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Abstract. C++ object type confusion vulnerabilities as the result of ille-
gal object casting have been threatening systems’ security for decades.
While there exist several solutions to address this type of vulnerability,
none of them are sufficiently practical for adoption in production scenar-
ios. Most competitive and recent solutions require object type tracking
for checking polymorphic object casts, and all have prohibitively high
runtime overhead. The main source of overhead is the need to track the
object type during runtime for both polymorphic and non-polymorphic
object casts. In this paper, we present CastSan, a C++ object type
confusion detection tool for polymorphic objects only, which scales effi-
ciently to large and complex code bases as well as to many concurrent
threads. To considerably reduce the object type cast checking overhead,
we employ a new technique based on constructing the whole virtual table
hierarchy during program compile time. Since CastSan does not rely on
keeping track of the object type during runtime, the overhead is dras-
tically reduced. Our evaluation results show that complex applications
run insignificantly slower when our technique is deployed, thus making
CastSan a real-world usage candidate. Finally, we envisage that based
on our object type confusion detection technique, which relies on ordered
virtual tables (vtables), even non-polymorphic object casts could be pre-
cisely handled by constructing auxiliary non-polymorphic function table
hierarchies for static classes as well.

Keywords: Static cast · Type confusion · Bad casting · Type safety
Type casting

1 Introduction

Real-world security-critical applications (e.g., Google’s Chrome, Mozilla’s Fire-
fox, Apple’s Safari, etc.) rely on the C++ language as main implementation lan-
guage, due to the balance it offers between runtime efficiency, precise handling of
low-level memory, and the object-oriented abstractions it provides. Thus, among
the object-oriented concepts offered by C++, the ability to use object typecast-
ing in order to increase, or decrease, the object scope of accessible class fields
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inside the program class hierarchy is a great benefit for programmers. However,
as C++ is not a managed programing language, and does not offer object type or
memory safety, this can potentially lead to exploits.

C++ object type confusions are the result of misinterpreting the runtime type
of an object to be of a different type than the actual type due to unsafe type-
casting. This misinterpretation leads to inconsistent reinterpretation of memory
in different usage contexts. A typical scenario, where type confusion manifests
itself, occurs when an object of a parent class is cast into a descendant class type.
This is typically unsafe, if the parent class lacks fields expected by the descendant
type object. Thus, the program may interpret the non-existent field or function
in the descendant class constructor as data, or as a virtual function pointer in
another context. Object type confusion leads to undefined behavior according
to the C++ language draft [1]. Further, undefined behavior can lead to memory
corruption, which in turn leads to exploits such as code reuse attacks (CRAs) [6]
or even to advanced versions of CRAs including the COOP attack [30]. These
attacks violate the control flow integrity (CFI) [2,3] of the program, by bypass-
ing currently available OS-deployed security mechanisms such as DEP [26] and
ASLR [28]. In summary, the lack of object type safety and, more broadly, mem-
ory safety can lead to object type confusion vulnerabilities (i.e., CVE-2017-3106
[12]). The number of these vulnerabilities has increased considerably in the last
years, making exploit based attacks against a large number of deployed systems
an everyday possibility.

Table 1. High-level feature overview of existing C++ object
type confusion checkers.

Checker Year Poly Non-poly No blacklist Obj. Tracking Threads
UBSan [15] 2014 � �
CaVer [22] 2015 � � � � limited
Clang CFI [8] 2016 � � �
TypeSan [18] 2016 � � � � �
HexType [19] 2017 � � � � �
CASTSAN 2018 � future work � not required �

Table 1 depicts
the currently
available solutions,
which can be used
for C++ object
type confusion
detection during
runtime. The
tools come with
the following lim-
itations: (1) high
runtime overhead (mostly due to the usage of a compiler runtime library), (2)
limited type checking coverage, (3) lack of support for non-polymorphic classes,
(4) absence of threads support, and (5) high maintenance overhead, as some
tools require a manually maintained blacklist.

We consider runtime efficiency and coverage to be most impactful for the
usage of such tools. While coverage can be incrementally increased by support-
ing more object allocators (e.g., child *obj=dynamic cast<*child>(parent),
ClassA *obj=new (buffer) ClassA();, char *str=(char) malloc(sizeof
(S)); S *obj=reinterpret cast<*S>(str);, see TypeSan, HexType, for more
details) and instrumenting them for later object type runtime tracking, increas-
ing performance is more difficult to achieve due to the required runtime of
type tracking support on which most tools rely. Reducing runtime overhead
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is regarded to be far more difficult to achieve, since object type data has to be
tracked at runtime and updating data structures at runtime (i.e., red-black trees,
etc.) has to be performed during a type check. As such, due to their perceived
high runtime overhead, most of the currently available tools do not qualify as
production-ready tools. Furthermore, the per-object metadata tracking mech-
anisms generally represent an overhead bottleneck in case the to-be hardened
program contains: (1) a high volume of object allocations, (2) a large number
of memory freeing operations, (3) frequent use of object casts, (4) exotic object
memory allocators (i.e., Chrom’s tcmalloc(), object pool allocators, etc.) for
which the detection tool implementation has to be constantly maintained.

Table 2. Object type confusion detection overhead for
SPEC CPU2006 benchmark.

Programs
Checker soplex (C++) xalancbmk (C++) astar (C++)
Clang-CFI [8] 5.03% 4.49% 0.9%
CASTSAN 2.07% 1.78% 0.3%
Speed-Up 2.42 times 2.52 times 3 times

We present CastSan,
a Clang/LLVM compiler-
based solution, usable as
an always-on sanitizer for
detecting all types of
polymorphic-only object
type confusions during run-
time, with comparable cov-
erage to Clang-CFI [8]. CastSan has significantly lower runtime performance
overhead than existing tools (see Table 2). Its technique is based on the observa-
tion, that virtual tables (vtables) of polymorphic classes can be used as a success-
ful replacement for costly metadata storage and update operations, which similar
tools heavily rely on. Our main insight is that: (1) program class hierarchies can
be used more effectively to store object type relationships than Clang-CFI’s bit-
sets, and (2) the Clang-CFI bitset checks can be successfully replaced with more
efficient virtual pointer based range checks. Based on these observations, the
metadata that has to be stored and checked for each object during object cast-
ing is reduced to zero. Next, the checks only require constant checking time due
to the fact that no additional data structures (i.e., TypeSan and HexType use
both red-black trees for storing relationships between object types) have to be
consulted during runtime. Finally, this facilitates efficient and scalable runtime
vptr-based range checks.

CastSan performs the following steps for preparing the required metadata
during compile time. First, the value of an object vptr is modified through inter-
nal compiler intrinsics such that it provides object type information at runtime.
Second, these modified values are used by CastSan to compute range checks
that can validate C++ object casts during runtime. Third, the computed range
checks are inserted into the compiled program. The main observation, which
makes the concept of vptr based range checks work, is that range checks are
based on the fact, that any sub-tree of a class inheritance tree is contained in
a continuous chunk of memory, which was previously re-ordered by a pre-order
program virtual table hierarchy traversal.

CastSan is implemented on top of the LLVM 3.7 compiler framework [24] and
relies on support from LLVM’s Gold Plug-in [23]. CastSan is intended to address
the problem of high runtime overhead of existing solutions by implementing an
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explicit type checking mechanism based on LLVM’s compiler instrumentation.
CastSan’s goal is to enforce object type confusion checks during runtime in pre-
viously compiled programs. CastSan’s object type confusion detection mecha-
nism relies on collecting and storing type information used for performing object
type checking during compile time. CastSan achieves this without storing new
metadata in memory and by solely relying on virtual pointers (vptrs), that are
stored with each polymorphic object.

We evaluated CastSan with the Google Chrome [16] web browser, the open
source benchmark suite of TypeSan [18], the open source benchmark programs of
IVT [5], and all C++ programs contained in the SPEC CPU2006 [31] benchmark.
The evaluation results show that, in contrast to previous work, CastSan has
considerably lower runtime overhead while maintaining comparable feature cov-
erage (see Table 1 for more details). The evaluation results confirm that CastSan

is precise and can help a programmer find real object type confusions.
In summary, we make the following contributions:

– We develop a novel technique for detection of C++ object type confusions
during runtime, which is based on the linear projection of virtual table hier-
archies.

– We implement our technique in a prototype, called CastSan, which is based
on the Clang/LLVM compiler framework [24] and the Gold plug-in [23].

– We evaluate CastSan thoroughly and demonstrate that CastSan is more
efficient than other state-of-the-art tools.

2 Background

Before presenting the technical details of our approach, we review necessary
background information.

2.1 C++ Type Casting

Object type casting in C++ allows an object to be cast to another object, such
that the program can use different features of the class hierarchy. Seen from
a different angle, object typecasting is a C++ language feature, which aug-
ments object-oriented concepts such as inheritance and polymorphism. Inheri-
tance facilitates that one class contained inside the program class hierarchy inher-
its (gets access) to the functionality of another class that is located above in the
class hierarchy. Object casting is different, as it allows for objects to be used in
a more general way (i.e., using objects and their siblings, as if they were located
higher in the class hierarchy). C++ provides static, dynamic, reinterpret
and const casts. Note that reinterpret cast can lead to bad casting, when
misused and is unchecked “by design”, as it allows the programmer to freely
handle memory. In this paper, we focus on static cast and dynamic cast (see
N4618 [1] working draft), because the misuse of these can result in bad object
casting, which can further lead to undefined behavior. This can potentially be
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exploited to perform, for example, local or remote code reuse attacks on the
software.

The terminology of this paper is aligned to the one used by colleagues [18],
in order to provide terminology traceability as follows. First, runtime type refers
to the type of the constructor used to create the object. Second, source type is
the type of the pointer that is converted. Finally, target type is the type of the
pointer after the type conversion.

An upcast is always permitted if the target type is an ancestor of the source
type. These types of casts can be statically verified as safe, as the object source
type is always known. Thus, if the source type is a descendant of the target type,
the runtime type also has to be a descendant and the cast is legal. On the other
hand, a downcast cannot be verified during compile time. This verification is
hard to achieve, since the compiler cannot know the runtime type of an object,
due to intricate data flows (for example, inter-procedural data flows). While it
can be assumed that the runtime type is a descendant of the source type, the
order of descendancy is not known. As only casts from a lower to a higher (or
same) order are allowed, a runtime check is required to check this.

2.2 C/C++ Legal and Illegal Object Type Casts

A type cast in C/C++ is legal only when the destination type is an ancestor of
the runtime type of the cast object. This is always true if the destination type
is an ancestor of the source type (upcast). In contrast, if the destination type is
a descendant of the source type (downcast), the cast could only be legal if the
object has been upcast beforehand.

Fig. 1. C++ based object type down-casting and up-casting examples.

Figure 1 depicts upcast and downcast in an example hierarchy. The graph
of Fig. 1(a) is a simple class hierarchy. The boxes are classes, and the arrows
depict inheritance. The code of Fig. 1(b) shows how upcast and downcast look
in C++. The upcast and downcast arrows besides the graph visualize the same
casts that are coded in C++ in Fig. 1(a). To verify the cast, the runtime type
of the object is needed. Unfortunately, the exact runtime type of an object is
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not necessarily known to the compiler for each cast, as explained in the previous
section. While the source type is known to the compiler for each cast, it can only
be used to detect very specific cases of illegal casts (e.g., casts between types
that are not related in any way, which means they are not in a descendant-
ancestor relationship). All upcasts can be statically verified as safe because the
destination type is an ancestor of the runtime type. If the destination type is
not an ancestor of the runtime type, then the compiler should throw an error.

2.3 Ordered vs. Unordered Virtual Tables

In this section, we briefly describe the differences between in-memory ordered
and unordered vtables and how these can be used to detect object type confusions
during runtime.

Fig. 2. Illegal and legal object casts vs. ordered and unordered virtual tables. (Color
figure online)

Figure 2(a), (b), and (c) highlight the case in which an illegal object cast
would not be detected if the vtables are not ordered (see blue shaded code in
line number eight), while Fig. 2(d), (e), and (f) show how a legal (see green
shaded code in line number four) and an illegal (see red shaded code in line
number eight) object cast can be correctly identified by using the object vptr in
case the vtables are ordered in memory.

On the one hand, Fig. 2(c) shows the vptr value as it would be present in
the unordered case of Fig. 2(b) and (a). The object x, that is constructed at line
number seven with the constructor of Z (runtime type) has a vptr of value 0x18
in the unordered case. x is referenced by a pointer of type X (source type) and
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at line number eight it is cast to Y (destination type). This is an illegal object
cast, as Z does not inherit from Y . The vptr of x is in the range of Y built from
the unordered vtable layout of Fig. 2(b). A range check would, therefore, falsely
conclude that the cast is legal.

On the other hand, Fig. 2(f) depicts the same objects as constructed after
ordering according to Fig. 2(e) and (d). At line number three, the object x is
instantiated having (runtime) type W . The object, therefore, has a vptr with
value 0x10 according to Fig. 2(d). The object is referenced by a pointer of type
X (source type) and at line number four, the object x is cast to Y (destination
type). This cast is a legal object cast, as the vptr 0x10 has a value between the
vtable address of Y 0x08 and the address value of the last member of the sub-list
of Y 0x10. Note that this memory range is depicted in Fig. 2(e). Further, at line
number seven, the object x is newly allocated with the constructor of Z. Next,
the object is cast to Y at line number eight. As x’s vptr is 0x18, which is the
vtable address of Z, it can be observed that the cast is illegal. The reason is that
the vptr value 0x18 is larger than the largest value of the sub-list of Y , which
is the vtable address of W , 0x10. Thus, in this way the object type confusion
located at line number eight can be correctly detected.

Finally, note that the range checks, which we will use in our implementation,
are precise, when the vtables of all program hierarchies are ordered with no gaps
in memory according to, for example, their pre-order traversal. In case this is
not guaranteed, then the range checks could generate false positives as well as
false negatives (see the blue shaded code in Fig. 2(c)).

3 Threat Model

The threat model used by CastSan resembles HexType’s threat model. Specif-
ically, we assume a skilled attacker who can exploit any type of object type
confusion vulnerability, but who does not have the capability to make arbitrary
memory writes. CastSan’s instrumentation is part of the executable program
code and thus assumed to be write-protected through data execution protection
(DEP) or another mechanism. Further, CastSan does not rely on information
hiding; as such the attacker is assumed to be able to perform arbitrary reads.
This is not a limitation, as CastSan does not rely on randomization or code
shuffling as other CFI schemes [10,33]. As CastSan focuses exclusively on C++
object down-cast type confusions, we assume that other types of memory corrup-
tions (i.e., buffer overflows, etc.) are combated with other types of protection
mechanisms and that CastSan can work along these complementary defense
mechanisms. Finally, we assume that for any large existing source code base,
which is affected by object type confusions (e.g., [11]), this cannot currently be
fixed solely by inspecting the source code statically or manually and that the
attacker has access to the source code of this vulnerable application.
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4 Design and Implementation

In Sect. 4.1, we present the architecture of CastSan, and in Sect. 4.2, we explain
how virtual table inheritance tree projections are used by CastSan, while in
Sect. 4.3, we describe our object type confusion detection checks. Finally, in
Sect. 4.4, we outline CastSan’s implementation.

4.1 Architecture Overview

CASTSAN’s Main Analysis Steps. CastSan instruments object casts as fol-
lows: (1) source code files are fed into the Clang compiler, which adds several
intrinsics needed to mark all possible cast locations in the code, (2) CastSan

uses the vtable metadata and the virtual table hierarchies, which were embed-
ded in each object file in the Clang front-end, (3) placeholder intrinsic-based
instructions are used for recuperating the vptr and the mangled name of the
object type which will be later cast, and (4) placeholder intrinsic-based instruc-
tions for the final pre-cast checks are inserted, containing the per object cast
range. The intrinsics will be removed before runtime and will be converted to
concrete instruction sequences used to perform the object type cast check. The
placeholder intrinsics are used by CastSan since part of the information needed
for the checking of illegal casts is not available during compile time (the vptr
value is computed during runtime). Finally, during link time optimization (LTO)
[25], the following operations are performed: (1) the virtual table hierarchy is
constructed and decomposed into primitive vtable trees, and (2) the placeholder
intrinsics used to check for down-cast violations are inserted based on the anal-
ysis of the previous primitive vtable trees.

Figure 3 depicts the placement of CastSan’s components within the
Clang/LLVM compiler framework and the analysis flow indicated by circled
numbers.

Building Virtual Pointer Based Range Checks. First, the LValue (LLVM
data type) ❶ and RValue (LLVM data type) ❷ casts are instrumented inside the
Clang compiler with additional C++ code. Second, only the polymorphic casts
are selected from these casts ❸. Third, the polymorphic casts are flagged for
instrumentation using an LLVM intrinsic ❹ during LTO. Fourth, the intrinsics
inserted by CastSan with the help of Clang are detected ❺ for later usage during
LTO. Fifth, the metadata of the intrinsics is read out ❻ to acquire all necessary
information about an object cast-site. Sixth, the ranges necessary for checking
object type confusions are built in ❼. Note that an object range is computed by
using the virtual address of the object destination type and the count of all nodes
(vtables) inheriting from the destination type. Finally, the object cast-sites are
instrumented with a range check ❽.

4.2 Virtual Table Inheritance Tree Projection

CastSan computes virtual table inheritance trees for each class hierarchy con-
tained in the analyzed program. Next, CastSan uses these vtable inheritance
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Fig. 3. CastSan system architecture.

trees to determine if the ancestor-descendant relation between the types of the
cast objects holds. The ancestor-descendant relations between object types rely
on several properties of these ordered vtable inheritance trees, which we will
explain next. The root of such a virtual table inheritance tree is a polymorphic
class that does not inherit from other polymorphic classes (root type). Note that
a class has only one vtable associated to it. Further, each such vtable is broken
into multiple primitive vtables. Also note that these vtables can occupy different
places in this ordering. The children of any node in the vtable tree are all types
that directly inherit from the ancestor class and are located underneath this class
in the program class hierarchy. If a class inherits from multiple vtables, it has
a node in any tree that the ancestor types are a part of. The leaves of a vtable
tree are vtables, which have no descendants. CastSan will put the vtables that
are in any type of a descendant-ancestor relation to each other in a single virtual
inheritance tree. Next, we show how a virtual table projection list is computed.

Figure 4(a) depicts the memory layout of the vtables of the class represented
by the primitive hierarchy in Fig. 4(b). The vtables contain their addresses as
these are laid out in memory (i.e., consider address 0x08) along with the pointers
to the virtual functions (i.e., Y::x()). Note that in the unordered table located
on the left side of Fig. 4(a), there is no relationship between the addresses of
the vtables and the class hierarchy. For simplicity reasons, we opted in Fig. 4(a)
to depict each box of the vtable hierarchy to contain a single entry. In general,
when there are multiple entries in each vtable contained in the vtable hierarchy,
the vtables will be interleaved to ensure that their base pointers are consecutive
addresses in memory. After ordering the values of the addresses of the vtables



10 P. Muntean et al.

Fig. 4. Unordered and ordered (a) vtables of the tree rooted in X. The tree (b) contains
the vptr of each type after ordering. (c) depicts the projected list corresponding to (b).

(right table in Fig. 4(a)) the addresses are in ascending order (e.g., W inherits from
Y directly, thus it comes directly after Y in the vtable). Further, after interleaving
the addresses of the vtables, their values are in ascending order corresponding
to the depth-first traversal, as shown in the projected list depicted in Fig. 4(c).
Next, CastSan uses a pre-order traversal of each vtable inheritance tree in order
to construct a list of vtables, which represents a projection of a tree hierarchy
onto a list. For example, if the type of a vtable (first row in a box, see Fig. 4(b))
is the descendant of another type, it is inserted after the other type in the list.
Further, any sub-tree of each tree is represented as a continuous sub-list of virtual
tables by CastSan. This means that the types that inherit from the root type
of the sub-tree will be inserted into the list in direct succession to the sub-tree
root. Finally, the projected list will be used to compute object cast ranges which
will subsequently be used to determine legal and illegal relations between the
object types during a cast operation.

4.3 Object Type Confusion Detection

Virtual Pointer Usage as Runtime Object Type Identifier. CastSan

uses the virtual pointer (vptr) of an object to identify its type at runtime. Note
that any polymorphic type contains a set of virtual methods that are reachable
from any object using its vptr. The vptr of a type is saved in any polymorphic
object that is created using the type’s constructor. By type constructor, we
mean the function which is called when an object of a certain type is allocated.
Furthermore, note that each legally cast instance of a polymorphic object can
be uniquely identified by its vptr since the vptr of an object is always the first
field of that object. CastSan therefore reads the vptr of any object at runtime
to uniquely identify its runtime type. CastSan does this by loading the first
64-bit of the object into a register using an intermediate representation (IR)
load instruction. This load instruction is inserted by CastSan during LTO for
runtime usage.
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Determine Object Type Inheritance at Runtime. As previously men-
tioned, CastSan checks object casts by using the projected virtual table hier-
archy list (see Fig. 4(c) for more details). A projected class hierarchy consists
of ordered vtable addresses. The runtime type of an object must inherit from
the destination type of the cast in order for the cast to be legal. This happens
if the vtable of the runtime type is a child in the sub-tree of the vtable of the
destination type. Further, if this is the case, the runtime type comes after the
destination type in the depth-first list of the tree. Since all nodes of a sub-tree
are placed successively in the projected list, this means that these nodes are
located before the last element of the sub-tree in the list. Therefore, CastSan

does not need to traverse the whole sub-list representing the sub-tree of the
destination type to check if the runtime type is part of it. It is enough to check
whether it is anywhere between the first and the last element in the list. This
holds because the type of the object holding the vptr has to have a vtable in the
sub-tree of the destination type, which means it inherits from the destination
type. Otherwise, if the vptr is not in the range, it has no vtable inheriting from
the vtable of the destination type and therefore its type does not inherit from the
destination type. Therefore, the object cast is illegal in this situation. CastSan

implements this mechanism at runtime using range checks on the vtable pointer
of an object and additionally by using the values of the vtable addresses of the
destination type sub-tree. CastSan checks during runtime if the value of the
vptr is larger than the vtable address of the destination type and smaller than
the address value of the last vtable entry located in the sub-list corresponding
to the destination type. If this holds, then the runtime type must inherit from
the destination type; therefore, the cast is legal. Otherwise, if the vptr value is
not contained between the above mentioned boundaries, then the runtime type
does not inherit from the destination type, thus the object cast is not legal.

Virtual Table Based Range Checks. CastSan uses vtable based range
checks in order to check if the vptr of an object resides between two allowed
values. CastSan’s range check is based on the observation that the addresses
of the ordered vtables are re-arranged by interleaving them through a pre-order
traversal of the inheritance trees in which these vtables are contained. There-
fore, the addresses of any sub-tree lay continuously and gapless in memory. By
continuously and gapless we mean that there is no starting address of another
vtable not belonging to the sub-tree in between the addresses of a sub-tree, and
the starting addresses of the vtable lie consecutively in memory, respectively.
Further, if the vptr points to any address between the first and the last address
of the sub-tree, then it has to be in the list of all addresses located in the sub-tree
and therefore the cast is legal. In this way, CastSan can simplify the type check
to a range check. CastSan builds a range check by using the vtable address V of
the destination type X and the count c of all classes that inherit from X. V and
c can be statically determined at compile time for each object cast performed
in the program. To perform the check at runtime, the vptr value P is extracted
from the object before the cast. Next, the following expression is evaluated by
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CastSan during runtime. If V + c ≥ P ≥ V holds, then the cast is legal, oth-
erwise the cast is illegal and program execution will be terminated or an error
log output can be produced depending on the employed CastSan usage mode
flag. Note that CastSan offers the possibility to include in the else-branch of
the inserted cast check the option to log back-trace information instead of ter-
minating the program which is obviously not always desired (see Fig. 5 for more
details).

The generated object cast range check has the following advantages com-
pared to other state-of-the-art techniques. First, in terms of memory overhead,
CastSan does not require any additional metadata at runtime to be recorded,
deleted or updated in order to determine class hierarchy relationships. Second,
the range check needed for the sub-typing check has O(1) runtime cost com-
pared to O(n) runtime cost of other tools due to traversals of additional data
structures (e.g., red-black tree).

Instrumenting a C++ Object Cast. CastSan replaces the cast check intrin-
sics inserted into the code within the Clang compiler with a range based cast
check (see ❽ depicted in Fig. 3 for more details) during LTO. The check is sub-
stituted with an equality check if the count of vtables in the range is one. The
equality check matches the vtable address of the range with the vptr of the
object. If the addresses are equal, then the cast is legal, otherwise it is illegal. In
case the range has more elements than one, then a range check will be inserted.
The steps for building and inserting the final range check are as follows. First,
the value of the start address of the range is subtracted from the vptr value by
CastSan. Further, if the pointer value was lower than the start address of the
vtable, then the result is negative and the cast is illegal. Second, the result of
the subtraction is next rotated by three bits to the right to remove the empty
bits that define the pointer length. If the result of the subtraction was negative,
this rotation shifts the sign of the result to the right, making it the most sig-
nificant bit. Therefore, if the cast is illegal, then the result of the bit rotation
is a large number. More specifically, the number is then larger than any result
of a valid cast. This holds because the most significant bit, where the sign was
shifted due to the rotation, would have been shifted to the right. This would
make the number smaller than the illegal case. The result is either the distance
of the destination type from the runtime type within the vtable hierarchy or an
invalid large number. Finally, the value is compared to the number of vtables in
the range. If the value is less than or equal to the count, then the cast is legal
and program execution can continue, otherwise an illegal cast is reported. By
using these instructions, the range check can ensure three preconditions for a
legal cast using only one branch. If any of the following preconditions do not
hold, CastSan will report an illegal cast. This is the case if the value of the vptr
is: (1) higher than the last address in the range (i.e., the type of the object is
not directly related to the destination type), (2) lower than the first value of
the vtable address range (i.e., the runtime type of the object is an ancestor of
the destination type), resulting in the negative bit being shifted to a significant
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bit of the subtraction result, or (3) not aligned to the pointer length (i.e., the
pointer is corrupted). Note that in (3) the unaligned bit is rotated to one of
the significant bits or to the signing bit. Since the comparison is unsigned, the
number would then again be larger than the last address in the vtable range.

Further, note that the vptr of an object can always be used to perform the
check in the primary inheritance tree of the object source type. Finally, the
primary inheritance tree, represents the tree which contains the virtual table of
the object types as primary parent.

Fig. 5. Instrumented polymorphic C++ object type cast.

Figure 5 depicts a C++ object type cast at line number two in Fig. 5(a), the
un-instrumented assembly code in Fig. 5(b), and the assembly code instrumen-
tation added by CastSan in Fig. 5(c) (the range check is highlighted in gray
shaded color). In Fig. 5(a), without line number three the compiler generates
does not generate code since the Clang/LLVM compiler is designed to not gen-
erate specific code for object casts. Only for the object dispatch (see line number
three), assembly code is generated. The assembly code in Fig. 5(b) corresponds
to the object dispatch depicted in Fig. 5(a) at line number 3. Finally, we assume
that the OS provides an W ⊕ X protection mechanism (e.g., data execution
prevention (DEP)) and thus the assembly code depicted in Fig. 5(c) cannot be
modified (rewritten) by an attacker.

Next, we present the operations performed by the instructions contained in
the range check (gray shaded code in Fig. 5) in order to better understand how
the check operates. First, the vtable address of type X (corresponding to line
number one in Fig. 5(a)) 0x401080 is loaded. In line number two, in Fig. 5(c),
the fixed value of the address is moved to the register %rcx. This is done in
order to load the first value of the range. Second, the vptr of the object x is
moved to register %rdx depicted in line number three. This is done in order to
provide the second value of the subtraction of the range check. Note that the
object pointer itself was already loaded in register %rax. This is not depicted in
Fig. 5 for reasons of brevity. Third, the sub instruction performs the subtraction
of the vtable address (stored in %rcx) from the vptr (stored in %rdx). At line
number five, depicted in Fig. 5(c), the pointer alignment is removed from the
result by using a rotation (i.e., rol) instruction. This is done to obtain the
distance of the vptr from the vtable address of the destination type located in
the vtable hierarchy. Note that if the number of all types inheriting from the
destination type is higher or equal to the distance, the cast is legal. Finally,
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the result is compared to the constant $0x2, which is the number of all types
inheriting from the destination type Y , specifically these are Y and W . Then, the
program execution either jumps to the address of the instruction ud2 located at
line number one in Fig. 5(c) (address 0x400fc0), which terminates the program;
otherwise, the object dispatch (line number three in Fig. 5(c)) will be performed
similar as in Fig. 5(b) and the program continues its execution.

4.4 Implementation

Components. CastSan is implemented as two module passes for the Clang/L-
LVM compiler [24] infrastructure by extending LLVM (v.3.7) and relies on the
Gold plug-in [23]. CastSan is based on the virtual table interleaving algorithm
presented by Bounov et al. [5] from which it reuses its interleaved vtable meta-
data, by transporting it from the Clang compiler front-end to the LTO phase via
new metadata nodes inserted into LLVM’s IR code. More specifically, CastSan’s
implementation is split between the Clang compiler front-end, and a new link-
time pass used for analysis and generating the final intrinsic based compiler cast
checks. CastSan’s transformations operate on LLVM’s intermediate represen-
tation (IR), which retains sufficient programming language semantic information
at link time to perform whole program analysis and identify all possible types
of polymorphic C++ casts in order to instrument them.

Usage Modes. CastSan’s implementation provides three operation modes
with corresponding compiler flags. First, attack prevention mode can be used
in shipped program binaries to customers. This mode can be used, if desired,
to terminate program execution when an illegal cast is detected, thus provid-
ing an effective mechanism for avoiding undefined behavior which may lead to
vulnerability based CRAs. Second, software testing mode can be used during
program testing in order to detect type confusion errors and to help fix them
before the software is shipped by subjecting the analyzed program to a test suite
with different possible goals (i.e., program path coverage, etc.). Finally, relaxed
mode can be used to detect and log illegal casts detected during development or
deployment. This last mode is mainly intended as a replacement for the situa-
tion that it is not safe to stop program execution which is mainly the case for
real-world programs.

5 Evaluation

We evaluated CastSan by instrumenting various open source programs and con-
ducting a thorough analysis with the goal to show its effectiveness and practical-
ity. The experiments were performed using the open source benchmarks Type-
San [18], IVT [5], Google’s Chrome (v.33.0.1750.112) web browser, and SPEC
CPU2006 benchmark (only for the C++ based programs), which were also used
by HexType [19]. If not otherwise stated, we used the Clang -O2 compiler flag
for all our experiments. In our evaluation, we addressed the following research
questions (RQs).
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RQ1: What is the runtime overhead of CastSan (Sect. 5.1)
RQ2: How precise is CastSan? (Sect. 5.2)
RQ3: How effective is CastSan? (Sect. 5.3)
RQ4: How can CastSan assist a programmer during a bug bounty? (Sect. 5.4)

Comparison Method. In addition to the runtime overhead and binary blow-
up, the coverage and precision of HexType is compared to that of CastSan.
For benchmarking SPEC CPU2006, the benchmark script of TypeSan, and the
micro-benchmark of ShrinkWrap [17] was used.

Preliminaries. The script of TypeSan (approx. 606 Bash LOC) sets up a full
environment consisting of: Binutils, Bash, Coreutils, CMake, Pearl. These are
used for instrumenting the SPEC CPU2006, and UBench (consisting of 10 intri-
cate C++ testcases). After the benchmark is set up, the script compiles the pro-
grams and checks each program by starting it and checking it to see if it executed
successfully.

The script of IVT (approx. 200 Python LOC) is used to compile up to 50
C++ programs. Some of the programs contain object type confusions. After each
instrumented program execution, the script checks if the program executed suc-
cessfully or not.

Experimental Setup. We evaluated CastSan on an AMD Ryzen R7 1800x
CPU using 8 cores with 16 GB of RAM running the Debian 8 Jessie OS. All
benchmarks were executed 10 times to obtain reliable mean values.

Table 3. Benchmark results of running various C++ programs contained in the SPEC
CPU2006 benchmark with CastSan enabled and disabled (vanilla). The values repre-
sent the mean time needed to finish running the benchmark program over 10 runs.

Benchmark Vanilla CastSan Overhead
soplex 207.14 211.43 2.07%
povray 123.34 125.28 1.57%
omnetpp 269.14 270.06 0.34%
astar 334.96 335.96 0.30%
dealII 186.71 188.47 0.94%
xalanckbmk 413.67 421.03 1.78%
namd 266.42 266.43 0.00%
average 1.0%
geomean 0.92%

5.1 Performance Overhead (RQ1)

Table 3 depicts the overall runtime overhead on only the relevant C++ programs
contained in the SPEC CPU2006 benchmark. The geomean value of the overhead
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in these benchmarks is under 1% (0.92%). As an outlier, soplex showed an
overhead of 2.07%. For most benchmarks, the overhead is lower than 1.0%. Some
SPEC CPU2006 benchmarks like astar do not contain static casts and thus no
check is performed. These results show that the overhead is within the margin
of error. This is to be expected as CastSan does not need to execute additional
code on execution when no checkable casts are present in the code.

Table 4. Runtime overhead on Chrome with CastSan enabled and disabled (vanilla).

Benchmark High/Low Vanilla CastSan Overhead
gc-sunspider [32] < 123.4 124.1 0.57%
gc-octane [27] > 29885 29889 -0.01%
gc-drom-js [14] > 1987.21 1991.58 -2.18%
gc-balls [4] > 216 215 0.47%
gc-kraken [21] < 933.1 941.2 0.87%
gc-jetstream [20] < 184.06 184.44 0.21%
average -0.01%
geomean 0.31%

Table 4 depicts the average and geomean runtime overheads of CastSan in
seven of the most popular JavaScript benchmarks. The greater/less symbols (in
High/Low) next to the name describe if higher (>) or lower (<) values are
better in the benchmark. More precisely, higher is better for jetstream, octane,
balls and dromaeo benchmarks; lower is better in sunspider and kraken. The
numbers in columns Vanilla and CastSan represent aggregate benchmark scores
and have no particular intrinsic meaning. The average value of the overhead of
CastSan in these benchmarks is −0.01%, which is in the margin of error. The
low overhead obtained when running JavaScript benchmarks in the instrumented
Chrome demonstrates that CastSan can efficiently scale to large code bases with
complex class hierarchies.
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Fig. 6. Clang-CFI (gray) vs. CastSan (black) SPEC CPU2006 benchmark overhead.
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Figure 6 depicts the average and geomean runtime overheads of CastSan

in comparison with the Clang-CFI cast checker when ran on several C++ pro-
grams contained in the SPEC CPU2006 benchmark with the following com-
piler flags: -fsanitize=cfi-cast-strict, -fsanitize=cfi-derived-cast,
and -fsanitize=cfi-unrela-ted-cast. Note that the Clang-CFI cast checker
instruments the same set of static object casts as CastSan. We compared the
Clang-CFI and CastSan runtime overhead w.r.t. the baseline LLVM 3.7 compi-
lations. Note that for the baseline compilation no additional compiler flags and
no LTO support (we compiled without the Clang’s -flto compiler flag) was
used. Finally, it can be observed that the overhead of CastSan is about two
times lower on average than the overhead of Clang-CFI when running on the
SPEC CPU2006 programs.
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Fig. 7. Clang-CFI (gray) vs. CastSan (black) Chrome runtime overhead.

Figure 7 depicts the runtime overhead of Chrome when ran on sev-
eral JavaScript benchmarks. First, we compiled with Clang-CFI, and sec-
ond, with CastSan enabled and with the following compiler flags enabled:
-fsanitize=cfi-cast-strict, and -fsanitize=cfi-derived-cast. We did
not use the -fsanitize=cfi-unrelated-cast compiler flag, since Chrome was
not able to start (crashed during start) after applying this flag. In total, the same
amount of object casts where instrumented by each of the tools. However, we
can observe that compared to Clang-CFI, the geomean and average overheads of
CastSan are better on large code bases such as the Chrome browser. The low-
est runtime overhead value, −2.18%, was obtained with CastSan when running
the Dromaeo-js benchmark, while the lowest overhead, −1.17%, was obtained
by Clang-CFI when running the Sunspider JavaScript benchmark. Overall, we
observed a 54 times speed-up on average and 8.9 times speed-up in geomean for
CastSan when compared to Clang-CFI cast checker.

5.2 Precision (RQ2)

We evaluated the precision of CastSan by using complex class hierarchies of
programs contained in the open-source micro-benchmark of TypeSan [18] and
the benchmark programs (in total more than 50 programs) provided by the IVT
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tool. This benchmark includes: (1) casts to secondary parents, (2) casts within
a diamond inheritance, and (3) casts from unrelated trees.

The results indicate that each cast that is covered by CastSan can be pre-
cisely checked and the implementation leaves no room for unmitigated cor-
ner cases. Moreover, CastSan did not show the imprecisions described in the
ShrinkWrap paper. There, the authors show specific cases of class inheritances
(e.g., diamond inheritance) where vtable based function call sanitizers allow
calls to illegitimate functions of sibling classes. Finally, CastSan was able to
cope with all complex class hierarchies contained in these benchmarks and no
false negatives or false positives were reported. Thus, we conclude that CastSan

is precise and leaves no space for untreated corner cases.

5.3 Effectiveness (RQ3)

We evaluated the effectiveness of CastSan by selecting the last ten type con-
fusions reported in Google Chrome which had common weakness enumeration
(CVE) reports associated. All these type confusions have been reported and par-
tially fixed in the current Chrome browser version. The goal of this experiment
is to show that CastSan can find object type confusions in real-world software.

We recompiled the Chrome web browser with the CastSan checks in place
and ran all JavaScript benchmarks, which we also used to check the performance
of Chrome (see Fig. 7 for more details). In total, out of the ten object type
confusions, CastSan was able to report three type confusions at the correct
location. We further investigated the other undetected type confusions and found
out that these were not detected since the used JS benchmarks do not interact
with the code of Chrome which contains these bugs. As such, this is an issue
which can be addressed with more extensive test suites which reach the other
bugs not previously detected. Finally, we conclude that CastSan is effective in
detecting real-world type confusions.

5.4 Programmer Assistance (RQ4)

Fig. 8. Type confusion back-trace for the xalancbmk program.

We evaluated how
useful CastSan is in
helping a program-
mer to find and fix a
type confusion bug.
For this reason, we
used a well-known
type confusion bug
and depict the error
log in order to show
how the programmer
is guided when fix-
ing a type confu-
sion bug. The goal of
this experiment is to
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show that CastSan can effectively help a programmer to pinpoint the exact
bug location. Figure 8 depicts the backtrace that CastSan prints out when run-
ning the xalancbmk program contained in the SPEC CPU2006 benchmark. The
SPEC CPU2006 xalancbmk has a known type confusion vulnerability, as men-
tioned in [5], which CastSan is able to detect. Thus, on execution, it prints the
back-trace leading to the illegal cast. Line numbers 1 to 27 are the verbose output
of CastSan, notifying the user that an illegal cast happened during execution. In
lines 25, 26 and 27 the mangled name of the exact function containing the illegal
object cast is printed. Using the offset printed in the square brackets at the end
of the line, a developer can find the line in the code where the illegal object
cast was defined. The error log depicted in Fig. 8 demonstrates that CastSan is
able to detect real type confusion bugs in applications by running a program in
backtrace-mode. Finally, we conclude that CastSan can help developers during
bug bounties [34], and can protect against exploitable type confusions.

6 Discussion

In this section, we present CastSan’s limitations and discuss how to address
these.

Non-polymorphic Classes. CastSan provides type safety for objects stem-
ming from polymorphic classes and low runtime overhead. Further, CastSan

cannot check casts between non-polymorphic objects. This is because only poly-
morphic objects have a virtual pointer (vptr). The vptr is an integral requirement
for checking object type casts using CastSan. This means CastSan cannot miti-
gate all types of object type confusion vulnerabilities. A possible way to address
this limitation is to construct for static classes an artificial virtual-table-like
metadata on which CastSan’s technique can be based such that our technique
becomes usable for non-polymorphic object type casts.

Reinterpret-Cast. In C++, not only static cast can lead to object type
confusion. The misusage of reinterpret cast can also pose threats. HexType
addresses this threat by extending its type cast checking to reinterpret cast
in addition to static cast. While this can effectively hinder a type confusion
vulnerability from occurring, it is debatable if checking reinterpret cast is
viable. This question arises, as reinterpret cast can be used as a legitimate
way of breaking class hierarchy boundaries, if the memory layout of the cast
types match. In this case, a type cast check based on class hierarchy information
cannot be made. Therefore, if reinterpret cast is checked for type safety, its
purpose can potentially be circumvented. Similarly, as other object type confu-
sion detection tools handle reinterpret cast, we could use compiler runtime
checking support for checking for this type of confusions.

Increasing Tool Coverage. The incremental research work between TypeSan
and HexType shows that the main path for increasing object type confusion
detection coverage is to support more types of memory allocators (i.e., jmalloc,
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tcmalloc, etc.) or other more exotic ones. Further, the coverage of CastSan can
be increased by supporting all types of C++ program locations (i.e., statement
types) where such vulnerabilities could manifest. Thus, CastSan’s coverage can
be consistently increased by instrumenting all these source code locations with
the needed checks in place in order to check during runtime for object type
confusions.

Finding New Vulnerabilities. Finding new object type confusion vulnerabil-
ities is directly linked to increasing the tool coverage and is mainly driven by
three lines of research. These are: (1) check new program locations which were
previously not possible to be instrumented, (2) support new memory allocators
(e.g., object pool allocators, etc.), and (3) reduce the runtime overhead of an
object type detection technique such that the technique becomes applicable in
real-world deployment. Thus, in future work we want to increase the coverage
of CastSan by addressing the above mentioned points.

7 Related Work

Virtual Table Pointer-Based Tools. Clang-CFI [7,9] (cast checker) is similar
to CastSan in that it uses no runtime library and all cast check detection meta-
data is computed during compile time. However, there are no publicly available
evaluation results of Clang-CFI, and therefore we evaluated Clang-CFI in Sect. 5
independently. Clang-CFI relies on bitsets in order to model the class hierarchy
of a program. Clang-CFI uses these bitsets to encode the valid virtual table start
addresses for each class. Compared to CastSan, Clang-CFI has a higher runtime
overhead, as the bit-set checking technique on which it relies apparently is less
efficient than our virtual table based technique.

C++ Object Type Runtime Tracking. All currently available polymorphic
and non-polymorphic object type confusion detection tools (except Clang-CFI)
rely on dynamic checks (i.e., LLVM’s Compiler-RT is mostly used) for several
key reasons, as follows. First, the object type has to be tracked during runtime.
Second, this is due to the limited precision of static analysis techniques, which
cannot recuperate the object type or a set of possible types before program
runtime, Third, the object type confusions manifest only during runtime. Finally,
object type confusions are hard to replicate statically (i.e., compile time or
through symbolic execution, without running the program).

However, the most significant reason is the fact that the types of casted
objects, referenced by pointers, may be program input dependent and thus only
precisely obtainable during runtime. On the one hand, in the best case the
allocation of the object being cast can be tracked during compile time (e.g., if
the runtime path from allocation to cast is linear). On the other hand, in the
worst case the object type cannot be approximated (e.g., the object was given
via a void-pointer from an external function previously).

Compiler-Based Tools. UBsan [15], CaVer [22], TypeSan [18], and Hex-
Type [19] are compiler based tools that perform object type confusion detection
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at runtime for C++ based programs. Since HexType is the successor of TypeSan,
the tools are very similar to each other from a technical perspective. These two
tools and CaVer rely on a runtime metadata service and can reach a high cover-
age while imposing a considerable performance overhead. CastSan, on the other
hand, uses metadata that is statically created at compile-time and can therefore
apply very performant checks at runtime. CastSan can protect against poly-
morphic casts by using vtable hierarchy based ranges and without using a black
list. Compared to TypeSan, CastSan partially shares the instrumentation layer,
which is unavoidable, but it uses completely different metadata without stor-
ing data at runtime. More precisely, CastSan uses the vtables of polymorphic
classes. These tables, that need to be in memory at runtime anyways, already
provide a view on the class hierarchy. That is enough for CastSan to perform
runtime checks without relying on further metadata as maintained by HexType.
HexType, on the other hand, reaches a higher coverage, as it can check non-
polymorphic objects as well. CastSan is more runtime-efficient than CaVer and
HexType, which both require a red-black tree to be traversed (only for the slow
path) during each check.

Binary-Based Tools. Dewey et al. [13] were able to recuperate vtables from
program binaries and detect object type confusions indirectly by checking the
bounds of a virtual function call. This was achieved by enforcing a policy to check
if the vptr lies inside some legitimate bounds. As suggested by the authors, their
analysis is imprecise because for example—as also demonstrated by Prakash
et al. [29]—determining the end of a vtable in binaries without RTTI information
is not trivial. Thus, false positives and false negatives are raised, and as such
this type of tool is in the best case usable before system deployment.

8 Conclusion and Future Work

C++ object type casting confusions have an important role in modern exploits as
demonstrated by recent attacks against Mozilla’s Firefox and Google’s Chrome
web browsers.

In this paper, we presented CastSan, a new polymorphic only object type
confusion detection tool. CastSan’s novel technique is based on an efficient and
time constant virtual pointer range check which is possible by extracting virtual
table inheritance trees out of a previously constructed virtual table inheritance
hierarchy. CastSan constructs linear projections out of virtual table inheritance
trees, which are subsequently used do build runtime object cast checks. Our
evaluation results show that CastSan is more efficient than state-of-the-art tools
(i.e., Clang-CFI cast checker), and has comparable checking coverage with other
state-of-the-art tools, which—in contrast—rely on runtime intensive type track-
ing for checking type confusions for both polymorphic and non-polymorphic
objects.

In future work, we want to use our static meta-data based technique to
extended existing purely runtime based object type confusion detection tools
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such as TypeSan and HexType. These tools use for both polymorphic and non-
polymorphic object type checking a runtime library which adds considerable
runtime overhead due to updates, search, and deletion of object type meta-
data. We think that our approach can be used to avoid the tracking of meta-
data for polymorphic objects. Further, a complementary artificial virtual table
like meta-data class hierarchy can be built for non-polymorphic objects as well.
Finally, in this way our technique becomes usable also in this context, thus avoid-
ing or considerable reducing the overhead introduced by the runtime compiler
checking support.
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