
May 06,

2020

Blockchain-Based Architecture for Secured Cyber-Attack Features Exchange

Oluwaseyi Ajayi∗, Tarek Saadawia

aElectrical Engineering, City University of New York, City College, 160 Convent Ave, New York, 10031, NY

Abstract

Despite the accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and other
devices connected to the internet, distributed, or coordinated attacks can still go undetected or not detected on time. The
single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack
characteristics' exchange among different IDS nodes. Also, a zero-day attack (an attack without a known signature)
experienced in an organization's IDS located in different regions are not the same. Collaborative efforts of the
participating IDSs can stop more attack threats if these IDSs exchange these attack characteristics. Researchers proposed
a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful;
however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and
consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that
secures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The
proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes.
Apart from this, it facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes
participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and
latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features
injection, data manipulation, or deletion, and it is also scalable with low latency.

Keywords: Blockchain, Cyberattack, Intrusion Detection System, Scalability, Latency, Security, Consistency

1. Introduction

The rapid increase in the use of the internet has made
data storage and exchange easily achievable. However, the
vulnerabilities of these data to cyberattacks increase
tremendously. The authors in [1] proposed firewall, data
encryption, and user authentication for keeping the
unauthorized user from assessing stored data, but
malicious intruders still find ways to subvert these
protection systems and gain access to the unauthorized
data. Further researches put forward intrusion detection
systems (IDS) to identify malicious intruders in computer
networks and devices connected to the internet [2,3].
These intrusion detection systems can either be classified
based on their locations in the network: Host-based
detection system (HIDS) and network-based detection
system (NIDS) [4] or by their detection approaches:
signature-based and anomaly-based [3].

Intrusion detection systems have proven to be useful in
identifying malicious activities; however, their single
viewpoint limits the ability to detect distributed or
coordinated cyberattacks. The single vantage point has
made it possible for some attacks to go undetected or not

detected on time. Due to the escape of some attacks,
IDSs need to exchange attack features among each other
to detect new attacks promptly. Apart from this reason, a
zero-day attack (an attack without a known signature)
experienced in an organization's IDS located, say in
London, the United Kingdom might be different from
that experienced in another organization's IDS located,
say Washington DC, United States or another company
located in the same region. If IDSs exchange this threat
information, more malicious activities can be stopped
by coordinating efforts of the participating organization.
A cooperative intrusion detection system was proposed
to improve the detecting power of single IDS [5-7]. In
the cooperative intrusion detection system, IDS nodes
exchange attack features with the view of promptly
detecting an attack that has previously been detected by
other IDS nodes. Users adopted the cooperative
intrusion detection system due to its better
performance; however, it is susceptible to cyberattacks.
Some of the major problems threatening the cooperative
intrusion detection are:

• Data manipulation: Malicious intruders can
hack the database and alter the data that is
being exchanged.

• Data deletion: Stored data could be deleted
from the database by a malicious insider or
outsider if the activities are not monitored.

• Fake data injection to the database: In a case

∗Corresponding author.

Email addresses: oluwaseyi.j.ajayi@gmail.com
(Oluwaseyi Ajayi),
 saadawi@ccny.cuny.edu (Tarek Saadawi)

mailto:oluwaseyi.j.ajayi@gmail.com
mailto:saadawi@ccny.cuny.edu

May 06,

2020

when data manipulation is not readily
achievable, a malicious intruder can inject
fake data into the database if hacked.

• It might be challenging to guarantee the
consistency of the shared data due to a
compromised medium of exchange.

The existing cooperative intrusion detection is divided mainly
into four stages [8], and the principal vulnerabilities for
cyberattacks are storage and distribution stages (Figure 1).

Figure 1: Cyber-attack targets of existing cooperative intrusion
detection

Diverse researches have been put forward ways to
secure the data being exchanged among devices. However,
most of them either engage a centralized approach (which
makes the network susceptible to single-point-of-failure
and man-in-the-middle attacks [9, 10,11]) or uses a
decentralized approach in which the integrity and
consistency of the shared data cannot be guaranteed
[12,13]. We propose an approach that leverages distributive
ledger technology, data immutability, and tamper-proof
abilities of blockchain technology to detect and block
malicious activities. The proposed approach extracts
cyberattack features, stores, and securely distribute among
participating nodes in real-time (Figure 2). We define
attack features as characteristics of attacks, retrieve from
attacks traffic detected by any IDS.

Figure 2: The Proposed blockchain-based solution.

The contributions of our work can be summarized as

follows:

• We propose a public-private blockchain-based
architecture that detects and prevents malicious
activities on the stored data from both outsider and
insider threats.

• The architecture facilitates scalable, and secured
attack features exchange among IDS nodes in
computer networks and IoT devices.

• The architecture verifies the integrity and
consistency of the retrieved features and present in
a standard format which encourages
heterogeneous IDS nodes participation.

• The architecture permanently stores the verified
attack features in a distributed blockchain database
and shares among IDS nodes using a blockchain
network.

• The proposed architecture is robust to public IDS
nodes joining and leaving the network in real-time.
In order words, the architecture allows public nodes
to join and leave the network any time without
permission while they pose no security concerns on
the data being exchanged in the network.

The remainder of this paper is organized as follows:
Section II discusses the background and related works
on cooperative intrusion detection and blockchain
technology. Section III describes the proposed
architecture. Section IV presents the results, while
section V presents the conclusions of this paper and
possible future works.

2. Background and related works

First introduced as the technology behind bitcoin in
2008 [14], blockchain was implemented to solve the
double-spending problem in a cryptocurrency called
bitcoin. Since its inception, diverse areas have seen the
application of blockchain technology. e.g. health system
[15,16], data integrity security [17], as an intrusion
detection system [18 - 20]. Blockchain is an append-
only public ledger that records all transactions that
have occurred in the network. Every participant in a
blockchain network is called nodes. The data in a
blockchain is known as a transaction, and it is divided
into blocks. Each block is dependent on the previous
one (parent block). Each block stores some metadata
and hash value of the previous block; hence, it has a
pointer to its parent block. Each transaction in the
public ledger is verified by the consensus of most of the
participants in the system. Once the transaction is
verified, it is impossible to mutate/erase the records
[14]. Blockchain is broadly divided into two: public and
private blockchain[21]. A public blockchain is a
permissionless blockchain in which all nodes do
verification and validation of transactions. e.g., Bitcoin,
Ethereum. While private blockchains are permissioned
blockchains where only nodes given permission can
join and participate in the network. e.g., Hyperledger.

2.1 Blockchain Application

The authors in [18], [19] and [20] proposed the use

of blockchain technology in detecting an anomaly in
computer networks. In [18], the authors proposed a
blockchain anomaly detection solution (BAD) that
focuses on detecting attacks directed at the blockchain
network. BAD prevents the insertion of a malicious
transaction from spreading further in the blockchain.
BAD leverages blockchain metadata named forks to
collect potentially malicious activities in the blockchain
network. Their works used machine learning to train
blockchain nodes to detect malicious activities. In their

May 06,

2020

approach, they considered eclipse attack (an attacker
infects node's list of IP addresses, thus forcing the
victim's node list of IP addresses to be controlled by an
attacker). The analysis of the result showed that BAD
was able to detect and stop the spread of attack that
uses bitcoin forks to spread malicious codes. However,
the solution is specific to attacks directed towards the
blockchain network and uses bitcoin forks. In another
research put forward in [19], the authors proposed
collaborative IoT anomaly detection via blockchain
solution (CIoTA). CIoTA uses the blockchain concept
to perform distributed and collaborative anomaly
detection on IoT devices. They used CIoTA to
continuously trained anomaly detection models
separately and then combine their wisdom to
differentiate between rare benign events and malicious
activities. The evaluation of the result showed that
combined models could detect malware activities
easily with zero false positives. The proposed solution
relies on the collaborative effort of IoT devices to
detect attacks; hence, it does not address the security
problems facing cooperative intrusion detection, and it
is specific to malware attacks.
 The authors in [20] proposed a blockchain-based
malware detection solution in mobile devices. In their
work, they extracted installation package, permission
package, and call graph package features for all known
malware families for android based mobile devices and
uses it to build a feature database. Their result showed
that the solution could detect and classify known
malware. It can also perform malice determination
and malware family classification on unknown
software with higher accuracy and lower time cost.
However, the solution is specific to host-based
malware attacks on Android-based mobile devices:
hence, it will be challenging to apply it to network-
based attacks, especially zero-day attacks.

2.2 Cooperative Intrusion Detection

The research in [22] proposed a prototype

Distributed Intrusion Detection System (DIDS). The
system combines distributed monitoring and data
reduction with centralized analysis to monitor a
heterogeneous network of computers. The result
showed that the prototype demonstrated the viability
of distributed architecture in solving the network-user
identification problem. However, with the DIDS
director responsible for all evaluation, the system is
susceptible to single-point-of-failure or man-in-the-
middle attacks. Another research put forward in [23]
proposed DOMINO (Distributed Overlay for
Monitoring Internet Outbreaks). DOMINO is an
architecture for a distributed intrusion detection
system that fosters collaboration among
heterogeneous nodes. In the system, they used active-
sink nodes that respond to and measure connections
to unused IP addresses. This active-sink node enables
efficient detection of attacks from spoofed IP sources,
reduces false positives, enables attack classification

and production of timely blacklists. The result
demonstrated the utility of sharing information
between multiple nodes in a cooperative infrastructure
and active-sink node showed effectiveness in
discriminating between types of attacks based on
examining payload data. Although the system showed a
good result, malicious intruders can hack the database
that manages activities, and the integrity of the stored
data can be compromised.

The authors in [24] proposed a message
authentication code (MAC) for detecting any changes in
stored data. Although this approach detects any
changes in the stored data, however, it is not practical
for extensive data because downloading and calculating
MAC of large files is overwhelming and time-
consuming. Another method described in [24] secures
the integrity of cloud data by computing the hash values
of every data in the cloud. This solution is lighter than
the first approach in [24]; however, it requires more
computation power, especially for massive data; hence,
it is not practical. The authors in [25] employ the third
party to coordinate activities of the database. The
problem with this approach is that it can expose the
data to a man-in-the-middle attack or can expose the
network to a single-point-of-failure attack.

Despite several kinds of research, the available
solutions have not addressed the security problems
threatening the data exchange in a cooperative
intrusion detection system. Hence, the motivation for
the work. Our proposed architecture uses blockchain
technology to guarantee the security of shared attack
features among IDS nodes. The novelty of our
architecture is that it can facilitate scalable attack
features exchange, encourages heterogeneous IDS
nodes participation, it can detect and prevent malicious
activities on stored data from both insider and outsider
threats. Finally, it is robust to public IDS nodes joining
and leaving the blockchain network in real-time. These
capabilities distinguish our work from previous works.

3. The Proposed architecture

The proposed architecture, which is compatible
with any blockchain platform, is built on the Ethereum
blockchain platform. Ethereum blockchain is an open-
source blockchain-based distributed computing
featuring smart contracts. A smart contract is an
agreement among consortium members, which is
stored on the chain and run by all participants [26].
Although the central Ethereum platform is a public
blockchain, we configure it to a combination of public
and private networks. Fig. 3 shows a pictorial
representation of the proposed architecture.

May 06,

2020

The architecture is composed mainly of the following:

• Authorized Nodes

Also known as miners, these nodes prepare, submit,
and verify transactions. They also run the consensus
algorithm, thus validate transactions/blocks. All
authorized nodes update database

• Unauthorized Nodes

These are also known as public nodes. They join the
network to retrieve stored attack features. Public
nodes are not privileged to prepare, verify, validate,
or run consensus algorithm. They do not update the
database but can only request the transaction
address of the mined blocks.

• Database

The database, which is accessible to all nodes, stores
the address of the mined blocks. While all public
nodes have read-only access to it, authorized nodes
update block information. Any data manipulation
in the database results in an inability to access the
contents of the blockchain but does not affect data
stored in the blockchain network. Such malicious
activity can be easily detected.

The proposed architecture is divided into three main
stages, as shown below.

Figure 4: Building blocks of the Proposed Architecture.

3.1 Extraction

Attack features are characteristics of attack traffic
that differentiate them from regular traffic. Anomaly-
based IDSs detect malicious incoming traffic patterns
based on deviation from typical traffic patterns. The IDSs
are trained with the features extracted from regular
traffic, then raise alert whenever there is a deviation from
the known traffic pattern [3]. In this work, network-
based attack features are extracted based on feature
names proposed in [27] using network traffic analyzing
tools. We extract attack features under two categories:
(i) Connection features and (ii) packet features.

 3.1.1 Connection Features

 These features are obtained from attack
network connections. Whenever an attack is
detected, a developed script sniffs, captures and
analyzes network connections using tcpdump v.
4.9.2., libpcap v. 1.9.0, tcptrace 6.6.0, and
Wireshark v. 3.0.1. Tcpdump captures and analyzes
TCP packets while Wireshark uses libpcap to
capture network connections in real-time. Tcptrace
is used to analyze the captured attack connections.
Some of the features extracted from attack
connections are shown below in Table 1.

Figure 3: The Pictorial representation of the Proposed Architecture

May 06,

2020

Table 1: Features generated from attack connections

S/N Feature Name Definition
1 Source Port Port from which an attack is

launched.
2 Destination Port The target port located in the

target network.
3 Source IP The IP address of the attack

node.
4 Destination IP Target IP address in the target

network
5 Source Bytes The total number of bytes sent

from attack nodes during the
attack period.

6 Destination
Bytes

The total number of bytes sent
from the target network to
attack nodes during the attack
period.

7 Source Packets The total number of packets sent
from attack nodes during the
attack period.

8 Connection The total number of connections
initiated with the target network
by attack node.

9 Duration Total time elapsed during an
attack.

10 Packets/seconds The number of packets sent by
an attack node within 1 second.

11 Source Host
count

The total number of attack
nodes connecting to the target
network.

12 Destination
Host Count

The total number of target nodes
in the target network.

13 Throughput The rate at which attack nodes
send bytes to the target node.
(measured in kbps).

14 Service Count The total number of ports
connected to attack nodes
during the attack period.

15 Same service
count

The total number of connections
associated with the same port
number during the attack
period.

16 Different Host
rate

Percentage of attack nodes
attacking different target nodes.

17 Same service
rate

Percentage of attack nodes
attacking the same port during
the attack period.

18 Same Host rate Percentage of attack nodes
attacking the same target node
during the attack period.

 3.1.2 Packet features

These attack features are obtained by

sniffing and analyzing attack packets. During
attack detection, a script that uses Scapy v 2.4.0
analyzes ingress packets. Scapy decodes traffic
packets and matches request with replies. Table 2
shows some of the packet features extracted.

Table 2: Features generated from attack packets

S/N Feature Name Definition
1 Land '1' if the source and destination

IP and ports are the same;
otherwise '0'.

2 Type of service Class of traffic assigned to attack

packet
3 Protocol Higher layer protocol used in the

data portion of the attack packet
4 Ip flags How packet should be routed or

processed by higher layer
5 TCP Flags Defines the type of packet sent

by attack node
6 Urgent Indicates priority of handling

packets by the router
7 Time to Live Time left for a packet to be

discarded
8 Checksum Error checking in the packet

header
9 Wrong

Fragment
'1' if the checksum is 'incorrect';
otherwise '0.'

Based on the features in Tables 1 and 2, a

transaction, which agrees with the standard format, is
prepared, signed, and submitted to the blockchain
network. To verify the authenticity of the submitted data,
the owner submits its verification information. Examples
of such verification information are Transaction account,
MAC address, IP address.

 3.2 Storage

The conformity of the submitted transaction with
standard format is verified. The architecture also verifies
the privilege of transaction owners to submit transactions
and the cost of mining such transactions. If these
verification steps are successful, the transaction is pushed
for validation (i.e., attached to the blockchain). The storage
stage is divided into the following steps:

 3.2.1 Verification

 This step ensures that all malicious
transactions or activities by either insider or
outsider threats are detected and blocked. (i.e., it
ensures that no public node submits transaction
and prevents compromised authorized nodes from
participating). The smart contract monitors the cost
of mining transactions and keeps track of all nodes
that participate in mining a transaction. Algorithm
1 describes the verification process. For verification
step to be successful, no feature fields must be
missing (i.e., all feature field must have values),
verification information must be in their respective
sets, transaction owner must not mine its
transaction, the cost of mining transaction must not
exceed the threshold, and sender's public key must
verify the private key. If any of these conditions fail,
smart contract returns fail, and the transaction is
dropped.

May 06,

2020

 3.2.2 Validation

Blockchain consensus protocols handle

the validation of transactions. In this work, we
combine both Proof-of-Work (PoW) and Proof-
of-Stake (PoS). The pending transaction is built
into a block, and the block is broadcasted into
the blockchain network for validation. Every
node receives a broadcasted block, but only
authorized nodes (miners) work to validate the
block. Each block contains a unique code called
hash; it also contains a hash of the previous
block. Data from previous blocks are encrypted
or hashed into a series of numbers and letters.

The authorized nodes work to get the
target hash to validate a block. A target hash is
a number that a hashed block header must be
less than or equal to for a new block to be
awarded. The miners achieve this target hash by
using an iterative process such as POW, which
requires consensus from all authorized nodes.
The characteristics of proof-of-work are
computationally difficult to compute and easy
to verify. We set an upper bound of stake for
every transaction to ensure fair competition
among miners (i.e., to discourage authorized
nodes with lager stake from always emerge as
the miner).

The process of guessing the hash starts in
the block header. It contains a block version
number, a timestamp, the hash used in the
previous block, the hash of the Merkle Root, the
nonce, and the target hash. Successfully mining
a block requires an authorized node to be the
first to guess the nonce, which is a random
string of numbers and broadcast to other nodes.
Other authorized nodes verify the correctness of
the nonce value by appending this number to
the hashed contents of the block and then
rehashed it. If the new hash meets the
requirements outlined in the target, then the
block is added to the blockchain. The
transaction is permanently stored on the
blockchain network, and it is impossible to
mutate/erase the block.

 3.3 Distribution

After a successful validation process, the

transaction address is issued to the owner (sender). The
blockchain is updated, and the transaction is ready to be
retrieved. The steps involved in the secure distribution of
mined features are as follows:

3.3.1 Ledger Updating

The newly added block reflects on the ledger, which
is possessed by every node in the network. The
transaction address is sent to the database by the
transaction owner. This database is opened to the
public so that everyone can have read-only access to
this information.

3.3.2 Features Retrieval

All blockchain nodes receive the notification of the
newly added block but do not have access to the
content of the block. The transaction address
obtained from the database is used to retrieve
information stored in the new block. Nodes extract
the stored attack features and use them for training
their intrusion detection systems.

4. Result
We carry out the implementation of the proposed

architecture first in the lab and later deploys it to the
google cloud platform. The aim is to compare the
behavior when the nodes are close to each other and
when they are far apart. We set up eight blockchain
nodes, one database node, and one attack node for the
lab experiment while we employ seven blockchain
nodes located at different regions around the United
States for the cloud experiment. Table 3 shows the
configuration of the nodes used in the lab, while Figure
5 shows the location of the nodes when deployed to the
cloud. We use Solidity v 0.6.2 implementation for smart
contract and geth v 1.9.0 for Ethereum. A public node
becomes a miner after we include its verification
information to the smart contract. Hence, we create our
miners by adding verification information to the smart
contract.

Table 3: Configuration of lab nodes

Name Machine OS RAM Processor
Node 1 Desktop 18.04 4GB 2.2GHz
Node 2 Laptop 18.04 16GB 2.81Ghz
Node 3 Desktop 16.04 8GB 2.44GHz
Node 4 Laptop 18.04 4GB 2.44GHz
Node 5 Vmware 18.04 4GB 2.2GHz
Node 6 Vmware 18.04 4GB 2.2GHz
Node 7 Vmware 18.04 4GB 2.2GHz
Node 8 Vmware 18.04 4GB 2.2GHz
attacker Laptop 16.04 4GB 2.2GHz
database desktop window 4GB I5@2.44

May 06,

2020

Figure 5: The locations of the cloud nodes around the
United States.

We install tcpdump v. 4.9.2., libpcap v. 1.9.0, tcptrace

v.6.6.0, Wireshark v. 3.0.1, and Scapy v.2.4.0 on all
authorized nodes. For the proof of concept, we run
connection and packet analyzing scripts and an anomaly-
based IDS called Dendritic Cell Algorithm (DCA) [24] on an
authorized node (node 2). The attacking node launches a
Denial of Service (DoS) attack at node 2, and we extract the
features as explained in section III. The extracted features
are converted to an agreed-upon standard format and
submitted to the blockchain network as a transaction. The
architecture verifies and validates the transaction and
distributes it among other nodes (as explained above).

Furthermore, we perform other frequent attacks such
as port scanning and Land attacks on node 2 to extract the
features. We repeat the experiment several times and
obtain the average time. Table IV shows the value of
features extracted for each attack in one attack launch. We
implement moderate network traffic in the lab where every
node has similar network traffic; however, the cloud
experiment features different network traffic for each node.
We perform security analysis to show how the architecture
detects and prevents malicious activities on transactions
and also evaluate the performance in term of its latency.

Table 4: Extracted Features for DoS, Port scanning and Land attacks

S/
N

FEATURES DoS Port
Scanning

Land

1 No of
connections

6594 8 11

2 Source
bytes(kbytes)

1147008 708 846

3 Source frames 6592 10 9
4 Source

throughput(kbp
s)

1698.4 216.1 917.96

5 Source
frame/second

9995.4 3125.0 9999.99

6 Destination
bytes(kbytes)

355968 364 0

7 Destination
frames

6592 6 0

8 Destination
throughput(kbp
s)

527.1 111.08 0

9 Destination
frame/second

9995.4 1875.0 0

10 Duration(secon
ds)

0.65 0.0032 0.009

11 Source diff.
host rate

0% 16% 11%

12 Source same
host rate

100% 84% 89%

13 Source diff.
service rate

99% 100% 11%

14 Source same
service rate

1% 0 89%

15 Source diff.
host count

1 1 1

16 Source count 6583 6 1
17 Destination

diff. host count
1 1 1

18 Destination
service count

1 3 1

19 Source IP 192.168.
0.144

192.168.0.
144

192.168.
0.161

20 Source port 8131 48314 80
21 Destination IP 192.168.

0.161
192.168.0.
161

192.168.
0.161

22 Destination
port

21 22 80

23 Protocol TCP TCP TCP
24 Type of service 0 0 0
25 Time to live 64 64 64
26 TCP flags SYN SYN SYN
27 IP flags RES DF RES
28 Urgent 0 0 0
29 Fragment 0 0 0
30 Land 0 0 1
31 Checksum Correct Correct Correct
32 Wrong

fragment
0 0 0

 4.1 Security Analysis

 4.1.1 Outsider Threat analysis

We examine the security of the architecture against
malicious transaction injection in both lab and
cloud experiments. A transaction, prepared by an
unauthorized node, is submitted to the blockchain
network for verification and validation. Although
other authorized nodes work to validate this
transaction, we observed that instead of issuing a
transaction address to the sender, the owner
receives a notification that the transaction has been
failed and dropped. The transaction failed because
the sender is not privileged to submit the
transaction; hence, it fails the verification steps. We
investigated further by manually generating the
transaction address, then use it to request for the
transaction from the blockchain. We observed that
the blockchain network did not return any
transaction because there is no transaction with
such a network address.

 4.1.2 Insider Threat analysis

Here, we tested the security of the architecture in
two common ways an authorized node can be
compromised.

4.1.2.1 Large volume data
We implement a case where an authorized node
sends a large amount of what appears to be

May 06,

2020

legitimate standard formatted attack features to
mount a DoS attack on the blockchain network.
An authorized node prepares transactions that
are a massive amount of data and submit to the
blockchain network. Although other authorized
nodes are working to validate the transaction, we
observed that the transactions are not mined
because the cost of mining these transactions
exceeded the threshold cost. Notification to the
owner indicates that the transaction has failed
due to its cost. We persistently submit such huge
transactions from the same authorized node, and
we observed that other miners stop mining after
the sender was flagged to be compromised. The
smart contract automatically drops all
subsequent transactions from the same
authorized node.

4.1.2.2 Fake Feature values
We implement a situation where a compromised
authorized node submits what appears to be
legitimate standard formatted attack features but
with fake data values. The cost of each submitted
transaction is within the range set in the smart
contract. We assumed that an attacker is not likely
to hold an authorized node in a compromised
state for too long due to frequent security checks
by the network administrators. As a result, an
attacker will make all efforts to get its transactions
mined as quickly as possible. Based on this
assumption, a compromised node attempts to
mine its transaction. The result showed that our
architecture did not validate the transaction,
although other authorized nodes are working to
validate the same transaction. The architecture
drops the transaction because the transaction fails
the verification step. The transaction is flagged to
have been compromised, and other authorized
nodes stop mining. Based on these results, the
architecture has the capability of verifying the
consistency and integrity of submitted
transactions, and also detecting and preventing
any malicious activities from both the insider and
outsider attackers on the shared data.

4.2 Performance Analysis

We obtain the following data for each transaction from
every node to analyze the response time.

• Transaction deployment time (t1): This is the time
a transaction is submitted to the network. These
data are collected directly from the sender console.

• Execution time (t3): This is the time taken for the
content of each transaction to appears in
designated files of each node. The time is retrieved
by setting on current time on all node consoles.

4.2.1 Response Time

The response time is also known as latency
(measured in seconds) of the blockchain network. For
each transaction, latency is the difference between the
execution time and the deployment time (t3-t1). Latency
includes verification time, mining time, and time
elapsed for nodes to request transaction address and
retrieve mined features. We measure the response time
of the architecture in two different scenarios: (i) Closed
proximity, i.e., when the nodes are closed to each other
(lab) and (ii) Wide geographical area, i.e., when the
nodes are far apart from each other. Figures 6 shows the
average response time of nodes for both deployments.
The average response time of nodes is the addition of
response times for transactions divided by the number
of transactions. The result shows a slight difference
between both cases. The slight increase in the response
time Figure 6A is due to the computing power of the
nodes, which is lower than the cloud nodes in Figure 6B.
Based on the result, the architecture can facilitate
scalable attack features exchange among IDS nodes in
computer networks irrespective of the location.

 Figure 6: (A) The average response time when performed in the

lab (B)The average response time when deployed to the cloud.

4.2.2 Scalability

We analyze the change in the response time of the
architecture with an increasing number of nodes. We
first implement the effect of increasing the number of
unauthorized (public) nodes on the response time of
authorized nodes in the architecture. We randomly
choose two nodes that are in South Carolina and Los
Angeles and make them authorized nodes. The
blockchain network is step up as described above with
these authorized nodes and an attack node (located in
New York). The features extracted from DoS attacks
are prepared as transactions and submitted to the
blockchain network. These transactions are verified,
validated, and stored on the blockchain network. We
record the response time of the two authorized nodes.
We increase the number of public nodes joining the
network one at a time, repeat the experiment, and
record the response time for the two authorized nodes.
Fig. 7 shows the response time of the two authorized
nodes for an increasing number of public nodes. We
observed that increasing the number of public nodes

May 06,

2020

has no effect on the architecture's response time,
which implies that the solution is robust to public IDS
nodes joining and leaving the network.

Figure 7: The response time with an increasing number of public
nodes.

 Furthermore, we evaluate the response time with
an increasing number of authorized nodes (i.e.,
miners). We set up a blockchain network in the lab, as
described above. Transactions are prepared and
submitted to the blockchain network by an authorized
node. The submitted transactions are verified,
validated, stored, and distributed to all nodes in the
network. We repeat the experiment several times, and
the average response time of each node is recorded.
We increase the number of miners One at a time,
repeat the experiment, and record the average
response times of each node. We repeated the
experiment when we deployed it to the cloud platform
and compared the results. Figure 8 shows the
response time of the nodes as the number of miners
increases for both deployments. We could observe a

slight fall in the response time as more authorized
nodes are added to the network. The decrease in
response time is due to the availability of more miners
to compete for mining, hence, reducing the mining time
(which accounts for a large portion of the response
time). The result further confirms that the architecture
can facilitate scalable and prompt attack features
exchange among IDS nodes.

5. Conclusion

In this paper, we propose a permissionless public-
private blockchain-based architecture that detects and
prevents malicious activities from both outsider and
insider threats on the stored data. The proposed solution,
which focuses on network-based attacks, securely extracts,
stores, and shares attack features in real-time with the view
of enhancing the security of shared data, thereby
eradicating the problems threatening cooperative
intrusion detection. We implement the architecture when
the nodes are close (in the lab) and when they cover a large
geographical area, examine the security analysis and
performance metrics. The result showed that the
architecture could facilitate scalable and prompt attack
features exchange among IDS nodes, detects typical
insider and outsider attack threats, and robust to public
IDS nodes joining and leaving the network. Also, the result
showed that adding public nodes has no effect on the
response time of the architecture but decreases slightly
with an increasing number of miners.
In future we wish to expand our work to accommodate the
following :

• We are implementing ways of increasing the
throughput of architecture.

• Develop an algorithm that restricts mining of
similar attack features by different nodes

Fig. 8. a) Response time of nodes with an increasing number of miners in the lab (b) Response time of nodes with an increasing number of miners
when deployed to the cloud.

May 06,

2020

References

[1] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas,

"Modeling intrusion detection system using hybrid intelligent
systems," Journal of network and computer applications, vol. 30, no.
1, pp. 114–132, 2007.

[2] O. Igbe, O. Ajayi, and T. Saadawi, "Denial of Service Attack Detection
using Dendritic Cell Algorithm" 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference
(UEMCON 2017) Oct 19th – 21st 2017, Columbia University, New
York, USA.

[3] O. Igbe, O. Ajayi, and T. Saadawi, "Detecting Denial of Service attacks
using a combination of Dendritic Cell Algorithm(DCA) and Negative
Selection Algorithm(NSA)" 2nd International Conference on Smart
Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York, USA.

[4] F. Gong, "Next-generation intrusion detection systems (IDS),"
McAfee Netw. Security. Technol. Group, Santa Clara, CA, USA, White
Paper, 2003

[5] Y. L. Dong, J. Qian, M. L. Shi, "A cooperative intrusion detection
system based on autonomous agents," IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[6] C. C. Lo, C. Huang, J. Ku, A cooperative intrusion detection system
framework for cloud computing networks, in: In: Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[7] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, "Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS," in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234–244.

[8] O. Ajayi, M. Cherian and T. Saadawi, "Secured Cyber-Attack
Signatures Distribution using Blockchain Technology," 2019 IEEE
International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), New York, NY, USA, 2019, pp.
482-488.

[9] Y. L. Dong, J. Qian, M. L. Shi, "A cooperative intrusion detection
system based on autonomous agents," IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[10] C. C. Lo, C. Huang, J. Ku, "A cooperative intrusion detection system
framework for cloud computing networks," In Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[11] W. Zhang, S. Teng, H. Zhu, D. Liu, "A Cooperative Intrusion
Detection Model Based on Granular Computing and Agent
Technologies", J. International Journal of Agent Technologies and
Systems, vol. 5, no. 3, pp. 54-74, 2013

[12] S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) —
motivation, architecture, and an early prototype. In Proceedings of
the 14th National Computer Security Conference, pages 167–176,
October 1991.

[13] M. Uddin, A. Abdul Rehman, N. Uddin, J. Memon, R. Alsaqour, and
S. Kazi, "Signature-based Multi-Layer Distributed Intrusion
Detection" International Journal of Network Security, Vol.15, No.2,
PP.97-105, Mar. 2013

[14] S. Nakamoto (2008) Bitcoin: a peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf

[15] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.
"Blockchain Technology Innovation". 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

[16] Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017

[17] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky, L.:
Ensuring data integrity using Blockchain technology. In: Proceeding
of the 20th Conference of fruct Association ISSN 2305-7254 IEEE
(2017)

[18] M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, "BAD: a
Blockchain Anomaly Detection solution" arXiv:1807.03833v2, [cs.
CR] July 12 2018

[19] T. Golomb, Y. Mirsky and Y. Elovici " CIoTA: Collaborative IoT
Anomaly Detection via Blockchain" arXiv:1803.03807v2, [cs.CY]
April 09 2018

[20] Gu, J, B Sun, X Du, J Wang, Y Zhuang and Z Wang (2018). Consortium
blockchain-based malware detection in mobile devices. IEEE Access,
6, 12118–12128

[21] Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain based
approach to enhance big data authentication in distributed environment. In
Ubiquitous and future networks (icufn), 2017 ninth international conference
on (pp. 887–892).

[22] S.R. Snapp, J. Brentano, GV dias, T.L. Goan, L.T. Heberlein, C. Ho, K.N.
Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D. Mansur.
DIDS (distributed intrusion detection system) — motivation, architecture,
and an early prototype. In Proceedings of the 14th National Computer
Security Conference, pages 167–176, October 1991.

[23] V. Yegneswaran, P. Barford, S. Jha, "Global intrusion detection in the
DOMINO overlay system", Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS),
pp. 1-17, 2004.

[24] Sultan Aldossary, William Allen. Data Security, Privacy, Availability and
Integrity in Cloud Computing: Issues and Current Solutions. (IJACSA)
International Journal of Advanced Computer Science and Applications,Vol.
7, No. 4, 2016 pp.485-498

[25] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy-preserving
public auditing for secure cloud storage," Computers, IEEE Transactions on,
vol. 62, no. 2, pp. 362–375, Feb 2013

[26] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph Holz,
An Binh Tran, and Paul Rimba. 2017. On Availability for Blockchain-Based
Systems. In SRDS'17: IEEE International Symposium on Reliable
Distributed Systems

[27] L. Dhanabal, S.P. Shantharajah, A study on NSL-KDD dataset for intrusion
detection system based on classification algorithms, International Journal of
Advanced Research in Computer and Communication Engineering 4 (2015)
446–452

O. Ajayi is a Ph.D. student at the Center of
Information Networking and
Telecommunications (CINT) research lab,
Electrical Engineering Department, CCNY. He
obtained his master's degree in
Communication Engineering from the
University of Manchester, Manchester, United

Kingdom.
He has carried out several types of research in the field of
cybersecurity with a particular interest in intrusion detection and
prevention system. He has published different conference papers
in the application of the Artificial Immune System (AIS) in the
intrusion detection system (IDS). He is currently working on the
application of blockchain technology in detecting malicious
activities, enhancing the detection rate of IDS nodes, and
protecting computer networks.

T. Sadaawi has been with the City
University of New York, City College,
since 1980, where he currently directs the
Center of Information Networking and
Telecommunications (CINT) at CCNY. He
is also the co-Director of the master's
degree program in Cyber Security starting

in Fall 2020. His current areas of research are cybersecurity,
intrusion detection systems with applications to smart grid and
autonomous systems, and blockchain. Dr. Saadawi is a Former
Chairman of the IEEE Computer Society of New York City. He has
received the IEEE Region 1 Award.
He is a Lead-author of a book on telecommunications. He is also
the lead author of Egypt Telecommunications Infrastructure
Master Plan, funded by USAID. He has been invited and joined
the US Department of Commerce delegation trip to the
Government of Algeria, addressing rural communications in 2007.

http://bitcoin.org/bitcoin.pdf

May 06,

2020

May 06,

2020

