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Abstract 

Despite the accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and other 
devices connected to the internet, distributed, or coordinated attacks can still go undetected or not detected on time. The 
single vantage point limits the ability of these IDSs to detect such attacks.  Due to this reason,  there is a need for attack 
characteristics' exchange among different IDS nodes. Also, a zero-day attack (an attack without a known signature) 
experienced in an organization's IDS located in different regions are not the same. Collaborative efforts of the 
participating IDSs can stop more attack threats if these IDSs exchange these attack characteristics. Researchers proposed 
a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; 
however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and 
consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that 
secures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The 
proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. 
Apart from this, it facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes 
participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and 
latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features 
injection, data manipulation, or deletion, and it is also scalable with low latency. 
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1. Introduction 

The rapid increase in the use of the internet has made 
data storage and exchange easily achievable. However, the 
vulnerabilities of these data to cyberattacks increase 
tremendously. The authors in [1] proposed firewall, data 
encryption, and user authentication for keeping the 
unauthorized user from assessing stored data, but 
malicious intruders still find ways to subvert these 
protection systems and gain access to the unauthorized 
data. Further researches put forward intrusion detection 
systems (IDS) to identify malicious intruders in computer 
networks and devices connected to the internet [2,3]. 
These intrusion detection systems can either be classified 
based on their locations in the network: Host-based 
detection system (HIDS) and network-based detection 
system (NIDS) [4] or by their detection approaches: 
signature-based and anomaly-based [3]. 

Intrusion detection systems have proven to be useful in 
identifying malicious activities; however, their single 
viewpoint limits the ability to detect distributed or 
coordinated cyberattacks. The single vantage point has 
made it possible for some attacks to go undetected or not  

 

detected on time. Due to the escape of some attacks, 
IDSs need to exchange attack features among each other 
to detect new attacks promptly. Apart from this reason, a 
zero-day attack (an attack without a known signature) 
experienced in an organization's IDS located, say in 
London, the United Kingdom might be different from 
that experienced in another organization's IDS located, 
say Washington DC, United States or another company 
located in the same region.  If IDSs exchange this threat 
information, more malicious activities can be stopped 
by coordinating efforts of the participating organization. 
A cooperative intrusion detection system was proposed 
to improve the detecting power of single IDS [5-7]. In 
the cooperative intrusion detection system, IDS nodes 
exchange attack features with the view of promptly 
detecting an attack that has previously been detected by 
other IDS nodes. Users adopted the cooperative 
intrusion detection system due to its better 
performance; however, it is susceptible to cyberattacks. 
Some of the major problems threatening the cooperative 
intrusion detection are: 

• Data manipulation: Malicious intruders can 
hack the database and alter the data that is 
being exchanged.   

• Data deletion: Stored data could be deleted 
from the database by a malicious insider or 
outsider if the activities are not monitored. 

• Fake data injection to the database: In a case 

 
∗Corresponding author. 

Email addresses: oluwaseyi.j.ajayi@gmail.com               
(Oluwaseyi Ajayi),   
 saadawi@ccny.cuny.edu (Tarek Saadawi) 

 

mailto:oluwaseyi.j.ajayi@gmail.com
mailto:saadawi@ccny.cuny.edu


May 06, 

2020 

 

when data manipulation is not readily 
achievable, a malicious intruder can inject 
fake data into the database if hacked. 

• It might be challenging to guarantee the 
consistency of the shared data due to a 
compromised medium of exchange. 

The existing cooperative intrusion detection is divided mainly 
into four stages [8], and the principal vulnerabilities for 
cyberattacks are storage and distribution stages (Figure 1).  
 

 

Figure 1: Cyber-attack targets of existing cooperative intrusion 
detection 

 

Diverse researches have been put forward ways to 
secure the data being exchanged among devices. However, 
most of them either engage a centralized approach (which 
makes the network susceptible to single-point-of-failure 
and man-in-the-middle attacks [9, 10,11]) or uses a 
decentralized approach in which the integrity and 
consistency of the shared data cannot be guaranteed 
[12,13]. We propose an approach that leverages distributive 
ledger technology, data immutability, and tamper-proof 
abilities of blockchain technology to detect and block 
malicious activities. The proposed approach extracts 
cyberattack features, stores, and securely distribute among 
participating nodes in real-time (Figure 2). We define 
attack features as characteristics of attacks, retrieve from 
attacks traffic detected by any IDS. 

Figure 2: The Proposed blockchain-based solution. 

 
The contributions of our work can be  summarized as 

follows: 

• We propose a public-private blockchain-based 
architecture that detects and prevents malicious 
activities on the stored data from both outsider and 
insider threats. 
 

• The architecture facilitates scalable, and secured 
attack features exchange among  IDS nodes in 
computer networks and IoT devices. 

 

• The architecture verifies the integrity and 
consistency of the retrieved features and present in 
a standard format which encourages 
heterogeneous IDS nodes participation. 

• The architecture permanently stores the verified 
attack features in a distributed blockchain database 
and shares among IDS nodes using a blockchain 
network. 
  

• The proposed architecture is robust to public IDS 
nodes joining and leaving the network in real-time. 
In order words, the architecture allows public nodes 
to join and leave the network any time without 
permission while they pose no security concerns on 
the data being exchanged in the network.  

The remainder of this paper is organized as follows: 
Section II discusses the background and related works 
on cooperative intrusion detection and blockchain 
technology. Section III describes the proposed 
architecture. Section IV presents the results, while 
section V presents the conclusions of this paper and 
possible future works. 

2. Background and related works 
 

First introduced as the technology behind bitcoin in 
2008 [14], blockchain was implemented to solve the 
double-spending problem in a cryptocurrency called 
bitcoin. Since its inception, diverse areas have seen the 
application of blockchain technology. e.g. health system 
[15,16], data integrity security [17], as an intrusion 
detection system [18 - 20]. Blockchain is an append-
only public ledger that records all transactions that 
have occurred in the network. Every participant in a 
blockchain network is called nodes.  The data in a 
blockchain is known as a transaction, and it is divided 
into blocks. Each block is dependent on the previous 
one (parent block). Each block stores some metadata 
and hash value of the previous block; hence, it has a 
pointer to its parent block. Each transaction in the 
public ledger is verified by the consensus of most of the 
participants in the system. Once the transaction is 
verified, it is impossible to mutate/erase the records 
[14]. Blockchain is broadly divided into two: public and 
private blockchain[21]. A public blockchain is a 
permissionless blockchain in which all nodes do 
verification and validation of transactions. e.g., Bitcoin, 
Ethereum. While private blockchains are permissioned 
blockchains where only nodes given permission can 
join and participate in the network. e.g., Hyperledger. 
 

2.1  Blockchain Application 

 
The authors in [18], [19] and [20] proposed the use 

of blockchain technology in detecting an anomaly in 
computer networks. In [18], the authors proposed a 
blockchain anomaly detection solution (BAD) that 
focuses on detecting attacks directed at the blockchain 
network. BAD prevents the insertion of a malicious 
transaction from spreading further in the blockchain. 
BAD leverages blockchain metadata named forks to 
collect potentially malicious activities in the blockchain 
network. Their works used machine learning to train 
blockchain nodes to detect malicious activities. In their 
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approach, they considered eclipse attack (an attacker 
infects node's list of IP addresses, thus forcing the 
victim's node list of IP addresses to be controlled by an 
attacker). The analysis of the result showed that BAD 
was able to detect and stop the spread of attack that 
uses bitcoin forks to spread malicious codes. However, 
the solution is specific to attacks directed towards the 
blockchain network and uses bitcoin forks. In another 
research put forward in [19],  the authors proposed 
collaborative IoT anomaly detection via blockchain 
solution (CIoTA). CIoTA uses the blockchain concept 
to perform distributed and collaborative anomaly 
detection on IoT devices. They used CIoTA to 
continuously trained anomaly detection models 
separately and then combine their wisdom to 
differentiate between rare benign events and malicious 
activities. The evaluation of the result showed that 
combined models could detect malware activities 
easily with zero false positives. The proposed solution 
relies on the collaborative effort of IoT devices to 
detect attacks; hence, it does not address the security 
problems facing cooperative intrusion detection, and it 
is specific to malware attacks. 
 The authors in [20] proposed a blockchain-based 
malware detection solution in mobile devices. In their 
work, they extracted installation package, permission 
package, and call graph package features for all known 
malware families for android based mobile devices and 
uses it to build a feature database. Their result showed 
that the solution could detect and classify known 
malware. It can also perform malice determination 
and malware family classification on unknown 
software with higher accuracy and lower time cost. 
However, the solution is specific to host-based 
malware attacks on Android-based mobile devices: 
hence, it will be challenging to apply it to network-
based attacks, especially zero-day attacks.  

 

2.2 Cooperative Intrusion Detection 

 
The research in [22] proposed a prototype 

Distributed Intrusion Detection System (DIDS). The 
system combines distributed monitoring and data 
reduction with centralized analysis to monitor a 
heterogeneous network of computers. The result 
showed that the prototype demonstrated the viability 
of distributed architecture in solving the network-user 
identification problem. However, with the DIDS 
director responsible for all evaluation, the system is 
susceptible to single-point-of-failure or man-in-the-
middle attacks. Another research put forward in [23] 
proposed DOMINO (Distributed Overlay for 
Monitoring Internet Outbreaks). DOMINO is an 
architecture for a distributed intrusion detection 
system that fosters collaboration among 
heterogeneous nodes. In the system, they used active-
sink nodes that respond to and measure connections 
to unused IP addresses. This active-sink node enables 
efficient detection of attacks from spoofed IP sources, 
reduces false positives, enables attack classification 

and production of timely blacklists. The result 
demonstrated the utility of sharing information 
between multiple nodes in a cooperative infrastructure 
and active-sink node showed effectiveness in 
discriminating between types of attacks based on 
examining payload data. Although the system showed a 
good result, malicious intruders can hack the database 
that manages activities,  and the integrity of the stored 
data can be compromised.  

The authors in [24] proposed a message 
authentication code (MAC) for detecting any changes in 
stored data. Although this approach detects any 
changes in the stored data, however, it is not practical 
for extensive data because downloading and calculating 
MAC of large files is overwhelming and time-
consuming. Another method described in [24] secures 
the integrity of cloud data by computing the hash values 
of every data in the cloud. This solution is lighter than 
the first approach in [24]; however, it requires more 
computation power, especially for massive data; hence, 
it is not practical. The authors in [25] employ the third 
party to coordinate activities of the database. The 
problem with this approach is that it can expose the 
data to a man-in-the-middle attack or can expose the 
network to a single-point-of-failure attack. 

Despite several kinds of research,  the available 
solutions have not addressed the security problems 
threatening the data exchange in a cooperative 
intrusion detection system. Hence, the motivation for 
the work. Our proposed architecture uses blockchain 
technology to guarantee the security of shared attack 
features among IDS nodes. The novelty of our 
architecture is that it can facilitate scalable attack 
features exchange, encourages heterogeneous IDS 
nodes participation, it can detect and prevent malicious 
activities on stored data from both insider and outsider 
threats. Finally,  it is robust to public IDS nodes joining 
and leaving the blockchain network in real-time. These 
capabilities distinguish our work from previous works. 

 

3. The Proposed architecture  
 

The proposed architecture, which is compatible 
with any blockchain platform, is built on the Ethereum 
blockchain platform. Ethereum blockchain is an open-
source blockchain-based distributed computing 
featuring smart contracts. A smart contract is an 
agreement among consortium members, which is 
stored on the chain and run by all participants [26]. 
Although the central Ethereum platform is a public 
blockchain, we configure it to a combination of public 
and private networks. Fig. 3 shows a pictorial 
representation of the proposed architecture.  
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The architecture is composed mainly of the following: 

• Authorized Nodes 

Also known as miners, these nodes prepare, submit, 
and verify transactions. They also run the consensus 
algorithm, thus validate transactions/blocks. All 
authorized nodes update database 

 

• Unauthorized Nodes 

These are also known as public nodes. They join the 
network to retrieve stored attack features. Public 
nodes are not privileged to prepare, verify, validate, 
or run consensus algorithm. They do not update the 
database but can only request the transaction 
address of the mined blocks. 

 

• Database 

The database, which is accessible to all nodes, stores 
the address of the mined blocks. While all public 
nodes have read-only access to it, authorized nodes 
update block information. Any data manipulation 
in the database results in an inability to access the 
contents of the blockchain but does not affect data 
stored in the blockchain network. Such malicious 
activity can be easily detected. 

 
The proposed architecture is divided into three main 
stages, as shown below.  

 

 

Figure 4: Building blocks of the Proposed Architecture. 

 

3.1 Extraction 
 

Attack features are characteristics of attack traffic 
that differentiate them from regular traffic.  Anomaly-
based IDSs detect malicious incoming traffic patterns 
based on deviation from typical traffic patterns. The IDSs 
are trained with the features extracted from regular 
traffic, then raise alert whenever there is a deviation from 
the known traffic pattern [3].  In this work, network-
based attack features are extracted based on feature 
names proposed in [27] using network traffic analyzing 
tools.  We extract attack features under two categories: 
(i) Connection features and (ii) packet features. 

   3.1.1 Connection Features 

  These features are obtained from attack 
network connections. Whenever an attack is 
detected, a developed script sniffs,  captures and 
analyzes network connections using tcpdump v. 
4.9.2., libpcap v. 1.9.0, tcptrace 6.6.0, and 
Wireshark v. 3.0.1. Tcpdump captures and analyzes 
TCP packets while Wireshark uses libpcap to 
capture network connections in real-time. Tcptrace 
is used to analyze the captured attack connections. 
Some of the features extracted from attack 
connections are shown below in Table 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The Pictorial representation of the Proposed Architecture 
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Table 1:  Features generated from attack connections 

 
S/N Feature Name Definition 
1 Source Port  Port from which an attack is 

launched. 
2 Destination Port  The target port located in the 

target network.  
3 Source IP The IP address of the attack 

node. 
4 Destination IP Target IP address in the target 

network 
5 Source Bytes The total number of bytes sent 

from attack nodes during the 
attack period. 

6 Destination 
Bytes 

The total number of bytes sent 
from the target network to 
attack nodes during the attack 
period. 

7 Source Packets The total number of packets sent 
from attack nodes during the 
attack period. 

8 Connection The total number of connections 
initiated with the target network 
by attack node. 

9 Duration Total time elapsed during an 
attack.  

10 Packets/seconds  The number of packets sent by 
an attack node within 1 second. 

11 Source Host 
count 

The total number of attack 
nodes connecting to the target 
network. 

12 Destination 
Host Count 

The total number of target nodes 
in the target network. 

13 Throughput  The rate at which attack nodes 
send bytes to the target node. 
(measured in kbps). 

14 Service Count The total number of ports 
connected to attack nodes 
during the attack period.   

15 Same service 
count  

The total number of connections 
associated with the same port 
number during the attack 
period. 

16 Different Host 
rate  

Percentage of attack nodes 
attacking different target nodes. 

17 Same service 
rate  

Percentage of attack nodes 
attacking the same port during 
the attack period. 

18 Same Host rate  Percentage of attack nodes 
attacking the same target node 
during the attack period. 

 

   3.1.2 Packet features 

 
These attack features are obtained by 

sniffing and analyzing attack packets. During 
attack detection, a script that uses Scapy v 2.4.0  
analyzes ingress packets. Scapy decodes traffic 
packets and matches request with replies. Table 2 
shows some of the packet features extracted. 
 

Table 2:  Features generated from attack packets 

 
S/N Feature Name Definition 
1 Land  '1' if the source and destination 

IP and ports are the same; 
otherwise '0'. 

2 Type of service Class of traffic assigned to attack 

packet 
3 Protocol  Higher layer protocol used in the 

data portion of the attack packet  
4 Ip flags  How packet should be routed or 

processed by higher layer 
5 TCP Flags Defines the type of packet sent 

by attack node 
6 Urgent  Indicates priority of handling 

packets by the router 
7 Time to Live Time left for a packet to be 

discarded 
8 Checksum  Error checking in the packet 

header 
9 Wrong 

Fragment  
'1' if the checksum is 'incorrect'; 
otherwise '0.' 

 
Based on the features in Tables 1 and 2, a 

transaction, which agrees with the standard format, is 
prepared, signed, and submitted to the blockchain 
network. To verify the authenticity of the submitted data, 
the owner submits its verification information. Examples 
of such verification information are Transaction account, 
MAC address, IP address.   

  3.2 Storage 

The conformity of the submitted transaction with 
standard format is verified. The architecture also verifies 
the privilege of transaction owners to submit transactions 
and the cost of mining such transactions. If these 
verification steps are successful, the transaction is pushed 
for validation (i.e., attached to the blockchain). The storage 
stage is divided into the following steps: 

  3.2.1 Verification 

  This step ensures that all malicious 
transactions or activities by either insider or 
outsider threats are detected and blocked. (i.e., it 
ensures that no public node submits transaction 
and prevents compromised authorized nodes from 
participating). The smart contract monitors the cost 
of mining transactions and keeps track of all nodes 
that participate in mining a transaction. Algorithm 
1 describes the verification process. For verification 
step to be successful, no feature fields must be 
missing (i.e., all feature field must have values), 
verification information must be in their respective 
sets, transaction owner must not mine its 
transaction, the cost of mining transaction must not 
exceed the threshold, and sender's public key must 
verify the private key. If any of these conditions fail, 
smart contract returns fail, and the transaction is 
dropped. 
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   3.2.2 Validation 

 
Blockchain consensus protocols handle 

the validation of transactions. In this work, we 
combine both Proof-of-Work (PoW) and Proof-
of-Stake (PoS). The pending transaction is built 
into a block, and the block is broadcasted into 
the blockchain network for validation. Every 
node receives a broadcasted block, but only 
authorized nodes (miners) work to validate the 
block. Each block contains a unique code called 
hash; it also contains a hash of the previous 
block. Data from previous blocks are encrypted 
or hashed into a series of numbers and letters. 

The authorized nodes work to get the 
target hash to validate a block. A target hash is 
a number that a hashed block header must be 
less than or equal to for a new block to be 
awarded. The miners achieve this target hash by 
using an iterative process such as POW, which 
requires consensus from all authorized nodes. 
The characteristics of proof-of-work are 
computationally difficult to compute and easy 
to verify. We set an upper bound of stake for 
every transaction to ensure fair competition 
among miners (i.e., to discourage authorized 
nodes with lager stake from always emerge as 
the miner).  

The process of guessing the hash starts in 
the block header. It contains a block version 
number, a timestamp, the hash used in the 
previous block, the hash of the Merkle Root, the 
nonce, and the target hash. Successfully mining 
a block requires an authorized node to be the 
first to guess the nonce, which is a random 
string of numbers and broadcast to other nodes. 
Other authorized nodes verify the correctness of 
the nonce value by appending this number to 
the hashed contents of the block and then 
rehashed it. If the new hash meets the 
requirements outlined in the target, then the 
block is added to the blockchain. The 
transaction is permanently stored on the 
blockchain network, and it is impossible to 
mutate/erase the block.   

 

  3.3 Distribution 

 
After a successful validation process, the 

transaction address is issued to the owner (sender). The 
blockchain is updated, and the transaction is ready to be 
retrieved. The steps involved in the secure distribution of 
mined features  are as  follows: 

3.3.1 Ledger Updating 
 
The newly added block reflects on the ledger, which 
is possessed by every node in the network. The 
transaction address is sent to the database by the 
transaction owner. This database is opened to the 
public so that everyone can have read-only access to 
this information.  

3.3.2 Features Retrieval 

All blockchain nodes receive the notification of the 
newly added block but do not have access to the 
content of the block. The transaction address 
obtained from the database is used to retrieve 
information stored in the new block. Nodes extract 
the stored attack features and use them for training 
their intrusion detection systems. 

 

4. Result 
We carry out the implementation of the proposed 

architecture first in the lab and later deploys it to the 
google cloud platform. The aim is to compare the 
behavior when the nodes are close to each other and 
when they are far apart. We set up eight blockchain 
nodes, one database node, and one attack node for the 
lab experiment while we employ seven blockchain 
nodes located at different regions around the United 
States for the cloud experiment. Table 3 shows the 
configuration of the nodes used in the lab, while Figure 
5 shows the location of the nodes when deployed to the 
cloud. We use Solidity v 0.6.2 implementation for smart 
contract and geth v 1.9.0 for Ethereum. A public node 
becomes a miner after we include its verification 
information to the smart contract. Hence, we create our 
miners by adding verification information to the smart 
contract. 

 
Table 3:  Configuration of lab nodes 

 
Name Machine OS RAM Processor 
Node 1 Desktop 18.04 4GB 2.2GHz 
Node 2 Laptop 18.04 16GB 2.81Ghz 
Node 3 Desktop 16.04 8GB 2.44GHz 
Node 4 Laptop 18.04 4GB 2.44GHz 
Node 5 Vmware 18.04 4GB 2.2GHz 
Node 6 Vmware 18.04 4GB 2.2GHz 
Node 7 Vmware 18.04 4GB 2.2GHz 
Node 8 Vmware 18.04 4GB 2.2GHz 
attacker Laptop 16.04 4GB 2.2GHz 
database desktop window 4GB I5@2.44 
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Figure 5: The locations of the cloud nodes around the 
United States. 

 
We install tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace 

v.6.6.0, Wireshark v. 3.0.1, and Scapy v.2.4.0 on all 
authorized nodes.  For the proof of concept, we run 
connection and packet analyzing scripts and an anomaly-
based IDS called Dendritic Cell Algorithm (DCA) [24] on an 
authorized node (node 2). The attacking node launches a 
Denial of Service (DoS) attack at node 2, and we extract the 
features as explained in section III. The extracted features 
are converted to an agreed-upon standard format and 
submitted to the blockchain network as a transaction. The 
architecture verifies and validates the transaction and 
distributes it among other nodes ( as explained above). 

Furthermore, we perform other frequent attacks such 
as port scanning and Land attacks on node 2 to extract the 
features.  We repeat the experiment several times and 
obtain the average time. Table IV shows the value of 
features extracted for each attack in one attack launch. We 
implement moderate network traffic in the lab where every 
node has similar network traffic; however, the cloud 
experiment features different network traffic for each node. 
We perform security analysis to show how the architecture 
detects and prevents malicious activities on transactions 
and also evaluate the performance in term of its latency. 

 
Table 4:  Extracted Features for DoS, Port scanning and Land attacks 

 
S/ 
N 

FEATURES DoS Port 
Scanning 

Land 

1 No of 
connections 

6594 8 11 

2 Source 
bytes(kbytes) 

1147008 708 846 

3 Source frames 6592 10 9 
4 Source 

throughput(kbp
s) 

1698.4 216.1 917.96 

5 Source 
frame/second 

9995.4 3125.0 9999.99 

6 Destination 
bytes(kbytes) 

355968 364 0 

7 Destination 
frames 

6592 6 0 

8 Destination 
throughput(kbp
s) 

527.1 111.08 0 

9 Destination 
frame/second 

9995.4 1875.0 0 

10 Duration(secon
ds) 

0.65 0.0032 0.009 

11 Source diff. 
host rate 

0% 16% 11% 

12 Source same 
host rate 

100% 84% 89% 

13 Source diff. 
service rate 

99% 100% 11% 

14 Source same 
service rate 

1% 0 89% 

15 Source diff. 
host count 

1 1 1 

16 Source count 6583 6 1 
17 Destination 

diff. host count 
1 1 1 

18 Destination 
service count 

1 3 1 

19 Source IP 192.168.
0.144 

192.168.0.
144 

192.168.
0.161 

20 Source port 8131 48314 80 
21 Destination IP 192.168.

0.161 
192.168.0.
161 

192.168.
0.161 

22 Destination 
port 

21 22 80 

23 Protocol TCP TCP TCP 
24 Type of service 0 0 0 
25 Time to live 64 64 64 
26 TCP flags SYN SYN SYN 
27 IP flags RES DF RES 
28 Urgent 0 0 0 
29 Fragment 0 0 0 
30 Land 0 0 1 
31 Checksum Correct Correct Correct 
32 Wrong 

fragment 
0 0 0 

 

 4.1  Security Analysis 

  4.1.1 Outsider Threat analysis 

We examine the security of the architecture against 
malicious transaction injection in both lab and 
cloud experiments. A transaction, prepared by an 
unauthorized node, is submitted to the blockchain 
network for verification and validation. Although 
other authorized nodes work to validate this 
transaction, we observed that instead of issuing a 
transaction address to the sender, the owner 
receives a notification that the transaction has been 
failed and dropped. The transaction failed because 
the sender is not privileged to submit the 
transaction; hence, it fails the verification steps. We 
investigated further by manually generating the 
transaction address, then use it to request for the 
transaction from the blockchain. We observed that 
the blockchain network did not return any 
transaction because there is no transaction with 
such a network address. 

  4.1.2 Insider Threat analysis 

Here, we tested the security of the architecture in 
two common ways an authorized node can be 
compromised. 

4.1.2.1 Large volume data 
We implement a case where an authorized node 
sends a large amount of what appears to be 
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legitimate standard formatted attack features to 
mount a DoS attack on the blockchain network. 
An authorized node prepares transactions that 
are a massive amount of data and submit to the 
blockchain network. Although other authorized 
nodes are working to validate the transaction, we 
observed that the transactions are not mined 
because the cost of mining these transactions 
exceeded the threshold cost. Notification to the 
owner indicates that the transaction has failed 
due to its cost. We persistently submit such huge 
transactions from the same authorized node, and 
we observed that other miners stop mining after 
the sender was flagged to be compromised. The 
smart contract automatically drops all 
subsequent transactions from the same 
authorized node. 

4.1.2.2 Fake Feature values 
We implement a situation where a compromised 
authorized node submits what appears to be 
legitimate standard formatted attack features but 
with fake data values. The cost of each submitted 
transaction is within the range set in the smart 
contract. We assumed that an attacker is not likely 
to hold an authorized node in a compromised 
state for too long due to frequent security checks 
by the network administrators. As a result, an 
attacker will make all efforts to get its transactions 
mined as quickly as possible. Based on this 
assumption, a compromised node attempts to 
mine its transaction. The result showed that our 
architecture did not validate the transaction, 
although other authorized nodes are working to 
validate the same transaction. The architecture 
drops the transaction because the transaction fails 
the verification step. The transaction is flagged to 
have been compromised, and other authorized 
nodes stop mining. Based on these results, the 
architecture has the capability of verifying the 
consistency and integrity of submitted 
transactions, and also detecting and preventing 
any malicious activities from both the insider and 
outsider attackers on the shared data. 

 

4.2 Performance Analysis 
 

We obtain the following data for each transaction from 
every node to analyze the response time.  

• Transaction deployment time (t1): This is the time 
a transaction is submitted to the network. These 
data are collected directly from the sender console. 

• Execution time (t3): This is the time taken for the 
content of each transaction to appears in 
designated files of each node. The time is retrieved 
by setting on current time on all node consoles. 
 

4.2.1 Response Time 
 

The response time is also known as latency 
(measured in seconds) of the blockchain network. For 
each transaction, latency is the difference between the 
execution time and the deployment time (t3-t1). Latency 
includes verification time, mining time, and time 
elapsed for nodes to request transaction address and 
retrieve mined features. We measure the response time 
of the architecture in two different scenarios: (i) Closed 
proximity, i.e., when the nodes are closed to each other  
(lab) and (ii) Wide geographical area, i.e., when the 
nodes are far apart from each other. Figures 6 shows the 
average response time of nodes for both deployments. 
The average response time of nodes is the addition of 
response times for transactions divided by the number 
of transactions. The result shows a slight difference 
between both cases. The slight increase in the response 
time Figure 6A is due to the computing power of the 
nodes, which is lower than the cloud nodes in Figure 6B. 
Based on the result, the architecture can facilitate 
scalable attack features exchange among  IDS nodes in 
computer networks irrespective of the location.    
 

 
 Figure 6: (A) The average response time when performed in the 

lab (B)The average response time when deployed to the cloud.  

 

4.2.2 Scalability 

We analyze the change in the response time of the 
architecture with an increasing number of nodes. We 
first implement the effect of increasing the number of 
unauthorized (public) nodes on the response time of 
authorized nodes in the architecture. We randomly 
choose two nodes that are in South Carolina and Los 
Angeles and make them authorized nodes. The 
blockchain network is step up as described above with 
these authorized nodes and an attack node (located in 
New York). The features extracted from DoS attacks 
are prepared as transactions and submitted to the 
blockchain network. These transactions are verified, 
validated, and stored on the blockchain network. We 
record the response time of the two authorized nodes.  
We increase the number of public nodes joining the 
network one at a time, repeat the experiment, and 
record the response time for the two authorized nodes. 
Fig. 7 shows the response time of the two authorized 
nodes for an increasing number of public nodes. We 
observed that increasing the number of public nodes 
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has no effect on the architecture's response time, 
which implies that the solution is robust to public IDS 
nodes joining and leaving the network. 

 
Figure 7: The response time with an increasing number of public 
nodes. 

 
 Furthermore, we evaluate the response time with 
an increasing number of authorized nodes (i.e., 
miners). We set up a blockchain network in the lab, as 
described above.  Transactions are prepared and 
submitted to the blockchain network by an authorized 
node. The submitted transactions are verified, 
validated, stored, and distributed to all nodes in the 
network. We repeat the experiment several times, and 
the average response time of each node is recorded. 
We increase the number of miners One at a time, 
repeat the experiment, and record the average 
response times of each node. We repeated the 
experiment when we deployed it to the cloud platform 
and compared the results.  Figure 8 shows the 
response time of the nodes as the number of miners 
increases for both deployments. We could observe a 

slight fall in the response time as more authorized 
nodes are added to the network. The decrease in 
response time is due to the availability of more miners 
to compete for mining, hence, reducing the mining time 
(which accounts for a large portion of the response 
time). The result further confirms that the architecture 
can facilitate scalable and prompt attack features 
exchange among  IDS nodes. 

5. Conclusion 
 

In this paper, we propose a permissionless public-
private blockchain-based architecture that detects and 
prevents malicious activities from both outsider and 
insider threats on the stored data.  The proposed solution, 
which focuses on network-based attacks, securely extracts, 
stores, and shares attack features in real-time with the view 
of enhancing the security of shared data, thereby 
eradicating the problems threatening cooperative 
intrusion detection. We implement the architecture when 
the nodes are close (in the lab) and when they cover a large 
geographical area, examine the security analysis and 
performance metrics. The result showed that the 
architecture could facilitate scalable and prompt attack 
features exchange among  IDS nodes, detects typical 
insider and outsider attack threats, and robust to public 
IDS nodes joining and leaving the network. Also, the result 
showed that adding public nodes has no effect on the 
response time of the architecture but decreases slightly 
with an increasing number of miners. 
In future we wish to expand our work to accommodate the 
following : 

• We are implementing ways of increasing the 
throughput of architecture. 

• Develop an algorithm that restricts mining of 
similar attack features by different nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. a) Response time of nodes with an increasing number of miners in the lab  (b) Response time of nodes with an increasing number of miners 
when deployed to the cloud. 
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