecture that lets one operation be executed on multiple dif-
ferent data values at once.

Tessellation Subdivision of polygons into renderable primitives suitable for ren-
dering, usually triangles.

Texture splatting A method for combining different textures by applying an
alphamap that contains transparency values.

xiv

LISTINGS

White noise A random signal with a probability distribution of zero mean and
finite variance.

zlib License A permissive free software license.

xv

Chapter 1

Introduction

A realistic, detailed and interesting terrain is often an important part of video
games and virtual worlds, but can be very time-consuming to model manually.
Procedural terrain generation tools aim to automate creation of terrains by gener-
ating them algorithmically. If applied carefully, these techniques may remove all
limits of terrain size and detail, and may even make it possible to feature a unique
terrain each time an application is started.

Current tools for procedural terrain generation can be divided into two cate-
gories: Stand-alone terrain editors and terrain generation libraries. Stand-alone
terrain editors can be used to generate terrains on the game developer’s machine.
Such editors can save the terrains as non-procedural models that can be used by
game engines. The tool itself, however, may not be included in the game. Hence,
these terrains are essentially non-procedural when viewed by the end-user. Ter-
rain generation libraries are middleware that make it easier to write code that will
generate terrain during run-time. The problem with these libraries, however, is
that they are very hard, or impossible, to use for non-programmers, because they
are aimed at game engine developers.

Although many terrain generation techniques are highly parallelizable, the ma-
jority of these libraries are written using single-threaded CPU code. Generating
a terrain may therefore take several minutes and can significantly increase the
loading time of a game.

In this project, we look at how these two types of tools can be combined to
create a user-friendly tool for procedural terrain generation that will allow efficient
generation while a game is being played.

Such a tool would help reduce development costs of games with endless proce-
dural terrains. Furthermore, a responsive and user-friendly tool can also remove
restrictions on the creativity of game developers, and increase the quality of pro-
cedural worlds.

This chapter describes the benefits of procedural terrain generation (Section 1.1),

1

CHAPTER 1. INTRODUCTION

a brief overview of how it is currently used in the game development process (Sec-
tion 1.2), what the goal of this project is (Section 1.3), a list of research questions
(Section 1.4) as well as an outline of the remaining chapters (Section 1.5).

1.1 Benefits of generating terrains procedurally

In the last decade, procedurally generated terrains have become an important part
of many games and other virtual environments. There are a number of benefits
from generating terrains procedurally as opposed to designing them by hand:

Shorter development time Creating a terrain by hand is very time-consuming.
If parts of the terrain, or terrain details can be generated algorithmically it
may cut development costs dramatically.

Increased detail Procedural generation of terrains allows an infinite amount of
detail that would otherwise be impossible to implement due to storage space
requirements.

Increased size As mentioned above, procedural generation may be used as a
form of data compression. This makes it possible to increase the size of the
virtual world to virtually infinity. The game Minecraft, for instance, features
game worlds that are 16 times the size of the Earth.

Reduced application size On mobile devices, data usage is often an important
limitation for developers. Many procedural algorithms require only a seed
and a few parameter values for storage. This makes it possible to bring vast
and detailed game worlds to devices with limited storage and bandwidth.
Another use may be to reduce download times for custom maps in multi-
player games. This is often called database amplification.

Replayability By seeding the pseudo-random generator with a unique seed each
time the game is started, a different world may be generated for each session,
increasing the replay value of the game.

1.2 Current approaches

One of the most prominent types of terrain generation is based on the implicit
modeling techniques described by Perlin and Musgrave [1]–[3]. Gamito [4] refers to
these techniques as stochastic implicit surfaces. Through functional composition,
noise and other mathematical functions are combined to create pseudo-random,
endless terrains. Game developers frequently implement these techniques from the

2

1.3. THESIS GOALS

ground up for each project they are working on, or they may utilize one of the
noise generation libraries available.

Developers usually write terrain generating code directly in C++ or their pro-
gramming language of choice. After each change, the code has to be recompiled
and the application relaunched before the results can be observed. This often leads
to a delay of considerable length before the effects of a change can be assessed.
Additionally, computation that could have been offloaded to the GPU may still
be executed on the CPU because of game developers’ unfamiliarity with GPGPU
programming or because of limited development time.

The techniques of Musgrave et al. have already been applied to heightmap
generating tools and 3D modeling tools, such as World Machine [5] and Audodesk
Maya. These programs often let the user combine noise and other signals in a
graph through a visual node editor. This lets the user design terrains efficiently
and preview the effect of the changes after a short delay. The problem with these
applications, however, is that it is not possible to run the generation online1 at
the end-users’ computers. Using these tools, heightmaps have to be generated in
their entirety at the game developer’s computer, before they are stored as textures
and then shipped together with the game. Hence, to the end users, the content is
static and many of the desirable properties of procedural generation are lost (see
Section 2.1).

1.3 Thesis goals

The goal of this thesis is to develop a technique that combines the ease of editing
terrains using a visual node editor with the ability to generate terrains in-game in
real time. An open-source library capable of serializing and de-serializing graphs
of functions will be developed, as well as a visual node editor interfacing with the
library. The node editor should be capable of displaying generated terrains in real
time. This will enable non-programmers to edit terrains efficiently, while retaining
the advantages of performing generation online.

A reference usage of the middleware will be developed in order to demonstrate
the potential of the framework. Plug-ins for existing game engines as well as the
HPC-Lab snow simulator at NTNU may be considered as suitable targets.

1In this context, online refers to generating the content at run-time, and is not related to the
Internet. See Section 2.1.

3

CHAPTER 1. INTRODUCTION

1.4 Research questions

Another goal of the thesis is to answer the following research questions:

RQ1 How can functional composition for stochastic implicit terrain surfaces be
expressed in a portable, platform-independent manner?

RQ2 Suppose a terrain is represented by functional composition and is editable
during runtime. How can efficient terrain calculation be implemented to
support a three-dimensional preview reflecting terrain changes at interactive
rates?

RQ3 Can a single approach be used express procedural terrain models in multiple
terrain representation paradigms?

1.5 Thesis outline

Chapter 2 gives an introduction to background knowledge related to this project.

Chapter 3 explains how the problem and research questions were approached.
The fundamental concepts of our approach are presented, and the software
architecture of the framework is outlined.

Chapter 4 explains the details of how the solution was implemented.

Chapter 5 contains a discussion of the resulting software package, and to which
extent it solves the problem and fulfills the requirements. Results from
benchmarks are also presented.

Chapter 6 gives a conclusion of the project, discusses its shortcomings and how
they may be fixed. Several possibilities for future research projects are also
proposed.

Bibliography contains the referenced formatted according to the IEEE standard.

Appendix A is a user’s guide for the developed software.

Appendix B is a single-page poster for the project.

Appendix C lists code for the benchmarks in Section 5.1

Appendix D contains an API reference for the library.

4

Chapter 2

Background

In order to create a useful tool for terrain generation, background knowledge of
several topics is required. Most importantly, it is necessary to understand the
topic of terrain generation, but other topics are important as well.

Before procedural terrain generation is discussed, it is useful to have a basic
understanding of the area of procedural content generation and the terminology
used in this context. This will be discussed in Section 2.1.

Terrains can be represented in many ways. Choosing a certain terrain rep-
resentation model will result in different trade-offs between supported topologies
and performance. In Section 2.2, several models for representing terrains will be
presented.

In Section 2.3, we will give an account of what fractal terrains are, and how
noise can be synthesized to create such terrains. These techniques have several
common applications in game development, and we will give an overview of the
two most common uses, noise libraries (Section 2.5) and offline procedural terrain
generators (Section 2.6). Procedural shader editors will also be discussed in sec-
tion Section 2.8, since they share many techniques and algorithms with terrain
generation. Some of these tools may even be used to generate terrains.

A real-time procedural terrain editor needs to be able to render terrains in such
a way that it will look similar to how a game engine would render it. Section 2.9
offers an overview of OpenGL, the library that was used for rendering, while Sec-
tion 2.10 contains an explanation of widely used and state-of-the-art algorithms
for real-time terrain rendering.

In the last section, Qt, the GUI application framework used by the editor
implementation, is presented (Section 2.11).

5

CHAPTER 2. BACKGROUND

2.1 Procedural content generation

Procedural content generation (PCG) is the act of creating game content auto-
matically, through algorithmic means [6].

Procedural content generation is closely related to the term procedural gener-
ation (note the absence of the word “content”). Procedural generation is a wider
term which includes concepts such as dynamic light maps and procedural textures.
A requirement for PCG is often described as algorithms that affect gameplay sub-
stantially. Consequently, although both procedural textures and procedurally gen-
erated heightmaps share many of the same techniques and algorithms, only terrain
generation is usually regarded as PCG. However, if the generated terrain is used
solely for cosmetic purposes, such as backgrounds far off in the distance, it can be
argued that it is not truly PCG.

While procedural content generation has been a common feature in games for
quite a long time [6]–[8], there has not been much academic interest in the subject
until the last decade [6], [8]. Although not yet been published, the first textbook
on the subject has recently been written by Shaker, Togelius, and Nelson [8], and
a draft is available for download1. The textbook serves as a useful introduction
and overview of current research on PCG.

Togelius, Yannakakis, Stanley, et al. [6], and later Shaker, Togelius, and Nelson
[8], provide a useful taxonomy for PCG which will be used to explain how the
approach of this project relates to previous research and existing PCG tools. A
short summary of the most relevant parts of the taxonomy will be given in this
section.

Online versus offline One of the most important distinctions in PCG is the
one between online and offline generation. Online generation means that content is
generated during run-time, while the player is playing the game. Offline PCG, on
the other hand, is generation of content during development time or right before
the player starts a game session. The taxonomy of Togelius, Yannakakis, Stanley,
et al. [6] does not make a distinction between offline generation taking place at
the game developer’s computer and offline generation happening at the player’s
computer. In this thesis, these distinctions will be referred to as development-
time and run-time offline generation respectively. Run-time procedural generation
will also be used to refer to both online and offline generation taking place at the
end-user’s computer.

This is the aspect in which the goal of this project differs the most from
existing terrain generation tools. Most of the benefits of procedural generation
listed in Section 1.1 only apply when terrains are generated online. For instance,

1http://pcgbook.com

6

http://pcgbook.com

2.1. PROCEDURAL CONTENT GENERATION

development-time procedural generation can not be used to increase detail, size or
enhance replayability of a game.

Another feature, exclusive to online PCG, is the possibility to create player-
adapted content. For instance, Valve’s first-person shooter Left 4 Dead analyzes
player behavior in order to create a specialized experience for each player [8].

Necessary versus optional Necessary content is content that is required for
the game to be playable. Optional content may for example be side-quests or
add-ons to weapons. There are often a big differences in requirements for quality
for necessary and optional content.

Terrain generation may be used for both extremes, but it usually falls within
the necessary spectrum.

Random seeds versus parameter vectors All procedural algorithms expand
content based on some sort of compact representation. Some algorithms generate
content based on one single seed value, while others require additional parameters
to specify the properties of the content. This axis of having no inputs, and having
many inputs, is also commonly referred to as the number of degrees of control.

Stochastic versus deterministic If a procedural algorithm relies upon a seeded
random number generator, it is considered a stochastic algorithm. Deterministic
algorithms, on the other hand, can not be seeded and given the same inputs, they
always produce the same output.

Constructive versus generate-and-test A constructive algorithm generates
the content once, and is then finished. A generate-and-test algorithm, on the other
hand, generates the content, and then tests whether it meets certain criteria. If
the test fails, the content is discarded and regenerated. This is repeated until
satisfactory content is generated.

Automatic generation versus mixed authorship In automatic generation
algorithms, the input from game designers are limited to tweaking algorithm pa-
rameters. In mixed authorship algorithms, the designer is more involved in the
process, perhaps by providing a rough sketch which can be expanded by the algo-
rithm. Smelik, Tutenel, Kraker, et al. [7]’s SketchaWorld is an example of this.

Genotypes and phenotypes Genotypes and phenotypes are concepts bor-
rowed from the field of genetics. A genotype corresponds to an organism’s DNA
while a phenotype corresponds to the actual observed properties of the animal.

7

CHAPTER 2. BACKGROUND

When content is generated procedurally, it is often generated from a small set
of input data. This data set is referred to as the genotype. A genotype may be
expanded into a phenotype by running a procedural algorithm. The phenotype is
a complete model, ready to be presented as content.

In the context of terrain generation, a genotype may refer to the input param-
eters to an algorithm, while the corresponding phenotype is the output produced
by executing the algorithm with those inputs.

2.2 Terrain models

In order to discuss methods for generating terrain data, it is important to investi-
gate how terrains are usually represented and used within game engines. Following
are presentations of several models and how they set limits for supported geometry
and performance.

2.2.1 Heightmaps

Figure 2.1: Heightmap terrains

A heightmap, or heightfield, is a two-dimensional grid of elevation data. The
index of each cell within the map corresponds to a point in the virtual world. The
value stored at the cell is the height offset of that particular point. Each value in
the grid may be thought of as the height above sea-level for that particular grid
location. A 2D simplification of heightmap a terrain can be seen in Fig. 2.1.

Heightmaps are probably the oldest and most widespread representation of
terrain data. They can be stored very efficiently, since only one floating point
value is needed for each point on the map. Due to their wide-spread usage, much
effort has also been put into developing efficient algorithms for rendering heightmap
terrains. Several such algorithms are presented in Section 2.10.

Although very popular, heightmaps impose several restrictions on the terrain
geometry. Overhangs and caves are not supported by heightmaps, since each
coordinate on the map may only have one single height value. Also, grids are
evenly spaced, making it hard to support a varying level of detail in the model.

Despite these limitations, heightmaps are still widely used even by modern
game engines [9]–[13].

8

2.2. TERRAIN MODELS

2.2.2 Vector displacement fields

(a) 2D-simplification of vector displace-
ment

(b) Screenshot of the Halo Wars terrain en-
gine

Figure 2.2: Vector displacement terrains

The vector displacement field is an extension of the heightmap model. It aims
to solve several shortcomings of heightmaps, like support for overhangs and a
varying level of detail.

A vector field adds two additional attributes to each grid cell in the map. The
attributes describe offsets in width and length directions in addition to the existing
height offset [4], [14]. Each vertex can now have an arbitrary three-dimensional
offset from its original position in the grid. This allows a vertex to be offset so that
it has the same length and width coordinate as another vertex, thereby creating
an overhang. This feature is illustrated in Fig. 2.2.

This technique also allows vertices to be moved from areas which require few
vertices (e.g. flat areas with little detail) to areas which require a higher level of
detail.

It should be noted that vector displacement field terrains have the same topol-
ogy as a heightmap terrains. This means that many of the same algorithms
(i.e. level-of-detail algorithms) can be used for vector displacement fields as for
heightmaps. It also means that caves with more than one entrance may not be
represented using the model since that would change the topology of the model.

Vector displacement fields were used in the game Halo Wars developed by
Ensemble Studios. The technique has been described in detail by McAnlis [14].

McAnlis [14] also converted displacement field terrains to heightmap terrains in
order to interface with some of their AI systems. This was done by rendering the
terrain from an orthographic top-down perspective into a framebuffer, and then

9

CHAPTER 2. BACKGROUND

using the depth coordinates as heightmap values. This approach may be used
when overhangs are mostly cosmetic and not important for gameplay.

2.2.3 Layered heightmap

A layered heightmap consists of multiple heightmaps. Different materials of the
terrain, such as sand, snow, gravel, and stone, each have a separate heightmap
layer. The final height is a sum of all these layers. This representation allows
more sophisticated erosion models, and can also be used to select which texture to
use at a given point by selecting according to the topmost non-zero layer [15]. This
can also aid other procedural algorithms, such as those for vegetation distribution.

If the terrain is destructible, layered heightmaps can be used to keep deforma-
tion data separate from the original terrain data [9], [12].

2.2.4 3D meshes

In some use cases, terrains are designed by editing the geometry of a 3D model,
using polygonal modeling software. Applications such as Blender, 3D Studio Max,
or Autodesk Maya may be used for this purpose. This technique is very flexible
with regard to the topology of the terrain. Making overhangs and caves is trivial.
The drawback of this technique is that it may not work well with some level-of-
detail algorithms, as it may not be straightforward to automate creation of models
with varying level of detail. It may also be difficult to respond to queries about the
height of the terrain at a certain location. This can make it difficult to integrate
the terrain with other systems that assume this functionality. AI and path-finding
are examples of such systems.

This approach is most commonly used in games where terrains are not an
important part of the virtual world. For example, games that take place in a city
may use a 3D mesh to describe a small patch of terrain in a park. The reason for
this is that other parts of such games often have complex geometrical models, and
modeling the terrain with the same system may be convenient.

2.2.5 Voxel grid

A voxel grid is a three-dimensional grid of voxels. At each voxel coordinate, there
may typically be air (nothing) or ground.

A terrain surface can be approximated using a variant of the marching cubes
algorithm [16], [17]; an example of this can be seen in Fig. 2.3b.

A voxel grid representation of a terrain does not have the topology constraints
that heightmaps and vector displacement fields have. Caves with multiple exits,
as well as floating islands, are perfectly possible.

10

2.2. TERRAIN MODELS

(a) Minetest, an open-source game with a
block-like terrain

(b) Upvoid Engine, a more realistic imple-
mentation with a smooth voxel terrain.

Figure 2.3: Two types of voxel terrains.

Voxel grids have often been dismissed in game development because of the
excessive disk space needed to save the grid. With procedural algorithms, however,
this issue is circumvented since voxel data can be computed during run-time.

Voxel data is often generated using a terrain density function.
Examples of games and engines that use voxel terrains are: Minecraft, Infin-

iminer, Upvoid Engine, Cube World, and Worms 4: Mayhem.

2.2.6 Overview of common game engines and their sup-
ported terrain models

Table 2.1 contains a list of some of the most widely used game engines, and which
terrain models they support by default. Note that although some engines may be
limited to heightmap terrains, low-resolution voxel terrains are usually possible to
implement by instancing large cubes using one of the engine’s supported scripting
languages. Many engines also have plug-ins making this process easier.

As we can see, heightmaps is clearly the most widespread model among re-
cent game engines. Unity, CryEngine, and Panda3D natively support dynamic
heightmaps that can be changed at run-time. This means that these engines can
take advantage of an online procedural terrain generator.

Although vector field displacement is a promising technology, it does not seem
to be widely adopted. Valve’s Source Engine was one of the few engines supporting
this, but the geometry is fixed at development-time.

Many engines do not allow changes to the terrain during run-time. The reason
for this, is that light maps are often precomputed at development-time in order
to increase performance during run-time. Although this has been a useful tech-

11

CHAPTER 2. BACKGROUND

Engine Released Heightmaps Displacement Smooth voxel Languages
Upvoid Engine 2014 No No Yes, dynamic C#
Unity 4.3 2014 Dynamic No With plug-ins JavaScript, C#, Boo
Unreal Engine 4 2014 Static No No C++, UnrealScript
CryENGINE 3 2009 Dynamic No Prior to 3.5.3 C++
Torque Game Engine 2007 Static No No C++, TorqueScript
Source Engine 2004 Static Static No C++, Lua, Python, . . .
Panda 3D 2002 Dynamic No No C++, Python

Table 2.1: Some game engines and their supported terrain models. Static/dynamic
indicates whether terrains are editable during run-time. All engines support block-
like voxel terrains through their scripting languages.

nique to increase performance, it puts restrictions on the features of the game
engine. Many new games advertise a dynamic lighting model, since this will al-
low deformable terrains, or dynamic day and night cycles [12], [18]. It could be
argued that since precomputed lighting is incompatible with these features, it will
be eventually be phased out.

Unity 4

Unity, sometimes also called Unity3D, is a game engine commonly used by inde-
pendent game developers, and smaller projects.

The game engine has built-in support for static heightmap terrains which can
be edited with various brushes in an integrated terrain editor. It is also capable
of importing elevation data saved as 16-bit grayscale RAW files.

Game programming is done through scripts written in C#, JavaScript or Boo.
It is possible to change the terrain heightmap through these languages using the
function:

1 void TerrainData.SetHeights(int xBase , int yBase , float[,] ←↩
heights);

This function takes a two-dimensional array of height data as input and over-
writes the existing terrain. The array must be located in CPU memory. Another
similar function is available for setting splat values, “SetAlphamaps”.2

Since Unity supports interfacing with C code through C#, terrain generating
code written in C or C++ may be wrapped using C# and this function.

Unity is also extendible, and there are numerous plug-ins for voxel terrains
available. One such plug-in, “Uniblocks”, allows game developers to use their own
terrain generation platform3.

2https://docs.unity3d.com/Documentation/ScriptReference/TerrainData.html
3https://www.assetstore.unity3d.com/en/#!/content/14768

12

https://docs.unity3d.com/Documentation/ScriptReference/TerrainData.html
https://www.assetstore.unity3d.com/en/##!/content/14768

2.3. FRACTAL TERRAINS

Unreal Engine 4

Unreal Engine is a game engine used by many high-budget, graphically intensive
games.

Like Unity, heightmap terrains are supported and can be edited using an inte-
grated editor which can also import textures [11].

Terrain data for the built-in “Landscape” module may not be generated at the
client during run-time, because of the use of a technique often called baked (or
precomputed). Before a distributable game is created, the Unreal Engine editor
calculates light contribution from static lights, assuming the world geometry is
static. This means that if the terrain had been editable, then the lighting would
have had to be recomputed, and currently this is only possible through the editor
that runs on the game developer’s machine.

It should, however, be possible to circumvent the issue by using a module
called “FDynamicMeshBuilder” to generate custom geometry during run-time.
The source code for the engine is also available to paying subscribers, so it might
be possible to modify the engine itself to use only dynamic lighting.

CryENGINE 3

CryENGINE 3 is a game engine targeting graphically intensive games. Game
programming can be done by writing C++ code against the CryENGINE API.

The engine supports heightmap terrains by default. Since CryENGINE 3 uses
dynamic lighting, it is not required to pre-compute parts of the lighting [18].
This means terrain data can safely be modified during run-time using the void

ITerrain::SetTerrainElevation function.

2.3 Fractal terrains

Mandelbrot [19] proposed using fractals as a basis for terrain synthesis, claim-
ing terrains exhibit a self-similarity of features on both a large and a small scale.
Specifically he suggested that a two-dimensional fractional Brownian motion (fBm),
a kind of fractal noise, would make good approximation of terrain altitudes. The
idea caught on quickly, and soon many renderings of fractal landscapes appeared
in scientific papers.

2.3.1 Stochastic interpolation

Fournier, Fussell, and Carpenter [20] rendered terrains using an approximation
of fractional Brownian motion by applying a technique they called “stochastic
interpolation”. The technique consists of recursively interpolating values with a

13

CHAPTER 2. BACKGROUND

pseudo-random offset proportional to the distance between the data points inter-
polated.

Figure 2.4: Two iterations of one-dimensional midpoint displacement

One algorithm using the technique, often called the midpoint displacement
algorithm, is illustrated in Fig. 2.4 and works like this:

1. Start with the four corners of a terrain patch.

2. The point in the middle of all four corners is calculated as the average of
all four corners, plus an offset that is proportional to the size of the terrain
patch.

3. Calculate the midpoints on each edge as the average of the two neighboring
corners.

4. Subdivide the patch into four smaller terrain patches, and execute recursively
for each patch.

The is flawed, however. As pointed out by Miller [21], the resulting terrain
will have axis-aligned ridges since the most dramatic offsets will always happen on
the same points in the grid. For the same reasons, Miller [21] also describes the
somewhat improved version of the algorithm, diamond-square, as flawed. He then
proposes a new — and slightly more complex — version without artifacts that
circumvents the problem by sacrificing the requirement that the surface should
have to pass through the control points.

A rendering of a terrain generated by the diamond-square algorithm can be
seen in Fig. 2.10a.

Another approach to fBm is described in the following subsection.

2.3.2 Implicit procedural techniques

In the previous section, terrains were generated explicitly by evaluating a large
batch of noise values at once. When using such explicit techniques, one individ-

14

2.3. FRACTAL TERRAINS

ual point cannot be generated without generating the rest of the model as well.
Implicit techniques, on the other hand, work differently; rather than generating
geometry explicitly, they usually rely on a self-contained mathematical model to
express the geometry of the terrain. This means that arbitrary data points can
be queried independently of the other points. For this reason, it may often be
referred to as “point evaluation” [3]. Gamito and Musgrave [22] refers to this as
stochastic implicit surface modeling.

In the case of heightmap generation, terrain can modeled as a function

z = f(x, y)

where z is the height, and x and y are horizontal coordinates. Using this technique,
it is trivial to generate heightmaps of arbitrary sizes and resolutions by sampling
the function.

A vector field terrain can be modeled similarly:

r = f(x, y)

where r is the displacement vector at the point (x, y).
Implicit methods can also be used to model voxel terrains. Voxel data can be

generated by sampling a density function:

d = f(x, y, z)

where d > 0 usually denotes air and d < 0 ground (or the other way around). In
other words, the terrain is modeled as an isosurface.

In order to model terrain as suggested by Mandelbrot [19] it is necessary to
develop an approximation of fBm as a continuous function of two parameters (three
for voxel terrain). The rest of this section will explain how such a function can be
generated using implicit techniques.

2.3.3 Noise

To construct an approximation of fBm, a common primitive from procedural tex-
ture generations, called a procedural noise function, may be used. On its own,
procedural noise does not look like fBm, but when different frequencies and am-
plitudes of the function are added together, it will create an approximation close
enough for most uses. A formal definition of procedural noise can be found in
Lagae, Lefebvre, Cook, et al. [23]. In this project, a procedural noise function
is assumed to be an unpredictable continuous function with range approximately
[−1, 1]. The function will have an approximate frequency of 1 Hz. Ideally, the noise
should also be isotropic, meaning that regardless of how you rotate the noise, it
will look similar.

Sections 2.3.4 to 2.3.5 will describe different techniques for generating noise.

15

CHAPTER 2. BACKGROUND

2.3.4 Value noise

Figure 2.5: Generation of two-dimensional value noise using cubic interpolation.
We can clearly see that the noise has artifacts related to the grid direction

One of the most naive approaches to creating procedural noise is to sample
white noise in a coarse grid, and then when queried for points find the near-
est corners and use an interpolation technique to calculate the value. For most
uses, an interpolation technique with at least a second-order continuous derivative
should be used. An example of value noise is shown in Fig. 2.5. This technique is
rather memory-inefficient and produces noise with directional artifacts (it is not
isotropic).

2.3.5 Perlin noise and other types of gradient noise

Gradient noise is a technique slightly similar to, and often confused with, value
noise.

At the lattice points, pseudo-random vectors are chosen. When the noise func-
tion is sampled, the nearest lattice points are selected. For each selected lattice
point, a dot product between the pseudo-random gradient vector and the distance
vector to the sample point are calculated. These dot products are then interpolated
to calculate the final noise value.

The technique was first described in Perlin [1], along with his famous and widely
used implementation of gradient noise, Perlin noise. Perlin won the Academy
Award of Motion Picture Arts and Sciences for his contribution in 1997.

16

2.3. FRACTAL TERRAINS

Many variations of Perlin noise exist, most of them aim at lowering compu-
tational complexity or removing artifacts [23]. Simplex noise, an improvement
proposed by Olano, Hart, Heidrich, et al. [24], is shown in Fig. 2.6.

Figure 2.6: A type of gradient noise called simplex noise, an improved version
of Perlin noise which eliminates axis-aligned artifacts and reduces computational
complexity.

Computing lattice gradients

A naive approach to gradient noise would be to iterate over all lattice points in the
domain, and compute and store one unique pseudo-random gradient for each lattice
point. The problem with this approach is that it would require huge amounts of
memory, especially for high dimension noise functions. The domain of the function
would also have to be known in advance. Furthermore, an implementation would
suffer a huge performance impact due to cache misses and the cost of creating the
lattice values.

In his original implementation of Perlin noise, Perlin [1] solved this by pre-
computing an array of 256 pseudo-random gradient vectors. Whenever a gradient
vector was needed, one of these gradients would then be selected by hashing the
lattice coordinates and using the result as an index into the array.

However, Perlin later points out that using 256 pseudo-random gradient vectors
for the precomputed array is not necessary and may in fact introduce artifacts
because two vectors may be too similar. He argues that using only 12 predefined
gradient vectors is sufficient for 3D noise [25].

Several implementations of gradient noise have zero values at the lattice points
because of how the points are interpolated.

17

CHAPTER 2. BACKGROUND

Perlin [26] suggests an implementation of Perlin noise for GPUs. The imple-
mentation uses a slightly different permutation technique than the regular Perlin
noise which relies on texture lookups.

Hashing techniques

In the original implementation of Perlin noise, a permutation array was used to
select a gradient pseudo-randomly among the 256 random gradients. Such a per-
mutation vector can be constructed by creating an array with the values from 0
to 255 and then shuffling the array.

To use this array to select a gradient, Perlin [1] used the following algorithm:

Listing 2.1: Hashing using a permutation array

1 // permutation array technique , 2D version

2 int x, y; // lattice coordinates

3 const int p[256] = [/* permutation vector */];

4 int p1 = (p[x%256] + y)%256;

5 vec2 gradient = grad[p[p1]]);

In Section 4.4.2 we will present an alternate hashing technique that works well
on GPUs.

Interpolating gradient contributions

In Perlin noise, the final noise values are computed by interpolating the individ-
ual dot products. This interpolation is done with the help of an interpolation
function, f(x), which is 0 when x = 0 and 1 when x = 1. In his original implemen-
tation [1], Perlin used Hermite blending, because of its continuous first-derivative.
After the function had been used for a while, it became apparent that in some
situations, Hermite blending was insufficient. Specifically when a discontinuous
second-derivative caused rendering artifacts. Such artifacts can for example be
seen if noise is used for terrains with reflective rendering. To tackle this issue
in his improved noise version, Perlin [25] changed to a fifth degree interpolation
polynomial. The two polynomials can be seen in Fig. 2.7.

In 1-dimensional Perlin noise, the final value, v, is computed as:

t = x− x0 = x1 − x (2.1)

v = v0(1− f(t)) + v0f(t) (2.2)

where x is the point we are querying for, x0 and x1 are the nearest lattice points,
and v0 and v1 are the dot products at each lattice point.

18

2.3. FRACTAL TERRAINS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

3x2 − 2x3

6x5 − 15x4 + 10x3

Figure 2.7: Interpolation functions for Perlin noise.

For higher dimensional Perlin noise, the values are simply interpolated for one
axis at a time. The results from each interpolation are used as endpoints in the next
iteration of interpolations. For this reason, the run-time complexity of Perlin Noise
increases exponentaionally with the number of dimensions of the input signal.

2.3.6 Simplex noise

The in many ways superior algorithm, simplex noise, uses a different approach [24].
Here interpolation is replaced with a summation of independent contributions from
each lattice point. In simplex noise, the grid is also formed differently: It is built
from a collection of the simplest and most compact shape that can be used to
fill space. For two dimensions, this compact shape is a triangle, and for three
dimensions, the shape is a skewed tetrahedron. Perlin noise, on the other hand,
always uses a hypercube to fill space.

Figure 2.8 shows the grid of two-dimensional simplex noise next to the grid of
two-dimensional Perlin noise.

Using the simplest possible shape means that only N +1 points are required in
the summation of points, where N is the dimensionality of the noise function. This
lowers the complexity of the computation from O(2N) (Perlin noise) to O(N2).

Although Perlin himself recommends simplex noise as a better alternative [24],
Perlin noise continues to be widely used, despite its flaws.

19

CHAPTER 2. BACKGROUND

(a) Perlin noise. The first interpolation is
along x axis (blue), the second interpola-
tion along the y-axis (green). The final
value is shown in red.

(b) Simplex noise. Contributions from
three lattice points are summed accord-
ing to distance to the point (yellow).

Figure 2.8: Gradient 2D-noise construction

2.3.7 Approximating fBm with noise

On its own, noise is not a very close approximation to fBm, but by combining the
function with itself scaled to different frequencies and amplitudes, it is possible to
get an approximation satisfactory for terrain generation.

Fig. 2.9 shows how three layers (called octaves) of simplex noise have been
added together to approximate fBm, and Listing 2.2 shows C++-code for the
algorithm.

Listing 2.2: Two-dimensional noise-based fBm algorithm in C++

1 float fbm(float x, float y,

2 int octaves=3, float lacunarity =2, float gain =0.5) {

3 float amplitude =1;

4 float frequency =1;

5 float sum=0;

6 for(int i=0; i<octaves; i++){

7 sum += noise(x*frequency , y*frequency)*amplitude;

8 amplitude *= gain;

9 frequency *= lacunarity;

10 }

11 return sum;

12 }

20

2.3. FRACTAL TERRAINS

Figure 2.9: Approximating fBm with noise. The top row shows simplex noise with
a doubling in frequency and a halving in amplitude for each successive image. The
bottom row shows the sum of the images in the top row.

This implementation of fBm is a common choice among applications that need
simple procedurally generated terrains. Babington [27] has for example used this
implementation to generate terrains for the NTNU HPC-Lab snow simulator.
Babington used the algorithm with Perlin noise as the noise function. Nordahl
[28] enhanced this implementation by providing a GUI that could be used to ad-
just the inputs to the fBm function while the simulator was running.

2.3.8 Other uses of noise

As pointed out by Musgrave [3] and Smelik, Tutenel, Bidarra, et al. [29], terrains in
nature do not behave exactly like fBm. For instance, fBm is too homogeneous and
fails to provide local variation of features, such as the roughness of the terrain.
This was the inspiration for Musgrave’s modifications to the fBm algorithm in
Listing 2.2, “hybrid multifractal terrain” (see Fig. 2.10b) and “ridged multifractal
terrain”.

Musgrave [3] also contains a comprehensive guide on other ways noise can be
used as a building block to create a wide range of natural structures. Noise is
often used in conjunction with interpolation functions, modulo operations, mul-

21

CHAPTER 2. BACKGROUND

(a) fBm terrain using the diamond-square algorithm.

(b) Hybrid multifractal terrain: The gain is adjusted for each
octave depending on the value of the previous octave, resulting
in a terrain that is rough on mountain tops, but smooth in
valleys.

Figure 2.10: fBm-based terrain algorithms rendered by the PTG framework.

tiplication, addition, gamma correction and other operations to get the desired
effect. This technique of combining noise in various ways is commonly used by the
video game industry for two main purposes: procedural textures and procedural

22

2.4. SIMULATING EROSION

landscapes. Procedural texturing seems to be the most widely adopted applica-
tion, hence there is a relatively mature set of associated development tools. Also,
computation is almost always performed on the GPU. For this reason, procedural
shader editors will be discussed in Section 2.8.

As mentioned, these techniques are also used for terrain generation. They can
either be used during the development process, in a tool such as World Machine,
for offline generation, or for online generation through a general purpose noise
library. Such libraries will be discussed in Section 2.5.

A common objection against noise-based heightmap generation in general, is
that it lacks user control [29]. This is usually expressed in the context of offline
generation where a designer wishes to modify terrain geometry during the gen-
eration process. Note that this criticism becomes irrelevant in the case of online
generation, where the goal is to design a completely autonomous generation pro-
cess. In fact, Smelik, Tutenel, Bidarra, et al. [29] also gives praise to noise-based
algorithms for producing “natural, mountain-like structures”.

2.4 Simulating erosion

Another approach to generating more natural terrains, is to start with a rough sur-
face, for example the one produced by fBm, and simulate natural erosion processes.
Hydraulic and thermal erosion are two such phenomenons.

Thermal erosion is the result of temperature changes breaking up rocks and
transporting sediments downwards where the incline is steep. Thermally eroded
terrains typically have grooves and V-shaped valleys. The phenomenon was first
simulated by Musgrave, Kolb, and Mace [2] in order to improve the quality of
terrains generated with fBm.

Musgrave, Kolb, and Mace [2] simulated thermal erosion by iteratively modi-
fying heightmap terrains. In each iteration, the altitude of each cell is compared
against the altitude of its neighbors. If the height difference is bigger than some
talus angle, T, a percentage of the height difference, ct, is transferred to the current
altitude

aut+1 =

{
aut + ct(a

v
t − aut − T) if avt − aut > T

aut if avt − aut ≤ T

}
(2.3)

where aut is the altitude of point u at time step t and v is a neighbor of u. Fig. 2.11
shows the terrain from Fig. 2.10b after running a thermal erosion simulation.

This model of thermal erosion was later used by Benes and Forsbach [15] on
layered heightmap terrains in order to simulate erosion on more complex terrains
consisting of layers of sediments with different attributes. By assigning a custom
talus angle to each layer, it is possible to simulate erosion on hard materials, such
as rock, and soft materials, such as sand, in the same model.

23

CHAPTER 2. BACKGROUND

Figure 2.11: Running thermal erosion on a hybrid multifractal terrain.

Olsen [30] implemented thermal weathering with an emphasis on terrain gen-
eration for real-time strategy games. Olsen [30] used a slightly modified version of
Musgrave, Kolb, and Mace [2] and implemented it on the GPU. Olsen [30] were
able to erode a 1024× 1024 heightmap in less than 4 seconds with hardware from
2004.

Another type of erosion simulation was also presented by Musgrave, Kolb, and
Mace [2], namely hydraulic erosion. This simulation tries to capture the effect on
water transporting sediment when flowing downhill. Like thermal weathering, the
simulation iteratively modifies a heightmap. Two separate maps are maintained
to keep track of water and sediment suspended in the water. In each iteration,
water is transfered downhill in a manner according to the slope at that position.
If the water is flowing rapidly, sediment is suspended in the water. If water flows
slowly, sediment is deposited.

Olsen [30] also tried to implement this algorithm on the GPU, but found it to be
too slow to be used in video games. Since their attempt in 2004, the performance
of GPUs have increased rapidly, and Mei, Decaudin, and Hu [31] managed to
implement the algorithm with interactive performance.

24

2.5. NOISE LIBRARIES

A different approach to hydraulic erosion with interactive results has been
developed by Krǐstof, Beneš, Křivánek, et al. [32].

2.5 Noise libraries

As mentioned in Section 2.3, designing procedural terrains may be done by pro-
gramming against a general purpose noise library. In Section 2.5.1, a mature
and widely used noise library, libnoise, will be described. In Section 2.5.2, a less
common, but more interesting approach, ANL, will be discussed.

2.5.1 libnoise

libnoise is an open-source (LGPL) C++ library for noise generation. The library
contains implementations of many popular algorithms, such as the ridged multi-
fractal and Perlin noise.

The library has a concept called a “noise module”, which is a class interface
that contains a method, “double GetValue(double x, double y, double z)”. An im-
plementation of the interface may contain references to other modules which may
be responsible for computing parts of the result. These other modules are referred
to as “source modules”. Since there are modules available for most common math-
ematical operations, it is possible to utilize this library to synthesize noise in the
way described by Ebert, Musgrave, Peachey, et al. [33].

libnoise is widely used, and perhaps the most popular noise library available.
Recently, it was used by Davis [34] to create a voxel terrain generator.

The library is also used for many GUI applications for offline texture and
heightmap generation. TerraNoise is one such application, aimed at producing
heightmap textures [35]. Noise Mixer is another similar application. Although
these applications are aimed at creating heightmaps, they lack 3D previews of the
terrain, showing only the heightmap texture.

2.5.2 Accidental Noise Library

Accidental Noise Library (ANL) is another noise library for compositing noise
functions. Like libnoise it allows the construction of a noise-based function through
a similar concept, also called “modules” and “sources”. In ANL, however, a module
can answer queries about points in 2, 4 and 6-dimensional space in addition to 3-
dimensional space.

The library also supports expressing functions in the scripting language LUA.
These scripts may be parsed during run-time and used to generate terrain geometry

25

CHAPTER 2. BACKGROUND

online. Examples of how this scripting language is used may be found in Listing C.3
and Listing C.4.

In Tippetts [36], the lead developer of ANL gives an introduction to the LUA
API of the application, as well as an explanation of how it can be used to generate
a rich voxel terrain including cave networks.

The library is licensed under an open-source license, MIT. It runs on the CPU
only and does not take advantage of the computing power of GPUs.

2.6 Offline terrain generators with procedural fea-

tures

Numerous tools exist for generating and exporting heightmaps and meshes during
development time. These tools are typically used by designers to create static
worlds for traditional games. New terrain data can not be generated by games
during run-time using these tools.

Examples of such tools are World Machine, Lithosphere, Terragen and Bryce.

2.6.1 World Machine

World Machine is a commercial terrain creation tool [5]. It uses a network-based
(graph) user interface to combine input and output of algorithms and filters, as
well as with user-defined data. It features a low-resolution preview of the terrain
that is updated in real time. A screenshot of the tool can be seen in Fig. 2.12.

Complicated hierarchies of algorithms can be combined into “macros” to create
simpler and reusable abstractions.

Generated terrains can be viewed in real-time through a 3D-view or as a tex-
ture.

There is no source code available for the tool, so it is not possible to refactor
the tool into a library in order to generate terrains online.

This tool is widely used in the development process of commercial games [10],
[12].

2.6.2 Lithosphere

Lithosphere is an open-source terrain generator developed by Florian Bösch. It
lets you design a terrain by editing a flow graph of algorithms and functions while
viewing the resulting terrain in real-time. Although the terrain preview is real-
time, there is no functionality for generating the terrain inside other applications
(as a library). Terrains can only be exported as heightmaps or meshes.

26

2.7. GEOGEN

Figure 2.12: A screenshot of World Machine. A preview of the terrain is shown in
the top left, and a flow-graph editor is shown in the middle.

Although the program is open-source and it may be possible to extend it
in order to generate terrains online as a library, it is currently released under
AGPL, which makes it incompatible with many applications, including closed-
source games [37].

2.7 GeoGen

The bachelor thesis of Matěj Zábský, GeoGen [38], is an open-source procedural
heightmap generator that can be used for real-time generation. It consists of a
“studio” where you can write terrain scripts and preview them, and a library that
can read those scripts and generate geometry online.

While the approach shortens the feedback loop for terrain editing by offering a
convenient way to generate previews, the editor still assumes a certain proficiency
with scripting languages, and the user has to familiarize himself with the Squirrel

27

CHAPTER 2. BACKGROUND

scripting language and the API of GeoGen.
GeoGen also depends heavily on explicit algorithms, which causes a number

of issues to arise, the most important being that there is no easy way to obtain a
subsection of the world without generating the entire heightmap. Consequently,
the entire virtual world has to be able to fit in a single heightmap. This puts a limit
to the size and detail of the world, thereby removing many benefits of procedural
generation.

Another issue with explicit algorithms is that they are often difficult to par-
allelize. In fact, all computation in GeoGen take place on the CPU, causing an
excessive amount of time to be required for some operations. The time passing
between a modification is made, until the preview is updated, is usually in the
order of seconds or minutes. For example, results from Zábský [38] show that gen-
erating an eroded 2048× 2048 heightmap required over 7 minutes. In comparison,
the GPU implementation of Olsen [30] required only 4 seconds on 7 years older
hardware.

To generate an uneroded heightmap the maximum size supported by the Unreal
Engine, 8192× 8192, GeoGen generally required 1 to 3 minutes depending on the
terrain model [38]. So while the previewing of terrains have been streamlined, it
is certainly not possible to view changes to a high resolution map in real time.

Furthermore, the software is licensed under GPLv2 and is therefore not usable
for online generation by closed-source projects.

2.8 Procedural shader editors

Procedural shader editors is a category of development tools that are usually used
to design procedural textures, often called materials. While not commonly ap-
plied for generating terrains, procedural shader editors have a number of qualities
required by a design tool for online procedural terrain generation:

1. Many of the same algorithms are used. Noise synthesis is a common tech-
nique for both terrains and textures.

2. Execution on the GPU. Terrain generation computation is not required to
take place on the GPU, but would significantly improve performance.

3. A Real-time preview is essential for an efficient work-flow, and most impor-
tantly:

4. The model created has to be expandable during run-time of the game.

In fact it would be possible to design an online procedural terrain by creating
a vertex shader and applying it to a tessellated plane. Or a fragment shader might

28

2.9. OPENGL

be created that could be drawn on two flat triangles, and transferred back to the
CPU in order to provide a heightmap for the game engine.

Many shader editors feature a flow-graph based editor, similar to that of World
Machine. Such shader editors are usually engine-specific [9], [39], [40]. There are
also a few shader editors available, which create shaders usable by multiple game
engines, such as Allegorithmic Substance Designer [41]. Also, Microsoft recently
obtained a patent for a “visual shader designer” [42].

2.9 OpenGL

OpenGL is a platform-independent graphics rendering API [43]. It is an inter-
face that makes it possible to write portable rendering code for a wide range of
hardware and software. The specification for OpenGL is language agnostic, but
implementations of the API are typically written in C. Bindings for many other
languages are available as well, either with official support, such as WebGL, or
through third party wrappers around a C implementation, such as GoGL.

The interface is composed of numerous functions which may be called to influ-
ence a state machine.

In Section 2.9.1, a quick overview of the OpenGL pipeline is given. In Sec-
tions 2.9.2 to 2.9.6, the different programmable shaders are briefly discussed, as
well as their intended usage. Section 2.9.7 contains an overview of the OpenGL
shading language.

Since our GUI application targeted OpenGL 3.0 the geometry, tessellation,
and compute shaders will only be discussed briefly. This decision is addressed in
Section 4.5.

OpenGL is managed by a non-profit organization, called the Khronos Group.

2.9.1 The rendering pipeline

When OpenGL is used, a client program typically runs on the CPU. The client
program issues calls to OpenGL, then the OpenGL implementation of the client
system is responsible for handling the rendering hardware of the platform. This
includes transferring textures to GPU memory, compiling shader code and making
sure the program is executed by the GPU.

With the release of OpenGL version 3.0, OpenGL shifted away from a “fixed
pipeline” towards a “programmable pipeline”, in the sense that it leaves more
control of the graphics hardware to be manipulated by developers. This is done by
introducing programmable shaders and deprecating functionality that assumes a
specific implementation of those shaders. In this section, only OpenGL 3.0+ will

29

CHAPTER 2. BACKGROUND

be described, as the new API is simpler, smaller and much more powerful than
previous versions.

2.9.2 Vertex shader

The vertex shader is traditionally used to decide the final screen position of a
geometric point or vertex. It transforms a single incoming vertex into a single
outgoing vertex. The main task of the vertex shader is usually to multiply the raw
vertex from the geometric model with a model-view-projection matrix in order to
get the screen position.

The vertex shader passes on or computes information needed by the fragment
shader. Such information may include vertex normals and texture coordinates, or
it may simply be a single color value if a simple shading model, such as Gouraud
or flat shading, is used.

2.9.3 Fragment shader

The fragment shader is traditionally used to decide the final color and depth value
of a specific fragment or pixel. The inputs of the fragment shader can simply pass
on a color value computed in the vertex shader (if using flat or Gouraud shading),
or do more advanced calculations such as adding contributions from different light
sources taking into account a supplied normal, if using a more advanced shading
model, such as Phong shading.

2.9.4 Geometry shader

A geometry shader is an optional shader introduced in OpenGL 3.2. The input
of a geometry shader, is a single renderable primitive, such as a line or a triangle.
The output is zero or more primitives.

2.9.5 Tessellation shaders

Tessellation shaders were introduced in OpenGL 4.0. Their task is to subdivide
a patch of vertex data into smaller primitives. Tessellation shaders can be very
useful for rendering terrains because they make it possible to draw high-resolution
primitives only where they are needed.

Although they are quite useful, tessellation shaders were not used in this
project, since they require OpenGL 4.0+, which is not yet supported by open-
source Linux drivers. Tessellation shaders are nevertheless relevant because game
engines taking advantage of our framework may want to use them.

30

2.9. OPENGL

2.9.6 Compute shaders

Compute shaders were introduced in OpenGL version 4.3. They specialize in
computation of values, and would have been well suited for batch computation
of terrain data. Compute shaders allow a programming model more similar to
CUDA and OpenCL. They would have been a great alternative for terrain gen-
eration, unfortunately they are not supported well enough in consumer hardware
and software to be used in this project.

2.9.7 The OpenGL shading language

The OpenGL shading language, or GLSL, is a high-level programming language
for writing shader programs that can be executed by a GPU.

Shaders are parts of a shader program that may run on the GPU.

2.9.8 Noise generation on the GPU

When Perlin wrote his original noise function in 1983, GPUs did not exist yet.
Consequently, Perlin noise and many of its most common derivatives are optimized
for CPU rendering. Here, we will look at different methods for synthesizing noise
on the GPU using OpenGL.

Perlin suggested an implementation for use in pixel shaders [26]. He made
various modifications to the improved version he proposed in Perlin [25], such as
using a different hashing technique, which relies on textures. He also sacrificed
the fifth order interpolation polynomial in order to take advantage of hardware
interpolation.

Green [44] proposed a different GPU implementation in the next issue of GPU
Gems. This implementation does not make the same algorithmic trade-offs as
Perlin [26], and in fact gives identical results to the CPU version in [25]. Green
[44] stores the permutation vector in a 2D texture of height 1.
A version which did not use any texture look-ups was later proposed by McEwan,
Sheets, Richardson, et al. [45]. The approach is entirely computational, and uses
a slightly different hashing technique called a permutation polynomial, instead of
Perlin’s permutation array. A permutation polynomial is a function that can be
used to permute a sequence of integers similarly to a lookup in a permutation array.
(6x2 + x)mod 9 is an example of such a function, since (0, 1, 2, 3, 4, 5, 6, 7, 8) 7→
(0, 7, 8, 3, 1, 2, 6, 4, 5) [45].

In McEwan, Sheets, Richardson, et al. [45], the selection of gradients is also
slightly different; instead of storing precomputed gradients, gradients are selected
from the surface of a cross polytope surface. In 2012 the implementation was twice
as slow as a version that used texture lookups. However, according to McEwan,

31

CHAPTER 2. BACKGROUND

Sheets, Richardson, et al. [45] this gap in performance is not as large as it seems,
since the GPU is often assigned other work as well and texture bandwidth tends to
be a scarce resource, hence there is often an excess of unused computation power.
The authors tested their implementation for both Perlin noise and simplex noise
in 2, 3 and 4 dimensions.

2.10 Terrain rendering

A terrain heightmap is usually represented by a regularly spaced grid in the form
of a texture. In order to draw a three-dimensional picture of the terrain, this
representation has to be translated into triangles for the GPU to rasterize.

A naive approach would be to create a vertex for each texel, with coordinates

(xiSw, yiSw, hxi,yiSh)

where hxi,yi is the height value at the texel index (xi, yi). Sw and Sh are constants
that scale the vertices in width and height. After doing this, two triangles could
be formed for each set of four adjacent vertices.

This will draw a uniform terrain with an equal amount of detail everywhere
using all the available terrain information. There are several problems with this
approach, however:

• Terrains are usually rendered using a perspective projection. This means that
areas of a terrain that are far away from the observer will appear smaller
than those close to the observer. Hence, much performance is wasted on
drawing tiny triangles that may even be smaller than one pixel.

• Terrain roughness may vary. Spending an equal amount of detail on flat
plains and rocky mountains does not make sense.

• Some areas may not be visible from the observer’s orientation. Generating
and making calls to draw these areas wastes resources.

In order to draw huge terrains that still have an acceptable level of detail close
to the observer, a level-of-detail or LOD algorithm can be applied. Section 2.10.1
presents several such algorithms.

2.10.1 Level-of-detail algorithms

ROAM

ROAM, or Real-time Optimally Adapting meshes is a level-of-detail algorithm [46].
A terrain is represented as a binary tree of isosceles right triangles. A node in the

32

2.10. TERRAIN RENDERING

binary tree may either be a leaf node representing a single triangle to be drawn
on screen, or an internal node representing a collection of triangles that together
form a larger triangle.

Leaf nodes may be split in order to provide a higher level of detail, or merged
to reduce the triangle count. If triangles are split, siblings or parents may also
be split in order to prevent T-junctions. The technique was developed in 1997 for
CPUs, and GPUs have become much more powerful since then. The algorithm is
difficult to adapt for GPUs and is therefore not much used today.

2.10.2 Geometry Clipmaps

Geometry clipmaps is another LOD-algorithm described by Losasso and Hoppe
[47] and patented by Microsoft. The technique stores vertex buffers in GPU mem-
ory that are generated while the viewpoint moves. Rectangular grids of a fixed
resolution are drawn centered around the viewpoint. Each grid is twice the size of
the next LOD-level. An example of clipmaps can be seen in Fig. 2.13. The vertex
buffers are updated incrementally by the CPU.

Figure 2.13: Geometry clipmaps as seen from above. Each color represents a
LOD-level. All LOD-levels have the same number of vertices in width and length.

Asirvatham and Hoppe [48] improved on this implementation by moving more
of the computation to the GPU. This implementation also allows terrain synthe-
sis to be performed by the GPU, making it highly compatible with GPU-based
procedural terrain generation.

The algorithm is used in state-of-the-art game engines [12].

33

CHAPTER 2. BACKGROUND

2.10.3 Continuous distance-dependent level of detail

Continuous distance-dependent level of detail, or CDLOD, is a recent LOD-algorithm
described by Strugar [49]. It works by dividing terrain geometry into a quadtree
of square terrain patches, similarly to how ROAM divides a terrain into a binary
tree of triangles.

Each leaf node represents a fixed resolution patch of terrain with a width usually
between 64 and 256. Its biggest advantage over clipmaps is that CDLOD selection
takes into account the height of the observer. This means that the algorithm can
adapt to large changes in altitude during run-time. An illustration of the quad-tree
structure of CDLOD can be seen in Fig. 2.14.

Figure 2.14: The CDLOD algorithm. Each square represents a heightmap of width
128. The circles indicate the distances at which each LOD-level is activated.

If a tessellation shader is available, a patch may be rendered by passing the
four corners of a terrain patch to the tessellation shader. If a tessellation shader is
not available, it is possible to tessellate a flat grid using the CPU. One tessellated
grid may be used to render all patches, because height data can be kept separate
from the grid vertices or generated using procedural techniques.

34

2.11. QT

Transitions between LOD-levels are also seamless, since four vertices will smoothly
morph into one before the LOD-level is changed, thus preventing a popping effect
often seen with many other techniques. This transition is applied proportionally
to the three-dimensional distance to the observer.

A variant of CDLOD has been used by Babington [27] to improve the terrain
rendering in the NTNU HPC-lab snow simulator.

2.11 Qt

Qt is an open-source framework for developing cross-platform GUI applications.
It is currently developed by the Finnish software company Digia.

QtQuick is a recent addition to the Qt framework, allowing user interfaces
to be designed declaratively and separate from application logic, using a markup
language called QML, in conjunction with JavaScript [50].

QtQuick can interface with a C++ program if it is programmed using the Qt
framework. Objects derived from QObject can be accessed through QML and
JavaScript through the QtQuick engine.

Qt uses a system of signals, slots and properties, in order to notify other parts
of the program when data has changed.

A slot is simply a public function of a class, while a signal corresponds to an
Observable in the Observer pattern [51]. Slots may subscribe to signals, so that
they are called when the signal is “emitted”.

35

Chapter 3

Method

In this chapter, we describe our approaches to answering the research questions
in Section 1.4. This starts with Section 3.1, which is an explanation of how our
definition of the terrain generation problem differs from that of other research and
commercial tools.

In Section 3.2, we propose an answer to RQ1. We present a representation
for functional composition of stochastic implicit terrains that can be implemented
deterministically on a wide variety of platforms. In order to verify this claim, and
also to give answers to RQ2, a proof-of-concept terrain-editing framework has been
developed.

While the main goal of the framework is to help answer the research questions,
it is also intended to be useful as middleware for the game development industry.
The resulting requirements for the framework are described in detail in Section 3.3.
These requirements are then used to guide the development of the framework
architecture, which is outlined in Section 3.4.

Section 3.5 explains our approach to satisfying RQ2 using parallel computation
on the GPU, and also gives a rationale for why we chose OpenGL and GLSL as
our computation platform.

Finally, in Section 3.7, we will explain the measures taken to assure the validity
of our answers to the research questions.

3.1 Novelty of approach

Most current tools for procedural terrain generation focus on how to augment the
development process of traditional games using procedural techniques [5], [7], [35],
[37], [52]. In this project, however, the aim was to assist in the development of an
emerging genre of games featuring content generated procedurally during run-time.
Examples of such games are: Minecraft, Terraria, Spore, and Elite: Dangerous.

36

3.1. NOVELTY OF APPROACH

In these games, procedural generation is not merely a way to reduce development
costs, compress data, or provide more detail, but a main feature and selling point
of the game as well. They benefit from two of the effects of procedural generation
often ignored by procedural modeling tools, namely increased replayability and
the increased vastness of the virtual worlds. Many of these games feature a unique
world during each game session, and a world so vast it could not possibly have
been designed by hand, or even observed in its entirety by a designer.

One of the main arguments of recent works [29], [53], is that procedural mod-
eling tools should integrate with the kind of manual editing operations designers
are used to, preferably letting the designer iteratively edit or refine the terrain
after it has been generated procedurally. This feature, however, is impossible to
implement for the subset of games described above, since the terrain has to be
generated during runtime after the game has been shipped.

When procedural techniques are applied to empower replayability and vastness
rather than shortening development time and compressing data in a traditional
static game, focus is shifted away from editing one individual terrain towards ways
to control and edit types of terrain.

Few existing tools are capable of visualizing terrains that can later be generated
online when the game is running. The only tool capable of this known to the
author, is GeoGen, the bachelor thesis of Matěj Zábský [38]. As discussed in
Section 2.7, there are several flaws in the implementation of GeoGen. We have
addressed these issues by using only implicit procedural techniques rather than
mixing explicit and implicit techniques.

Because no editors for online procedural terrain modeling are available, tools
are often developed from scratch for each game engine. For many projects, this
means that terrain modeling is often done exclusively through editing code.

Our approach draws inspiration from existing offline procedural terrain gen-
erators that are successfully used in game development. An interface has been
developed which bears a close resemblance to the flow-graph editor of World Ma-
chine, one of the most successful commercial terrain editing tools available. While
World Machine generates terrains offline, our tool still retains the ability to gen-
erate terrains online.

No other tool known to the author fulfills all the following requirements (see
Section 1.3):

• Online generation through a library

• A real-time 3D preview

• A flow-graph-based interface

The tool is also novel because it can help model non-terrain features as well,
such as vegetation density, air humidity, and transitions between biomes.

37

CHAPTER 3. METHOD

3.2 Concepts

This section describes the most important concepts of our approach, namely how
a terrain generator may be expressed as a graph of function calls.

3.2.1 Terrain representation

Implicit procedural surface modeling, as described in Section 2.3.2 and Section 2.5,
are used for representing the terrain. A terrain generator is simply a function
definition for a function that can answer queries about a terrain.

Such a function may be described as a directed acyclic graph of other func-
tions. Each node in the graph has a specific type, which represents a particular
mathematical function or algorithm, specifically how its inputs are transformed to
produce its outputs. Gamito [4] refers to this as a hypertexture hierarchy.

A node’s inputs can be specified as constants, or by connecting an edge from
an input to another node’s outputs. An output of a node can be connected to any
number of inputs, but an input can only be connected to one or zero outputs.

There can be no cycles in the graph, as that would make a node depend on the
result of its own computation.

The focus of the GUI editor is to develop terrains that can be used with existing
game engines with as few modifications or plug-ins to the game engine as possible.
As most game engines support heightmap based terrains, the design of the GUI is
centered around creating a height function f(x, y). Such a function can easily be
used to evaluate a patch of a heightmap terrain at an arbitrary resolution and scale
making the terrain as portable as possible. This is also why real-time previews
are only available for heightmap terrains. The editor is still perfectly capable of
creating models for voxel terrains and vector field terrains as well, it is just not
possible to preview them.

3.2.2 Modules

A node in the function graph will be referred to as a “module”. Several names
were considered: World Machine has a similar concept, named “devices” [5], while
Lithosphere simply calls them “nodes”. ANL has “modules” and libnoise has
a more specific notion of “noise modules” [54], [55]. Although “module” is a
relatively vague term, it seems to be the most widely adopted.

A module will have a number of inputs and outputs according to its “module
type” (see Section 3.2.3). The inputs may be assigned a constant value, or they
may be assigned to the output of another module in the graph.

38

3.2. CONCEPTS

3.2.3 Module types

A “module type” may be considered as the blueprint for a module. When modules
are created, they will always have a corresponding module type. The module type
describes what kind of operation the module represents, i.e. which inputs and
outputs are available, and the specifics of how those outputs are computed. They
also specify the default values for a module’s unlinked inputs.

Two examples of module types are “abs” and “fbm2”. “abs” has a single input,
and a single output. The operation consists of taking the absolute value of the
input and assigning it to the output. “fbm2” is a more advanced module type,
which represents the algorithm for two-dimensional fractional Brownian motion.
It has a single output, and many inputs.

A function definition in a functional programming language, such as Lisp, is
a close approximation of a module type. In fact, our approach can be used to
generate function definitions from module types. Taking this analogy further, a
module may simply be thought of as a function call.

A list of available module types can be found in Appendix A.6.

3.2.4 User types

In addition to the built-in module types described in Appendix A.6, it is also
possible to define custom module types; these are referred to as “user types”. A
user type consists of a module graph with two special input and output modules.
The input module has one output corresponding to each of the user type’s inputs,
while the output module has one input corresponding to each of the user type’s
outputs.

User types make it possible to break up large and complex graphs into smaller
sub-graphs by encapsulating the sub-graph in a new module type. This has two
advantages, abstraction and reuse. Some sub-graphs may be very complicated and
hard to manage. By encapsulating a complicated graph it is possible to give mean-
ingful labels to inputs and outputs. Sometimes, a user may notice that a certain
graph structure will occur frequently in different graphs, or in different places in
the same graph. By encapsulating such a structure, it can be reused in differ-
ent places, reducing the complexity of the graph, and providing non-destructive
editing for the encapsulated structure.

An example of this could be that a sub-graph used for calculating terrain
heights for mountain-like terrains can be encapsulated in a mountain user type.
This user type could subsequently be used in other graphs that might, for instance,
blend mountains, plains and coastal landscape into a more varied world.

Composition of user types is also explained in the figures in Appendix B.

39

CHAPTER 3. METHOD

3.2.5 Signal types

In our approach, inputs and outputs of modules use a very simple type system.
The only feature distinguishing signal types, is their dimensionality. All types
are simply vectors of floating point numbers. By providing a dimensionality for
signals, it becomes easy to encapsulate a position as a single signal, instead of
separate x, y, and z signals.

3.2.6 Metadata

Modules and module types have two additional attributes; names and descriptions.
Names are mandatory, because they are used as identifiers, while descriptions are
optional. Descriptions may simply be regarded as code comments or documenta-
tion.

3.2.7 Formal model

A module graph can be modeled as a system of equations. For each module, m,
except the input module, min, we have an equation

Om = fm(Im) (3.1)

where Om is the vector of output values for the module, Im is the vector of inputs
to the module, and fm is the function represented by the module type.

We also have a set of equations

Im,i = On,j (3.2)

representing input i of module m being connected to output j of module n. Finally,
we have the set of equations for inputs not linked to outputs

Im,i = Cm,i (3.3)

where Cm,i is a known constant.
When this system of equations is used to query for values, we augment the set

of equations with a final set of equations for the outputs of the input module, min,
which we omitted earlier:

Omin,i = Cmin,i (3.4)

When this final set of equations is added to the system, it becomes possible to
solve for any output or input. In most situations, there will be a specific output
module, mout, and we will solve for Imout .

40

3.2. CONCEPTS

3.2.8 Comparison to libnoise and ANL concepts

While they may seem similar at first glance, the concepts described here are quite
different from most existing graph-based noise-generating tools, such as ANL,
libnoise, Lithosphere, and World Machine.

While libnoise and ANL also represent a generation function as a graph of
modules, the assumptions these tools make about the resulting function is quite
different.

In libnoise, functions (modules) are assumed to take three inputs and return
a single output. For applications that only need two-dimensional functions, such
as for heightmap generation, the third input is simply ignored and set to zero.
This behavior causes the more expensive three-dimensional noise functions to be
invoked regardless of whether they are needed or not, making performance suffer.

In ANL, this problem is solved by requiring all modules to implement all sup-
ported signatures. This means that every module in ANL has five different im-
plementations (one for each supported dimensionality). This allows higher dimen-
sional queries to be made, as well as for optimizations when making queries in
lower dimensions. Although this approach may seem more dynamic, it is really
just five separate implementations of the same approach as libnoise. The function
graph is still homogeneous, meaning that all function calls used to answer a query
will have the same signature as the first call.

When one module has another module as its source in libnoise or ANL, it
means that the source module will be queried with the arguments specified by the
calling module; usually they are identical to the arguments in the call to the first
module. In our approach, there is no concept of a source module, instead there is
the concept of inputs being connected to outputs.

While edges in an ANL or libnoise graph correspond to function calls, edges
in our approach correspond to outputs being assigned to inputs. In our approach,
the nodes, or modules, themselves are the function calls, while modules in ANL
represent callable functions.

The difference is illustrated in Fig. 3.1, where the example portrays a simple
fBm heightmap terrain filtered through a module that computes the absolute value
using both representations.

Using our approach, the fBm module has an explicit position input, while in
the ANL representation, this position is provided in the function call itself.

While ANL and libnoise modules have hard-coded function signatures, our
approach lets the signature of a module be decided dynamically at runtime. De-
pending on its module type, a module may have any number of inputs. Modules
may even have multiple outputs, since the connections between inputs and outputs
refer to the outputs individually, and not to the entire module.

Being able to choose a function signature freely has several benefits. One

41

CHAPTER 3. METHOD

abs
val out

fBm
pos out

inputs
pos

outputs
height

(a) Our approach. Values flow from left to right.

abs
source

fBm

(b) Approach of ANL, lib-
noise. Function calls flow
from right to left.

Figure 3.1: A function calculating the absolute value of fBm represented by two
different graph metaphors.

such example is the generation of vector displacement terrains, which needs three
separate floating point values for each lattice point. With our approach, a module
could simply return a three-dimensional vector, while with libnoise or ANL, it is
necessary to make three separate queries to three different modules. Consequently,
this may cause expensive recalculation if the three modules have source modules
in common. The issue may be solved by using special cache modules, which
temporarily store the result of the most recent computation, but these modules
must be inserted manually.

3.3 Framework requirements

In this section, the research questions from Section 1.4 will be revisited and a set
of functional and non-functional requirements will be developed to make sure the
developed software works as intended.

3.3.1 Real-time performance

In order to assess the outcome of an editing operation, the user needs to receive
visual feedback in the form of a terrain preview. Many procedural terrain genera-
tion tools require an explicit user action to produce such a preview [5], [38], [56],
while a few select tools will automatically update the preview on every change
[37].

Victor [57] makes a good argument for why it is important to have visible
results immediately available:

Creators need an immediate connection to what they create. And
what I mean by that is: When you are making something, if you make
a change, or you make a decision, you need to see the effect of that
immediately. There can’t be a delay, and there can’t be anything
hidden. Creators have to be able to see what they’re doing. [. . .] To
be able to try ideas as you think of them. If there is any delay in

42

3.3. FRAMEWORK REQUIREMENTS

that feedback loop, between thinking of something and seeing it, and
building on it, then there is this whole world of ideas which will just
never be. These are thoughts that we can’t think.

He argues that for a creative process, the amount of time passing between an
editing operation and the moment its observable results are available is absolutely
crucial. If the delay is too long, the creator will tend to experiment less, and
will have less control over what she is creating. For this reason, we require the
preview to be updated instantaneously as the user adjusts values. This is also our
motivation behind formulating research question RQ2.

Just how fast is “instantaneous”, and what is the maximum delay between
input and display that can be tolerated? This is an important question to answer
in order to set a specific requirement for just how fast an implementation needs
to be in order to satisfy RQ2. Swink [58] gives the following three categories for
continuous real-time controls:

Below 50 ms response feels instantaneous.

100 ms delay is noticeable but ignorable.

Above 200 ms response feels sluggish.

Ideally, the delay would be below 50 ms, but a delay of 100-200 ms is also
acceptable.

In order to support such a short delay, terrain data needs to be generated
efficiently. The efficiency of the terrain generation sets a limit for how detailed
and how large terrains it is possible to render within this time frame. In the
following is given an estimate of how many points that must be generated in order
to render a terrain.

Assuming the terrain is rendered using clipmapped LOD, the number of needed
vertices can be estimated by the following equations:

v = lw2 − (l − 1)(
w − 1

4
+ 1)2 = lw2 − 1

16
(l − 1)(w + 3)2 (3.5)

where l is the number of LOD-levels, w is the width of one LOD-level in number
of vertices, and v is the number of vertices required. (l−1)(w−1

4
+1)2 is subtracted

to avoid counting some vertices twice, as (w−1
4

+ 1)2 is the number of vertices that
overlap between two adjacent LOD-levels. We can also correct for frustum culling
using the following formula:

vvisible ≈
α

2π
v (3.6)

where α is the field of view of the projection matrix measured in radians.

43

CHAPTER 3. METHOD

In order to get an estimate for the number of vertices needed and the area
covered, the clipmap parameters used in REDengine 3 for The Witcher 3 [10]
has been inserted into Eq. (3.5) and Eq. (3.6). Inserting l = 5, w = 1025, and
α = 60 π

180
= π

3
, to the equations gives us v = 4 988 929 and vvisible ≈ 831 488. If

the highest resolution has a vertex spacing, ∆w = 0.5m, this would allow us to
draw the following distance in each direction:

dfar ≈ 2l−1
(w − 1)∆w

2
= 2l−2(w−1)∆w = 25−2 · (1025−1) ·0.5m = 4096m (3.7)

Note that depending on the rendering approach, it may still be needed to
generate more than vvisible height values since frustum culling may be performed
at a later stage in the rendering pipeline.

This means that in order to render a real-time preview with a quality and
render distance comparable to modern video games, it must be possible to generate
around 500 000 to 1 000 000 height values in less than 200 ms.

3.3.2 Portability and modifiability

Since game developers are interested in reaching as many consumers as possible,
they also have an incentive to support as many platforms as possible. To be usable
by game developers, our generation framework needs to be able to run on many
different hardware and software configurations. To target desktop and laptop
computers, the implementation must at least run on Windows, Linux and OS X,
and must support Intel, AMD, and NVIDIA GPUs with a wide range of driver
configurations.

As stated in RQ1, the terrain representation should be portable and platform
independent. For this reason, we add the additional requirement that it should
also be possible to extend the framework to evaluate terrain data on other plat-
forms as well. Such platforms include: iOS, Android, and video game consoles.
Furthermore, it should also be possible to replace the framework in its entirety by
creating a third-party parser and evaluator for the terrain representation format.

In Section 2.2.6, it was suggested that heightmap terrains is the most widely
used terrain format. To support as many game engines as possible, the framework
should at least be able to generate heightmap terrains. In Section 2.2, it was
explained how heightmap terrains can be defined as a subset of other types of
terrain. In fact, many of the algorithms for those types of terrain are derived
directly from their heightmap counterparts. To take advantage of this, and to
answer RQ3, it should be possible to extend the framework to support additional
types of terrain such as voxel and vector displacement terrains.

44

3.4. ARCHITECTURE

3.3.3 List of framework requirements

Below are enumerated lists of functional and non-functional requirements for the
framework. The requirements are generated from the research questions, from
discussions in the previous subsections, and the desire to create a useful tool for
game development.

Functional requirements

F1 A terrain preview must be updated while the terrain is edited.

F2 It must be possible to save and open terrains.

F3 It must be possible to open and generate terrains through a library.

F4 A graph interface must be provided for editing generation functions

F5 The framework must support heightmap terrains.

Non-functional requirements

Perf1 Generation must be fast enough to update a high-quality terrain preview
in real-time.

Port1 Generation and editing must be possible on Linux, OS X and Windows.
Generating terrains on these platforms must not rely on any third-party
software being installed by the end user.

M1 It should be possible to extend the framework with evaluation on additional
platforms.

M2 It must be possible to extend the editor to show previews for other types of
terrains as well, such as voxel terrains and vector displacement terrains.

U1 The editor should be easy to use for a non-programmer.

3.4 Architecture

In this section, the overall architecture of the framework will be described. This will
only be a high-level discussion of modules1 and their dependencies. A discussion
of the implementation of individual components will be deferred until Chapter 4.

1Software modules, not noise modules.

45

CHAPTER 3. METHOD

3.4.1 Framework overview

Terrain generation framework

Game designer

Interactively create

terrain models

Generate terrain

 on demand

Game engine

or game engine

plug-in

Figure 3.2: Use-case diagram for the framework.

Fig. 3.2 shows a simplification of the most high-level tasks of the framework.
We see the two most important stakeholders of the framework, the game designer
and the game engine. The non-functional requirements of these two stakeholders
are quite different. On one hand, the game designer favors usability (U1) and
would like a GUI that is easy to use and runs on her developer machine. On
the other hand, it is desirable for the game engine developer to keep the size
of her game executable small, and limit its dependencies to support as many
platforms as possible without asking the end-users to install additional software
(Port1). Creating a GUI will almost certainly introduce new dependencies, which
are unwanted by the game engine developer.

In order to accommodate these seemingly contradicting requirements, the frame-
work has been divided into three parts, as shown in Fig. 3.3. The functionality
needed by both the editor GUI and game engines has been factored into a library.
The responsibilities of this library are discussed in Section 3.4.2.

nmlang Serialization format for function graphs (see Section 4.1).

nmlib Library for importing and exporting nmlang, manipulating and evaluating
function graphs (see Section 3.4.2).

nmgui User interface for creating and editing terrain function graphs using nmlib.

Since the generation code used by game engines is now independent from the
GUI code, it does not matter if the GUI uses dependencies that are unacceptable
for game engines. This means we are free to use GUI toolkits, OpenGL and

46

3.4. ARCHITECTURE

Serialization format

Function graph library

Real-time GUI editor Third-party game

Third-party evaluation library

Third-party mobile game

Figure 3.3: Architecture overview. The arrows show dependencies. Blue boxes are
part of the framework, while yellow boxes show potential third-party software.

other heavy libraries in the GUI application. A more detailed overview of the
architecture and all dependencies can be seen in Fig. 3.5.

The rationale for also factoring out the serialization format, is that for some
game engines, it might be impractical or impossible to use the library. I.e. it may
not be possible for some scripting languages to call C++ functions, or wrap them
in a language usable by the scripting language. By keeping the definition of the
serialization format open and explicit, it is possible for developers to create their
own code for parsing terrains that works on their deployment platform, while still
having the benefit to be able to use our GUI application for modeling the terrains.

3.4.2 Library architecture

The responsibility of the library is to provide an API for parsing, serializing, eval-
uating and modifying function graphs.

The library needs to interface with two stakeholders, the GUI application, and
the game engines that use the framework. In Figure 3.4, we see the high-level
use-cases of the stakeholders.

For game engines, it is important that it is easy to interface with the library,
and that the library is small, self-contained and runs on many platforms (Port1).
As game engines are commonly implemented in C++, it will be easiest if our
library is implemented in C or C++ as well. Also, it is usually fairly simple to
create wrappers for C and C++ libraries in order to interface with them in engines
that use other languages for extensions.

The terrain editor application on the other hand, has a different set of require-

47

CHAPTER 3. METHOD

ments. Most importantly, the requirements for interactive performance are much
stronger. While game engines can often afford to wait a couple of seconds during
a loading phase, the terrain editor needs to generate enough of a terrain for a
high quality preview in under 200 ms (Perf1). In order to achieve this kind of
performance, it is crucial that the algorithm is implemented on the GPU. This is
explained in Section 3.5.

Function graph library

Terrain editor

GUI application

Modify function graphs

Evaluate function values

Game engine

or game engine

plug-in

Serialize function graphs

Parse serialized graphs

Figure 3.4: Use-case diagram for function graph library

Because the library was consumed by the GUI editor, it was desirable to be
able to implement the model view controller pattern [51]. This was facilitated by
implementing the observer pattern (a part of the model-view-controller pattern)
on the graph model of the library. Consumers of the library can subscribe for
callbacks through the header-only library “boost::signals2”. This greatly simplifies
integration with a great number of frameworks, including Qt (which is used for
the GUI).

To further facilitate integration with other frameworks, all types in the model
intended to be used with reference semantics have an additional field, a void pointer
labeled “user data”. This pointer can be used to store identifiers or pointers to
objects wrapping the library. Such a wrapper can be seen in Fig. 3.5; the “QObject
proxy” is a wrapper to make the library easier to work with in QML and JavaScript.

The library has been carefully implemented without dependencies on the GUI

48

3.4. ARCHITECTURE

Figure 3.5: Detailed framework architecture including dependencies and package
modules. The arrows indicate dependencies.

application. This means that the library can be used by game engines to parse
and evaluate functions described by nmlang without pulling in dependencies that
are large, do not run on particular platforms, or have restrictive licenses (such as
Qt). This also allows the source code of the library to stay relatively small and
concise (approximately 3000 lines of code, avoiding the extra 4000 lines of code
needed for the GUI application).

model is the most important part of the library. All other parts of the library
depend on it. The model provides an object-oriented representation of func-
tion graphs and their relationships. The interface provides ways to modify
and create new graphs.

serialization is responsible for serializing and parsing graphs (in the model) to
and from JSON.

code generation is responsible for generating GLSL functions equivalent to the
function graphs.

49

CHAPTER 3. METHOD

3.4.3 The Noise Modeler application

The GUI application will also be referred to as the “Noise Modeler application”,
or simply “Noise Modeler”. There is only one stakeholder for this part of the
software, and that is the game designer, the person using the application to design
terrains for her games.

In line with the requirements for our framework, we want the editor to run on
numerous hardware and software configurations (Port1). To make this easy, the
cross-platform GUI framework Qt and QtQuick were chosen. The core of Qt is
also written in C++, and this makes it easy to interface with nmlib.

QtQuick, however, can only use C++ classes that derive QObjects. To use
QtQuick, we needed to wrap all classes in the model and serialization modules of
nmlib. Although this involved an amount of tedious manual work, it meant that it
was possible to take advantage of QML, which is a powerful declarative language
for creating user interfaces.

The user interface of the application is described in Section 4.3 and in the user’s
guide (Appendix A).

3.5 Parallel computation of implicit terrains

All the CPU-based implementations of implicit stochastic terrain generation pre-
sented in Chapter 2 are too inefficient for our requirements. The benchmarks
of GeoGen performed by Zábský [38] show that even with resolutions as low as
512 × 512 the implementation would struggle to achieve interactive performance.
The popular CPU-based noise libraries, libnoise and ANL, have also been bench-
marked in Section 5.1, and their performances were also insufficient.

Luckily, the algorithms for stochastic implicit terrains are clearly designed with
parallelism in mind, and they are perfect candidates for an implementation on the
GPU. The benchmarks performed in Section 5.1, as well as the ones performed
by Zábský [38] and Olsen [30], seem to support this conclusion. The program
Lithosphere is also able to achieve interactive rates by doing computation on the
GPU.

In all the algorithms used in our framework, the computation at one data point
is independent of the computation of neighboring points. This means that each
data point can be computed in a separate thread. As long as there are more threads
than points, near linear speedup can be achieved. If there are more threads than
data points, however, the execution time will be bounded by the time to execute
one data point, since the calculation of each data point is strictly serial.

The speedup, S(n), of computingN points in parallel can thus be approximated

50

3.5. PARALLEL COMPUTATION OF IMPLICIT TERRAINS

as

S(n) =
T (1)

T (n)
=

T (1)
T (1)
N

if n > N

T (1)
T (1)
n

if n ≤ N

 =

{
N if n > N
n if n ≤ N

}
= min(N, n) (3.8)

where T (n) is the time required to execute with n processors. In most use cases
for the library, a rather large number of data points are requested at once. In
the case of providing a high-quality preview of a heightmap terrain for instance,
500 000 < N < 1 000 000 are needed. On current CPUs and GPUs, this means
that n� N , resulting in a linear speedup.

Batch computation of points on a stochastic implicit surface is clearly a problem
that scales well on massively parallel architectures, such as GPUs. Furthermore,
there are generally few branch instructions within the computation of a point,
making the problem a perfect fit for the SIMD architecture of GPUs.

For these reasons, the GPU was an obvious choice of evaluation platform for our
library. By choosing to evaluate terrains on the GPU, it becomes necessary to select
a GPGPU API. Of numerous alternatives, OpenGL 3.0 was chosen. Other APIs
were considered as well, including CUDA, Direct3D, OpenCL, and Mantle. The
reason for choosing OpenGL, is that our library is primarily meant as middleware
for the video game industry. Video game developers usually prefer to reach the
widest audience possible. This has several implications for our requirements when
choosing a GPGPU platform. It is desirable to:

• Support as many hardware configurations as possible: This rules out CUDA,
as it is only available for NVIDIA GPUs, and Mantle, because it is only
available for AMD GPUs.

• Support as many software configurations as possible: This rules out Di-
rect3D, as it is only available for Microsoft’s operating systems (Windows
and Xbox).

Direct3D is partially supported by other operating systems through the Wine
compatibility layer. Although this could potentially increase the number of sup-
ported platforms, using Wine may cause a significant performance impact. It is
also a rather large software package, and may be seen as an unreasonable require-
ment to play a video game.

This leaves only OpenGL and OpenCL as viable platforms. While OpenCL
might have been a good choice of platform, we took advantage of the fact that
many games already make use of OpenGL for graphics. This has two advantages:
Firstly, it means our framework will cause no extra dependencies or requirements

51

CHAPTER 3. METHOD

for the end users (the players of the video game). Secondly, it becomes eas-
ier to directly combine computation of elevation data with rendering operations.
I.e. computation of elevation data can happen directly in a vertex or tessellation
shader, avoiding the need to store terrain data in memory. This feature was very
useful when developing the terrain preview.

If elevation data is cached, it may also seem advantageous that computation of
terrain data happen in the same framework that will use it for rendering, to avoid
unnecessary data transfers and duplication. However, it is perfectly possible to
share buffers between OpenCL and OpenGL, so this is not an important advantage.

While a definition of a stochastic implicit surface may be written by hand using
GLSL, this is the very same approach often taken by game developers that we
are trying to avoid. In our framework, the terrain model is built using a run-time
editable model of functional composition. This model resides in CPU memory and
is editable through a C++API. In order to bring computation to the GPU, the
CPU library generates GLSL shader code for computing the terrain by traversing
the graph model of the function. The specifics of this process are described in
Section 4.4.

The generated code is stand-alone, meaning it does not rely on any textures
or other buffers to compute the function values. This makes it callable from a
wide range of shader stages, including fragment, vertex, tessellation and compute
shaders. It also has the added benefit that the portability requirement of RQ1 is
easier to satisfy, since this limited set of GLSL functionality is easily portable to
most platforms.

By generating GLSL code during run-time, a strictly serial part is added to the
algorithm. Not only does the code have to be generated from the model, but the
GLSL shader also has to be compiled. This overhead only has to be executed once
each time the terrain function changes. For example, if two patches of terrain are
computed, this setup only needs to be performed once for the first patch. When a
terrain is edited interactively, however, it means that it changes continuously and
this overhead has to be executed after each change. The performance impact of
this step is therefore significantly large, since the steps also require compilation
of a GLSL shader, which could be expensive depending on the OpenGL imple-
mentation. This step has been benchmarked in Section 5.1 for several OpenGL
implementations.

3.6 Development process

Because there was only one developer working on the project, a strict development
model, such as Scrum or Kanban, was deemed inappropriate as it would impose too
much overhead to be useful. Instead, an informal agile approach was taken, where

52

3.7. VERIFICATION

focus was placed on implementing a minimal prototype as early as possible. This
prototype was iteratively refined into the final product. Sub-tasks and planning
were managed by a simple project backlog on Trello.com.

The library was developed using test-driven development (TDD). Tests were
written prior to implementing functionality, using the unit testing framework
Google Test. Having these tests proved very useful during the iterative devel-
opment of the framework. This way it was possible to safely refactor large parts of
the framework without fearing that unintended side effects might go by unnoticed.
Breaking changes were usually discovered easily by failing unit tests.

Some unit tests were also written for the rendering parts of the GUI application.
One requirement of the framework is to provide an intuitive user interface,

this implies that user testing is necessarily an important part of the development
process. The limited time frame of the project, however, meant that there was not
enough time to perform the extensive user testing that is appropriate for an end-
user application. While formal quantitative user testing was sacrificed in order to
speed up development time, informal and qualitative pilot testing was still carried
out throughout the development process. The main pilot tester was a friend of the
developer working on an open-source game. His feedback helped shape the user
interface of the application and fix oversights by the developer. Aside from this,
the design of the interface also relies heavily on familiar user interface elements
from similar applications, and this also lowers the need for user testing.

3.7 Verification

In this chapter, solutions to several research questions have been proposed. The
first point that needed to be verified, was that our representation for stochastic
implicit terrain surfaces is sufficient to describe procedural terrains. As explained
earlier, the implementation of our library demonstrates that the representation
can be used to describe procedural terrains.

The second matter that needed to be verified, was that our approach makes it
possible to generate changing terrains at interactive rates. This has been demon-
strated in two ways: Firstly, by running the editor itself, it could be observed that
terrains can be edited interactively. Secondly, a more thorough benchmark has
been performed and will be explained in Section 5.1.

A quantitative user test with a questionnaire, such as the SUS usability scale
[59], would have been appropriate to judge the usability of the application. Sadly,
our time-frame was limited, hence there was not enough time to arrange such a
test. Although this makes it harder to discuss the usability of the system, the pilot
testing provided some useful feedback. It is also an advantage that the interface
is similar to offline terrain generation systems.

53

CHAPTER 3. METHOD

Initially, the plan was to develop a plug-in to a game engine in order to demon-
strate how the framework might be used in game development. This was not
performed, due to lack of time. However, the benchmark program does serve as
a minimal tool showing that terrain generation can run without the GUI. Calcu-
lation is run for a requested patch of terrain, and the results are brought back to
CPU memory, just like a plug-in would most likely do.

54

Chapter 4

Implementation

In this chapter, implementation details of the developed software is discussed.
Section 4.1 contains a description of the serialization format designed for the terrain
genotypes. An overview of the class design of our library is given in Section 4.2.
In Section 4.3, the user interface is described. The details of how the terrain data
is computed on the GPU is covered by Section 4.4. Finally, our terrain rendering
implementation is explained in Section 4.5.

4.1 Serialization

This section describes how function graphs are serialized so that they can be stored
by the editor and loaded by the game engine using our library.

4.1.1 The JSON format

Function graphs are serialized using JSON1. JSON is a lightweight data-interchange
format that is easy for humans to read and write. It features a simple repre-
sentation of name-value pairs of arrays, numbers, booleans, and strings. For a
description of the JSON syntax, see Crockford [60].

There are several advantages of using JSON compared to other formats. Firstly,
it is a well-supported format, with serialization and parsing libraries available
for over 60 programming languages. This eases development of any potential
third-party tools or evaluators for the format, making it as portable as possible.
Secondly, it is a human-readable language, making it easy to understand, and even
edit, by opening it in a text editor.

1JavaScript Object Notation

55

CHAPTER 4. IMPLEMENTATION

4.1.2 Noise Modeler documents

Noise Modeler documents are JSON-encoded files describing one or more user-
defined functions (also called module types). When saved as files, the extension
“.nm.json”, is used. The first part of the file extension, “.nm”, is short for noise
model. The second part of the extension, “.json”, is appended because this makes
existing programs correctly classify the file as a JSON-document. This means that
the file is editable by specialized JSON editors, and that text editors will use the
correct syntax highlighting.

The structure of an nm.json-document will be described in detail in Sec-
tions 4.1.3 to 4.1.4

4.1.3 Module types

The root object of an nm.json-document has only one member, moduleTypes.
This is an array of different types of nodes available. Each entry in moduleTypes

describes a custom function. One entry in the array may depend on another; the
entries therefore have to be topologically sorted according to their dependencies.

The description of each module type has five attributes:

name (string) a unique identifier for the type.

description (string) an informal description of what the type does.

inputs an array of inputs that the module accepts. Each entry has up to three
key-value pairs.

name (string) and identifier for the input.

type (string) the type of this input. It takes the form:

〈dimensionality〉f
The dimensionality is a number that describes the dimensionality of the
input (vector) the “f” indicates, that this is a floating point vector (the
only supported type so far). For example, a three-dimensional vector
of floating point values would be denoted as 3f.

value an optional default value for the input. If not specified, the value will
be set to zero.

modules (array) a graph of modules, and how their inputs and outputs are con-
nected.

outputs an array of outputs (their external name, and their corresponding name
in the internal modules graph).

56

4.1. SERIALIZATION

4.1.4 Modules

The modules member of a module type is an array of instantiated module types.
Each entry describes the name of the module, an optional description, which mod-
ule type this is an instance of, and which outputs (if any) the inputs are connected
to, or whether the input is bound to a constant.

name (string) a unique identifier for the module.

type (string) an identifier for the module type of this module.

description (string) an optional informal description of what the module does.

inputs an array of string-string pairs; the keys refer to inputs defined in this
module’s module type, the values refer to the outputs of other modules. The
values take the form

〈moduleName〉.〈outputName〉

The values in the inputs list may optionally be specified as numbers or
arrays of numbers to bind the input to a constant rather than the output of
another module.

If an input is not present in the array, its default value from the module type
definition will be used.

4.1.5 Serialization example

Here is an example of how a terrain function can be serialized:

Listing 4.1: Example terrain function
1 {
2 "moduleTypes": [

3 {
4 "name": "terrainHeight",

5 "description":"determines elevation based on position",

6 "inputs": [

7 {
8 "name": "pos",

9 "type": "2f"

10 }
11],

12 "outputs": [

13 {
14 "name": "height",

15 "source": "add1.out"

16 }
17],

18 "modules": [

57

CHAPTER 4. IMPLEMENTATION

19 {
20 "name": "fbm1",

21 "type": "fbm",

22 "inputs": {
23 "pos": "inputs.pos"

24 }
25 },
26 {
27 "name": "add1",

28 "type": "add",

29 "inputs": {
30 "lhs": "fbm1.out",

31 "rhs": "-3"

32 }
33 }
34]

35 },
36 {
37 "name": "groundColor",

38 "description":"determines ground color based on elevation",

39 "inputs": [

40 {
41 "name": "height",

42 "type": "1f"

43 }
44],

45 "outputs": [

46 {
47 "name": "color",

48 "source": "mux31.out"

49 }
50],

51 "modules": [

52 {
53 "name": "mul1",

54 "type": "mul",

55 "inputs": {
56 "lhs": "inputs.height",

57 "rhs": "2"

58 }
59 },
60 {
61 "name": "mux31",

62 "type": "mux3",

63 "inputs": {
64 "x": "0.5",

65 "y": "mul1.out",

66 "z": "mul1.out",

67 }
68 }
69]

70 },
71 {
72 "name": "terrain",

73 "description":"determines terrain color and elevation based on ←↩
position",

74 "inputs": [

75 {
76 "name": "pos",

77 "type": "2f"

78 }
79],

58

4.1. SERIALIZATION

80 "outputs": [

81 {
82 "name": "color",

83 "source": "terrainColor1.color"

84 },
85 {
86 "name": "height",

87 "source": "terrainHeight1.height"

88 }
89
90],

91 "modules": [

92 {
93 "name": "terrainHeight1",

94 "type": "terrainHeight",

95 "inputs": {
96 "pos": "inputs.pos"

97 }
98 },
99 {

100 "name": "terrainColor1",

101 "type": "terrainColor",

102 "inputs": {
103 "height": "terrainHeight1.height",

104 }
105 }
106]

107 }
108]

109 }

The rationale behind having multiple user-created module types is two-fold:
Firstly, it makes it possible to create abstractions for particularly complicated parts
of a graph, by labeling the inputs and encapsulating the sub-graph. Secondly, it
makes it easy to parametrise and reuse commonly occurring sub-graphs.

For example, working with a “terrainHeight” module with a “roughness” in-
put may be more intuitive than working with an “fBm” module with “octaves”,
“lacunarity”, and “gain”.

In Listing 4.1 there are three module types: terrainHeight, groundColor,
and terrain. The terrain type depends on terrainHeight and groundColor,
while terrainHeight and groundColor, on the other hand, are independent.

terrainHeight is a user type that accepts a single input, pos; a two-dimensional
vector representing the width and length position. A single output, height, gives
the terrain height at that position.

This user type is instantiated inside the terrain user type, which accepts a
position as input and gives a height and a color as output. Inside terrain the
output of a terrainHeight module is used as the input for a groundColor module,
which calculates a color based on a height.

59

CHAPTER 4. IMPLEMENTATION

4.2 Library design

In this section, we will discuss the class design of “nmlib”, the library part of the
framework. We will also give an overview of the core classes of the library and the
most important design patterns used.

A class diagram of the library can bee seen in Fig. 4.1. In order to save space,
the class diagram has been simplified in many ways. First, the library is const-
correct2, and consequently many methods have both a const and a non-const
version; these are shown as one in the class diagram. Furthermore, most data
members are omitted from the diagram, unless they help portray the purpose of
a class. Many classes from the code generation module are also omitted, as this
module will be described more thoroughly in Section 4.4.1.

Although this is not shown in the diagram, all classes are members of the nm

namespace. This is done to prevent naming conflicts with other libraries and game
engine code.

A completely accurate and detailed description aimed at the users of the library
has been written and generated using Doxygen. Doxygen is a tool that parses
C++ header files and special comment markup in order to create a documentation
web page. Doxygen can also be used to create a reference manual for printing.
Online documentation can be found at http://docs.noisemodeler.org, while
an excerpt from the reference manual is included in Appendix D.

The class design of the library is closely related to the domain model pre-
sented in Section 4.1 and Section 3.2. For instance, there are separate classes
corresponding to modules, module types, signals, signal types, and graphs. Inputs
and outputs, however, are a special case. There are two sets of classes describing
inputs and outputs. The ModuleInput and ModuleOutput classes describe inputs
and outputs of a module type, i.e. signal type information, and a default value for
the input. The InputLink and OutputLink classes, on the other hand, describes
information related to a module (an instantiated module type). They contain a
reference to the ModuleInput or ModuleOutput they are representing, along with
additional information specific to the module they are attached to. Such infor-
mation include whether the input is connected to an output, or if it should be
assigned a specific constant value.

The TypeManager class is a class managing all available module types. It may
be populated with built-in types, using the initBuiltinTypes method. Addi-
tional module types may also be added to the type manager. The type manager
is the top-most level of the model hierarchy. When documents are parsed, a type
manager is returned, containing all the parsed module types.

2Const-correctness is a C++ paradigm where objects of a class may be declared immutable
(const). It will then be a syntax error to call methods that are not declared as “const”, meaning
they do not change the object.

60

http://docs.noisemodeler.org

4.2. LIBRARY DESIGN

Figure 4.1: Class diagram for the library.

A graph is an optional member of a module type. This field is only used for
user types, i.e. types that are described by a module graph themselves.

There is almost no inheritance in the library. This is a result of three factors.
First composition has been favored over inheritance, as this often leads to cleaner

61

CHAPTER 4. IMPLEMENTATION

code. Second, the requirements of the library favors dynamic design pattern that
delay decisions until run-time. Third, it is easier to wrap the library in other
languages and frameworks if it does not rely on polymorphism, as it may not be
supported by the target language.

The exception to this rule is the UserData class (not shown in diagram). Graph,
InputLink, OutputLink, Module, ModuleType, ModuleInput, ModuleOutput and
TypeManager inherit from this class. This is done to limit the amount of boiler
plate code in the library. This class provides a void pointer which can be used
by calling code to attach data to an object. In the GUI application, this field is
used to store references to corresponding QObject wrapper objects. Another class,
NonCopyable, serves a similar purpose to disable copy and assignment constructors
with a limited amount of boilerplate code.

As mentioned in Section 3.4.2, callbacks are provided through boost::signals2.
For each data member with public accessors in the model module, there is a
corresponding signal. It is possible to subscribe to a callback function by calling
the connect function of a signal with a function with a matching signature. In each
callback, a reference to the owning object is included. These callbacks are mostly
used by external code to react to changes in the model. In the GUI application,
the views are updated appropriately. The signals are also used internally to make
sure the model is always correct. For example: If a new input is added to a module
type, a corresponding input is added to all modules of that module type.

In several places, the factory method pattern is used. Graph has a factory
method for creating Modules that belong to the graph. ModuleType has factory
methods for creating new inputs and outputs. TypeManager has factory methods
for creating new ModuleTypes.

4.3 User interface

Below follows a discussion of the most important elements of the user interface of
the Noise Modeler application. An in-depth user’s guide including a user interface
description can also be found in Appendix A. The class-level implementation de-
tails of the user interface will not be discussed since it would make the description
too long.

A screenshot of the implemented user interface can be seen in Fig. 4.2. Addi-
tionally, a demonstration video is available on the project website:
http://www.noisemodeler.org/demo.html

62

http://www.noisemodeler.org/demo.html

4.3. USER INTERFACE

Figure 4.2: A screenshot of the Noise Modeler application.

4.3.1 Graph editor

The graph editor is the center of attention of the application. Modules are shown
as boxes labeled with a name. On the left side of each box, there is a list of
inputs, as well as a square indicating the type of input (i.e. the dimensionality of
the signal). There is also a similar list of outputs on the right side of the box.
Each box may be dragged around the area of the graph. It is possible to connect
an output to an input by dragging from the color-coded box on the right side of a
module to a box of the same color on another module. After doing this, a Bézier
curve will be drawn from the input module to the output module to represent the
connection.

For heightmap terrain, there will be two special modules, labeled “inputs” and
“outputs”. The “inputs” module has only one output, “pos”, this is the input
position to the function when used to query for heights. Similarly, there is only
one input in the “outputs” module, “height”, which will be assigned as the output

63

CHAPTER 4. IMPLEMENTATION

of the height function.

This interface is very similar to the interface of World Machine, which is shown
in Fig. 2.12, and to procedural shader editors. The major difference, however, is
that, in this implementation, all inputs to a function are explicit and visible, while
in World Machine, some outputs are implicit, such as the position input to noise
generators. The reason for doing this, is flexibility. For instance, it may be useful
to be able to scale or transform the position signal.

4.3.2 Inspector

The inspector is a GUI component located along the right side of the application.
It is used to edit the properties of modules not shown in the graph editor. The
primary function of the inspector is to assign constant values to disconnected
inputs. For instance, a multiplication module may only have one connected input,
while the other input may be assigned a constant through the inspector. The
inspector may also be used to change names and descriptions of modules.

Instead of making a separate GUI component for module customization, the
functionality could have been included within the graph editor itself. The reason
for keeping it separate, is that it allows the graph editor to stay more compact,
thus allowing more modules to fit on the screen at once. Keeping the functionality
within the module inspector, also makes it possible to show a maximized preview
in the main area of the application, while still being able to change the constant
values in the inspector.

4.3.3 List of module types

To the left (see Fig. 4.2) is a list of module types that may be added to the graph.
The list is divided into two categories. “User types” are module types created by
the user, while “built-in types” are defined by the framework.

Clicking the plus symbol to the right of a module type will add it to the graph.
There are also buttons for editing and adding new user types.

4.3.4 Real-time previews

There are two real-time previews of the heightmap terrain function: A 3D heightmap
terrain preview, and a texture preview. These previews are updated instantly ac-
cording to changes performed in the graph editor or inspector. The previews will
be discussed in Section 4.5.

64

4.4. GPU EVALUATION

4.3.5 Intended workflow

Here is the intended workflow when designing terrain for a game.

1. Design different terrain types, or biomes, as separate user types.

2. Expose useful or intuitive parameters as inputs to the user type.

3. Create a composite terrain by mixing the user types defined earlier in a new
user type, name this user-type “terrain”.

4. Save the terrain as a “nm.json” document.

5. Load the “nm.json” document using a plug-in for a game engine.

4.4 GPU evaluation

While Section 3.5 gave an overview of how terrain can be evaluated in parallel using
the GPU, this section describes the specifics of how the GLSL code generation was
implemented. Section 4.4.1 describes how GLSL code was generated.

Note that while we chose to develop code generation for GLSL, the framework
is still designed to allow computation on other platforms. Therefore, it should be
trivial to port the GLSL code generation module to platforms with a similar syntax
(such as C, CUDA or OpenCL), as the code has been written with portability in
mind.

Portability was also important when choosing an OpenGL version. While the
latest version, OpenGL 4.4, offers many useful features, they are not available on
all platforms. Specifically, the open-source Linux drivers only support OpenGL
3.3. Furthermore many graphics cards do not support newer OpenGL versions
because of hardware limitations. Consequently, Noise Modeler was limited to
using OpenGL 3.0 features only. Because of this, the program will run on almost
all combinations of graphics cards, operating systems and driver versions.

4.4.1 Generating GLSL code

This section describes how GLSL code generation was implemented. The imple-
mented technique for translating from a function graph to GLSL code will now be
presented.

65

CHAPTER 4. IMPLEMENTATION

Generating code given InputLinks and OutputLinks

In order to make use of a function graph, it is necessary to have a way to compute
output values given certain input values. To be flexible, we want to be able to
specify which inputs we are interested in changing, and which outputs we want to
use. This will allow us to leave out computation for the parts of the graph that
are not required for the outputs we are interested in.

The library provides the following function:

1 void InlineGenerator :: generateFromLinks(const std::vector <←↩
InputRemap > &inputRemaps , const std::vector <OutputRemap > &←↩
outputRemaps , std:: ostream &out);

This function generates inline code for parts of a function graph, by writing
to the provided std::ostream& output parameter. It takes as input a collection
(an std::vector) of “InputRemaps”, and a collection of “OutputRemaps”. “Inpu-
tRemap” and “OutputRemap” are defined as follows:

1 struct InputRemap {

2 std:: string externalName;

3 InputLink* inputLink;

4 };

5 struct OutputRemap {

6 std:: string externalName;

7 OutputLink* outputLink;

8 };

“InputRemap” and “OutputRemap” contain information about how the gener-
ated code should interface with surrounding code. The “externalName” member,
is the name of the input or output in code surrounding the generated code, while
the “*link” members describe the corresponding inputs and outputs of modules
in our graph. This means the “externalName” in an “InputRemap” has to be
declared and assigned in code preceding the generated code, while the “external-
Name” of an “OutputRemap” is declared and assigned in the inline code, available
to be used by surrounding code afterwards.

This is a very flexible approach, since it makes it possible to prune parts of a
graph that are irrelevant to our given inputs and outputs, while it may also easily
be used to provide a way to generate function definitions for user defined module
types including all their inputs and outputs.

The generated code has the following structure:

Listing 4.2: The structure of code generated by generateFromLinks

66

4.4. GPU EVALUATION

1 //<declare a variable name externalName for each OutputRemap >

2 //i.e. float height;

3 {

4 //<internal code for computing the outputs >

5 //i.e. float nm_id0 = 3+2;

6

7 //<for each OutputRemap , assign a computed value to its ``←↩
externalName ''>

8 //i.e. height = nm_id0;

9 }

The generated code is wrapped inside a scope. This means that the code
will not interfere with or use the surrounding code, except through the specified
variables.

We will now describe how the “internal code for computing outputs” in List-
ing 4.2 is generated.

First, a sorted list of required modules is generated by traversing the graph
topologically. The traversal starts at the outputs and follows graph edges from
inputs to outputs. While this is happening, the traversal algorithm manages a
list of visited modules to prevent visiting the same node twice. Whenever one of
the inputs which have a corresponding “InputRemap” is reached, the traversal is
blocked. The output of this traversal is a list of all visited modules, in the order
they have to be computed.

This list is subsequently iterated over and code is generated for each module.

Generating code for modules

Again, the code generated for each module is wrapped within a scope, while collec-
tions of “InputRemaps” and “OutputRemaps” are maintained to direct the output
of one module to the input of another.

Listing 4.3: GLSL generated for a 2D fBm module

1 // //

2 // Generating code for module: "fBm" of type "fbm2"

3 // //

4

5 // output declarations

6 float nm_id_3;

7 {

8 // input declarations

9 vec2 pos;

10 float seed;

11 float octaves;

67

CHAPTER 4. IMPLEMENTATION

12 float lacunarity;

13 float gain;

14

15 // assign unlinked values for inputs

16 pos = vec2(0, 0);

17 seed = 0;

18 octaves = 10;

19 lacunarity = 2;

20 gain = 0.5;

21

22 // reassign any connected inputs

23 pos = nm_id_2;

24

25 // funtion body for module "fBm" of type "fbm2"

26 float result = fbm2d(pos , octaves , lacunarity , gain , seed);

27 //end function body

28

29 // output assignments

30 nm_id_3 = result;

31 }

32 // //

33 //end of module: "fBm" of type "fbm2"

34 // //

Listing 4.3 gives an example of code generated for a two-dimensional fBm
module. First is a comment that shows what module we are generating code for.

After that, the remapped outputs are declared. We can see that it is de-
clared as “nm id 3”; this identifier has been generated by a call to “InlineGener-
ator::getUniqueId()” which generates a unique id with the prefix “nm id ”. This
id will be used later by surrounding code, perhaps as input to another module.

After that, the rest of the code is wrapped in a scope.
A list of variable declarations have been generated from the list of “ModuleIn-

puts” located in the type of the module.
Assignments to these declared variables are later generated by iterating through

the “InputLinks” of the module, which contains an “unlinked value”, i.e. the value
an input will have unless it is connected to the output of another module. If an
input is connected, it will be reassigned according to the lists of remaps. In this
example, we can see that the variable “nm id 2” has been assigned to the input
“pos”.

The function body is specific to each module type. In this case, it is simply a
call to a previously declared “fbm2d”-function. Had this been an “add” module,
the body might simply have been “float result = lhs + rhs;”. Note that this is
the only part that is generated differently for each module type. All other code is
generated from information available in the model.

At last, the output is assigned to the external output.

68

4.4. GPU EVALUATION

4.4.2 GLSL Noise implementation

Since it is desirable to create standalone GLSL code that does not rely on texture
lookups, the approach in Green [44] can not be used. Instead, our implementa-
tion is based on the source code of McEwan, Sheets, Richardson, et al. [45] (see
Section 2.9.8), which is released under the MIT license.

A shortcoming of their implementation is that it is not possible to supply a
seed to the algorithm in order to get a different pseudo-random function. This is
unacceptable for our requirements, since generating a new terrain for each session
is one of the main benefits of using procedural generation in games.

This problem is present because the implementation uses permutation polyno-
mials rather than permutation arrays (which can easily be seeded). A different
permutation polynomial could be selected, but only a limited number of polyno-
mials exist for the desired range.

The issue has been pointed out in the issue tracker of the project3. One of the
authors, Stefan Gustafson, responded by proposing two different solutions to the
problem:

• Simply add an offset to the input of the function. The domain of the domain
of the function is extremely large and adding a large offset could do what
we want. The problem, however, is that if the offsets are not large enough,
we might risk that players of a game can randomly encounter terrain they
recognize from a previous session. This is also undesirable, since floating
point errors start occurring when the offset gets too large.

• Run an additional permutation on an N-dimensional seed vector before look-
ing up the lattice gradient, where N is the dimensionality of the noise func-
tion. This means there will be 282N different seeds possible (the range of the
permutation polynomial being 289). This solution has a bigger performance
impact than simply adding an offset.

In our implementation, the second approach was used. For heightmap terrains,
which use 2D-noise, this means that the number of possible seeds is limited to
2892 = 83 521. To further increase the number of seeds available, it would have
been possible to use a different permutation polynomial with a larger range, but
this was not done, as 83 521 seeds are more than enough for our purposes.

4.4.3 Implementing fBm and multi-fractal algorithms

Once a good noise function was implemented, it was easy to port the fractal-based
heightmap generating functions: fBm, hybrid multifractal and ridged multifractal.

3https://github.com/ashima/webgl-noise/issues/9

69

https://github.com/ashima/webgl-noise/issues/9

CHAPTER 4. IMPLEMENTATION

Below is the implementation of the fBm:

Listing 4.4: GLSL implementation of fBm

1 float fbm2d(vec2 pos , float octaves , float lacunarity , float ←↩
gain , float seed) {

2 float sum = 0;

3 float amplitude = 1;

4 float frequency = 1;

5 for(int i=0; i<octaves; ++i){

6 sum += snoise(pos*frequency , seed)*amplitude;

7 amplitude *= gain;

8 frequency *= lacunarity;

9 }

10 return sum;

11 }

The code of Musgrave [3] for hybrid multifractals and ridged multifractals was
a bit more complicated to port to GLSL, as both algorithms have a strictly serial
computation step for pre-computing the spectral weights that are executed only
the first time the algorithm is run.

The spectral weight, ws, for each individual octave, i, is computed using the
equation

ws = (li)−H (4.1)

where H is the highest fractal dimension, and l is the lacunarity. The spectral
weights could have been computed as a step of the generation, thus achieving the
same optimization as Musgrave [3]. Instead, we chose to repeat the computation
of the spectral weights for each point. This has a negative impact on performance,
but means that the fractal dimension, H, does not need to be constant. It also
simplifies the code significantly.

Below is a listing of the code for our GLSL port of the ridged multifractal
terrain algorithm. In line 23, the spectral weight from Eq. (4.1) is computed
directly for each point.

Listing 4.5: GLSL implementation of ridged multifractal terrain

1 float ridgedmultifractal(vec2 pos , float octaves , float ←↩
lacunarity , float h, float offset , float gain , float seed){

2

3 // compute first octave

4 float signal = snoise(pos , seed);

5 signal = abs(signal);

6 signal = offset - signal;

7 signal *= signal;

70

4.5. RENDERING TERRAIN PREVIEWS

8 float result = signal;

9

10 // compute remaining octaves

11 float frequency = lacunarity;

12 float weight = 1;

13 for(int i=1; i<octaves; ++i){

14 weight = signal*gain;

15 weight = clamp(weight , 0, 1);

16 signal = snoise(pos*frequency , seed);

17 signal = abs(signal);

18 signal = offset - signal;

19 signal *= signal;

20 signal *= weight;

21

22 // compute spectral weight

23 float exponent = pow(pow(lacunarity , i), -h);

24

25 //add the contribution from this octave to the result.

26 result += signal * exponent;

27

28 weight *= signal; // update the monotonically ←↩
decreasing weight

29 frequency *= lacunarity;

30 }

31 return result;

32 }

As the implementation for hybrid multifractal terrains is very similar to that
of ridged multifractal terrains, its GLSL code will not be listed here.

4.5 Rendering terrain previews

Two different types of real-time previews have been implemented. They will be
described in the following subsections.

4.5.1 Texture preview

The texture preview is used to show the output of a two-dimensional function.
Values between 0 and 1 are mapped to colors between black and white. When
modeling terrain, this acts as a map where the tallest areas are shown as bright
white, while the lowest are shown as completely black. This resembles the way
heightmaps usually look when opened by an image manipulation program.

The domain of the patch sampled can be manipulated similarly to the way web
applications usually allow their users to browse maps:

71

CHAPTER 4. IMPLEMENTATION

• Mouse-wheel scrolling scales the domain

• Click-and-dragging translates the domain

(a) 3D preview (b) Texture preview

Figure 4.3: Screenshots of heightmap previews

The texture preview is implemented by drawing a triangle strip with two tri-
angles forming a rectangle. The function to be previewed is exported as a GLSL-
function (described in Section 4.4.1) which is then sampled in the fragment shader
used to draw the triangle strip.

The vertex data, which is constant, is used to help the vertex shader differen-
tiate between the different corners of the rectangle. I.e. (1, 1) is used to represent
the top-right corner. This value is passed through and used as the position within
the framebuffer. (1,1) is also the top right of the framebuffer.

The current domain of the function to be rendered is transferred to the shader
program through a single uniform value, “domain”, of type “vec4”. This uniform
value is used to scale and offset the vertex coordinates to get the function coor-
dinates to sample in the current corner. This coordinate is then passed on as the
output of the vertex shader. The coordinates are then interpolated by the OpenGL
pipeline before arriving in the fragment shader.

72

4.5. RENDERING TERRAIN PREVIEWS

Listing 4.6: Vertex shader for texture preview

1 #version 130

2 uniform vec4 domain; //{x, y, width/2, height /2}

3 in vec2 vertices;

4 out vec2 coords;

5 void main() {

6 gl_Position = vec4(vertices.x,vertices.y,0,1);

7 coords = vertices.xy*domain.zw + domain.xy;

8 }

Listing 4.7: Generation of fragment shader for texture preview

1 std:: stringstream fs;

2 fs << "#version 130\n";

3 // dynamically generate ``elevation '' function

4 fs << getHeightFunctionSource ();

5 fs << ""

6 "in vec2 coords ;\n"

7 "void main() {\n"

8 " float height ;\n"

9 " elevation(coords , height);\n"

10 " gl_FragColor = vec4(height , height , height , 1);\n"

11 "}\n";

In the fragment shader, the terrain function is called using the linearly inter-
polated coordinates, which the vertex shader computed in each corner. The result
of the terrain function is then multiplied with pure white before being assigned as
the fragment color.

The result is that heights below zero appear as black, while heights above 1
appear as pure white. The values in between are represented by various shades of
gray.

4.5.2 Heightmap 3D preview

Another type of preview is the heightmap 3D preview. In this preview, a two-
dimensional height function can be viewed as a 3D-terrain from a perspective
camera, which can be controlled by a keyboard and a mouse (controls and user
interface components are described in Appendix A).

The terrain preview is rendered to a framebuffer object using C++ and OpenGL.
The framebuffer object is then handed over to Qt Quick and drawn into the GUI
inside the “heightmap 3D preview” window (see Section 4.3).

The following subsections will describe the details of how C++ and OpenGL
are used to render into the framebuffer object.

73

CHAPTER 4. IMPLEMENTATION

LOD algorithm

Terrain is rendered using a level-of-detail (LOD) algorithm roughly based on the
algorithm of Strugar [49], described in Section 2.10.3. The algorithm was selected
because of its ability to handle large changes in altitude. This was a natural choice,
since one of the features of the terrain preview is the ability to fly around freely.
Designers might want to look at the terrain, both from ground level and from a
top-down perspective. The algorithm is also fairly flexible, and the most intensive
calculations can run in hardware even on old versions of OpenGL.

The full algorithm was not implemented because other features had to be prior-
itized. Consequently, our implementation is simplified to not interpolate between
different LOD-levels, for this reason, the preview has visible seams and popping
effects when LOD-levels change. These seams can be seen in Fig. 5.1, where a bit
of the light-blue sky color is visible where the seams do not match.

Using CDLOD made it possible to render a relatively large patch of terrain.

Rendering patches

After the LOD-algorithm has selected which terrain patches should be drawn at
what LOD-levels, the right calls to OpenGL must be issued to draw each patch.

During the initialization step of the application, a single vertex buffer is created.
This vertex buffer consists of the 2D positions needed to draw a tessellated plane
using triangle strips. Coordinates range from 0 to 1 in both dimensions. The vertex
buffer has no height information, since the height is computed by the vertex shader.

Most of the remaining rendering is done through OpenGL vertex and fragment
shaders. Each terrain patch is drawn with a single call to “glDrawArrays”, which
draws each patch as a single triangle strip.

In the vertex shader, the coordinate system is transformed so that the triangle
strip covers the area corresponding to the LOD-level and world position of the
current terrain patch. The final height coordinate of each vertex is then computed
by sampling the terrain height function.

Normals are also computed by the vertex shader by sampling the additional
heights of two neighboring vertices and taking a simple cross-product. This is
a very rough estimate, and better-looking results could have been achieved by
taking additional samples, computing a more accurate normal. This would have a
negative performance impact, however, but would be less noticeable if the values
were cached.

Listing 4.8: Vertex shader for 3D preview

1 #version 130

2

74

4.5. RENDERING TERRAIN PREVIEWS

3 // <generated elevation function here >

4

5 in vec2 vertex;

6

7 out highp vec2 coords;

8 out vec3 normal;

9

10 uniform mat4 modelViewMatrix;

11 uniform mat3 normalMatrix;

12 uniform mat4 projectionMatrix;

13 uniform mat4 mvp;

14 uniform vec3 scaling;

15 uniform vec2 patchOffset;

16 uniform vec2 sampleOffset;

17 uniform float patchSize;

18

19 // simplifies getting a scaled height from the generated ←↩
elevation function

20 float sampleHeight(vec2 pos){

21 float height;

22 elevation(sampleOffset+pos*scaling.xy,height);

23 return height*scaling.z;

24 }

25

26 void main() {

27 vec2 vertexCoords = patchOffset + vertex*patchSize;

28 float height = sampleHeight(vertexCoords);

29 float resolution = 64;

30

31 // compute the normals here

32 float delta = patchSize/resolution;

33 float rightHeight = sampleHeight(vertexCoords + vec2(delta←↩
,0));

34 float upHeight = sampleHeight(vertexCoords + vec2(0,delta));

35 vec3 rightVector = normalize(vec3(delta , 0, rightHeight -←↩
height));

36 vec3 upVector = normalize(vec3(0, delta , upHeight -height));

37

38 // compute normal purely based on these two points

39 vertexNormal = normalize(cross(rightVector , upVector));

40 normal = normalize(normalMatrix * vertexNormal);

41

42 vec3 vertexPosition = vec3(vertexCoords ,height); // world ←↩
position

43 gl_Position = mvp * vec4(vertexPosition ,1); //final ←↩
projected position

44 }

The rest of the rendering is fairly simple. A Phong shading model is used.

75

CHAPTER 4. IMPLEMENTATION

Positions and normals computed by the vertex shader are interpolated before be-
ing picked up by the fragment shader. In the fragment shader the final color is
computed by using a single hard-coded directional light, and hard-coded diffuse
and ambient material colors.

Listing 4.9: Simple fragment shader for 3D preview

1 #version 130

2

3 in highp vec2 coords;

4 in vec3 normal;

5

6 uniform mat4 modelViewMatrix;

7 uniform mat3 normalMatrix;

8

9 void main() {

10 vec3 n = normalize(normal);

11 vec3 dirLight0 = normalize(vec3 (1,1,1));

12 vec3 s = normalize(normalMatrix * dirLight0);

13

14 float k_d = 0.7;

15 float i_d = k_d * max(0, dot(s, n));

16 float i_a = 0.2;

17 vec3 baseColor = vec3 (1,1,1);

18

19 float i_total = i_d + i_a;

20

21 gl_FragColor = vec4(i_total*baseColor , 1);

22 }

To improve the visual quality of produced terrain, and give a better impression
of how terrain would look like, an automatic texturing shader was also imple-
mented. This shader was implemented as a fragment shader, using implicit proce-
dural texturing techniques, hard-coded in GLSL. The approach for the shader is
rather simple:

1. A grass texture is computed using fBm.

2. The grass texture is then blended with a rock color according to terrain
incline, in order to make the grass disappear from too steep slopes.

3. A “snow line” is computed using three-octave fBm in order to determine the
height at which snow should appear.

4. The grass-and-rock texture is then blended with bright white for snow ac-
cording to the snowline.

76

4.5. RENDERING TERRAIN PREVIEWS

5. A similar “beach line” is computed and a sand color blended in for all lower
heights.

6. A blue color is blended in for all heights below zero to emulate water.

7. The surface normal is perturbed using fBm to make the single colored texture
appear less uniform.

The application lets the user switch between the two fragment shaders by click-
ing a checkbox. In Fig. 4.4, a side-by-side comparison between the two texturing
modes is shown.

Handling terrain changes

The terrain height function itself is dynamically generated by calling nm::glsl::GlslGenerator::compileToGlslFunction.
The function takes the input and output of a terrain user module as arguments
and returns a string containing GLSL source code. This source code is then con-
catenated with the vertex shader code, to make sure it is callable from the vertex
shader itself. Each time changes are made to the terrain generator, new source
code for the height function is generated and the shader program is automatically
recompiled.

77

CHAPTER 4. IMPLEMENTATION

Figure 4.4: Side-by-side comparison of the terrain preview using different fragment
shaders.

78

Chapter 5

Results and Discussion

In this chapter, our results will be presented and discussed. The performance
of the system will be benchmarked against CPU-libraries with similar features.
The run-time complexity of generated GLSL code will be discussed and compared
against other libraries.

The feature set of our framework will be analyzed and compared against both
noise libraries, and offline terrain generators. Advantages and limitations of our
representation for stochastic implicit terrain surfaces will also be discussed and
compared against noise libraries.

While there was not enough time to perform a large user test, the general
response from our pilot tests will be summarized, and some content created by
the testers will be showcased. The usability of the system will be discussed, and
suggestions for improvements given.

Finally, the software qualities of the developed framework will be discussed.
Of particular interest is whether the implementation meets the non-functional
requirements for modifiability. It will be explained how the framework could be
extended to support voxel terrains and evaluation on additional platforms.

5.1 Benchmarking

In order to assess whether heightmap generation would be fast enough for real-time
editing, a benchmark terrain was created for the framework. A similar benchmark
was also created for ANL and libnoise. The benchmark tested generation of a
relatively simple model for a heightmap terrain. The absolute value of 8 octave
fractional Brownian motion was clamped between 0.5 and a scaled version of the
fBm. This model creates the kind of coastal cliff landscape that can be seen in
Fig. 5.1. The code for the benchmarks are included in Appendix C.

79

CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.1: The benchmark terrain, rendered by the real-time preview in Noise
Modeler.

o = 8 (5.1)

a = fBm(x, y, o) (5.2)

result = clamp(a, 0.25, 0.75 + 0.25 · a) (5.3)

where x and y compose the heightmap position, o is the number of octaves for
the fBm function. For simplicity, other parameters of the fBm function have been
hidden (lacunarity, gain, etc.), as they do not have a great impact on performance.
clamp is a common function in graphics that is usually defined as clamp(a, x, y) =
min(x,max(y, a)). The graph representation for this terrain function can be seen
in Fig. 5.2.

80

5.1. BENCHMARKING

Figure 5.2: The benchmark terrain function, as shown in Noise Modeler.

Due to its age, libnoise does not contain an implementation of simplex noise.
Instead, Perlin noise had to be used, which is slightly more expensive for three-
dimensional noise.

This test scenario may not be a completely fair comparison: libnoise is opti-
mized for three-dimensional noise, and it might be considered unfair to compare
CPU implementations against a GPU implementation. However, these are the
libraries that are commonly used to implement noise-based terrains. So although
it is possible to hand-write a GPU implementation that performs similarly to our
generated GLSL code, it is not commonly carried out in practice, and there is lit-
tle middleware available to make this process easier. Hence, our benchmark might
be considered fair because it benchmarks Noise Modeler against other tools that
game engine developers commonly choose for the same task.

During the benchmark, we generated 81922 points, as this corresponds to the
maximum allowed heightmap size in Unreal Engine [11]. For all benchmarks, the
heightmap is first generated and then stored in the host memory. Consequently,
the texture has to be transferred from the GPU to the CPU in the Noise Modeler
benchmark. All tests and libraries were compiled with gcc 4.9.0 using the “-O3”
optimization option, as recommended by the libnoise documentation [54]. libnoise
1.0.0 and ANL revision dea64e1c14d0 (8 November 2013) were used.

Table 5.1 shows the results of our benchmark, using both libnoise and ANL
with, and without caching for the fBm module. Note that there is only one column
for our framework, because caching is implicit in the model (see Section 5.3).
There are, however, three different results for the Noise Modeler. The first result
is the total time of the benchmark, including OpenGL context creation, reading
and parsing the terrain file from disk, compiling shader source, allocating GPU
memory, setting OpenGL state, executing the shader program, and transferring
the results back to CPU memory. Context creation is a rather expensive operation,
and is typically only done once when an application is started. Hence, the second
result includes only the time from starting the shader program until the results
were back at the CPU which gives an indication of how long it takes to generate
the terrain once a program has been started. The third and final result does not
include a transfer back to the host memory.

81

CHAPTER 5. RESULTS AND DISCUSSION

libnoise libnoise, cached ANL ANL, cached Noise Modeler

PC 1 153 735 ms 79 402 ms 102 640 ms 62 370 ms 973/558/243 ms
PC 2 111 350 ms 55 880 ms 67 200 ms 39 470 ms 485/355/268 ms∗

PC 3 190 890 ms 99 060 ms 113 180 ms 66 670 ms 969/650/192 ms

Table 5.1: Benchmark results. Generating a 8192 × 8192 patch of heightmap
terrain.
∗ The results are for a 4096× 4096 texture, because Intel HD 4000 does not support 8192× 8192

framebuffers.

PC 1 PC 2 PC 3

GPU AMD Radeon 4870 HD Intel HD 4000 NVIDIA GeForce 460 GTX
GPU Driver Mesa 10.1.4 Mesa 10.1.4 NVIDIA 337.25
CPU AMD Phenom II X3 720 Intel Core i5-3317U @ 1.7 GHz Intel Core i7 930 @ 2.8 GHz
Memory 4 GB 4 GB 10 GB
Build year 2008 2012

Table 5.2: Benchmark configurations. All machines ran Arch Linux (updated 28
May 2014) with kernel version 3.14.4.

Table 5.2 shows the configuration of the test machines. Notable here is that
PC 1 used the open-source Radeon drivers, which are significantly slower than the
proprietary drivers1.

Note that this benchmark tests how long it takes to generate a complete
heightmap of 81922 = 67 108 864 points. However, as explained in Section 3.3.1, it
may not be necessary to generate a complete heightmap. In many rendering imple-
mentations, such as the preview in Noise Modeler, it is not necessary to generate
a complete heightmap, points can merely be generated when they are needed. In
the initial position, the preview in Noise Modeler renders 88 grids of resolution
64 × 64. This means that only 88 · 64 · 64 = 360 448 height values are needed.
If a more sophisticated tessellation algorithm is deployed, the number of needed
heights may only be a fraction of this.

If the results in Table 5.1 for PC 1 are generalized, it may give an estimate for
the constraints the libraries impose for the lower limit for time per frame in the
preview. The time needed to render a preview tp, may be approximated using the
following equation:

tp ≈ tb
vp
vb

where tb is the total benchmark time, vb is the number of vertices in the benchmark
and vp is the number of vertices needed to render a preview.

1A recent benchmark of the drivers can be found here: http://www.phoronix.com/scan.

php?page=article&item=radeon_1404_win81

82

http://www.phoronix.com/scan.php?page=article&item=radeon_1404_win81
http://www.phoronix.com/scan.php?page=article&item=radeon_1404_win81

5.2. IMPLEMENTED AND MISSING FEATURES

Using this formula yields the following minimum frame times for the tested
noise libraries:

libnoise: 420 ms

ANL: 330 ms

Noise Modeler: 1.3 ms

If we reduce the quality of the preview, it might seem like even the CPU
implementations could almost be fast enough for real time generation. However,
due to the implementations running on the host, rendering a terrain still requires
expensive memory transfers between the host and the GPU. The solution would
also scale poorly as the complexity of the terrain function increases.

Furthermore, it is impractical to combine CPU implementations with hardware
tessellation, because tessellation would happen as part of the rendering call, after
the terrain has been generated. Our approach, on the other hand, is perfectly
suited to take advantage of hardware tessellation, because evaluation may take
place at any stage in the rendering pipeline.

In Section 3.3.1, it was suggested that it must be possible to generate enough
terrain for a preview in under 300 ms, and, ideally, under 50 ms, in order to use
it for real-time editing. Although our tests show only 1.3 ms as the time required
to generate enough terrain, this is a lower limit. More complex terrains will also
involve correspondingly more expensive computations, so it is desirable to be able
to tolerate an increase in computation time. Since the benchmark indicates that
generation is over 200 times faster than required (see Section 3.3.1) for a simple
model, it might be considered reasonable to suppose that it will be fast enough for
a more complex model as well.

Both the benchmarks, and the responses from the pilot tests suggest that
requirement Perf1 has clearly been fulfilled, even if the model is several times
more complex than in our benchmark.

5.2 Implemented and missing features

Below the implemented and missing features of Noise Modeler are discussed and
compared with the feature sets of related frameworks and libraries.

5.2.1 Real-time preview

A real-time preview was implemented. On a four year old graphics card (see PC
3 in Section 5.1) a terrain preview with more than 350 000 vertices was drawn

83

CHAPTER 5. RESULTS AND DISCUSSION

at an average frame rate of 60 frames per second. Higher frame rates might also
have been achieved if the application had not been limited by the Qt framework’s
vertical sync2.

When a change to the module graph occurs, the GLSL shader code has to be
regenerated and recompiled. This is handled automatically by the framework. If
the graph is changed every frame, the frame rate drops to around 15 frames per
second, or 66 ms per frame. While the user may perceive the drop in frame rate,
the input delay is barely noticeable, which means editing operations will still be
felt as instantaneous, but the illusion of motion may be lost. On newer hardware,
this problem will be less significant.

On the other hand, if only the inputs to the generated GLSL shader are
changed, there is no need for recompilation, and the frame rate can stay at a
stable 60 frames per second. The speed of the generation is benchmarked further
in Section 5.1.

The texturing of the preview is very limited. The user only has two choices,
diffuse white shading, or our improvised automatic height-based shading. A more
dynamic approach would have been desirable, letting the user influence the textur-
ing. This could perhaps be done by allowing the user to create procedural alpha
maps and use a texture splatting shader [9].

While the implemented terrain texturing may be simplistic and inflexible, it
still shows the shape of the terrain clearly, solving its primary objective: providing
immediate and informative user feedback.

5.2.2 Generator functions

libnoise and ANL both have a set of modules they call “generator functions”. These
are typically functions that create fractal noise, or terrains without depending
on other modules. Table 5.3 shows support for different functions in the three
libraries:

This is not an exhaustive list, however; ANL also includes several more exotic
algorithms that have not been included here. ANL clearly has the largest amount
of available algorithms, and while libnoise has pretty wide support, it is limited to
only the three-dimensional variants.

Our framework does not offer billow noise, Voronoi patterns and Worley noise.
The reason for this is simply lack of development time. Porting difficulties of these
algorithms have not been evaluated.

Aside from the algorithms listed here, these libraries commonly support a wide
range of other generation functions such as checkered patterns, circles, spotted

2Vertical sync is a feature that synchronizes the swapping of frame buffers with the update
frequency of display. This is done to prevent rendering frames that will never be displayed.

84

5.2. IMPLEMENTED AND MISSING FEATURES

Algorithm ANL libnoise nmlib

fBm Yes Yes Yes
Ridged multifractal Yes Yes Yes
Hybrid multifractal Yes No Yes
Billow noise Yes Yes No
Voronoi Yes Yes No
Worley noise Yes No No

Table 5.3: Support for various common generation algorithms in different frame-
works.

patterns and similar. None of these are supported directly by our framework,
but they can often be built from more basic elements and be encapsulated as
a new user type that can be used similarly. To construct a checkered pattern,
for instance, it is possible to combine “mod” and “step” modules. To keep the
library simple, however, we chose not to implement generator functions that could
easily be expressed by other functions, as this would make the representation
unnecessarily complicated and harder to port to new platforms.

5.2.3 Lack of erosion algorithms

Erosion algorithms are a popular feature in many offline terrain generation tools,
and their absence will surely be noticed by users of these applications. Their
appeal is that they are conceptually easy to understand, and that they produce
impressive results compared to the amount of work required by the user.

The erosion models described in Section 2.4 are designed to run on heightmaps
to produce a new eroded heightmap. This means an original complete heightmap
has to be provided as input for the algorithm. These algorithms do not fit the
paradigm of functional composition for stochastic surfaces, where each point is
independent from its neighbors. Consequently, heightmap erosion algorithms can
not be expressed as module types in our framework.

Other frameworks that use implicit surfaces to model terrains, and support ero-
sion algorithms frequently achieve this by introducing a concept of “post-effects”.
These post-effects are algorithms that can be run on a terrain once it has been
expanded from the height function into a heightmap [36], [61].

Although our framework does not support erosion algorithms, the game engine
developer is still free to use our framework to create a preliminary heightmap, and
then use an external erosion tool to improve the quality of the heightmap. While
this makes it possible to integrate with erosion tools, it would mean the previews
in the GUI application would no longer reflect the final terrain accurately.

85

CHAPTER 5. RESULTS AND DISCUSSION

Note that erosion algorithms are also problematic to use on endless terrains
in general, because most of them assume a heightmap with finite dimensions.
Running the algorithm on adjacent patches of a heightmap terrain separately will
cause discontinuities in the terrain height values, resulting in visible stitches.

5.3 Run-time complexity of generated GLSL code

In this section we will look at how the run-time complexity of generated GLSL
code changes with different module graphs.

When the graph model is used to generate GLSL code, a piece of inline code
is generated for each module that is needed by the computation. Graphs in the
model that are not needed to produce the requested outputs are omitted by the
code generation tool. Generated code for each needed module is concatenated
and will be computed in sequence on the GPU. If we assume a constant run-time
per module, this means that the worst-case complexity of the generated code is
bounded from above by:

O

(∑
m∈G

T (1)

)
= O(MT (1)) = O(M) (5.4)

where m is a module in the module graph, G, and M is the total number of
moudules in G.

Note that this is only a worst-case run-time. Since the code is generated inline,
and then handed to the GLSL compiler, many optimizations can be performed by
the compiler. This means compiler optimizations such as

• dead code elimination

• copy propagation

• loop unrolling

• code motion

• function inlining

• constant folding

• constant propagation

• reduction in strength

86

5.3. RUN-TIME COMPLEXITY OF GENERATED GLSL CODE

are applied to the resulting code [62].
For example: Assume one of the inputs to a multiplication module is specified

as a constant, 2, while the other is bound to the output of another module. The
code generation tool will generate the following GLSL code:

Listing 5.1: Generated code for a multiplication module, stripped of comments.

1 float nm_id_4;

2 {

3 float lhs;

4 float rhs;

5 lhs = 1;

6 rhs = 2;

7 lhs = nm_id_3;

8 float result = lhs * rhs;

9 nm_id_4 = result;

10 }

The compiler will then perform the following optimizations:

• Dead code elimination will remove the assignment in line 5.

• Constant propagation will replace the “rhs” variable with the constant, 2.

• Reduction of strength will be applied to line 8 which now contains the expres-
sion lhs*2, replacing it with an addition, lhs+lhs, or a left shift, lhs<<1.

• Copy propagation is applied to line 9.

In this example, it has been shown how code may often be optimized when
inputs of a module are constant. Although this showed how optimization may
happen within one module, the compiler will also perform optimizations across
modules, perhaps even eliminating the execution of whole modules.

In ANL and libnoise, evaluation of module graphs are happening directly in
the graph model, without generating specialized code that may be optimized by a
compiler. This means that for our example, with a multiplication module having
a constant 2 as one of its inputs, ANL or libnoise would use the multiplication
operation instead of the more inexpensive addition or shift operations.

Due to the differences in the conceptual model, our approach has an additional
advantage over ANL and libnoise performance-wise. Earlier, it was shown that the
run time complexity of our approach was O(M). In ANL and libnoise, however, a
shared source module does not automatically mean shared computation. On the
contrary, since the computation of a module’s output is repeated each time it is
used as a source, the algorithm corresponds to a depth first traversal of a DAG
where nodes are not marked when visited.

87

CHAPTER 5. RESULTS AND DISCUSSION

As discussed earlier, this flaw is handled in ANL and libnoise by introducing
cache modules that store the result of the last computation.

There are two problems with this approach: Firstly, it requires a user that is
aware of the problem and knows when it is appropriate to insert a cache module.
Secondly, a cache module may easily be defeated if the user inserts a turbulence
module, which means that the position in each function call may be different from
the last, thus thrashing the cache.

If caching modules are used extensively, and position-changing modules are
avoided, the libnoise approach can achieve the same O(M) complexity as our
approach.

In our approach, however, the position is explicit in the graph. This means
that it is not possible to use turbulence modules in that manner. With the libnoise
approach, care has to be taken to avoid expensive recalculations, while in our
approach, it is implicit in the model.

5.4 Pilot testing

While one of the main motivations for this thesis was to enable a more intuitive
terrain design process, usability been a priority of the thesis work. The thesis work
has been more concerned with developing the generation engine required to create
an intuitive interface.

Although usability were not in focus, pilot testing still provided some useful
feedback regarding the user interface. As explained in Section 3.6, the main tester
was a game developer potentially interested in using the framework for one of his
projects3. Other testers were not involved in game development and were recruited
among friends and relatives of the developer. A summary of the received feedback
given will be presented below.

There proved to be much room for improvement in the user interface. Testers
often needed help to discover basic functionality, such as how to navigate the
preview window. For the non-developer testers there also seemed to be general
confusion as to what the purpose of the program was. These testers struggled to
understand what the graph interface was representing and how a height function
could represent a terrain.

The game developer, however, picked up the concept quickly, as he had some
prior familiarity with concepts such as heightmaps and noise functions. He de-
scribed the framework as “for the most part intuitive”, and was able to use the
program without any assistance. Fig. 5.3 shows a terrain designed by him.

Our limited amount of testing suggests that non-developers would need a sig-
nificant amount of training in order to use the program efficiently, while developers

3His project can be found here: https://github.com/monkeybits/primordial

88

https://github.com/monkeybits/primordial

5.4. PILOT TESTING

Figure 5.3: A terrain designed by the primary test subject

would be able to use the program without any training at all.
On one hand, this indicates that the user interface is severely lacking in terms

of usability. On the other hand, the target audience of the software is indeed game
developers, and it may not be completely unreasonable to assume familiarity with
common game development concepts such as heightmaps.

The alternative to using our program, is to program against a noise library.
Not only does this require the user to know a programming language, but the user
must also learn how to program against the library API.

It can be concluded that while our program has room for improvement, it is
still a significant improvement over programming against a noise library.

89

CHAPTER 5. RESULTS AND DISCUSSION

5.5 Software quality

As planned in the framework architecture, the developed software is highly mod-
ular. It is designed so that parts of the system can easily be swapped out.

Most importantly, there is a clear distinction between the GUI application and
the library. This allows the GUI to be replaced or removed, and GLSL code gen-
eration can be executed without involving the GUI and its dependencies. This has
been demonstrated by creating a benchmark application that evaluates a terrain
on the GPU and loads it into CPU memory, ready to use. Another demonstration
of this modularity is the creation of a simple command-line program for generating
GLSL shaders from “nm.json”-documents.

The system is also modular on the library level, meaning that there are clear
boundaries between the “model”, “serialization”, and “code generation” software
modules. Either or both of the serialization and code generation modules may be
removed without affecting the rest of the library.

5.5.1 Supporting new evaluation platforms

Extending the framework with code generation for new languages may be done
by creating a new library module that traverses the model and generates code for
that platform.

For languages similar to C, another option is available: Most of the code within
the code generation software module is not GLSL specific. Hence, support for a
new C-like language may be added simply by sub-classing the nm::InlineGenerator
class and overloading the genTypeKeyword, genDeclaration, genAssignment,
genVariable, genValue and genFunctionCall methods as appropriate.

Code for each built-in module type must also be implemented in the new lan-
guage. This can be done by following the definition for the module types in
Table A.1. Special care has to be taken when implementing “noise”, “fBm”,
“ridgedmultifractal” and “hybridmultifractal”, however, to make sure that they
use the exact same approach as our GLSL implementations, or the terrain will not
be deterministic across platforms.

5.5.2 Supporting additional terrain types

All the code in the library, and almost all code in the GUI application, has been
written without being tailored for heightmap terrains. The only remaining obstacle
for supporting voxel terrains and vector displacement terrains is the development
of preview rendering code for these terrain types. By following the rendering
approach of Geiss [17], it should be straightforward to insert a density function
generated by our existing GLSL code generation tools.

90

5.6. UTILITY AS A GAME DEVELOPMENT TOOL

To reiterate more clearly: The library already supports multiple types of ter-
rain, and the GUI application is only lacking previewing functionality.

In fact, the GUI application is already capable of modeling and previewing
terrains for two-dimensional side-scrolling games (see Fig. 5.4).

Figure 5.4: A two-dimensional terrain with an underground cave system designed
with Noise Modeler. The terrain is seen from the side, with the ground in white
and the air and caves in black. This terrain may be used by side-scrolling games
such as Terraria, Starbound or Worms.

5.6 Utility as a game development tool

While shader editors use a similar approach for generating shaders through a flow-
graph interface, they are aimed at textures and do not support terrain previews.
Such tools could be used to create similar terrain models, but the designer would
then create blindly, only aided by a texture representation of the terrain.

Offline procedural terrain editors often also feature a flow-graph interface for
constructing a fully procedural terrain. They do not, however, have the ability to
generate terrains in-game, or generate shader code for terrain functions.

ANL, libnoise, and GeoGen are all designed with online terrain generation in
mind. However, they all require the designer to work in a scripting or programming

91

CHAPTER 5. RESULTS AND DISCUSSION

language. Consequently, previewing results often requires recompilation and may
cause significant delays since the libraries are implemented on the CPU.

To our knowledge, the Noise Modeler framework is therefore unique in its cause.
It may be limited in features, and rough around the edges in terms of usability, but
it clearly outperforms existing noise libraries, and offers terrain specific features
and heightmap previews not present in procedural shader editors.

Since the framework is released as open-source, under a permissive license,
we believe it should be considered as attractive middleware for game developers
looking to implement endless procedural worlds. Fixing its flaws and implement
its missing features is probably worth the trouble instead of continuing the current
practice of programming blindly against noise APIs.

92

5.6. UTILITY AS A GAME DEVELOPMENT TOOL

Figure 5.5: A few terrains designed with Noise Modeler. The bottom row shows
how user types may be used to combine a mountain terrain and a river network.

93

Chapter 6

Conclusions and Future Work

Generating endless terrains online using the GPU is not a new idea. Neither is
using the GPU to augment terrain editors with responsive procedural tools. The
novelty of this thesis lies not in the individual techniques used, but from the
effort to unify them. Most terrain editors focus on offline procedural terrains,
ignoring the powerful capabilities of procedural generation, the most important
being replayability and vastness. The Noise Modeler framework shows that it is
possible to model procedural terrains in real-time in a user-friendly application,
while at the same time retaining the ability to integrate with a game engine and
generate terrains during run-time.

A novel method for modeling stochastic implicit terrain surfaces has been pro-
posed, and a matching serialization format has been designed. The proposed
solution has been tested by implementing a proof-of-concept framework consisting
of a generation library and a GUI application for editing and previewing terrains
in real-time.

The developed GUI application has shown that the modeling approach may
successfully be used to model heightmap terrains, supporting a combination of
popular algorithms for stochastic implicit terrains. Furthermore, it has been es-
tablished that our framework is capable of modeling and generating — although
not previewing — other types of terrains, including voxel terrains and vector dis-
placement terrains. This indicates that our terrain modeling approach is flexible
and may integrate well with a variety of game engines with different approaches
to terrain modeling.

By computing terrain geometry using the GPU, it has been demonstrated that
our representation is a good fit for massively parallel architectures. It has also been
pointed out how the approach is expected to feature a near linear speedup with all
problem sizes except the very smallest. The efficient computation of height values
allowed a high-quality terrain preview to be updated in real time with a vertex
count comparable to state-of-the-art video games.

94

6.1. FUTURE WORK

A high-quality preview with interactive performance has made it possible to
develop a unique tool. It has been shown how the tool allows user-friendly editing
with real-time, continuous input. We have also explained why the framework as
a whole may be attractive to game developers due to its unique combination of
features, namely featuring both an editing application with immediate high-quality
feedback, and the ability to efficiently generate terrains as a library. Furthermore,
our careful design of the software architecture has resulted in a generation library
with almost no dependencies and a software license compatible with commercial
game development.

The thesis work has shown that by representing stochastic implicit terrains as
a graph of modules, it is possible to generate, compile and execute a GLSL shader
program quickly enough to enable interactive editing of terrains with immediate
visual feedback.

6.1 Future work

In this section, we offer various suggestions of how the thesis work may be contin-
ued.

6.1.1 Improvement of heightmap rendering

As explained in Section 2.10, the terrain is rendered using improvised procedural
texturing that is not very configurable. This is a part of the framework that has
a huge room for improvement. By implementing support for textured terrains,
normal mapping and dynamic lighting, the visual quality of the rendered terrains
could be greatly improved. If more effort was put into the environment, such as by
adding a skybox1, fog, or a dynamic day-and night cycle, it would also be easier
to get an impression of what the terrain would look like inside a game engine.

6.1.2 Platform support

There is currently only support for GLSL code generation. The code generation
module is built to be extensible, and adding support for similar languages such as
C, HLSL and OpenCL and CUDA should be straightforward.

Another useful feature would be to support evaluation points directly, without
the intermediate code generation step. This would allow easier integration with
non-rendering frameworks such as path-finding and AI. These systems are typically

1A skybox is a method of drawing parts of the world that are far away and unreachable by the
player using simple geometry (usually the inside of a cube) at a fixed distance from the observer.

95

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

implemented on the CPU, and supporting direct queries to the model would make
this process much easier.

6.1.3 Other terrain paradigms

The GUI application is currently specialized for heightmap terrains. This does
not need to be the case. The library is already capable of generating models for
voxel terrains, but there is currently no support for previewing such terrains in the
GUI application. By extending the application to include voxel terrain previews,
and implementing additional three-dimensional module types for the library, the
framework could become a powerful tool for games with voxel terrains.

It would also be interesting to extend the heightmap preview to support vector
displacement terrains as well. This is particularly interesting because very few
tools exist for this type of terrain representation.

6.1.4 Integration with existing frameworks

In order to make the framework usable for game developers, the framework should
be as easy as possible to integrate with their game engine. Many game engines
have a plug-in architecture that could be taken advantage of in order to make
integration with these engines as seamless as possible.

In the current state of Noise Modeler, the programmer has to do a significant
amount of work in order to make our approach compatible with their game engine.
See the benchmark code in Appendix C for an idea of how much work is required
to get a patch of generated terrain into CPU memory. More of this process could
be integrated as part of the framework, or as ready-to-use plug-ins.

6.1.5 More advanced built-in modules

As explained in Section 5.2, Noise Modeler lacks some features, that are often
expected to be available in noise libraries. Although billow noise, Voronoi patterns,
and Worley noise is are not available, they should be relatively straightforward to
implement in GLSL. A natural next step for the project, is to implement these
missing algorithms for 1 to 4 dimensions.

The most glaringly missing feature of the framework, is support for thermal
and hydraulic erosion algorithms. Unfortunately, most erosion algorithms operate
by iteratively modifying a bounded grid of a fixed resolution. This approach is
not compatible with our approach for code generation and single point evaluation.
Note that it is still possible to run erosion algorithms after a heightmap has been
generated, as a post-processing step. However, this can not be included as part
of the module graph. A great topic for another research project would be to

96

6.1. FUTURE WORK

investigate whether it is possible to develop new erosion algorithms that will run
efficiently for point evaluation algorithms.

6.1.6 Combine with generate-and-test algorithms

It would be interesting to find out whether our approach could be combined with
search-based procedural techniques to fully automate terrain creation. Different
parts of the graph might perhaps be used with a genetic algorithm to randomize
the structure of the module graph. A utility mechanism would then have to be
developed to guide the search. This could either be done manually, or algorithmi-
cally.

97

Bibliography

[1] K. Perlin, “An image synthesizer”, ACM SIGGRAPH Computer Graphics,
vol. 19, no. 3, pp. 287–296, 1985.

[2] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and rendering
of eroded fractal terrains”, in ACM SIGGRAPH Computer Graphics, ACM,
vol. 23, 1989, pp. 41–50.

[3] F. K. Musgrave, “Procedural fractal terrains”, in Texturing & Modeling: A
Procedural Approach, Morgan Kaufmann, 2003.

[4] M. Gamito, “Techniques for stochastic implicit surface modelling and ren-
dering”, PhD thesis, University of Sheffield, England, 2009.

[5] World Machine Software. (2014). World machine 2 user’s manual, [Online].
Available: http://www.world-machine.com/learn.php?page=userguide
(visited on 05/21/2014).

[6] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based
procedural content generation: a taxonomy and survey”, Computational In-
telligence and AI in Games, IEEE Transactions on, vol. 3, no. 3, pp. 172–
186, 2011.

[7] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Declarative ter-
rain modeling for military training games”, International Journal of Com-
puter Games Technology, vol. 2010, p. 2, 2010.

[8] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation in
Games: A Textbook and an Overview of Current Research. Springer, 2014.

[9] J. Andersson, “Terrain rendering in Frostbite using procedural shader splat-
ting”, in ACM SIGGRAPH 2007 courses, ACM, 2007, pp. 38–58.

[10] M. Gollent, “Landscape creation and rendering in REDengine 3”, Game De-
velopers Conference 2014, 2014, [Online]. Available: http://twvideo01.
ubm - us . net / o1 / vault / GDC2014 / Presentations / Gollent _ Marcin _

Landscape_Creation_and.pdf (visited on 07/09/2014).

98

http://www.world-machine.com/learn.php?page=userguide
http://twvideo01.ubm-us.net/o1/vault/GDC2014/Presentations/Gollent_Marcin_Landscape_Creation_and.pdf
http://twvideo01.ubm-us.net/o1/vault/GDC2014/Presentations/Gollent_Marcin_Landscape_Creation_and.pdf
http://twvideo01.ubm-us.net/o1/vault/GDC2014/Presentations/Gollent_Marcin_Landscape_Creation_and.pdf

BIBLIOGRAPHY

[11] Epic Games. (2014). Unreal Engine 4 landscape outdoor terrain system, [On-
line]. Available: https://docs.unrealengine.com/latest/INT/Engine/
Landscape/index.html (visited on 06/03/2014).

[12] M. Widmark, “Terrain in Battlefield 3: A modern complete and scalable
system”, Game Developers Conference 2012, 2012, [Online]. Available: http:
//gdcvault.com/play/1015415/Terrain-in-Battlefield-3-A (visited
on 06/03/2014).

[13] Unity Technologies. (2014). Unity3D terrain engine guide, [Online]. Avail-
able: http : / / docs . unity3d . com / 420 / Documentation / Components /

script-Terrain.html (visited on 06/03/2014).

[14] C. McAnlis, “Halo Wars: The terrain of next-gen”, Game Developers Con-
ference 2009, 2009, [Online]. Available: http://www.gdcvault.com/play/
1277/HALO-WARS-The-Terrain-of (visited on 04/28/2014).

[15] B. Benes and R. Forsbach, “Layered data representation for visual simulation
of terrain erosion”, in Computer Graphics, Spring Conference on, 2001.,
IEEE, 2001, pp. 80–86.

[16] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3d
surface construction algorithm”, in ACM SIGGRAPH Computer Graphics,
ACM, vol. 21, 1987, pp. 163–169.

[17] R. Geiss, “Generating complex procedural terrains using the GPU”, in GPU
Gems 3, Addison-Wesley Professional, 2007, pp. 7–37.

[18] Crytek. (2014). CryENGINE documentation: static vs. dynamic lighting,
[Online]. Available: http://docs.cryengine.com/display/SDKDOC4/

Static+vs.+Dynamic+Lighting (visited on 06/04/2014).

[19] B. Mandelbrot, The Fractal Geometry of Nature. CA: Freeman, 1982.

[20] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic
models”, Communications of the ACM, vol. 25, no. 6, pp. 371–384, 1982.

[21] G. S. Miller, “The definition and rendering of terrain maps”, in ACM SIG-
GRAPH Computer Graphics, ACM, vol. 20, 1986, pp. 39–48.

[22] M. N. Gamito and F. K. Musgrave, “Procedural landscapes with overhangs”,
in 10th Portuguese Computer Graphics Meeting, vol. 2, 2001.

[23] A. Lagae, S. Lefebvre, R. Cook, T. Derose, G. Drettakis, D. S. Ebert, J.
Lewis, K. Perlin, and M. Zwicker, “State of the art in procedural noise func-
tions”, Eurographics 2010-State of the Art Reports, 2010.

[24] M. Olano, J. Hart, W Heidrich, B Mark, and K Perlin, “Real-time shading
languages”, Course Notes. ACM SIGGRAPH, 2002.

99

https://docs.unrealengine.com/latest/INT/Engine/Landscape/index.html
https://docs.unrealengine.com/latest/INT/Engine/Landscape/index.html
http://gdcvault.com/play/1015415/Terrain-in-Battlefield-3-A
http://gdcvault.com/play/1015415/Terrain-in-Battlefield-3-A
http://docs.unity3d.com/420/Documentation/Components/script-Terrain.html
http://docs.unity3d.com/420/Documentation/Components/script-Terrain.html
http://www.gdcvault.com/play/1277/HALO-WARS-The-Terrain-of
http://www.gdcvault.com/play/1277/HALO-WARS-The-Terrain-of
http://docs.cryengine.com/display/SDKDOC4/Static+vs.+Dynamic+Lighting
http://docs.cryengine.com/display/SDKDOC4/Static+vs.+Dynamic+Lighting

BIBLIOGRAPHY

[25] K. Perlin, “Improving noise”, in ACM Transactions on Graphics (TOG),
ACM, vol. 21, 2002, pp. 681–682.

[26] ——, “Implementing improved Perlin noise”, in GPU Gems, Addison-Wesley,
2004, pp. 73–85.

[27] K. Babington, “Terrain rendering techniques for the HPC-lab snow simu-
lator”, Master’s Thesis, Norwegian University of Science and Technology,
2012.

[28] A. Nordahl, “Enhancing the HPC-lab snow simulator with more realistic ter-
rains and other interactive features”, Master’s Thesis, Norwegian University
of Science and Technology, 2013.

[29] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on procedural
modelling for virtual worlds”, in Computer Graphics Forum, Wiley Online
Library, 2014.

[30] J. Olsen, “Realtime procedural terrain generation”, University of Southern
Denmark, Tech. Rep., 2004.

[31] X. Mei, P. Decaudin, and B.-G. Hu, “Fast hydraulic erosion simulation
and visualization on GPU”, in Computer Graphics and Applications, 2007.
PG’07. 15th Pacific Conference on, IEEE, 2007, pp. 47–56.

[32] P. Krǐstof, B. Beneš, J Křivánek, and O. Št’ava, “Hydraulic erosion using
smoothed particle hydrodynamics”, in Computer Graphics Forum, Wiley
Online Library, vol. 28, 2009, pp. 219–228.

[33] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing
& Modeling: A Procedural Approach. Morgan Kaufmann, 2003.

[34] B. C. Davis, “Terrain generation engine using voxels”, Master’s thesis, Cal-
ifornia State University, 2013.

[35] Guruware. (2013). Terranoise, [Online]. Available: http://www.guruware.
at/main/terraNoise/ (visited on 05/21/2014).

[36] J. Tippetts, “Creator of worlds: Procedural terrain generation in a sandbox
environment”, Game Developer Magazine, vol. 18, pp. 20–27, 2011.

[37] F. Bösch. (2014). Lithosphere, [Online]. Available: http://lithosphere.
codeflow.org/ (visited on 03/28/2014).

[38] M. Zábský, Geogen — Scriptable generator of terrain height maps, Bachelor
thesis. Charles University in Prague, 2011.

[39] Valve Software. (2014). Source Shader Editor, [Online]. Available: https:
//developer.valvesoftware.com/wiki/Category:SourceShaderEditor

(visited on 03/28/2014).

100

http://www.guruware.at/main/terraNoise/
http://www.guruware.at/main/terraNoise/
http://lithosphere.codeflow.org/
http://lithosphere.codeflow.org/
https://developer.valvesoftware.com/wiki/Category:SourceShaderEditor
https://developer.valvesoftware.com/wiki/Category:SourceShaderEditor

BIBLIOGRAPHY

[40] J. Busby, Z. Parrish, and J. Wilson, Mastering Unreal Technology, Volume
I: Introduction to Level Design with Unreal Engine 3. Pearson Education,
2009, vol. 1.

[41] Allegorithmic. (2014). Substance Designer 4, [Online]. Available: http://
www.allegorithmic.com/products/substance-designer#features (vis-
ited on 03/28/2014).

[42] S. Marison, J. Duplessis, M. Agsen, and T. Pagan, Visual shader designer,
US Patent App. 13/227,498, 2013. [Online]. Available: http://www.google.
com/patents/US20130063460 (visited on 04/28/2014).

[43] R. S. Wright, N. Haemel, G. M. Sellers, and B. Lipchak, OpenGL SuperBible:
Comprehensive Tutorial and Reference. Pearson Education, 2010.

[44] S. Green, “Implementing improved Perlin noise”, in GPU Gems 2, Addison-
Wesley Professional, 2005, pp. 409–416.

[45] I. McEwan, D. Sheets, M. Richardson, and S. Gustavson, “Efficient compu-
tational noise in GLSL”, Journal of Graphics Tools, vol. 16, no. 2, pp. 85–94,
2012.

[46] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and
M. B. Mineev-Weinstein, “ROAMing terrain: Real-time Optimally Adapting
Meshes”, in Proceedings of the 8th Conference on Visualization’97, IEEE
Computer Society Press, 1997, pp. 81–88.

[47] F. Losasso and H. Hoppe, “Geometry clipmaps: Terrain rendering using
nested regular grids”, ACM Transactions on Graphics (TOG), vol. 23, no.
3, pp. 769–776, 2004.

[48] A. Asirvatham and H. Hoppe, “Terrain rendering using GPU-based geometry
clipmaps”, in GPU Gems 2, Addison-Wesley Professional, 2005, pp. 27–46.

[49] F. Strugar, “Continuous distance-dependent level of detail for rendering
heightmaps (CDLOD)”, Journal of Graphics, GPU, and Game Tools, vol.
14, no. 4, pp. 57–74, 2009.

[50] J. Thelin, “Quick user interfaces with Qt”, Linux Journal, vol. 2011, no. 204,
p. 7, 2011.

[51] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Pearson Education, 1994.

[52] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “A proposal for a
procedural terrain modelling framework”, in Poster Proceedings of the 14th
Eurographics Symposium on Virtual Environments EGVE08, 2008, pp. 39–
42.

101

http://www.allegorithmic.com/products/substance-designer#features
http://www.allegorithmic.com/products/substance-designer#features
http://www.google.com/patents/US20130063460
http://www.google.com/patents/US20130063460

BIBLIOGRAPHY

[53] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and S. A. Groenewe-
gen, “A survey of procedural methods for terrain modelling”, in Proceedings
of the CASA Workshop on 3D Advanced Media In Gaming And Simulation
(3AMIGAS), 2009, pp. 25–34.

[54] J. Bevins. (2004). Libnoise documentation, [Online]. Available: http://

libnoise.sourceforge.net/docs/index.html (visited on 05/20/2014).

[55] J. Tippets. (2011). Accidental Noise Library documentation, [Online]. Avail-
able: http://accidentalnoise.sourceforge.net/docs.html (visited on
05/20/2014).

[56] J. Rosenberg. (2014). Geocontrol2 features, [Online]. Available: http://

www . geocontrol2 . com / e _ geocontrol _ geocontrol2 . htm (visited on
06/26/2014).

[57] B. Victor, “Inventing on principle”, in Invited talk at the Canadian University
Software Engineering Conference (CUSEC), vol. 5, 2012.

[58] S. Swink, Game Feel: A Game Designer’s Guide to Virtual Sensation. Taylor
& Francis US, 2009.

[59] J. Brooke, “SUS—A quick and dirty usability scale”, Usability Evaluation in
Industry, vol. 189, p. 194, 1996.

[60] D. Crockford, “The application/json media type for JavaScript Object No-
tation (JSON)”, IETF, RFC 4627, 2006.

[61] J. K. Helsing, PTG: Procedural Terrain Generator, 2012. [Online]. Available:
https://github.com/bobbaluba/PTG (visited on 06/12/2014).

[62] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, & Tools. Pearson/Addison Wesley, 2007.

102

http://libnoise.sourceforge.net/docs/index.html
http://libnoise.sourceforge.net/docs/index.html
http://accidentalnoise.sourceforge.net/docs.html
http://www.geocontrol2.com/e_geocontrol_geocontrol2.htm
http://www.geocontrol2.com/e_geocontrol_geocontrol2.htm
https://github.com/bobbaluba/PTG

Appendix A

Noise Modeler User’s Guide

A.1 Introduction

Noise Modeler is an application for designing noise-based functions for generation
of heightmap terrains.

Functions generated may be exported as GLSL, or loaded by an application
supporting the “nm.json” file format. If you want to implement support for the
file format in your game engine, you may take advantage of the Noise Modeler
Library.

A.1.1 Licensing

The source code is distributed under the permissive zlib license. Beware that one
of the GUI applications dependencies, Qt, is released under the GPLv3 and LGPL.
Consequently, you can not include the GUI in closed-source applications.

However, if you are writing a plug-in for your game or game engine, you will
most likely only link against nmlib, which does not depend on Qt. This means
you can link statically against nmlib and distribute a closed-source binary of your
application/game without changing its licensing.

See the license.md file in the root directory of the source code for more infor-
mation.

A.2 Installation

A.2.1 System requirements

Noise Modeler is designed to be a cross platform application. The application is
known to work on Arch Linux and Windows 7. It may also work on OS X and

103

APPENDIX A. NOISE MODELER USER’S GUIDE

other Unix-based systems.
OpenGL 3.0 support is required in both hardware and software.

A.2.2 Prebuilt binaries

An installer for Windows and an Arch Linux package are available at:
http://www.noisemodeler.org/download.html.

No other Linux or OS X builds are provided, but the application may be built
from source.

A.3 Building from source

This section covers how to build the system on Linux and Windows.

A.3.1 Build dependencies

• git (to get the source code)

• gcc 4.8.1 or newer

• Qt 5.2.1 or newer, including the following modules:

– QtDeclarative

– QtSvg

– QtQuickControls

– qmake

• Boost.Signals2 (tested with 1 55 0 and newer)

• googletest (only if you are building the unit tests, tested with 1.7.0)

A.3.2 Building on Linux

These instructions are written for Linux, but may apply to other Unix-based sys-
tems as well, such as OS X, BSD or Cygwin.

Install build dependencies

Start by installing the build dependencies (Appendix A.3.1).

104

http://www.noisemodeler.org/download.html

A.3. BUILDING FROM SOURCE

Arch Linux users may use the following command:

1 $ sudo pacman -S qt5 -base qt5 -svg qt5 -tools \

2 qt5 -declarative qt5 -quickcontrols \

3 base -devel gtest boost

Ubuntu It is easiest if you have version 14.04 or newer, as earlier versions only
have outdated development packages in the official repositories. It is possible to
get up-to-date versions using PPAs, but this will not be covered here. Install the
build dependencies on Ubuntu 14.04 using the following command:

1 $ sudo apt -get install qt -sdk libqt5svg5 -dev gcc \

2 libboost -signals -dev libgtest -dev

Get and compile the source code

The source code is available on GitHub. To download the source code, enter the
following:

1 $ git clone --recursive git@github.com:noisemodeler/noisemodeler←↩
.git

It is important to include the --recursive option, or you will have to download
rapidjson manually.

Then create and enter a build folder where the compilation output will appear:

1 $ mkdir build -noisemodeler

2 $ cd build -noisemodeler

Set up a makefile for your system and Qt version. If you want to build the unit
tests as well, append CONFIG+=build_tests to the qmake command.

1 $ qmake ../ noisemodeler

Compile the project:

1 $ make

This will produce the following binaries:

105

APPENDIX A. NOISE MODELER USER’S GUIDE

build-noisemodeler/nmgui/nmgui The GUI application, “Noise Modeler”

build-noisemodeler/nmlib/nmlib.a A statically compiled version of the li-
brary, nmlib.

build-noisemodeler/test nmlib/test nmlib Unit tests for nmlib.

build-noisemodeler/test nmgui/test nmgui Unit tests for nmgui.

Note that the “nmgui” binary will depend on the Qt shared libraries being
installed unless you build with a statically compiled version of Qt.

A.3.3 Building on Windows

Note: You may also install cygwin and attempt to install using the guide in the
previous subsection.

Install Qt

Download and install the Qt SDK from qt-project.org/downloads. Download
the version that says (MinGW, OpenGL). During installation, make sure that you
check the MinGW option to install the MinGW toolchain.

Install boost

Download boost and extract it to your harddrive. Add the path to the extracted
files to your CPATH environment variable, which tells mingw-gcc where to look
for C++ header files.

See http://www.computerhope.com/issues/ch000549.htm on how to set en-
vironment variables.

You do not need to compile the library, as only header-only libraries are used.

Download the source code

The source code is available on GitHub. To download the source code, enter the
following in Git Bash:

1 $ git clone --recursive git@github.com:noisemodeler/noisemodeler←↩
.git

106

qt-project.org/downloads
http://www.computerhope.com/issues/ch000549.htm

A.4. TUTORIAL

Build the project using QtCreator

Or use your favorite graphical git tool.

1. Open “noisemodeler.pro” in the root directory of the project using QtCreator.

2. Click configure project

3. Press Ctrl+R to build and run the GUI application (this may take several
minutes).

A.4 Tutorial

In this tutorial we will explain how to use the Noise Modeler application to create
a simple coastal landscape.

Figure A.1: Screenshot of the application right after it has been started

When you first start the application, you will be greeted with the interface
shown in Fig. A.1.

A very simple terrain model has been preloaded, and in the bottom left corner of
the application, you will recognize something that looks a bit like a landscape. This
preview is your primary feedback tool when editing a terrain, and it is important
to know how to navigate it efficiently.

107

APPENDIX A. NOISE MODELER USER’S GUIDE

First, double-click the preview. It will now be expanded to a fill the main area
of the application. This is very useful when you want to take a closer look at the
terrain to verify whether it behaves like intended.

Click and drag inside the 3D preview. You should now see the camera angle
changing. You can also use the W, A, S, and D keys to move the camera around. If
you have played first-person pc games, this will feel very familiar to you. This way
of navigating the terrain is especially useful when exploring the smaller details of
the terrain from a ground perspective. If you are more interested in the large-scale
features of the terrain, however, this navigation will quickly become impractical if
you want to move large distances.

Below the preview, you will find four textboxes, two of them labeled “x” and
“y”. Entering new values in these fields will move the terrain around. Entering
these values using the keyboard, however, is cumbersome. While holding the
mouse over one of the text boxes, try scrolling upwards for a while. After a while,
you should now see the landcape moving quickly around. All text boxes in the
application behave similarly, try scrolling over the text boxes for “width scale”
and “height scale” as well, to see their effect on the preview. Now, double click
the preview again to un-maximize the preview.

Figure A.2: Use your mouse scroll wheel while hovering over text boxes to easily
adjust values.

In the lower right corner, you will see another preview. This preview shows
your terrain from above, like a map. White areas of the map correspond to higher
values, while black values correspond to low values. This is how a heightmap
usually looks when opened with an image-editing application. It is possible to
pan and zoom the preview by dragging and scrolling with the mouse, just like in
common web applications for maps.

Now that you know how to navigate the previews, let us look at how the terrain
can be edited. It might a good idea to restart the application first, so that the
configuration of your preview will match ours.

In Noise Modeler, a terrain is modeled by creating a terrain height function.
A height function is a function that takes a two-dimensional position argument,
and returns the height at that position. This means that the height function
can be used to answer questions like: “What is the altitude at this latitude and
longtitude?”

108

A.4. TUTORIAL

Figure A.3: The default module graph.

In the main area of the application, you will see three boxes labeled “inputs”,
“fBm”, and “outputs”. These boxes are called modules, and together they repre-
sent a height function. A module is something that transforms inputs into outputs,
a function, if you will. Paths between two modules indicate that the output of one
module should be the input of another. Values flow from left to right.

The leftmost module, “inputs”, has one output, the position. This value cor-
responds to one specific length and width position on the terrain. On the other
side of the graph, you find the “outputs” module, which has one input, the height.
When the terrain preview is generated, different position values enter the graph
from the “inputs” module, and some transformations are run on these positions
before a final height value reaches the “outputs” module. In our simple graph, the
position is only transformed by the “fBm” module.

The “fBm” module represents an algorithm called fractional Brownian motion,
and constitutes an important building block in the design of procedural fractal
terrains. You may perhaps recognize this algorithm from other applications where
it might be called “noise”, “fractal noise” or perhaps “advanced Perlin”. We will
now guide you through the steps needed to familiarize yourself with fBm.

Click the fBm module in the main area. It will now become highlighted, and
the area at the right of the application, the inspector, will change.

In the inspector, you will see the name of the module, “fBm”, as well as several
text boxes, labeled “pos”, “seed”, “octaves”, and so on. Note that these inputs
correspond to the same inputs that can be seen in the graph view of the module.
The “pos” textbox is grayed out, because it is connected to an output in the graph
and receives its value from the “inputs” module. The other inputs are editable,
because they are not connected to other modules.

Now, lets try to change some of the inputs of the fBm module. Scroll with your
mouse wheel while hovering over the “gain” textbox. You should now be able to
see the terrain change instantly. You should see something similar to Fig. A.5
happening. Set the gain back to 0.5 before you continue.

Now, try lowering the octaves value. As you do this, you should see “detail”
disappearing from the terrain. What you are seeing, is the number of layers of noise

109

APPENDIX A. NOISE MODELER USER’S GUIDE

Figure A.4: Click the fBm module so it can be edited in the inspector.

Figure A.5: Adjusting the gain of fBm

being modified. Each layer of noise has a higher frequency and lower amplitude
than the one before, and that is why it is looking as if detail is being added and
removed. The gain and lacunarity arguments describe the proportional change in
amplitude and frequency changes between adjacent noise layers.

Be careful not to set the number of octaves too high, or the performance of
you algorithm will suffer, and you may experience aliasing issues.

Now, you may recall that we wanted to create a coastal landscape. Currently,
the landscape is equally rocky everywhere, and there is no water. To visualize how
water would look, we will add a “max” module. On the right is a list of module
types, click the plus sign next to the name “max”. A new module should now
appear in the graph. Click and drag the module to the right of the fBm module.
Next, drag the green box labeled “result” from the fBm module to the “lhs” box
of the “max” module. You have now connected the output of fBm to the input
of max. Still, nothing will happen in the preview, since the output of max has
still not been used for anything. Drag the output of max to the “height” input of

110

A.5. USER INTERFACE

the “outputs” module. Now you should notice the lower, blue areas of the terrain
flattening out.

What happened now, was that at each coordinate we selected the highest value
of our previous terrrain height, and “rhs”, which is zero. This results in all values
previously below zero, to now be zero. By adjusting “rhs”, you can now move the
“water” up and down.

Finally, for a more interesting terrain, try replacing the fBm module with
a “hybridmultifractal”, or “ridgedmultifractal” module. The power of this tool
comes from combining different terrains, though. So try out adding, scaling and
clamping in various ways.

The mix module is also very useful, since it may be used to make gradual
transitions between different terrains. This can be done by first designing two
separate types of terrain, then place the mix module last in the graph, right before
the output module. Let one terrain enter the x input, and another the y input.
By adjusting the “a” input between 0 and 1, it is now possible to blend between
the terrains. By inserting a low frequency, low octave fBm module, it is possible
to slowly alternate between the terrain types.

A.5 User interface

Following are descriptions of the various features of the user interface and their
functions.

A.5.1 Saving documents

Save your work by pressing the save icon, , in the top left corner of the window.

A.5.2 Opening documents

There are two ways of opening documents:

• Click the open icon, , in the top left corner of the window. Note: this is
currently not functioning due to a bug.

• Launch the program binary with the file to open as an argument. This is
what happens when you double-click an nm.json-file. Alternatively, you may
enter:

1 $ /path/to/nmgui /path/to/myterrain.nm.json

111

APPENDIX A. NOISE MODELER USER’S GUIDE

Or you may drag a document on top of the executable or the icon that starts
the application.

A.5.3 Tabs

Figure A.6: Row of open tabs. The current tab, “Terrain”, is highlighted.

Tabs can be opened to edit each of the user-defined module types. To open a

new tab, click the pen icon, , in the module type list next to the user type you
want to edit.

A.5.4 Module type list

Figure A.7: Module type list

On the left hand side of the editor is the module type, showing the module
types you may add to the current function graph. To add a module type, simply
click the icon next to the module type.

The module type list is divided into two parts. At the top is a list of all the
user-defined module types. The one at the bottom contains built-in types. The
user-defined types may be edited by clicking the edit icon, . A new user type
can by created by clicking the next to the string “User types:”.

112

A.5. USER INTERFACE

If your screen resolution is too low for you to see all the module types, you
may use the mouse scroll wheel to access the rest of the list.

A.5.5 Graph editor

Figure A.8: The graph editor

The graph editor is the main area in the center of the window. This area lets
you manipulate the structure of function graphs, as well as selecting which module
to edit in the inspector (Appendix A.5.8).

Creating and destroying connections

Instances of module types (function types), i.e. modules, are shown as gray boxes
that may be dragged around the main area. To connect an input to an output,
simply drag from the output of one module to the input of another. Note that it is
currently not possible to drag from an input to an output. To break a connection,
simply click the input.

Color coding

Note that the inputs and outputs are color coded according to the dimensionality
of the signal.

Green 1D signal (also known as scalars)

Red 2D signal (often used for heightmap positions)

Blue 3D signal

White 4D signal

Inputs and outputs have a darker shade of the color if they are disconnected.

113

APPENDIX A. NOISE MODELER USER’S GUIDE

Panning

You may pan the graph if it gets to big to fit inside the window. Do this by clicking
and dragging the graph background with the right or middle mouse button.

Selecting a module

To select a module, simply click it with the left mouse button. This will bring up
the module inspector for editing the module.

A.5.6 2D preview

Figure A.9: 2D texture preview of the terrain.

The 2D texture preview shows a two-dimensional preview of the terrain where
values of 0 and below are completely black, and values of 1 or above are completely
white. Values between 0 and 1 have a varying shade of gray.

The currently previewed domain of the terrain is shown in the text boxes below
the texture.

Double-click the preview to maximize it.

Translating the viewpoint

To preview another part of the terrain, click and drag the texture with the left
mouse-button.

Scaling the preview

To preview a larger or smaller portion of the terrain, scroll with the mouse wheel
above the preview. This will zoom in or out.

114

A.5. USER INTERFACE

A.5.7 3D preview

Figure A.10: 3D preview of the terrain.

The 3D preview shows a 3D rendering of the terrain. The camera angle and
position may be controlled using the keyboard. The following keybindings are
defined:

W Move forward

S Move backward

A Move camera left

D Move camera right

Left arrow Rotate camera counter-clockwise

Right arrow Rotate camera clockwise

Up arrow Rotate camera up

Down arrow Rotate camera down

Click-and-drag with left mouse button Rotate camera freely

Inside the preview, you may click-and-drag to control the camera in a way that
is common in many first-person games. Dragging from left to right changes the
horizontal direction of the camera. Dragging up or down lifts or lowers the camera.

Maximizing the preview

Double-click the preview to maximize it.

115

APPENDIX A. NOISE MODELER USER’S GUIDE

Controlling texturing

The preview comes with an option for turning on and off texturing for the terrain.
There are currently two modes:

Texturing on An automatic procedural texturing of the terrain based on terrain
height. Snow appears on values close to or above height=1, and a blue water
color is applied where height<0. Normals are also perturbed slightly to make
surfaces less uniform. This feature is not very well optimized, especially in
full screen. Consider turning it off, if you are experiencing low frame rates.

Texturing off Texturing is a simple diffuse white. This is not a very interesting
preview, but it makes it easier to see the shape of the terrain, and it is also
very fast.

There is a checkbox at the bottom of the 3D preview that lets you toggle
texturing.

A.5.8 Inspector

The inspector lets you show information about and edit selected entities. Cur-
rently, only modules (instances of a module type) are editable in the inspector.
Editing module type attributes, such as name and description, will be added later.

Figure A.11: The inspector showing an add1 module, a one-dimensional addition
module. Only the “rhs” (right-hand-side) value is editable. “lhs” is gray and
cannot be edited because it is currently connected to the output of another module.

Changing name and comments

The name of the module may be edited by editing the text in the name field. This
will change how the module appears in the graph editor.

116

A.6. MODULE TYPES

The comments field is a place where you may write whatever you want. Use it
if you feel that something about the graph or the parameter values may need to
be explained.

Tuning parameter values

If an input is not connected to an output, it may be assigned a constant value.
Parameter values may be entered by using the keyboard, but this is not the

recommended way of tuning parameters.
Scrolling the mouse-wheel on a component adjusts its value. Scrolling upwards

increases the value by 10 percent, scrolling down decreases the value by 10 percent.
When you adjust a parameter in this way, you will clearly notice its effects on the
terrain by keeping an eye at the real-time preview.

A.6 Module types

Table A.1 contains a list of the available module types, as well as a mathematical
definition for their behavior. Some module types were not added to the table
because their definitions are too long to fit inside the table cells.

“fbm2”, “ridgedmultifractal”, and “hybridmultifractal” are three different vari-
ants of scaled and added noise. The definitions for these functions may be found
in the project source code, and are a relatively direct port of the original source
code of Musgrave [3].

A.7 Using the library to generate terrains online

This section covers how the library can be used to facilitate generation of terrain
data during run-time.

A.7.1 Loading a graph from JSON

This section assumes that you have already created a terrain function using the
Noise Modeler application and stored it in an “nm.json” file.

First, load the “nm.json” file into a string using a file input/output library for
your operating system.

1 std:: string serializedGraph = readFileToString("terrain.nm.json"←↩
);

Then parse the json into a TypeManager.

117

APPENDIX A. NOISE MODELER USER’S GUIDE

1 nm:: Parser parser;

2 nm::optional <std:: unique_ptr <nm::Parser >> maybeTypeManager = ←↩
parser.parse(serializedGraph);

3

4 //check if parsing succeeded

5 if(! maybeTypeManager){

6 //TODO handle errors

7 exit(EXIT_FAILURE);

8 }

9

10 // create an alias to the typeManager for more convenient access

11 nm:: TypeManager &typeManager = *(* maybeTypeManager);

After this, you may use the typeManager alias to access any “user types”
defined in the file.

A.7.2 Generating a GLSL elevation function from a user
type

Assuming you have already parsed a document into a TypeManager, you may use
the following code to generate a GLSL function:

1 //we will be using the nm namespace frequently

2 using namespace nm;

3

4 //get the relevant graph

5 ModuleType* terrainModuleType = typeManager.getUserType("terrain←↩
");

6

7 //get the graph of the module

8 Graph* graph = terrainModuleType ->getGraph ();

9

10 //get the input and output for your function

11 InputLink* input = graph ->getModule("inputs")->getInput("pos");

12 OutputLink* output = graph ->getModule("outputs")->getOutput("←↩
height");

13

14 // generate a function called "elevation ".

15 std:: string glslSourceCode = glsl:: GlslGenerator ::←↩
compileToGlslFunction (*input , *output , "elevation");

This will create a string, glslSourceCode, containing the GLSL source code
for a function called elevation, as well as the functions it depends on, such as
noise.

118

A.7. USING THE LIBRARY TO GENERATE TERRAINS ONLINE

Note that the code above does not handle cases where pos and height are
not valid inputs and outputs of the node. Always check for null pointers before
dereferencing.

When you create your GLSL shader, concatenate the generated source code
with your own shader code. You may then call the elevation function in your
own code like this:

1 vec2 pos = vertexPosition.xy;

2 float height;

3 elevation(pos , height);

4 gl_Position = vec4(vertexPosition.xy, height , 1);

A.7.3 Dynamically creating heightmap textures using a
GLSL function

Once you have created a GLSL function, you can either use it directly when
rendering, i.e. by offsetting heights in the vertex shader, or you may use the
function to generate a heightmap which you can pass on to your game engine.

You may do the following steps:

1. Draw two triangles into a frame buffer object of the appropriate resolution,
filling it completely.

2. In the fragment shader, sample the generated elevation function at the de-
sired position.

3. Transfer the frame buffer object back to the CPU, using the OpenGL func-
tion glReadPixels.

4. Change the pixel format (optional).

5. Pass the pixel data over to your game engine.

A similar process has been followed to create the texture preview in the Noise
Modeler application. Its source code is publicly available and may be regarded as
an example of how to use the API.

There is also a minimal example of how to generate terrain heightmaps in the
benchmark application for the library, which uses a window-less OpenGL context
to generate height data, and transfers it back to CPU memory.

119

APPENDIX A. NOISE MODELER USER’S GUIDE

Name Inputs Outputs Definition

constant<D> value(D) value(D) value = value
add<D> lhs(D), rhs(D) result(D) result = lsh + rhs
sub<D> lhs(D), rhs(D) result(D) result = lsh− rhs
mul<D> lhs(D), rhs(D) result(D) result = lsh · rhs
scale<D> v(D), scalar result(D) result = scalar · v
mod dividend, divisor result result ≡ dividend mod divisor

min a, b result result =

{
a if a < b
b if a ≥ b

}
max a, b result result =

{
a if a ≥ b
b if a < b

}
abs source result result = |source|

clamp x, a, b result result =

 x if a < x < b
a if x ≤ a
b if x ≥ b

step value, edge result result =

{
0 if value < edge
1 if value ≥ edge

}
smoothstep value,minedge,maxedge result

value∗ = clamp(value−minedge
maxedge−minedge , 0, 1)

result = value∗2(3− 2 · value∗)

mix x, a, b result
result = smootstep(x, 0, 1) · a

+smoothstep(x, 1, 0) · b
demux2 m(2) x, y

x = m.x
y = m.y

demux3 m(3) x, y, z
x = m.x
y = m.y
z = m.z

demux4 m(4) x, y, z, w

x = m.x
y = m.y
z = m.z
w = m.w

mux2 x, y m(2)
m.x = x
m.y = y

mux3 x, y, z m(3)
m.x = x
m.y = y
m.z = z

mux4 x, y, z, w m(4)

m.x = x
m.y = y
m.z = z
m.w = w

fbm2
pos(2), seed, octaves,
lacunarity, gain

result Too long for table.

hybridmultifractal
pos(2), seed, octaves,
lacunarity, h, offset

result Too long for table.

ridgedmultifractal
pos(2), seed, octaves,
lacunarity, h, offset, gain

result Too long for table.

Table A.1: Built-in module types. Function<D> denotes that there is one defi-
nition for each dimensionality. “Variable(D)” denotes a D-dimensional vector, if
there is no parenthesis, the type is a scalar.

120

Appendix B

Poster Submission for
SIGGRAPH 2014

121

Fr
am

ew
o

rk
fo

r
R

ea
l-

T
im

e
E

d
it

in
g

o
fE

n
d

le
ss

P
ro

ce
d

u
ra

lT
er

ra
in

s
Jo

h
an

K
.H

el
si

n
g

an
d

A
n

n
e

C
.E

ls
te

r

H
P
C
-L
a
b

C
o
m

p
u
te

r
&

 I
n
fo

.
S

c
ie

n
c
e

h
�
p
:/
/r
e
se
a
rc
h
.i
d
i.
n
tn
u
.n
o
/h
p
c-
la
b

A
b

st
ra

ct

Ï
D

es
ig

n
en

d
le

ss
p

ro
ce

d
u

ra
lt

er
ra

in
in

re
al

ti
m

e
w

h
il

e
co

n
ti

n
u

o
u

sl
y

vi
ew

in
g

th
e

ch
an

ge
s.

T
h

e
d

es
ig

n
ed

te
rr

ai
n

ca
n

b
e

u
se

d
b

y
ga

m
e

en
gi

n
es

w
it

h
o

u
tl

o
si

n
g

th
e

b
en

efi
ts

o
fp

ro
ce

d
u

ra
lg

en
er

at
io

n
.T

er
ra

in
ca

n
b

e
ge

n
er

at
ed

o
n

lin
e,

o
n

th
e

G
P

U
,w

h
ile

yo
u

r
ga

m
e

is
ru

n
n

in
g,

ra
th

er
th

an
b

e
ex

p
o

rt
ed

as
a

h
ei

gh
tm

ap
.

M
o

ti
va

ti
o

n

Ï
P

ro
ce

d
u

ra
lc

o
n

te
n

tg
en

er
at

io
n

is
an

im
p

o
rt

an
tf

ea
tu

re
o

fm
an

y
re

ce
n

t
ga

m
es

.M
an

y
ga

m
es

fe
at

u
re

en
d

le
ss

vi
rt

u
al

w
o

rl
d

s,
o

r
w

o
rl

d
s

th
at

ar
e

d
if

fe
re

n
te

ac
h

ti
m

e
a

ga
m

e
n

ew
ga

m
e

is
st

ar
te

d
.

Ï
E

xi
st

in
g

p
ro

ce
d

u
ra

lt
er

ra
in

ed
it

in
g

to
o

ls
lo

o
se

m
o

st
o

ft
h

e
b

en
efi

ts
o

f
p

ro
ce

d
u

ra
lg

en
er

at
io

n
b

y
re

q
u

ir
in

g
th

e
te

rr
ai

n
to

b
e

ex
p

o
rt

ed
to

a
n

o
n

-p
ro

ce
d

u
ra

lf
o

rm
at

b
ef

o
re

b
ei

n
g

u
se

d
b

y
a

ga
m

e
en

gi
n

e.
T

h
is

m
ak

es
th

e
to

o
ls

u
n

u
sa

b
le

b
y

en
d

le
ss

w
o

rl
d

ga
m

es
,s

u
ch

as
M

in
ec

ra
ft

.
Ï

N
o

is
e

sy
n

th
es

is
lib

ra
ri

es
su

ch
as

li
b

n
o

is
e

an
d

th
e

A
cc

id
en

ta
lN

o
is

e
Li

b
ra

ry
h

av
e

co
d

e-
o

n
ly

in
te

rf
ac

es
,m

ak
in

g
ra

p
id

p
ro

to
ty

p
in

g
an

d
ex

p
er

im
en

ta
ti

o
n

d
if

fi
cu

lt
.

Ï
A

re
u

sa
b

le
m

id
d

le
w

ar
e

fo
r

te
rr

ai
n

ge
n

er
at

io
n

ca
n

su
p

p
o

rt
n

o
n

-e
ss

en
ti

al
,b

u
td

es
ir

ed
fe

at
u

re
s,

su
ch

as
ev

al
u

at
io

n
o

n
th

e
G

P
U

.
A

n
d

en
ab

le
re

u
se

o
ft

er
ra

in
d

es
ig

n
s

ac
ro

ss
p

ro
je

ct
s.

O
u

r
M

et
h

o
d

Ï
Te

rr
ai

n
re

p
re

se
n

te
d

as
h

ei
gh

tm
ap

fu
n

ct
io

n
,f

(x
,y

),
w

h
ic

h
re

tu
rn

s
h

ei
gh

ta
tc

o
o

rd
in

at
e

(x
,y

)
Ï

T
h

ro
u

gh
fu

n
ct

io
n

al
co

m
p

o
si

ti
o

n
,n

o
is

e
an

d
o

th
er

al
go

ri
th

m
s

ar
e

co
m

b
in

ed
to

cr
ea

te
a

h
ei

gh
tm

ap
fu

n
ct

io
n

.I
.e

.i
n

p
u

ts
o

fo
n

e
fu

n
ct

io
n

ca
n

b
e

b
o

u
n

d
to

th
e

o
u

tp
u

ts
o

fo
n

e
o

r
m

u
lt

ip
le

o
th

er
fu

n
ct

io
n

s.
Ï

Fu
n

ct
io

n
al

co
m

p
o

si
ti

o
n

re
p

re
se

n
te

d
as

D
A

G
(d

ir
ec

te
d

ac
yc

li
c

gr
ap

h
).

Ï
JS

O
N

u
se

d
to

se
ri

al
iz

e
gr

ap
h

s.
Ï

N
o

is
e

M
o

d
el

er
,o

u
r

gr
ah

ic
al

to
o

l,
m

ak
es

it
p

o
ss

ib
le

to
in

tu
it

iv
el

y
ed

it
fu

n
ct

io
n

gr
ap

h
s.

Ï
n

m
li

b,
o

u
r

li
b

ra
ry

,p
ar

se
s

se
ri

al
iz

ed
fu

n
ct

io
n

gr
ap

h
s,

an
d

ca
n

b
e

u
se

d
to

q
u

er
y

fo
r

el
ev

at
io

n
d

at
a

w
h

il
e

th
e

ga
m

e
is

ru
n

n
in

g.
Ï

A
ll

co
m

p
u

ta
ti

o
n

s
ar

e
p

er
fo

rm
ed

b
y

th
e

G
P

U
.

Fl
ow

-g
ra

p
h

E
d

it
o

r

F
ig

u
re

:B
u

ild
a

fu
n

ct
io

n
gr

ap
h

b
y

d
ra

gg
in

g
an

d
d

ro
p

p
in

g
in

p
u

ts
an

d
o

u
tp

u
ts

o
f

w
el

l-
kn

ow
n

n
o

is
e

an
d

m
at

h
fu

n
ct

io
n

s.

R
ea

l-
ti

m
e

P
re

vi
ew

F
ig

u
re

:N
av

ig
at

e
an

d
ex

p
lo

re
th

e
re

su
lt

in
g

te
rr

ai
n

in
a

re
al

-t
im

e
3D

p
re

vi
ew

,o
r

as
a

te
xt

u
re

th
at

ca
n

b
e

p
an

n
ed

an
d

zo
o

m
ed

D
es

ig
n

Yo
u

r
O

w
n

H
ig

h
-l

ev
el

M
o

d
u

le
s

F
ig

u
re

:E
n

ca
p

su
la

te
co

m
p

li
ca

te
d

su
b

-g
ra

p
h

s
as

n
ew

m
o

d
u

le
ty

p
es

C
o

m
b

in
e

D
if

fe
re

n
tB

io
m

es
fo

r
a

R
ic

h
er

La
n

d
sc

ap
e

F
ig

u
re

:D
if

fe
re

n
tb

io
m

es
ca

n
b

e
co

m
b

in
ed

u
si

n
g

a
h

ig
h

-l
ev

el
m

as
k,

su
ch

as
fr

ac
ti

o
n

al
-b

ro
w

n
ia

n
m

o
ti

o
n

w
it

h
a

lo
w

fr
eq

u
en

cy
an

d
fe

w
o

ct
av

es
.

R
es

u
lt

s

Ï
W

o
rk

in
g

G
P

U
-b

as
ed

p
ro

to
ty

p
e

is
av

ai
la

b
le

.T
er

ra
in

ca
n

b
e

ge
n

er
at

ed
an

d
ex

p
lo

re
d

in
re

al
-t

im
e

ev
en

w
it

h
o

u
tc

ac
h

in
g

el
ev

at
io

n
d

at
a.

Ï
Fu

n
ct

io
n

gr
ap

h
s

se
ri

al
iz

ed
as

JS
O

N
co

n
su

m
e

o
n

ly
a

fe
w

ki
lo

b
yt

es
o

f
st

o
ra

ge
.

Ï
O

p
en

G
L

3.
0+

su
p

p
o

rt
is

th
e

o
n

ly
re

q
u

ir
em

en
tf

o
r

th
e

ev
al

u
at

io
n

p
la

tf
o

rm
.

Fu
tu

re
W

o
rk

Ï
Im

p
ro

ve
p

re
vi

ew
re

n
d

er
in

g
w

it
h

d
if

fu
se

,s
p

ec
u

la
r,

an
d

am
b

ie
n

t
te

xt
u

re
s,

as
w

el
la

s
o

p
ti

m
iz

at
io

n
s

su
ch

as
ca

ch
in

g,
fr

u
st

u
m

cu
lli

n
g,

an
d

co
n

ti
n

u
o

u
s

le
ve

l-
o

f-
d

et
ai

l.
Ï

P
re

vi
ew

su
p

p
o

rt
fo

r
o

th
er

te
rr

ai
n

ty
p

es
,e

.g
.v

ox
el

te
rr

ai
n

an
d

ve
ct

o
r

d
is

p
la

ce
m

en
tt

er
ra

in
.

Ï
E

va
lu

at
io

n
o

n
ad

d
it

io
n

al
p

la
tf

o
rm

s.
Ï

P
lu

gi
n

s
fo

r
co

m
m

o
n

ga
m

e
en

gi
n

es
,s

u
ch

as
U

n
it

y
an

d
U

n
re

al
.

R
ef

er
en

ce
s

[1
]D

av
id

S
E

b
er

t,
F

K
en

to
n

M
u

sg
ra

ve
,D

ar
w

yn
Pe

ac
h

ey
,K

en
Pe

rl
in

,a
n

d
St

ev
e

W
o

rl
ey

.
Te

xt
u

ri
n

g
&

m
od

el
in

g:
a

p
ro

ce
d

u
ra

la
p

p
ro

ac
h

.
M

o
rg

an
K

au
fm

an
n

,2
00

3.

[2
]R

u
b

en
M

Sm
el

ik
,T

im
Tu

te
n

el
,R

af
ae

lB
id

ar
ra

,a
n

d
B

ed
ri

ch
B

en
es

.
A

su
rv

ey
o

n
p

ro
ce

d
u

ra
lm

o
d

el
li

n
g

fo
r

vi
rt

u
al

w
o

rl
d

s.
In

C
om

p
u

te
r

G
ra

p
h

ic
s

Fo
ru

m
.W

ile
y

O
n

li
n

e
Li

b
ra

ry
,2

01
4.

Appendix C

Benchmark code

Listing C.1: libnoise, uncached benchmark

1 #include <noise/noise.h>

2

3 #include <iostream >

4 #include <vector >

5

6 using namespace std;

7 using namespace noise;

8

9 int main(int argc , char *argv []){

10 module :: Perlin perlin;

11 perlin.SetOctaveCount (8.0);

12

13 //use an interpolation function with continuous first order ←↩
derivative

14 perlin.SetNoiseQuality(QUALITY_STD);

15

16 module :: Const half;

17 half.SetConstValue (0.5);

18

19 module :: Const quarter;

20 quarter.SetConstValue (0.25);

21

22 module :: Const threeQuarter;

23 threeQuarter.SetConstValue (0.75);

24

25 module :: Multiply multiply;

26 multiply.SetSourceModule (0, perlin);

27 multiply.SetSourceModule (1, quarter);

28

29 module ::Add add;

123

APPENDIX C. BENCHMARK CODE

30 add.SetSourceModule (0, threeQuarter);

31 add.SetSourceModule (1, multiply);

32

33 //clamp module does not support non -const limits ,

34 //so we have to use a max and a min module

35 module ::Max max;

36 max.SetSourceModule (0, perlin);

37 max.SetSourceModule (1, quarter);

38

39 module ::Min min;

40 min.SetSourceModule (0, max);

41 min.SetSourceModule (1, multiply);

42

43 // create buffers to store each row

44 vector <vector <float > > buffers (8192);

45 for(int i=0; i <8192; ++i){

46 buffers[i]. reserve (8192);

47 }

48

49 for(int i=0; i <8192; ++i){

50 for(int j=0; j <8192; ++j){

51 float x=i*0.01 ,y=j*0.01 ,z=0;

52 buffers[i][j]=min.GetValue(x,y,z);

53 }

54 }

55

56 return EXIT_SUCCESS;

57 }

Listing C.2: libnoise, cached benchmark

1 #include <noise/noise.h>

2

3 #include <iostream >

4 #include <vector >

5

6 using namespace std;

7 using namespace noise;

8

9 int main(int argc , char *argv []){

10 module :: Perlin perlin;

11 perlin.SetOctaveCount (8.0);

12

13 //use an interpolation function with continuous first order ←↩
derivative

14 perlin.SetNoiseQuality(QUALITY_STD);

15

16 //cache the perlin module to avoid computing the same result ←↩

124

twice in a row

17 module :: Cache perlinCached;

18 perlinCached.SetSourceModule (0, perlin);

19

20 module :: Const half;

21 half.SetConstValue (0.5);

22

23 module :: Const quarter;

24 quarter.SetConstValue (0.25);

25

26 module :: Const threeQuarter;

27 threeQuarter.SetConstValue (0.75);

28

29 module :: Multiply multiply;

30 multiply.SetSourceModule (0, perlinCached);

31 multiply.SetSourceModule (1, quarter);

32

33 module ::Add add;

34 add.SetSourceModule (0, threeQuarter);

35 add.SetSourceModule (1, multiply);

36

37 //clamp module does not support non -const limits ,

38 //so we have to use a max and a min module

39 module ::Max max;

40 max.SetSourceModule (0, perlinCached);

41 max.SetSourceModule (1, quarter);

42

43 module ::Min min;

44 min.SetSourceModule (0, max);

45 min.SetSourceModule (1, multiply);

46

47 // create buffers to store each row

48 vector <vector <float > > buffers (8192);

49 for(int i=0; i <8192; ++i){

50 buffers[i]. reserve (8192);

51 }

52

53 for(int i=0; i <8192; ++i){

54 for(int j=0; j <8192; ++j){

55 float x=i*0.01 ,y=j*0.01 ,z=0;

56 buffers[i][j]=min.GetValue(x,y,z);

57 }

58 }

59

60 return EXIT_SUCCESS;

61 }

125

APPENDIX C. BENCHMARK CODE

Listing C.3: ANL, uncached benchmark

1 fbm=anl.CImplicitFractal(anl.FBM , anl.SIMPLEX , anl.CUBIC , 8, 2, ←↩
true)

2 multiply=anl.CImplicitMath(anl.MULTIPLY , fbm , 0.25)

3 add=anl.CImplicitMath(anl.ADD , multiply , 0.75)

4 clamp=anl.CImplicitClamp(fbm , 0.25 , add)

5

6 ad=anl.CImplicitBufferImplicitAdapter(clamp , anl.SEAMLESS_NONE , ←↩
anl.SMappingRanges (0,8,0,8,0,8), false , 0)

7

8 i=anl.CArray2Dd ()

9 i:resize (8192 ,8192)

10

11 ad:get(i)

Listing C.4: ANL, cached benchmark

1 fbm=anl.CImplicitFractal(anl.FBM , anl.SIMPLEX , anl.CUBIC , 8, 2, ←↩
true)

2 fbmCached=anl.CImplicitCache(fbm)

3 multiply=anl.CImplicitMath(anl.MULTIPLY , fbmCached , 0.25)

4 add=anl.CImplicitMath(anl.ADD , multiply , 0.75)

5 clamp=anl.CImplicitClamp(fbmCached , 0.25 , add)

6

7 ad=anl.CImplicitBufferImplicitAdapter(clamp , anl.SEAMLESS_NONE , ←↩
anl.SMappingRanges (0,8,0,8,0,8), false , 0)

8

9 i=anl.CArray2Dd ()

10 i:resize (8192 ,8192)

11

12 ad:get(i)

Listing C.5: nmlib benchmark

1 #include <GL/glew.h>

2 #include <GLFW/glfw3.h>

3

4 #include <cstdlib >

5 #include <iostream >

6 #include <sstream >

7 #include <fstream >

8 #include <array >

9 #include <ctime >

10 #include <chrono >

11

12 #include <nmlib/serialization.hpp >

126

13 #include <nmlib/model.hpp >

14 #include <nmlib/codegeneration/glsl/glslgenerator.hpp >

15

16 using namespace std;

17 string createElevationFunction (){

18 //get json from file

19 string filename = "terrain.nm.json";

20 ifstream t(filename);

21 if(!t || !t.good()){

22 cerr << "Couldn 't open terrain.nm.json\n";

23 glfwTerminate ();

24 exit(EXIT_FAILURE);

25 }

26 stringstream buffer;

27 buffer << t.rdbuf();

28 string json = buffer.str();

29

30 //parse json

31 nm:: Parser parser;

32 auto maybeTypeManager = parser.parseDocument(json);

33 if(! maybeTypeManager){

34 cerr << "Error parsing terrain document\n";

35 glfwTerminate ();

36 exit(EXIT_FAILURE);

37 }

38

39 nm:: TypeManager& typeManager = ** maybeTypeManager;

40 auto userType = typeManager.getUserType (0);

41 auto inputs = userType ->getGraph ()->getModule("inputs");

42 auto outputs = userType ->getGraph ()->getModule("outputs");

43 auto posInput = inputs ->getInput (0);

44 auto heightOutput = outputs ->getOutput (0);

45

46 string elevationFunction = nm::glsl:: GlslGenerator ::←↩
compileToGlslFunction(

47 *posInput , *heightOutput , "elevation");

48

49 return elevationFunction;

50 }

51

52 void errorCallback(int error , const char* description){

53 cerr << "GLFW error: " << description << endl;

54 }

55

56 int main(int argc , char *argv []){

57 typedef std:: chrono ::duration <int ,std::milli > ms_t;

58 using chrono :: system_clock;

59 auto start = system_clock ::now();

60 //width of the texture

127

APPENDIX C. BENCHMARK CODE

61 const int resolution = 8192;

62 // number of chunks to store the texture in

63 //this may be useful on machines were it is not possible

64 //to get 8192*8192*4* sizeof(float) contiguous memory.

65 //each chunk corresponds to a glReadPixels call

66 const int chunks = 1;

67

68 glfwSetErrorCallback(errorCallback);

69

70 if(! glfwInit ())exit(EXIT_FAILURE);

71

72 // create an OpenGL context

73 //make the window stay hidden , since we do not need it

74 glfwWindowHint(GLFW_VISIBLE , GL_FALSE);

75 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR , 3);

76 GLFWwindow* window = glfwCreateWindow (640, 480, "nmlib ←↩
benchmark", NULL , NULL);

77 if(! window){

78 glfwTerminate ();

79 exit(EXIT_FAILURE);

80 }

81 glfwMakeContextCurrent(window);

82

83 if(glewInit () != GLEW_OK){

84 cerr << "Error initializing GLEW\n";

85 glfwTerminate ();

86 exit(EXIT_FAILURE);

87 }

88

89 cout << "Version string for OpenGL context: " << glGetString(←↩
GL_VERSION) << endl;

90 cout << "GLSL version: " << glGetString(←↩
GL_SHADING_LANGUAGE_VERSION) << endl;

91

92 if(! GLEW_EXT_framebuffer_object){

93 cout << "Error: no extension GL_EXT_framebuffer_object." << ←↩
endl;

94 glfwTerminate ();

95 exit(EXIT_FAILURE);

96 }

97

98 if(! GLEW_ARB_color_buffer_float){

99 cerr << "Error: no extension ARB_color_buffer_float." << ←↩
endl;

100 glfwTerminate ();

101 exit(EXIT_FAILURE);

102 }

103

104 // create fbo (off -creen framebuffer)

128

105 GLuint fb;

106 glGenFramebuffers (1, &fb);

107

108 glBindFramebuffer(GL_FRAMEBUFFER , fb);

109

110 int maxtexsize;

111 glGetIntegerv(GL_MAX_TEXTURE_SIZE , &maxtexsize);

112 cout << "Max texture size: " << maxtexsize << endl;

113 if(maxtexsize <resolution){

114 cerr << "Max texture size too small for resolution: " << ←↩
resolution << endl;

115 }

116

117 glClampColor(GL_CLAMP_READ_COLOR , GL_FALSE);

118 glClampColor(GL_CLAMP_VERTEX_COLOR , GL_FALSE);

119 glClampColor(GL_CLAMP_FRAGMENT_COLOR , GL_FALSE);

120

121 GLuint color_tex;

122 glGenTextures (1, &color_tex);

123 glBindTexture(GL_TEXTURE_RECTANGLE , color_tex);

124 glTexParameteri(GL_TEXTURE_RECTANGLE , GL_TEXTURE_WRAP_S , ←↩
GL_REPEAT);

125 glTexParameteri(GL_TEXTURE_RECTANGLE , GL_TEXTURE_WRAP_T , ←↩
GL_REPEAT);

126 glTexParameteri(GL_TEXTURE_RECTANGLE , GL_TEXTURE_MIN_FILTER , ←↩
GL_NEAREST);

127 glTexParameteri(GL_TEXTURE_RECTANGLE , GL_TEXTURE_MAG_FILTER , ←↩
GL_NEAREST);

128 //NULL means reserve texture memory , but texels are undefined

129 glTexImage2D(GL_TEXTURE_RECTANGLE , 0, GL_RGBA , resolution , ←↩
resolution , 0, GL_RGBA , GL_UNSIGNED_BYTE , NULL);

130

131 glFramebufferTexture2D(GL_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , ←↩
GL_TEXTURE_RECTANGLE , color_tex , 0);

132

133 if(glCheckFramebufferStatus(GL_FRAMEBUFFER) != ←↩
GL_FRAMEBUFFER_COMPLETE){

134 cerr << "Framebuffer incomplete\n";

135 glfwTerminate ();

136 exit(EXIT_FAILURE);

137 }

138

139 GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);

140 {

141 if(0== vertexShader){

142 cerr << "Error creating vertex shader";

143 glfwTerminate ();

144 exit(EXIT_FAILURE);

145 }

129

APPENDIX C. BENCHMARK CODE

146 const GLchar* shaderCode = ""

147 "#version 130\n"

148 "uniform vec4 domain; //{x, y, width/2, height /2}\n"

149 "in vec2 vertices ;\n"

150 "out vec2 coords ;\n"

151 "void main() {\n"

152 " gl_Position = vec4(vertices.x,vertices.y,0,1);\n"

153 " coords = vec2(vertices.x, -vertices.y)*domain.zw + ←↩
domain.xy;\n"

154 "}\n"

155 ;

156 const GLchar * codeArray [] = {shaderCode };

157 glShaderSource(vertexShader , 1, codeArray , NULL);

158 glCompileShader(vertexShader);

159 GLint result;

160 glGetShaderiv(vertexShader , GL_COMPILE_STATUS , &result);

161 if(GL_FALSE == result){

162 cerr << "Vertex shader compilation failed !\n";

163 GLint logLen;

164 glGetShaderiv(vertexShader , GL_INFO_LOG_LENGTH , &logLen);

165 if(logLen >0){

166 char *log = new char[logLen];

167 GLsizei written;

168 glGetShaderInfoLog(vertexShader , logLen , &written , log);

169 cerr << "Shader log:\n" << log << endl;

170 delete log;

171 }

172 }

173 }

174

175 GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

176 {

177 if(0== fragmentShader){

178 cerr << "Error creating vertex shader";

179 glfwTerminate ();

180 exit(EXIT_FAILURE);

181 }

182 const GLchar* versionString = "#version 130\n";

183 string elevationFunction = createElevationFunction ();

184 const GLchar* mainFunction = ""

185 "in vec2 coords ;\n"

186 "void main() {\n"

187 " float height ;\n"

188 " elevation(coords , height);\n"

189 " gl_FragColor = vec4(height , height , height , 1);\n"

190 "}\n"

191 ;

192 const GLchar * codeArray [] = {versionString , ←↩
elevationFunction.c_str (), mainFunction };

130

193 glShaderSource(fragmentShader , 3, codeArray , NULL);

194 glCompileShader(fragmentShader);

195 GLint result;

196 glGetShaderiv(fragmentShader , GL_COMPILE_STATUS , &result);

197 if(GL_FALSE == result){

198 cerr << "Fragment shader compilation failed !\n";

199 GLint logLen;

200 glGetShaderiv(fragmentShader , GL_INFO_LOG_LENGTH , &logLen)←↩
;

201 if(logLen >0){

202 char *log = new char[logLen];

203 GLsizei written;

204 glGetShaderInfoLog(fragmentShader , logLen , &written , log←↩
);

205 cerr << "Shader log:\n" << log << endl;

206 delete log;

207 }

208 }

209 }

210

211 //link shader program

212 GLuint programHandle = glCreateProgram ();

213 glAttachShader(programHandle , vertexShader);

214 glAttachShader(programHandle , fragmentShader);

215 glLinkProgram(programHandle);

216

217 GLint linkStatus;

218 glGetProgramiv(programHandle , GL_LINK_STATUS , &linkStatus);

219 if(GL_FALSE == linkStatus){

220 cerr << "Failed to link shader program\n";

221 glfwTerminate ();

222 exit(EXIT_FAILURE);

223 }

224 glUseProgram(programHandle);

225

226 //setup vbo

227 array <float , 8> vertices = {

228 -1,-1,

229 1,-1,

230 -1, 1,

231 1, 1

232 };

233 GLuint vboId;

234 glGenBuffers (1, &vboId);

235 glBindBuffer(GL_ARRAY_BUFFER , vboId);

236 glBufferData(GL_ARRAY_BUFFER , 4*2* sizeof(float), &vertices [0],←↩
GL_STATIC_DRAW);

237 glVertexAttribPointer ((GLuint)0, 2, GL_FLOAT , GL_FALSE , 0, 0);

238 glEnableVertexAttribArray (0);

131

APPENDIX C. BENCHMARK CODE

239

240 //set uniforms

241 array <float , 4> domain = {0,0,4,4};

242 GLint domainLoc = glGetUniformLocation(programHandle , "domain"←↩
);

243 glUniform4fv(domainLoc , 1, &domain [0]);

244

245 glViewport (0,0,resolution ,resolution);

246

247 auto beforeDrawArrays = system_clock ::now();

248 //start drawing call

249 glClearColor (0, 0, 0, 1);

250 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

251 glDrawArrays(GL_TRIANGLE_STRIP , 0, 4); //four vertices to draw←↩
the two triangles

252 auto afterDrawArrays = system_clock ::now();

253

254 // release program

255 glDeleteProgram(programHandle);

256

257 // create buffers to store chunks subtextures

258 vector <vector <float > > buffers(chunks);

259 for(int i=0; i<chunks; ++i){

260 buffers[i]. reserve(resolution*resolution/chunks *4);

261 }

262 for(int i=0; i<chunks; ++i){

263 cout << "Loading chunk " << i << "...";

264 auto beforeReadPixels = system_clock ::now();

265 glReadPixels (0, i*(resolution/chunks), resolution , ←↩
resolution/chunks , GL_RED , GL_FLOAT , &buffers[i][0]);

266 auto afterReadPixels = system_clock ::now();

267 ms_t ms = chrono :: duration_cast <ms_t >(afterReadPixels -←↩
beforeReadPixels);

268 cout << " " << ms.count() << " ms" << endl;

269 }

270 //print a random value , to trick the compiler into not ←↩
optimizing out

271 //parts of the buffers

272 cout << "random value in pixel array: " << buffers[rand()%←↩
chunks][rand()%(resolution*resolution/chunks)] << endl;

273

274 auto finish = system_clock ::now();

275 {

276 ms_t milliseconds = chrono :: duration_cast <ms_t >(finish -start←↩
);

277 cout << "Finished after " << milliseconds.count() << " ms" ←↩
<< endl;

278 }

279

132

280 {

281 ms_t milliseconds = chrono :: duration_cast <ms_t >(finish -←↩
beforeDrawArrays);

282 cout << "Without context creation and compilation: " << ←↩
milliseconds.count() << " ms" << endl;

283 }

284

285 glfwDestroyWindow(window);

286 glfwTerminate ();

287 }

133

Appendix D

Noise Modeler Library API
Reference

134

Noise Modeler Library
0.1

Generated by Doxygen 1.8.7

Sun Jun 29 2014 12:37:16

ii CONTENTS

Contents

1 Noise Modeler Library Documentation 1

2 Module Index 2

2.1 Modules . 2

3 Hierarchical Index 2

3.1 Class Hierarchy . 2

4 Class Index 3

4.1 Class List . 3

5 File Index 5

5.1 File List . 5

6 Module Documentation 6

6.1 codegeneration . 6

6.1.1 Detailed Description . 7

6.2 model . 8

6.2.1 Detailed Description . 8

6.3 serialization . 10

6.3.1 Detailed Description . 10

6.4 util . 11

6.4.1 Detailed Description . 11

7 Class Documentation 12

7.1 nm::Assignment Struct Reference . 12

7.2 nm::BodyGenerator Class Reference . 12

7.2.1 Detailed Description . 12

7.3 nm::CompositeModuleGenerator Class Reference . 13

7.3.1 Detailed Description . 13

7.4 nm::ConcreteModuleGenerator Class Reference . 13

7.4.1 Detailed Description . 14

7.5 nm::Declaration Struct Reference . 14

7.6 nm::DefaultsGenerator Class Reference . 14

7.6.1 Detailed Description . 15

7.7 nm::Expression Struct Reference . 15

7.8 nm::FunctionCall Struct Reference . 15

7.9 nm::FunctionCallBodyGenerator Class Reference . 16

7.9.1 Detailed Description . 16

7.10 nm::glsl::GlslGenerator Class Reference . 16

7.10.1 Detailed Description . 17

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

CONTENTS iii

7.11 nm::Graph Class Reference . 17

7.11.1 Detailed Description . 17

7.12 nm::IdGenerator Class Reference . 18

7.12.1 Detailed Description . 18

7.13 nm::InlineGenerator Class Reference . 18

7.13.1 Detailed Description . 19

7.14 nm::InputLink Class Reference . 19

7.14.1 Detailed Description . 20

7.15 nm::InlineGenerator::InputRemap Struct Reference . 20

7.16 nm::Module Class Reference . 20

7.16.1 Detailed Description . 22

7.16.2 Constructor & Destructor Documentation . 22

7.16.3 Member Function Documentation . 22

7.17 nm::ModuleGenerator Class Reference . 22

7.17.1 Detailed Description . 23

7.18 nm::ModuleInput Class Reference . 23

7.18.1 Detailed Description . 23

7.19 nm::ModuleOutput Class Reference . 23

7.19.1 Detailed Description . 24

7.20 nm::ModuleType Class Reference . 24

7.20.1 Detailed Description . 26

7.20.2 Member Enumeration Documentation . 26

7.20.3 Constructor & Destructor Documentation . 26

7.20.4 Member Function Documentation . 27

7.21 nm::NonCopyable Class Reference . 29

7.21.1 Detailed Description . 29

7.22 nm::OutputLink Class Reference . 29

7.22.1 Detailed Description . 30

7.22.2 Constructor & Destructor Documentation . 30

7.22.3 Member Function Documentation . 30

7.23 nm::InlineGenerator::OutputRemap Struct Reference . 30

7.24 nm::Parser Class Reference . 31

7.24.1 Detailed Description . 31

7.25 nm::Serializer Class Reference . 31

7.25.1 Detailed Description . 31

7.26 nm::SignalType Class Reference . 32

7.26.1 Detailed Description . 32

7.26.2 Member Function Documentation . 32

7.27 nm::SignalValue Class Reference . 32

7.27.1 Detailed Description . 33

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

1 Noise Modeler Library Documentation 1

7.28 nm::SimpleBodyGenerator Class Reference . 33

7.28.1 Detailed Description . 33

7.29 nm::SyntaxNode Struct Reference . 33

7.30 nm::TypeManager Class Reference . 34

7.30.1 Detailed Description . 35

7.30.2 Constructor & Destructor Documentation . 35

7.30.3 Member Function Documentation . 35

7.31 nm::UnlinkedValueDefaultsGenerator Class Reference . 36

7.32 nm::UserDataProvider Class Reference . 36

7.32.1 Detailed Description . 37

7.33 nm::Value Struct Reference . 37

7.34 nm::Variable Struct Reference . 37

8 File Documentation 38

8.1 model.hpp File Reference . 38

8.1.1 Detailed Description . 38

8.2 serialization.hpp File Reference . 38

8.2.1 Detailed Description . 38

8.3 util.hpp File Reference . 38

8.3.1 Detailed Description . 38

Index 39

1 Noise Modeler Library Documentation

Introduction

Welcome to the reference for the noise modeler library, nmlib.

The Noise Modeler Library is a library for specifying content generating procedural functions based on noise in a
platform independent manner.

The prime example of such content, is terrain heightmap generation. With the help of this library, it is possible
represent terrains that are several times the size of the earth using only a few kilobytes. This representation may be
expanded during run-time in a game at high speed by utilizing the GLSL code generation feature.

Other content may for example be vegetation density maps, air humidity, and area distributions among factions in a
game.

Models for nmlib may be created using the Noise Modeler GUI application, which is a real-time editor for endless
procedural terrains. This application is documented by its own user guide.

Documentation overview

The library is divided into four modules, and so is the documentation:

• model is the core part of the library, everything depends on this.

• serialization is concerned with serialization and parsing of models.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

2 CONTENTS

• codegeneration is responsible for generating code, such as GLSL to evaluate functions.

• util contains utility functions for the library.

2 Module Index

2.1 Modules

Here is a list of all modules:

codegeneration 6

model 8

serialization 10

util 11

3 Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

nm::BodyGenerator 12

nm::FunctionCallBodyGenerator 16

nm::ModuleGenerator 22

nm::CompositeModuleGenerator 13

nm::ConcreteModuleGenerator 13

nm::SimpleBodyGenerator 33

nm::DefaultsGenerator 14

nm::ModuleGenerator 22

nm::UnlinkedValueDefaultsGenerator 36

nm::IdGenerator 18

nm::InlineGenerator 18

nm::glsl::GlslGenerator 16

nm::InlineGenerator::InputRemap 20

nm::NonCopyable 29

nm::Graph 17

nm::ModuleType 24

nm::InlineGenerator::OutputRemap 30

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

4 Class Index 3

nm::Parser 31

nm::Serializer 31

nm::SignalType 32

nm::SignalValue 32

nm::SyntaxNode 33

nm::Declaration 14

nm::Expression 15

nm::Assignment 12

nm::Value 37

nm::Variable 37

nm::FunctionCall 15

nm::UserDataProvider 36

nm::Graph 17

nm::InputLink 19

nm::Module 20

nm::ModuleInput 23

nm::ModuleOutput 23

nm::ModuleType 24

nm::OutputLink 29

nm::TypeManager 34

4 Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

nm::Assignment 12

nm::BodyGenerator
Generates a module body 12

nm::CompositeModuleGenerator
Generator for modules having composite module types 13

nm::ConcreteModuleGenerator
The ConcreteModuleGenerator class 13

nm::Declaration 14

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

4 CONTENTS

nm::DefaultsGenerator
Generates the definitions and default values module inputs 14

nm::Expression 15

nm::FunctionCall 15

nm::FunctionCallBodyGenerator
The FunctionCallBodyGenerator class 16

nm::glsl::GlslGenerator
Generates glsl code to evaluate function graphs using OpenGL 3.0 shaders 16

nm::Graph
A graph of Modules 17

nm::IdGenerator
The IdGenerator class 18

nm::InlineGenerator
Abstract base class for code generators 18

nm::InputLink
Describes which output of which node a ModuleInput of a specific Module is connected to 19

nm::InlineGenerator::InputRemap 20

nm::Module
An instantiated ModuleType. A node in a function graph 20

nm::ModuleGenerator
The ModuleGenerator class 22

nm::ModuleInput
Describes one of a ModuleType’s inputs (name, SignalType, default value) 23

nm::ModuleOutput
Describes one of a ModuleType’s outputs (name, SignalType) 23

nm::ModuleType
Describes a recipe for a module and its inputs and outputs 24

nm::NonCopyable
A super-class for non-copyable classes 29

nm::OutputLink
Output of a Module 29

nm::InlineGenerator::OutputRemap 30

nm::Parser
Converts json strings to TypeManagers 31

nm::Serializer
Serializes a TypeManager to a JSON string 31

nm::SignalType
Describes a the dimensionality of a signal Can be extended to include other type information
such as distinctions between doubles, flots and ints as well 32

nm::SignalValue
A vector of floats that can be set as the unlinked value of InputLinks 32

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

5 File Index 5

nm::SimpleBodyGenerator
The SimpleBodyGenerator class 33

nm::SyntaxNode 33

nm::TypeManager
The top-level entity of a noise model. Encapsulates several user types as well as built-in types 34

nm::UnlinkedValueDefaultsGenerator 36

nm::UserDataProvider
Base class for stuff that needs to provide user data in form of a void∗ pointer 36

nm::Value 37

nm::Variable 37

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

model.hpp
The model module 38

nmlib.hpp ??

optional.hpp ??

serialization.hpp
The serialization module 38

util.hpp
Utility headers 38

codegeneration/bodygenerator.hpp ??

codegeneration/compositemodulegenerator.hpp ??

codegeneration/concretemodulegenerator.hpp ??

codegeneration/defaultsgenerator.hpp ??

codegeneration/functioncallbodygenerator.hpp ??

codegeneration/idgenerator.hpp ??

codegeneration/inlinegenerator.hpp ??

codegeneration/modulegenerator.hpp ??

codegeneration/simplebodygenerator.hpp ??

codegeneration/unlinkedvaluedefaultsgenerator.hpp ??

codegeneration/glsl/glslgenerator.hpp ??

codegeneration/glsl/glslsourcefbm.hpp ??

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

6 CONTENTS

codegeneration/glsl/glslsourcehybridmultifractal.hpp ??

codegeneration/glsl/glslsourcenoise2d.hpp ??

codegeneration/glsl/glslsourceridgedmultifractal.hpp ??

model/graph.hpp ??

model/inputlink.hpp ??

model/module.hpp ??

model/moduleinput.hpp ??

model/moduleoutput.hpp ??

model/moduletype.hpp ??

model/outputlink.hpp ??

model/signaltype.hpp ??

model/signalvalue.hpp ??

model/typemanager.hpp ??

serialization/parser.hpp ??

serialization/serializer.hpp ??

util/makeunique.hpp ??

util/noncopyable.hpp ??

util/signals.hpp ??

util/userdataprovider.hpp ??

6 Module Documentation

6.1 codegeneration

Code generation module.

Classes

• class nm::BodyGenerator

Generates a module body.

• class nm::CompositeModuleGenerator

Generator for modules having composite module types.

• class nm::ConcreteModuleGenerator

The ConcreteModuleGenerator class.

• class nm::DefaultsGenerator

Generates the definitions and default values module inputs.

• class nm::FunctionCallBodyGenerator

The FunctionCallBodyGenerator class.

• class nm::glsl::GlslGenerator

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

6.1 codegeneration 7

Generates glsl code to evaluate function graphs using OpenGL 3.0 shaders.

• class nm::IdGenerator

The IdGenerator class.

• class nm::InlineGenerator

Abstract base class for code generators.

• class nm::ModuleGenerator

The ModuleGenerator class.

• class nm::SimpleBodyGenerator

The SimpleBodyGenerator class.

6.1.1 Detailed Description

Code generation module.

InlineGenerator is the most important class. Subclass it to implement code generation for a new language.

glsl::GlslGenerator implements InlineGenerator for GLSL

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

8 CONTENTS

6.2 model

Graph representation of a procedural generator.

Files

• file model.hpp

The model module.

Classes

• class nm::Graph

A graph of Modules.

• class nm::InputLink

Describes which output of which node a ModuleInput of a specific Module is connected to.

• class nm::Module

An instantiated ModuleType. A node in a function graph.

• class nm::ModuleInput

Describes one of a ModuleType’s inputs (name, SignalType, default value).

• class nm::ModuleOutput

Describes one of a ModuleType’s outputs (name, SignalType)

• class nm::ModuleType

Describes a recipe for a module and its inputs and outputs.

• class nm::OutputLink

an output of a Module

• class nm::SignalType

Describes a the dimensionality of a signal Can be extended to include other type information such as distinctions
between doubles, flots and ints as well.

• class nm::SignalValue

A vector of floats that can be set as the unlinked value of InputLinks.

• class nm::TypeManager

The top-level entity of a noise model. Encapsulates several user types as well as built-in types.

6.2.1 Detailed Description

Graph representation of a procedural generator.

The model contains classes for representing module types and graphs of modules.

The top-level entity, is the TypeManager, which may contain several ModuleTypes. A ModuleType represents a
mathematical function or algorithm. It is either a primitive type defined by the library, or a composite type described
as a Graph of Modules.

When a ModuleType is described by a Graph of Modules, it is called a composite type.

A Graph is a directed acyclic graph of function calls (Modules). It is a similar concept to what is commonly known
as an expression tree.

Each node in the Graph, is called a Module. A module represents a function call, and has a corresponding Module←↩
Type, and information about the inputs and outputs of the function call. A Module has several InputLinks that may
be connected to OutputLinks of other Modules.

Here is an example of how the expression abs(0.25+fbm(x,y)) may be created using the model:

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

6.2 model 9

//A type manager holds information about module types
TypeManager typeManager;

//Initialize common module types, such as add, abs, and fbm2d
typeManager.initBuiltinTypes();

//create a module type representing our terrain function
ModuleType *terrainType = typeManager.createModuleType("terrain")

//Add inputs and outputs to the module type
//create a 2D input, "pos"
terrainType->addInput("pos", SignalType{2})
//create a 1D output, "height"
terrainType->addOutput("position", SignalType{2})

//get a handle for the graph of the module type
Graph *graph = terrainType.getGraph();
Module *inputs = graph->getModule("inputs");
Module *outputs = graph->getModule("outputs");

//create modules for the fbm (2d), add (1d), abs (1d)
Module* fbmModule = graph->createModule(*typeManager.getBuiltinType("fbm2"));
Module* addModule = graph->createModule(*typeManager.getBuiltinType("add1"));
Module* absModule = graph->createModule(*typeManager.getBuiltinType("abs"));

//connect fbm to position
fbmModule->getInput("pos")->link(*inputs->getOutput("pos"));

//connect add input to fbm output
addModule->getInput("lhs")->link(*fbmModule->getOutput("result"));
//set the right hand side to 0.25
addModule->getInput("rhs")->setUnlinkedValue(SignalValue({0.25}));

//set abs source to add output
absModule->getInput("source")->link(*addModule->getOutput("result"));

//connect abs output to module type output
outputs->getInput("height")->link(*absModule->getOutput("result"));

//we now have a complete model for a heightmap generating
//module type: terrainType
//use the terrainType to evaluate some terrain, or serialize it to disk

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

10 CONTENTS

6.3 serialization

Everything related to converting graphs to/from strings.

Files

• file serialization.hpp

The serialization module.

Classes

• class nm::Parser

Converts json strings to TypeManagers.

• class nm::Serializer

Serializes a TypeManager to a JSON string.

6.3.1 Detailed Description

Everything related to converting graphs to/from strings.

Each of the classes, Parser and Serializer are documented separately.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

6.4 util 11

6.4 util

utility functions and classes needed by other nmlib modules.

Files

• file util.hpp

Utility headers.

Classes

• class nm::NonCopyable

A super-class for non-copyable classes.

• class nm::UserDataProvider

Base class for stuff that needs to provide user data in form of a void∗ pointer.

6.4.1 Detailed Description

utility functions and classes needed by other nmlib modules.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

12 CONTENTS

7 Class Documentation

7.1 nm::Assignment Struct Reference

Inheritance diagram for nm::Assignment:

nm::Assignment

nm::Expression

nm::SyntaxNode

Public Member Functions

• Assignment (std::unique_ptr< Variable > id, std::unique_ptr< Expression > value)
• Assignment (std::string l, std::string r)
• virtual void gen (InlineGenerator &g, std::ostream &out) override

Public Attributes

• std::unique_ptr< Variable > lhs
• std::unique_ptr< Expression > rhs

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.2 nm::BodyGenerator Class Reference

Generates a module body.

#include <bodygenerator.hpp>

Inheritance diagram for nm::BodyGenerator:

nm::BodyGenerator

nm::FunctionCallBodyGenerator nm::ModuleGenerator nm::SimpleBodyGenerator

nm::CompositeModuleGenerator nm::ConcreteModuleGenerator

Public Member Functions

• virtual void generateBody (InlineGenerator &gen, std::ostream &out)=0

7.2.1 Detailed Description

Generates a module body.

The documentation for this class was generated from the following file:

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.3 nm::CompositeModuleGenerator Class Reference 13

• codegeneration/bodygenerator.hpp

7.3 nm::CompositeModuleGenerator Class Reference

Generator for modules having composite module types.

#include <compositemodulegenerator.hpp>

Inheritance diagram for nm::CompositeModuleGenerator:

nm::CompositeModuleGenerator

nm::ModuleGenerator

nm::BodyGenerator nm::DefaultsGenerator

Public Member Functions

• CompositeModuleGenerator (const Module &module)
• void generateDefaults (InlineGenerator &gen, std::ostream &out) override
• void generateBody (InlineGenerator &gen, std::ostream &out) override

7.3.1 Detailed Description

Generator for modules having composite module types.

The documentation for this class was generated from the following files:

• codegeneration/compositemodulegenerator.hpp
• codegeneration/compositemodulegenerator.cpp

7.4 nm::ConcreteModuleGenerator Class Reference

The ConcreteModuleGenerator class.

#include <concretemodulegenerator.hpp>

Inheritance diagram for nm::ConcreteModuleGenerator:

nm::ConcreteModuleGenerator

nm::ModuleGenerator

nm::BodyGenerator nm::DefaultsGenerator

Public Member Functions

• ConcreteModuleGenerator (std::unique_ptr< BodyGenerator > bodyGenerator, std::unique_ptr<
DefaultsGenerator > defaultsGenerator={})

• virtual void generateBody (InlineGenerator &gen, std::ostream &out) override
• virtual void generateDefaults (InlineGenerator &gen, std::ostream &out) override

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

14 CONTENTS

7.4.1 Detailed Description

The ConcreteModuleGenerator class.

The documentation for this class was generated from the following file:

• codegeneration/concretemodulegenerator.hpp

7.5 nm::Declaration Struct Reference

Inheritance diagram for nm::Declaration:

nm::Declaration

nm::SyntaxNode

Public Member Functions

• Declaration (SignalType t, std::string s)

• Declaration (SignalType t, std::unique_ptr< Variable > v)

• virtual void gen (InlineGenerator &g, std::ostream &out) override

Public Attributes

• SignalType type

• std::unique_ptr< Variable > id

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.6 nm::DefaultsGenerator Class Reference

Generates the definitions and default values module inputs.

#include <defaultsgenerator.hpp>

Inheritance diagram for nm::DefaultsGenerator:

nm::DefaultsGenerator

nm::ModuleGenerator nm::UnlinkedValueDefaultsGenerator

nm::CompositeModuleGenerator nm::ConcreteModuleGenerator

Public Member Functions

• virtual void generateDefaults (InlineGenerator &gen, std::ostream &out)=0

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.7 nm::Expression Struct Reference 15

7.6.1 Detailed Description

Generates the definitions and default values module inputs.

The documentation for this class was generated from the following file:

• codegeneration/defaultsgenerator.hpp

7.7 nm::Expression Struct Reference

Inheritance diagram for nm::Expression:

nm::Expression

nm::SyntaxNode

nm::Assignment nm::Value nm::Variable

Additional Inherited Members

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.8 nm::FunctionCall Struct Reference

Inheritance diagram for nm::FunctionCall:

nm::FunctionCall

nm::SyntaxNode

Public Member Functions

• template<typename T , typename U , typename V >

FunctionCall (T &&function, U &&ins, V &&outs)
• virtual void gen (InlineGenerator &g, std::ostream &out) override

Public Attributes

• std::string functionName
• std::vector< Variable > inputs
• std::vector< Variable > outputs

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

16 CONTENTS

7.9 nm::FunctionCallBodyGenerator Class Reference

The FunctionCallBodyGenerator class.

#include <functioncallbodygenerator.hpp>

Inheritance diagram for nm::FunctionCallBodyGenerator:

nm::FunctionCallBodyGenerator

nm::BodyGenerator

Public Member Functions

• template<typename T >

FunctionCallBodyGenerator (T ∗∗t)
• virtual void generateBody (InlineGenerator &gen, std::ostream &out) override

7.9.1 Detailed Description

The FunctionCallBodyGenerator class.

The documentation for this class was generated from the following files:

• codegeneration/functioncallbodygenerator.hpp
• codegeneration/functioncallbodygenerator.cpp

7.10 nm::glsl::GlslGenerator Class Reference

Generates glsl code to evaluate function graphs using OpenGL 3.0 shaders.

#include <glslgenerator.hpp>

Inheritance diagram for nm::glsl::GlslGenerator:

nm::glsl::GlslGenerator

nm::InlineGenerator

Static Public Member Functions

• static std::string compileToGlslFunction (const InputLink &inputLink, const OutputLink &outputLink, std←↩
::string name)

• static std::string compileToGlslFunction (std::vector< const InputLink ∗ > inputLinks, std::vector< const
OutputLink ∗ > outputLink, std::string name)

• static std::string compileToGlslFunctionWithDependencies (const Module &module)
• static std::string compileToGlslFunctionWithoutDependencies (const Module &module)

Protected Member Functions

• virtual void genTypeKeyword (const SignalType &signalType, std::ostream &out) override
• virtual std::unique_ptr
< nm::ModuleGenerator > getModuleGenerator (const Module &module) override

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.11 nm::Graph Class Reference 17

7.10.1 Detailed Description

Generates glsl code to evaluate function graphs using OpenGL 3.0 shaders.

The documentation for this class was generated from the following files:

• codegeneration/glsl/glslgenerator.hpp
• codegeneration/glsl/glslgenerator.cpp

7.11 nm::Graph Class Reference

A graph of Modules.

#include <graph.hpp>

Inheritance diagram for nm::Graph:

nm::Graph

nm::UserDataProvider nm::NonCopyable

Public Member Functions

• bool addModule (std::unique_ptr< Module > module)
• Module ∗ createModule (const ModuleType &type, std::string name)
• Module ∗ createModule (const ModuleType &type)
• std::unique_ptr< Module > removeModule (Module &module)
• void clearModules ()
• Module ∗ getModule (const std::string &name)
• const Module ∗ getModule (const std::string &name) const
• Module ∗ getModule (unsigned int index)
• const Module ∗ getModule (unsigned int index) const
• Module ∗ findModule (std::function< bool(Module &)> predicative)
• const Module ∗ findModule (std::function< bool(const Module &)> predicative) const
• unsigned int numModules () const
• void traverseModulesTopological (std::function< void(const Module &)> callback) const

Public Attributes

• signal< void(Graph &)> destroying
• signal< void(Graph &, Module

&, unsigned int)> moduleAdded
• signal< void(Graph &, Module

&, unsigned int)> moduleRemoved

7.11.1 Detailed Description

A graph of Modules.

The documentation for this class was generated from the following files:

• model/graph.hpp
• model/graph.cpp

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

18 CONTENTS

7.12 nm::IdGenerator Class Reference

The IdGenerator class.

#include <idgenerator.hpp>

Public Member Functions

• IdGenerator (std::string prefix="nm_id_")
• std::string getUniqueId ()

7.12.1 Detailed Description

The IdGenerator class.

The documentation for this class was generated from the following file:

• codegeneration/idgenerator.hpp

7.13 nm::InlineGenerator Class Reference

Abstract base class for code generators.

#include <inlinegenerator.hpp>

Inheritance diagram for nm::InlineGenerator:

nm::InlineGenerator

nm::glsl::GlslGenerator

Classes

• struct InputRemap
• struct OutputRemap

Public Member Functions

• void generateFromLinks (const std::vector< InputRemap > &inputRemaps, const std::vector< Output←↩
Remap > &outputRemaps, std::ostream &out)

• void generateModule (const Module &module, const std::vector< InputRemap > &inputRemaps, const std←↩
::vector< OutputRemap > &outputRemaps, std::ostream &out)

• std::string getUniqueId ()
• virtual std::unique_ptr
< ModuleGenerator > getModuleGenerator (const Module &module)

Protected Member Functions

• virtual void genTypeKeyword (const SignalType &signalType, std::ostream &out)=0
• virtual void genDeclaration (const Declaration &variable, std::ostream &out)
• virtual void genAssignment (const Assignment &assignment, std::ostream &out)
• virtual void genVariable (const Variable &variable, std::ostream &out)
• virtual void genValue (const SignalValue &value, std::ostream &out)
• virtual void genFunctionCall (FunctionCall &functionCall, std::ostream &out)

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.14 nm::InputLink Class Reference 19

Friends

• struct Assignment

• struct Variable

• struct Expression

• struct Value

• struct Declaration

• struct FunctionCall

7.13.1 Detailed Description

Abstract base class for code generators.

The documentation for this class was generated from the following files:

• codegeneration/inlinegenerator.hpp

• codegeneration/inlinegenerator.cpp

7.14 nm::InputLink Class Reference

Describes which output of which node a ModuleInput of a specific Module is connected to.

#include <inputlink.hpp>

Inheritance diagram for nm::InputLink:

nm::InputLink

nm::UserDataProvider

Public Member Functions

• InputLink (Module &owner, const ModuleInput &type)

• bool link (OutputLink &output)

• void unlink ()

• const Module & getOwner () const

• Module & getOwner ()

• const ModuleInput & getModuleInput () const

• const OutputLink ∗ getOutputLink () const

• OutputLink ∗ getOutputLink ()

• SignalValue getUnlinkedValue () const

• bool setUnlinkedValue (SignalValue newValue)

Public Attributes

• signal< void(InputLink &)> linkChanged

• signal< void(InputLink &)> unlinkedValueChanged

• signal< void(InputLink &)> destroying

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

20 CONTENTS

7.14.1 Detailed Description

Describes which output of which node a ModuleInput of a specific Module is connected to.

The documentation for this class was generated from the following files:

• model/inputlink.hpp
• model/inputlink.cpp

7.15 nm::InlineGenerator::InputRemap Struct Reference

Public Attributes

• std::string externalName
• const InputLink ∗ inputLink

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.16 nm::Module Class Reference

An instantiated ModuleType. A node in a function graph.

#include <module.hpp>

Inheritance diagram for nm::Module:

nm::Module

nm::UserDataProvider

Public Member Functions

• Module (const ModuleType &type, std::string name, std::string description="")

Constructor.

• const ModuleType & getType () const
• const ModuleType & getType ()
• const std::string getName () const
• void setName (std::string name)
• const std::string getDescription () const
• void setDescription (std::string description)
• InputLink ∗ getInput (std::string name)
• const InputLink ∗ getInput (std::string name) const
• InputLink ∗ getInput (unsigned int i)
• const InputLink ∗ getInput (unsigned int i) const
• unsigned int getInputSize () const
• std::vector< InputLink ∗ > getInputs ()
• OutputLink ∗ getOutput (std::string name)
• const OutputLink ∗ getOutput (std::string name) const
• OutputLink ∗ getOutput (unsigned int i)
• const OutputLink ∗ getOutput (unsigned int i) const
• unsigned int getOutputSize () const

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.16 nm::Module Class Reference 21

• std::vector< OutputLink ∗ > getOutputs ()

• void disconnect ()

disconnects module by unlinking all InputLinks and OutputLinks of this module.

• void traverseChildren (std::function< void(const Module &)> callback) const

• void traverseParents (std::function< void(const Module &)> callback) const

• void traverseDescendants (std::function< void(const Module &)> callback) const

• void traverseDescendants (std::function< void(Module &)> callback)

• void traverseAncestors (std::function< void(const Module &)> callback) const

• int getDepth () const

• int getHeight () const

Static Public Member Functions

• static std::vector< Module ∗> getDependenciesSorted (const std::vector< OutputLink ∗> &outputs, const
std::set< InputLink ∗ > &ignoreInputs={})

• static std::vector< const
Module ∗ > getDependenciesSorted (const std::vector< const OutputLink ∗ > &outputs, const std::set<
const InputLink ∗ > &ignoreInputs={})

• static void topologicallyTraverseDependencies (const std::vector< OutputLink ∗ > &outputs, std←↩
::function< void(Module &)> visitor, const std::set< InputLink ∗ > &ignoreInputs={})

• static void topologicallyTraverseDependencies (const std::vector< const OutputLink ∗ > &outputs, std←↩
::function< void(const Module &)> visitor, const std::set< const InputLink ∗ > &ignoreInputs={})

Public Attributes

• signal< void(Module &, const
std::string &)> nameChanged

This signal is emitted when the name of the Module is changed.

• signal< void(Module &, const
std::string &)> descriptionChanged

This signal is emitted when the description of the Module is changed.

• signal< void(Module &)> destroying

This signal is emitted before the Module is destroyed.

• signal< void(Module
&, InputLink &)> addedInputLink

This signal is emitted after an input has been added.

• signal< void(Module &, const
ModuleInput &)> removedInputLink

This signal is emitted after an input has been removed.

• signal< void(Module
&, OutputLink &)> addedOutputLink

This signal is emitted after an output has been added.

• signal< void(Module &, const
ModuleOutput &)> removedOutputLink

This signal is emitted after an output has been removed.

• signal< void(Module &)> dependenciesChanged

This signal is emitted if changes have been made to the graph that may influence this Module’s output signals.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

22 CONTENTS

7.16.1 Detailed Description

An instantiated ModuleType. A node in a function graph.

A module is a part of a node in a Graph. It has a corresponding ModuleType, which describes some sort of
mathematical function or algorithm. A module may be thought of a configuration for a function call.

A Module has a number of InputLinks and OutputLinks that may be connected to other Modules InputLinks and
OutputLinks.

Connections can be changed by using the getters for these InputLinks and OutputLinks. One InputLink exists for
each ModuleInput in the ModuleType of the Module. The same applies for outputs.

Usually create by Graph::createModule

7.16.2 Constructor & Destructor Documentation

7.16.2.1 nm::Module::Module (const ModuleType & type, std::string name, std::string description = "")
[explicit]

Constructor.

Consider using Graph::createModule() instead if your goal is to add the module to a graph.

7.16.3 Member Function Documentation

7.16.3.1 int nm::Module::getDepth () const

Returns

the number of modules above this one

7.16.3.2 int nm::Module::getHeight () const

Returns

the number of modules below this one

The documentation for this class was generated from the following files:

• model/module.hpp
• model/module.cpp

7.17 nm::ModuleGenerator Class Reference

The ModuleGenerator class.

#include <modulegenerator.hpp>

Inheritance diagram for nm::ModuleGenerator:

nm::ModuleGenerator

nm::BodyGenerator nm::DefaultsGenerator

nm::CompositeModuleGenerator nm::ConcreteModuleGenerator

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.18 nm::ModuleInput Class Reference 23

Additional Inherited Members

7.17.1 Detailed Description

The ModuleGenerator class.

The documentation for this class was generated from the following file:

• codegeneration/modulegenerator.hpp

7.18 nm::ModuleInput Class Reference

Describes one of a ModuleType’s inputs (name, SignalType, default value).

#include <moduleinput.hpp>

Inheritance diagram for nm::ModuleInput:

nm::ModuleInput

nm::UserDataProvider

Public Member Functions

• ModuleInput (std::string name, SignalType signalType, const ModuleType &moduleType)
• ModuleInput (std::string name, SignalValue defaultValue, const ModuleType &moduleType)
• std::string getName () const
• SignalType getSignalType () const
• SignalValue getDefaultValue () const

Public Attributes

• signal< void(ModuleInput &)> destroying

7.18.1 Detailed Description

Describes one of a ModuleType’s inputs (name, SignalType, default value).

The documentation for this class was generated from the following file:

• model/moduleinput.hpp

7.19 nm::ModuleOutput Class Reference

Describes one of a ModuleType’s outputs (name, SignalType)

#include <moduleoutput.hpp>

Inheritance diagram for nm::ModuleOutput:

nm::ModuleOutput

nm::UserDataProvider

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

24 CONTENTS

Public Member Functions

• ModuleOutput (std::string name, SignalType signalType, const ModuleType &moduleType)
• std::string getName () const
• SignalType getSignalType () const

Public Attributes

• signal< void(ModuleOutput &)> destroying

7.19.1 Detailed Description

Describes one of a ModuleType’s outputs (name, SignalType)

The documentation for this class was generated from the following file:

• model/moduleoutput.hpp

7.20 nm::ModuleType Class Reference

Describes a recipe for a module and its inputs and outputs.

#include <moduletype.hpp>

Inheritance diagram for nm::ModuleType:

nm::ModuleType

nm::NonCopyable nm::UserDataProvider

Public Types

• enum Category { Category::Primitive, Category::Composite, Category::GraphInput, Category::GraphOutput }

Module type category.

Public Member Functions

• ModuleType (std::string name, std::string description)

Simple Constructor for composite module types.

• ModuleType (std::string name, Category category=Category::Composite, std::string description="")
• std::string getName () const

A unique identifier for the module type.

• void setName (std::string name)
• std::string getDescription () const
• void setDescription (std::string description)
• bool isBuiltin () const

A built-in module type is part of nmlib, and not created by the user.

• bool isComposite () const

A composite module type is built from a graph of modules of other types.

• bool isPrimitive () const

A primitive module type, is the opposite of a composite type.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.20 nm::ModuleType Class Reference 25

• bool isRemovable () const

Some modules, like the ones representing inputs and outputs, may not be removed from their graphs.

• bool isGraphInput () const

A graph input module type represents the inputs of a composite module type.

• bool isGraphOutput () const

A graph output module type represents the outputs of a composite module type.

• void setRemovable (bool removable)

Change whether modules of this type may be removed from graphs or not.

• unsigned int numInputs () const
• const ModuleInput ∗ getInput (std::string name) const
• ModuleInput ∗ getInput (std::string name)
• const ModuleInput ∗ getInput (unsigned int index) const
• ModuleInput ∗ getInput (unsigned int index)
• void eachModuleInput (std::function< void(const ModuleInput &)> f) const

Iterate over the inputs using the provided callback.

• void eachModuleInput (std::function< void(ModuleInput &)> f)

Iterate over the inputs using the provided callback.

• ModuleInput ∗ addInput (std::string name, SignalType signalType)

Add a new input to the module type.

• ModuleInput ∗ addInput (std::string name, SignalValue defaultValue)

Add a new input to the module type.

• bool removeInput (ModuleInput ∗moduleInput)

Removes an input from this module type.

• unsigned int numOutputs () const
• const ModuleOutput ∗ getOutput (std::string name) const
• ModuleOutput ∗ getOutput (std::string name)
• const ModuleOutput ∗ getOutput (unsigned int index) const
• ModuleOutput ∗ getOutput (unsigned int index)
• void eachModuleOutput (std::function< void(const ModuleOutput &)> f) const

Iterate over the outputs using the provided callback.

• void eachModuleOutput (std::function< void(ModuleOutput &)> f)

Iterate over the outputs using the provided callback.

• ModuleOutput ∗ addOutput (std::string name, SignalType signalType)

Add a new output to the module type.

• bool removeOutput (ModuleOutput ∗moduleOutput)

Removes an output from this module type.

• Graph ∗ getGraph ()

Accessor for the graph of a composite module type.

• const Graph ∗ getGraph () const

Accessor for the graph of a composite module type.

• Module ∗ getInputModule ()

Accessor for the input module of a composite module type.

• const Module ∗ getInputModule () const

Accessor for the input module of a composite module type.

• Module ∗ getOutputModule ()

Accessor for the output module of a composite module type.

• const Module ∗ getOutputModule () const

Accessor for the output module of a composite module type.

• ModuleOutput ∗ exportInternalOutput (OutputLink &outputLink, std::string externalName)

Convenience method for exposing a part of the module graph as a new external output.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

26 CONTENTS

Public Attributes

• signal< void(ModuleType
&, const std::string &)> nameChanged

This signal is emitted when the name of the moduleType changes.

• signal< void(ModuleType
&, const std::string &)> descriptionChanged

This signal is emitted when the description of the moduleType changes.

• signal< void(ModuleInput &)> inputAdded

This signal is emitted after an input has been added.

• signal< void(ModuleInput &)> removingInput

This signal is emitted before an input is removed.

• signal< void(ModuleType &)> inputRemoved

This signal is emitted after an input has been removed.

• signal< void(ModuleOutput &)> outputAdded

This signal is emitted after an output has been added.

• signal< void(ModuleOutput &)> removingOutput

This signal is emitted before an output is removed.

• signal< void(ModuleType &)> outputRemoved

This signal is emitted after an output has been removed.

• signal< void(ModuleType &)> destroying

This signal is emitted before the type is destroyed.

7.20.1 Detailed Description

Describes a recipe for a module and its inputs and outputs.

A module type may be thought of as a blueprint for a module. When a module is created, it is created according to
a module type definition.

There are two main categories of module types, primitive and composite Composite module types, are built imple-
mented as a graph of modules of other module types. Primitive module types are the lowest level building blocks of
composite module types. They are defined by the library itself.

7.20.2 Member Enumeration Documentation

7.20.2.1 enum nm::ModuleType::Category [strong]

Module type category.

Enumerator

Primitive A low-level module type, without a graph

Composite A high-level module type, created as a composition of modules in a graph

GraphInput A special module type for inputs of a graph

GraphOutput A special module type for outputs of a graph

7.20.3 Constructor & Destructor Documentation

7.20.3.1 nm::ModuleType::ModuleType (std::string name, std::string description) [explicit]

Simple Constructor for composite module types.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.20 nm::ModuleType Class Reference 27

Parameters

name A unique identifier for the module type
description A comment or description of what kind of function the module type represents.

7.20.3.2 nm::ModuleType::ModuleType (std::string name, ModuleType::Category category = Category::Composite,
std::string description = "") [explicit]

Parameters

name A unique identifier for the module type
category Whether to create a composite, primitive, or special module type

description A comment or description of what kind of function the module type represents.

7.20.4 Member Function Documentation

7.20.4.1 ModuleInput ∗ nm::ModuleType::addInput (std::string name, SignalType signalType)

Add a new input to the module type.

Parameters

name The name to give the new input
signalType The type of the new input

The default value for this input is set to zero

7.20.4.2 ModuleInput ∗ nm::ModuleType::addInput (std::string name, SignalValue defaultValue)

Add a new input to the module type.

Parameters

name The name to give the new input
defaultValue The default value for the new input

The type of the new input is inferred from the value

7.20.4.3 ModuleOutput ∗ nm::ModuleType::addOutput (std::string name, SignalType signalType)

Add a new output to the module type.

Parameters

name The name to give the new output
signalType The type of the new output

The default value for this output is set to zero

7.20.4.4 ModuleOutput ∗ nm::ModuleType::exportInternalOutput (OutputLink & outputLink, std::string externalName)

Convenience method for exposing a part of the module graph as a new external output.

This method only works for composite module types.

7.20.4.5 Graph∗ nm::ModuleType::getGraph () [inline]

Accessor for the graph of a composite module type.

Returns

Returns a pointer to the Graph corresponding to this module type, or nullptr if this is not a composite module
type

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

28 CONTENTS

7.20.4.6 const Graph∗ nm::ModuleType::getGraph () const [inline]

Accessor for the graph of a composite module type.

Returns

Returns a pointer to the Graph corresponding to this module type, or nullptr if this is not a composite module
type

7.20.4.7 const Module ∗ nm::ModuleType::getInputModule () const

Accessor for the input module of a composite module type.

7.20.4.8 const Module ∗ nm::ModuleType::getOutputModule () const

Accessor for the output module of a composite module type.

7.20.4.9 bool nm::ModuleType::isRemovable () const [inline]

Some modules, like the ones representing inputs and outputs, may not be removed from their graphs.

Returns

Whether modules of this type may be removed from their graphs

7.20.4.10 bool nm::ModuleType::removeInput (ModuleInput ∗ moduleInput)

Removes an input from this module type.

Parameters

moduleInput A pointer to one of this ModuleType’s inputs

Returns

true if an input was removed

Instantiated Modules of this type are notified of this, and their corresponding InputLinks are automatically removed.

7.20.4.11 bool nm::ModuleType::removeOutput (ModuleOutput ∗ moduleOutput)

Removes an output from this module type.

Parameters

moduleOutput A pointer to one of this ModuleType’s outputs

Returns

true if an output was removed

Instantiated Modules of this type are notified of this, and their corresponding OutputLinks are automatically removed.

The documentation for this class was generated from the following files:

• model/moduletype.hpp

• model/moduletype.cpp

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.21 nm::NonCopyable Class Reference 29

7.21 nm::NonCopyable Class Reference

A super-class for non-copyable classes.

#include <noncopyable.hpp>

Inheritance diagram for nm::NonCopyable:

nm::NonCopyable

nm::Graph nm::ModuleType

7.21.1 Detailed Description

A super-class for non-copyable classes.

The documentation for this class was generated from the following file:

• util/noncopyable.hpp

7.22 nm::OutputLink Class Reference

an output of a Module

#include <outputlink.hpp>

Inheritance diagram for nm::OutputLink:

nm::OutputLink

nm::UserDataProvider

Public Member Functions

• OutputLink (Module &owner, const ModuleOutput &type)

OutputLink.
• bool addLink (InputLink &input)

Add a connection from this OutputLink to the specified InputLink.
• bool unlink (InputLink ∗input)

Remove the link an InputLink if it exists.
• void unlinkAll ()

Remove links to all inputs.
• unsigned int numLinks ()
• InputLink ∗ getLink (unsigned int index)
• const Module & getOwner () const
• Module & getOwner ()
• const ModuleOutput & getModuleOutput () const

Public Attributes

• signal< void(OutputLink &)> linksChanged
• signal< void(OutputLink &)> destroying

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

30 CONTENTS

7.22.1 Detailed Description

an output of a Module

OutputLinks are created by the library itself when instantiation a new Module

7.22.2 Constructor & Destructor Documentation

7.22.2.1 nm::OutputLink::OutputLink (Module & owner, const ModuleOutput & type) [inline], [explicit]

OutputLink.

Parameters

owner which module this is an output of
type which ModuleOutput this is an outputLink for

7.22.3 Member Function Documentation

7.22.3.1 bool nm::OutputLink::addLink (InputLink & input)

Add a connection from this OutputLink to the specified InputLink.

Parameters

input

Returns

Whether a new link was added.

7.22.3.2 bool nm::OutputLink::unlink (InputLink ∗ input)

Remove the link an InputLink if it exists.

Parameters

input

Returns

Whether a link was removed

7.22.3.3 void nm::OutputLink::unlinkAll ()

Remove links to all inputs.

This also removes the links from the inputs to the output

The documentation for this class was generated from the following files:

• model/outputlink.hpp
• model/outputlink.cpp

7.23 nm::InlineGenerator::OutputRemap Struct Reference

Public Attributes

• std::string externalName

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.24 nm::Parser Class Reference 31

• const OutputLink ∗ outputLink

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.24 nm::Parser Class Reference

Converts json strings to TypeManagers.

#include <parser.hpp>

Public Member Functions

• optional< std::unique_ptr
< TypeManager > > parseDocument (std::string json)

7.24.1 Detailed Description

Converts json strings to TypeManagers.

A parser is typically used like this:

//replace readfile with your file reading function
std::string json = readFile("terrain.nm.json");
Parser parser;
auto maybeTypeManager = parser.parseDocument(json);
if(!maybeTypeManager){

//error handling
}
TypeManager& typeManager = **maybeTypeManager;

//use the type manager

The documentation for this class was generated from the following files:

• serialization/parser.hpp
• serialization/parser.cpp

7.25 nm::Serializer Class Reference

Serializes a TypeManager to a JSON string.

#include <serializer.hpp>

Public Member Functions

• std::string serialize (const TypeManager &typeManager)

7.25.1 Detailed Description

Serializes a TypeManager to a JSON string.

The documentation for this class was generated from the following files:

• serialization/serializer.hpp
• serialization/serializer.cpp

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

32 CONTENTS

7.26 nm::SignalType Class Reference

Describes a the dimensionality of a signal Can be extended to include other type information such as distinctions
between doubles, flots and ints as well.

#include <signaltype.hpp>

Public Member Functions

• SignalType (int dimensions)
• bool operator== (const SignalType &rhs) const
• bool operator!= (const SignalType &rhs) const
• bool isConvertibleTo (const SignalType &rhs) const

Checks if this SignalType can be converted to another.

Public Attributes

• const int dimensionality

7.26.1 Detailed Description

Describes a the dimensionality of a signal Can be extended to include other type information such as distinctions
between doubles, flots and ints as well.

7.26.2 Member Function Documentation

7.26.2.1 bool nm::SignalType::isConvertibleTo (const SignalType & rhs) const

Checks if this SignalType can be converted to another.

Parameters

SignalType to convert to

Returns

The documentation for this class was generated from the following files:

• model/signaltype.hpp
• model/signaltype.cpp

7.27 nm::SignalValue Class Reference

A vector of floats that can be set as the unlinked value of InputLinks.

#include <signalvalue.hpp>

Public Member Functions

• SignalValue (float value)
• SignalValue (std::vector< float > values)
• SignalValue (SignalType signalType)
• SignalValue (const SignalValue &other)

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.28 nm::SimpleBodyGenerator Class Reference 33

• SignalValue & operator= (const SignalValue &rhs)

• float & operator[] (unsigned int i)

• float operator[] (unsigned int i) const

• SignalType getSignalType () const

7.27.1 Detailed Description

A vector of floats that can be set as the unlinked value of InputLinks.

The documentation for this class was generated from the following file:

• model/signalvalue.hpp

7.28 nm::SimpleBodyGenerator Class Reference

The SimpleBodyGenerator class.

#include <simplebodygenerator.hpp>

Inheritance diagram for nm::SimpleBodyGenerator:

nm::SimpleBodyGenerator

nm::BodyGenerator

Public Member Functions

• SimpleBodyGenerator (std::string body)

• virtual void generateBody (InlineGenerator &, std::ostream &out)

7.28.1 Detailed Description

The SimpleBodyGenerator class.

The documentation for this class was generated from the following file:

• codegeneration/simplebodygenerator.hpp

7.29 nm::SyntaxNode Struct Reference

Inheritance diagram for nm::SyntaxNode:

nm::SyntaxNode

nm::Declaration nm::Expression nm::FunctionCall

nm::Assignment nm::Value nm::Variable

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

34 CONTENTS

Public Member Functions

• virtual void gen (InlineGenerator &gen, std::ostream &out)=0

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.30 nm::TypeManager Class Reference

The top-level entity of a noise model. Encapsulates several user types as well as built-in types.

#include <typemanager.hpp>

Inheritance diagram for nm::TypeManager:

nm::TypeManager

nm::UserDataProvider

Public Member Functions

• TypeManager ()

Creates a new TypeManager.

• bool addUserType (std::unique_ptr< ModuleType > moduleType)

Add an existing user type to the TypeManager.

• ModuleType ∗ createUserType (std::string desiredName)

try to create a new usertype with the given name

• const ModuleType ∗ getType (std::string name) const

Search for a module type with the given name.

• const ModuleType ∗ getBuiltinType (std::string name) const

Search for a built-in type with the given name.

• const ModuleType ∗ getUserType (std::string name) const

Search for a user type with the given name.

• ModuleType ∗ getUserType (std::string name)

Search for a user type with the given name.

• void initBuiltinTypes ()

Populate the list of built-in module types.

• unsigned int numBuiltinTypes () const
• const ModuleType ∗ getBuiltinType (unsigned int index) const
• unsigned int numUserTypes () const
• const ModuleType ∗ getUserType (unsigned int index) const

Public Attributes

• signal< void(TypeManager &)> destroying

This signal is emitted before the TypeManager is destroyed.

• signal< void(TypeManager &)> userTypesChanged

This signal is emitted when the list of user type changes.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.30 nm::TypeManager Class Reference 35

7.30.1 Detailed Description

The top-level entity of a noise model. Encapsulates several user types as well as built-in types.

A type manager is the top-level entity in the model hierarchy.

Two lists of ModuleTypes are maintained in a TypeManager, the user types, and the built-in types.

A user type may be constructed explicitly, or may be returned from a Parser in the form of a unique_ptr.

New user types can conveniently be added to the type manager, using the method createUserType().

A TypeManager owns the ModuleTypes it manages.

7.30.2 Constructor & Destructor Documentation

7.30.2.1 nm::TypeManager::TypeManager ()

Creates a new TypeManager.

Note that initBuiltinTypes method has to be called explicitly to populate the list of buil-in types.

7.30.3 Member Function Documentation

7.30.3.1 bool nm::TypeManager::addUserType (std::unique_ptr< ModuleType > moduleType)

Add an existing user type to the TypeManager.

Returns

true if there was not a naming conflict and the type was added.

To create a new user type, consider using createUserType instead.

7.30.3.2 ModuleType ∗ nm::TypeManager::createUserType (std::string desiredName)

try to create a new usertype with the given name

Returns

If a ModuleType was created, a pointer to it is returned. Note that the ModuleType is still owned by the
TypeManager.

If the name is unavailable a different name may be chosen.

7.30.3.3 const ModuleType ∗ nm::TypeManager::getType (std::string name) const

Search for a module type with the given name.

Returns

A pointer to a user type or built-in type, or nullptr if it was not found.

The documentation for this class was generated from the following files:

• model/typemanager.hpp

• model/typemanager.cpp

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

36 CONTENTS

7.31 nm::UnlinkedValueDefaultsGenerator Class Reference

Inheritance diagram for nm::UnlinkedValueDefaultsGenerator:

nm::UnlinkedValueDefaultsGenerator

nm::DefaultsGenerator

Public Member Functions

• UnlinkedValueDefaultsGenerator (const Module &module)
• virtual void generateDefaults (InlineGenerator &gen, std::ostream &out) override

The documentation for this class was generated from the following files:

• codegeneration/unlinkedvaluedefaultsgenerator.hpp
• codegeneration/unlinkedvaluedefaultsgenerator.cpp

7.32 nm::UserDataProvider Class Reference

Base class for stuff that needs to provide user data in form of a void∗ pointer.

#include <userdataprovider.hpp>

Inheritance diagram for nm::UserDataProvider:

nm::UserDataProvider

nm::Graph

nm::InputLink

nm::Module

nm::ModuleInput

nm::ModuleOutput

nm::ModuleType

nm::OutputLink

nm::TypeManager

Public Member Functions

• void ∗ getUserData () const
• void setUserData (void ∗userData)

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

7.33 nm::Value Struct Reference 37

7.32.1 Detailed Description

Base class for stuff that needs to provide user data in form of a void∗ pointer.

The documentation for this class was generated from the following file:

• util/userdataprovider.hpp

7.33 nm::Value Struct Reference

Inheritance diagram for nm::Value:

nm::Value

nm::Expression

nm::SyntaxNode

Public Member Functions

• Value (std::unique_ptr< SignalValue > v)

• virtual void gen (InlineGenerator &g, std::ostream &out) override

Public Attributes

• std::unique_ptr< SignalValue > value

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

7.34 nm::Variable Struct Reference

Inheritance diagram for nm::Variable:

nm::Variable

nm::Expression

nm::SyntaxNode

Public Member Functions

• Variable (std::string id)

• virtual void gen (InlineGenerator &g, std::ostream &out) override

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

38 CONTENTS

Public Attributes

• std::string m_id

The documentation for this struct was generated from the following file:

• codegeneration/inlinegenerator.hpp

8 File Documentation

8.1 model.hpp File Reference

The model module.

#include <nmlib/model/module.hpp>
#include <nmlib/model/moduletype.hpp>
#include <nmlib/model/moduleinput.hpp>
#include <nmlib/model/moduleoutput.hpp>
#include <nmlib/model/inputlink.hpp>
#include <nmlib/model/outputlink.hpp>
#include <nmlib/model/signaltype.hpp>
#include <nmlib/model/typemanager.hpp>
#include <nmlib/model/graph.hpp>

8.1.1 Detailed Description

The model module.

8.2 serialization.hpp File Reference

The serialization module.

#include <nmlib/serialization/parser.hpp>
#include <nmlib/serialization/serializer.hpp>

8.2.1 Detailed Description

The serialization module.

8.3 util.hpp File Reference

Utility headers.

#include <nmlib/util/makeunique.hpp>
#include <nmlib/util/noncopyable.hpp>
#include <nmlib/util/userdataprovider.hpp>

8.3.1 Detailed Description

Utility headers.

Generated on Sun Jun 29 2014 12:37:16 for Noise Modeler Library by Doxygen

Index

codegeneration, 6
Composite

nm::ModuleType, 26

GraphInput
nm::ModuleType, 26

GraphOutput
nm::ModuleType, 26

model, 8

nm::ModuleType
Composite, 26
GraphInput, 26
GraphOutput, 26
Primitive, 26

Primitive
nm::ModuleType, 26

serialization, 10

util, 11

	Abstract
	Sammendrag
	Acknowledgments
	List of Tables
	List of Figures
	Listings
	Glossary
	Introduction
	Benefits of generating terrains procedurally
	Current approaches
	Thesis goals
	Research questions
	Thesis outline

	Background
	Procedural content generation
	Terrain models
	Heightmaps
	Vector displacement fields
	Layered heightmap
	3D meshes
	Voxel grid
	Overview of common game engines and their supported terrain models

	Fractal terrains
	Stochastic interpolation
	Implicit procedural techniques
	Noise
	Value noise
	Perlin noise and other types of gradient noise
	Simplex noise
	Approximating fBm with noise
	Other uses of noise

	Simulating erosion
	Noise libraries
	libnoise
	Accidental Noise Library

	Offline terrain generators with procedural features
	World Machine
	Lithosphere

	GeoGen
	Procedural shader editors
	OpenGL
	The rendering pipeline
	Vertex shader
	Fragment shader
	Geometry shader
	Tessellation shaders
	Compute shaders
	The OpenGL shading language
	Noise generation on the GPU

	Terrain rendering
	Level-of-detail algorithms
	Geometry Clipmaps
	Continuous distance-dependent level of detail

	Qt

	Method
	Novelty of approach
	Concepts
	Terrain representation
	Modules
	Module types
	User types
	Signal types
	Metadata
	Formal model
	Comparison to libnoise and ANL concepts

	Framework requirements
	Real-time performance
	Portability and modifiability
	List of framework requirements

	Architecture
	Framework overview
	Library architecture
	The Noise Modeler application

	Parallel computation of implicit terrains
	Development process
	Verification

	Implementation
	Serialization
	The JSON format
	Noise Modeler documents
	Module types
	Modules
	Serialization example

	Library design
	User interface
	Graph editor
	Inspector
	List of module types
	Real-time previews
	Intended workflow

	GPU evaluation
	Generating GLSL code
	GLSL Noise implementation
	Implementing fBm and multi-fractal algorithms

	Rendering terrain previews
	Texture preview
	Heightmap 3D preview

	Results and Discussion
	Benchmarking
	Implemented and missing features
	Real-time preview
	Generator functions
	Lack of erosion algorithms

	Run-time complexity of generated GLSL code
	Pilot testing
	Software quality
	Supporting new evaluation platforms
	Supporting additional terrain types

	Utility as a game development tool

	Conclusions and Future Work
	Future work
	Improvement of heightmap rendering
	Platform support
	Other terrain paradigms
	Integration with existing frameworks
	More advanced built-in modules
	Combine with generate-and-test algorithms

	Bibliography
	Noise Modeler User's Guide
	Introduction
	Licensing

	Installation
	System requirements
	Prebuilt binaries

	Building from source
	Build dependencies
	Building on Linux
	Building on Windows

	Tutorial
	User interface
	Saving documents
	Opening documents
	Tabs
	Module type list
	Graph editor
	2D preview
	3D preview
	Inspector

	Module types
	Using the library to generate terrains online
	Loading a graph from JSON
	Generating a GLSL elevation function from a user type
	Dynamically creating heightmap textures using a GLSL function

	Poster Submission for SIGGRAPH 2014
	Benchmark code
	Noise Modeler Library API Reference

