

Quantum Communication

Towards Quantum Networks using Engineered Solid-State Quantum-Light Sources

Tobias Heindel

Head of Group Quantum Communication Systems

Vienna Center for Quantum Science and Technology

Federal Ministry of Education and Research

Institute of Solid State Physics Technische Universität Berlin Germany

© Tobias Heindel

Overall Outline

Basics

Ś

Bob

Part I: Intro & Basics

- o About Us
- Quantum Key Distribution (QKD)
- Single-Photon Generation in the Solid-State
- \odot Review on Single-Photon QKD

Part II: Early Work

• Efficient Single-Photon LEDs

- Free-space QKD in-lab and in Munich City
- Deterministic Device Technology
- Quantum Optics & Spin-Photon Interfaces

Part III: Towards Quantum Networks

- $\,\circ\,$ Tools for Optimization and Certification
- Plug'n'Play Quantum Light Sources
- Benchtop QKD Testbeds
- Emerging Materials
- Berlin Quantum Network Activities

Quantum Communication Part I: Intro & Basics

Tobias Heindel

Head of Group Quantum Communication Systems **VCQ**

Vienna Center for Quantum Science and Technology

Federal Ministry of Education and Research

Institute of Solid State Physics Technische Universität Berlin Germany

Outline – Part I

About Us

- QuCom Group @ Berlin
- Research & Vision

Quantum Communication Intro Point-to-Point QKD Protocols (BB84, E91, ...)
Advanced Protocols (MDI-QKD, QuRepeater)
Beyond QKD

Single-Photon Generation in the Solid-State Quantum Dots and the Purcell Effect

REVIEW	
	www.advquantumtech.cor
Quantum Communication	
Using Semiconductor Quantu	m Dots

Single-Photon QKD A Brief Review

Tobias Heindel

Equipment

미슈

attoDry800 cryo-optical table

• World's first (attoDRY800)² incl. 2x closed-cycle cryos

Hands-free ps-OPO-Lasersystem + 2x Pulse Shaper

○ Tuning range: 700 – 1900 nm, 2 ps, 80 MHz

12-Channel SNSPD System

o 4 Chs @ 780 nm
o 4 Chs @ 900 nm
o 4 Chs @ 1.3/1.5 μm

Installation Time-lapse of World's First (ATTODRY 800)²

Quantum Communication Group of Tobias Heindel - TU Berlin 2022

Tobias Heindel

Outline – Part I

About Us

- QuCom Group @ Berlin
- Research & Vision

Quantum Communication Intro Point-to-Point QKD Protocols (BB84, E91, ...)
Advanced Protocols (MDI-QKD, QuRepeater)
Beyond QKD

Single-Photon Generation in the Solid-State Quantum Dots and the Purcell Effect

REVIEW	ADVANCED QUANTUM TECHNOLOGIE
	www.advquantumtech.com
Quantum Communication	
Using Semiconductor Ouantu	m Dots

Single-Photon QKD A Brief Review

Notions & Topology

The BB84 Protocol

One-Time Pad

 $\circ~$ The only information theoretically secure encryption \rightarrow Symmetric, random, and secret key for one-time use

QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND COIN TOSSING

Charles H. Bennett (IBM Research, Yorktown Heights NY 10598 USA) Gilles Brassard (dept. IRO, Univ. de Montreal, H3C 3J7 Canada)

International Conference on Computers, Systems & Signal Processing Bangalore, India December 10-12, 1984

- $\circ~$ Sending and receiving single photons in randomly chosen polarization \rightarrow Raw Key
- Keep only bits measured in same polarization basis (otherwise delete bit)
 → Sifted Key = ½ Raw Key Should be perfectly correlated (ideal hardware)
- $\circ~$ Spy "Eve" introduces errors in Sifted Key
 - ightarrow Determine quantum bit error ratio (QBER) from subsets of the sifted key
 - \rightarrow Secret key distillation possible if QBER < ~ 12%
- $\circ\,$ Error correction and privacy amplification
 - ightarrow Secure Key

[1] C. H. Bennett und G. Brassard, *Proc. of IEEE International Conference on Computers,* Systems and Signal Processing, Bangalore, India S. 175–179 (1984)

 [1] C. H. Bennett und G. Brassard, Proc. of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India S. 175–179 (1984)

Tobias Heindel

How far can we go?

Rate vs. Loss [1,2]

- Absorption-limited linear regime
 - \rightarrow Channel attenuation (0.2 dB/km @ 1.55 $\mu m)$
- Noise-limited multi-exponential regime
 → Detector dark counts

Current record using attenuated lasers (WCPs)

- ightarrow 421 km communication distance [3]
- Secret key capacity bound [2]
 - \rightarrow Limit for direct point-to-point QKD
 - \rightarrow Advanced schemes required (e.g. qua-repeaters)

[1] R. Alléaume et al., New J. Phys. 11, 075002 (2009)
[2] S. Pirandola et al., Nat. Commun. 8, 15043 (2017)

[3] A. Boaron et al., Phys. Rev. Lett. 121, 190502 (2018)

Classical vs. Quantum Light Sources

berlin

Multi Photons and Pair Generation

[1] W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)[2] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005)

Calculating Secret Key Rates

Calculating Secret Key Rates

[1] R. Y. Q. Cai and V. Scarani, New Journal of Physics 11, 045024 (2009)

The E91 Protocol

[1] Proposal: A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

[2] 1st experiment: T. Jennewein et al., Phys. Rev. Lett. 84, 4729 (2000)

Rastelli group (JKU Linz)

C. Schimpf et al., Sci. Adv. 7, 16 (2021)

and

Trotta group (Sapienza Rome)

F. Basso Basset et al., Sci. Adv. 7, 12 (2021)

MDI-QKD

Measurement-Device-Independent (MDI) QKD – Scheme [1]

- Alice and Bob both prepare single photons with randomly chosen BB84 states and send them to a common relay station ,Charly'
- $\circ\,$ Charly performs a partial Bell-state measurement (BSM) on both photons:
 - \rightarrow Projection in $\Psi^{\text{-}} \rightarrow$ Click at $\text{D}_{1\text{H}} \, \text{and} \, \text{D}_{2\text{V}} \, \text{or} \, \text{D}_{1\text{V}} \, \text{and} \, \text{D}_{2\text{H}}$
 - \rightarrow Projection in Ψ^{+} -> Click at $\rm D_{1H}$ and $\rm D_{1V}$ or $\rm D_{2V}$ and $\rm D_{2H}$
- Charly announces successful BSMs (clicks in orthogonal polarization) and resepctive results
- $\,\circ\,$ Alice and Bob sift their keys:
 - \rightarrow Keep entries which resulted in a succesfull BSM
 - \rightarrow Keep entries with same basis choice (for sending)
- Alice (or Bob) performs a bit flip on all entries except when both send in the diagonal basis resulting in a successfull BSM:

Alice & Bob	Relay output $ \psi^- angle$	Relay output $ \psi^+\rangle$			
Rectilinear basis	Bit flip	Bit flip			
Diagonal basis	Bit flip	No bit flip			

= time-reversed E91 protocol!

[1] H. K. Lo, M. Curty, and B. Qi, PRL 108, 130503 (2012) and S. L. Braunstein and S. Pirandola, PRL 108, 130502 (2012)

MDI-QKD

- $\circ\,$ Hard to avoid security loopholes in practical applications
 - \rightarrow Device-independent (DI) schemes very attractive but challenging!

$\,\circ\,$ Many attacks target the detector [2]:

Attack	Target component	Tested system
Time-shift 76-79	Detector	Commercial system
Time-information 80	Detector	Research system
Detector-control 81-83	Detector	Commercial system
Detector-control 84	Detector	Research system
Detector dead-time 85	Detector	Research system
Channel calibration [86]	Detector	Commercial system
Phase-remapping 87	Phase modulator	Commercial system
Faraday-mirror 88	Faraday mirror	Theory
Wavelength [89]	Beam-splitter	Theory
Phase information 90	Source	Research system
Device calibration 91	Local oscillator	Research system

 \rightarrow MDI-QKD interesting alternative to full DI schemes for some applications

MDI-QKD important step towards multi-user neteworks and quantum repearters

[1] H. K. Lo, M. Curty, and B. Qi, PRL 108, 130503 (2012) and S. L. Braunstein and S. Pirandola, PRL 108, 130502 (2012)
 [2] H. K. Lo, M. Curty, and K. Tamaki, Nature Photonics 8, 595-604 (2014)

Quantum Repeater

Working Principle • Quantum repeater [1] extend achievable communication distance shorter distance C_1 C_2 C_2

[1] 1st Theory: H.-J. Briegel et al., Phys. Rev. Lett 81, 5932 (1998)

Resources Required [2]

- Entanglement Swapping
- Entanglement Purification
- Quantum Memories

[2] N. Gisin & R. Thew, Nat. Photon. 1, 165 (2007)

Entanglement Swapping

- 1. Generate entangled photon-pairs from remote quantum emitters
- 2. Perform Bell-state measurement of XX-photons at C:

 $|\Psi^+\rangle_c = |LR\rangle + |RL\rangle$

3. Verify entanglement of photon-pairs A-B: $|\Psi^+\rangle = |RL\rangle + |LR\rangle$

Note: Experimental progress by groups Trotta, Rastelli, and Schmidt using quantum dots

Outline – Part I

About Us

- QuCom Group @ Berlin
- Research & Vision

Quantum Communication Intro Point-to-Point QKD Protocols (BB84, E91, ...)
Advanced Protocols (MDI-QKD, QuRepeater)
Beyond QKD

Single-Photon Generation in the Solid-State Quantum Dots and the Purcell Effect

REVIEW	ADVANCED QUANTUM TECHNOLOGIE
	www.advquantumtech.com
Quantum Communication	
Using Semiconductor Oua	ntum Dots

Single-Photon QKD A Brief Review

How to Single Photon

Quantum dot (QD) – "artificial atom" **Excitonic multiparticle-states [2]** XX X- X^+ Х Energie GaAs [1] Energie InAs 0-0 Mh Ort bindend antibindend 10nm X-XX X⁺ Х Ort Intensität [1] Keizer et al., APL 101, 243113 (2012) **3D** confinement of charge carriers $\leq \lambda_{db}$ Energie \rightarrow Descrete energy levels Intensität \rightarrow Bound electron-hole pairs: excitons (X) \rightarrow Radiative recombination \rightarrow Emission of single photons Energie

[2] S. Rodt et al., Phy. Rev. B 71, 155325 (2005)

Tobias Heindel

How to Entangle Photons

Tobias Heindel

Photon Extraction Strategies

Photon Extraction Strategies

Outline – Part I

About Us

- QuCom Group @ Berlin
- Research & Vision

Quantum Communication Intro Point-to-Point QKD Protocols (BB84, E91, ...)
Advanced Protocols (MDI-QKD, QuRepeater)
Beyond QKD

Single-Photon Generation in the Solid-State Quantum Dots and the Purcell Effect

REVIEW	ADVANCED QUANTUM TECHNOLOGIE
	www.advquantumtech.com
Quantum Communication	
Using Semiconductor Ouantu	m Dots

Single-Photon QKD A Brief Review

Single-photon QKD

Single-photon QKD

D. Vajner et al., Adv. Qauntum Technol. 2100116 (2022)

REVIEW

Quantum Communication Using Semiconductor Quantum Dots

Daniel A. Vajner, Lucas Rickert, Timm Gao, Koray Kaymazlar, and Tobias Heindel*

Paper Link

Worldwide, enormous efforts are directed toward the development of the so-called quantum internet. Turning this long-sought-after dream into reality is a great challenge that will require breakthroughs in quantum communication and computing. To establish a global, quantum-secured communication infrastructure, photonic quantum technologies will doubtlessly play a major role, by providing and interfacing essential quantum well as the strategies of breaking them, have been employed over time (see Singh for a historic overview^[1]), most current security standards rely on the computational complexity of so-called one-way functions.[2] However, considering the steady increase in computa not stay

106

104

109

 10^{-2}

second

ecure Bits per 103

Protocol	Coding	Source/ Pump	Clock-rate [MHz]	$\lambda~[{\rm nm}]$	Max Sifted Key Rate	Max Secure Key Rate	QBER [%]	FSO/ FC	Max distance	Ref.
BB84	Pol	SPS / optic.	76	880		25 kbps	2.5	FSO	In-Lab	[130]
BB84	Pol	SPS / optic.	0.01	635	15 bps	5 bps	6.8	FSO	In-Lab	[161]
BB84	Phase	SPS / optic.	1	1300	10 bps	1 bps	5.9	FC	$35 \mathrm{~km}$	[131]
BB84	Pol	SPS / optic.	40	895		8-600 bps	1.2-21.9	\mathbf{FC}	2 km	[165]
BB84	Phase	SPS / optic.	20	1580	15-386 bps	3-9 bps	3.4-6	FC	$50 \mathrm{km}$	[141
BB84	Pol	SPS / elect.	182.6	898	8-35 kbps	042	3.8-6.7	FSO	In-Lab	[135
BB84 a)	Pol	SPS / elect.	200	653	9-117 kbps	-	4.1-6.0	FSO	In-Lab	[135
BB84	Pol	SPS / elect.	125	910	5-17 kbps	()	6-9	FSO	$500 \mathrm{~m}$	[170
BB84	Phase	SPS / optic.	62.5	1500	34 bps	0.307 bps	2-9	FC	$120 \mathrm{~km}$	[168
E91	Pol	EPS / elect.	50 ^{b)}	885	0.2 bps	$0.1 \mathrm{~bps}$	-	FC	In-Lab	[140
E91 °)	Pol	EPS / optic.	320	785	243 bps	69 ^d)	3.4	FC	$250 \mathrm{m}$	[142
E91	Pol	EPS Optic.	320	785	30 bps	9 bps	4.0	FSO	$270~{\rm m}$	[142
BBM92	Pol	EPS / optic.	80	785	135 bps	86 bps	1.9	FC	350 m	[143

Tobias Heindel

Quantum Communication Part II: *Early Work*

Tobias Heindel

Head of Group Quantum Communication Systems **VCQ**

Vienna Center for Quantum Science and Technology

Federal Ministry of Education and Research

Institute of Solid State Physics Technische Universität Berlin Germany

Outline – Part II

RecapPhoton Extraction Efficiencies

Early Work

Electrically Triggered Single-Photon Sources
 Quantum Communication using Single-Photon LEDs

Deterministic 3D In-Situ Electron Beam Lithography
 Fundamental Quantum Optics Experiments

Spin-Photon Interfaces

All-optically Accessing the Dark Exciton Spin-Qubit

Photon Extraction Strategies

^[3] K. J. Vahala, Nature 424, 839-846 (2003)

Outline – Part II

RecapPhoton Extraction Efficiencies

Early Work

Electrically Triggered Single-Photon Sources
 Quantum Communication using Single-Photon LEDs

- Deterministic 3D In-Situ Electron Beam Lithography
- Fundamental Quantum Optics Experiments

Spin-Photon Interfaces

All-optically Accessing the Dark Exciton Spin-Qubit

Single-Photon Light Emitting Diode

→ T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

Quantum Dot Micropillar single-photon source

- Optimized Design
- Efficient light extraction

- Upper DBR: 13 $\lambda/4$ GaAs/AlAs, p-doping
- $\, \odot \,$ Active region: InAs QDs in an intrinsic $\, \lambda \text{-cavity}$
- \odot Lower DBR: 26 λ /4 GaAs/AlAs, n-doping

Exploit Purcell-effect for efficient photon extraction

erlin

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Device Technology

→ T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

[1] W. L. Barnes et al., Eur. Phys. J. D 18, 197 (2002)

Temperature-induced spectral tuning of QD emission

Purcell-enhanced SPS

→ T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

Single-Photon QKD

Tobias Heindel

VCQ Summer School 2022 - Vienna

500 m QKD – Experimental setting

→ M. Rau, T. Heindel et al., New. J. Phys. 16, 03003 (2014)

500 m QKD – Results

→ M. Rau, T. Heindel et al., New. J. Phys. 16, 03003 (2014)

Tobias Heindel

Tobias Heindel

Outline – Part II

RecapPhoton Extraction Efficiencies

Early Work

Electrically Triggered Single-Photon Sources
 Quantum Communication using Single-Photon LEDs

- Deterministic 3D In-Situ Electron Beam Lithography
 Fundamental Quantum Optics Experiments
- $\underbrace{\underbrace{\mathbf{k}}_{\text{tractioned}}}_{\frac{1}{\sqrt{2}}}(|\uparrow\uparrow\rangle\pm|\downarrow\downarrow\rangle)$

Spin-Photon Interfaces

All-optically Accessing the Dark Exciton Spin-Qubit

Deterministic Device Technology

¹ M. Gschrey, T.H. et al., *APL* 102, 251113 (2013) ² M. Gschrey, T.H. et al., *Nat. Commun.* 6, 7662 (2015)

TOPICAL REVIEW

Deterministically fabricated solid-state quantum-light sources

Sven Rodt, Stephan Reitzenstein 问 and Tobias Heindel 问 Published 14 January 2020 • © 2020 IOP Publishing Ltd Journal of Physics: Condensed Matter, Volume 32, Number 15

Paper Lin

³ A. Schlehahn, T.H. et al., APL 107, 041105 (2015)

→ A. Thoma et al., Phys. Rev. Lett. 116, 033601 (2016)

What limits the Visibility?

1.5 HOM λ_{Laser} = 909 nm Normalized coincidences HBT Coinc. (arb.u.) X V~50% 1.0 1.0 uPL intensity (arb. u.) 0.5 0.5 0.0 -50 -25 0 25 50 τ (ns) 0.0 -40 -30 -20 -10 20 0 10 30 40 0.0 τ (ns) 930 932 934 936 938 942 940 **Hong-Ou-Mandel Experiment** Wavelength (nm) Laser Probe photon-indistinguishability = mean wavepacket overlapp 12.5 ns λ/2 Si-APDs Crucial for advanced QKD scenarios beyond the BB84 MO $(|2_30_4\rangle - |0_32_4\rangle)/\sqrt{2}$ 12.5 ns 7K - 40K Delay Monochromator

→ A. Thoma et al., Phys. Rev. Lett. 116, 033601 (2016)

Probe photon-indistinguishability as a function of the time δt elapsed between consecutive emission events

→ A. Thoma et al., Phys. Rev. Lett. 116, 033601 (2016)

→ A. Thoma et al., Appl. Phys. Lett. 110, 011104 (2017)

group

VCQ Summer School 2022 - Vienna

Tobias Heindel

group

VCQ Summer School 2022 - Vienna

Outline – Part II

RecapPhoton Extraction Efficiencies

Early Work

Electrically Triggered Single-Photon Sources
 Quantum Communication using Single-Photon LEDs

- Deterministic 3D In-Situ Electron Beam Lithography
- Fundamental Quantum Optics Experiments

Spin-Photon Interfaces

All-optically Accessing the Dark Exciton Spin-Qubit

Dark Exciton Spin-Qubits

Tobias Heindel

20

The Experiment

→ T. Heindel et al., APL Photonics 2, 121303 (2017)

Technion Israel Institute of Technology

Quantum Communication Part III: *Towards Quantum Networks*

Tobias Heindel

Head of Group Quantum Communication Systems

Vienna Center for Quantum Science and Technology

Federal Ministry of Education and Research

Institute of Solid State Physics Technische Universität Berlin Germany

Outline – Part III

RecapBB84 & Rate vs. Loss Diagramm

alice

Optimization & Certification • About How Bob Should Measure

...and Other Usefull Tools

Developing Practical Single-Photon QKD Systems
Plug'n'Play Quantum Light Sources
Benchtop QKD Testbeds

Emerging Materials Atomically-Thin Single-Photon Sources for QuCom

Summary & Outlook Towards Quantum Communication Networks

Outline

[1] C. H. Bennett und G. Brassard, Proc. of IEEE International Conference on Computers,[2] FSystems and Signal Processing, Bangalore, India S. 175–179 (1984)[3] S

[2] R. Alléaume et al., New J. Phys. 11, 075002 (2009)
[3] S. Pirandola et al., Nat. Commun. 8, 15043 (2017)

Outline – Part III

Optimization & Certification • About How Bob Should Measure

...and Other Usefull Tools

Developing Practical Single-Photon QKD Systems
Plug'n'Play Quantum Light Sources
Benchtop QKD Testbeds

Emerging Materials Atomically-Thin Single-Photon Sources for QuCom

Summary & Outlook Towards Quantum Communication Networks

Tobias Heindel

VCQ Summer School 2022 - Vienna

Photon Statistics – Live "On-Air"

→ T. Kupko et al., npj Quantum Information (2020)

Tobias Heindel

VCQ Summer School 2022 - Vienna

Photon Statistics – Live "On-Air"

→ T. Kupko et al., npj Quantum Information (2020)

Tobias Heindel

VCQ Summer School 2022 - Vienna

* Important to note Note *

Outline – Part III

RecapBB84 & Rate vs. Loss Diagramm

Optimization & Certification • About How Bob Should Measure

...and Other Usefull Tools

Developing Practical Single-Photon QKD Systems
Plug'n'Play Quantum Light Sources
Benchtop QKD Testbeds

Emerging Materials Atomically-Thin Single-Photon Sources for QuCom

Summary & Outlook Towards Quantum Communication Networks

Single-Photons Plug'n'Play?

Single photon generation outside shielded lab environment

Tobias Heindel

VCQ Summer School 2022 - Vienna

Stand Alone Single-Photon Source

→ A. Schlehahn, TH et al., Scientific Reports 8, 1340 (2018)

 Deterministic fab of QD microlens inside aperture

- Gluing fiber ferrule above QD
 - microlens using epoxide adhesive

¹ M. Gschrey, TH et al., *APL* 102, 251113 (2013) ² M. Gschrey, TH et al., *Nat. Commun.* 6, 7662 (2015)

Stand Alone Single-Photon Source

→ A. Schlehahn, TH et al., Scientific Reports 8, 1340 (2018)

group

Stand Alone Single-Photon Source

→ A. Schlehahn, TH et al., Scientific Reports 8, 1340 (2018)

group

Telecom-Wavelength QKD-Testbed

→ T. Gao, L. Rickert et al., Applied Physics Reviews 9, 011412 (2022)

Telecom-Wavelength QKD-Testbed

→ T. Gao, L. Rickert et al., Applied Physics Reviews 9, 011412 (2022)

Accounting for finite key-size effects: R. Y. Q. Cai and V. Scarani, New Journal of Physics 11, 045024 (2009)

Tobias Heindel

VCQ Summer School 2022 - Vienna

Telecom-Wavelength QKD-Testbed

berlin

→ T. Gao, L. Rickert et al., Applied Physics Reviews 9, 011412 (2022)

		Ref. ²⁴	Ref. ²⁹	This Work
	λ (nm)	877	1580.5	1321
	μ	0.007	0.009	0.0002
	$p_{ m dc}$	$10.5 \cdot 10^{-7}$	$3 \cdot 10^{-7}$	$5.25 \cdot 10^{-7}$
	$e_{\rm detector}$	0.025	0.023	0.010
	$\eta_{ m Bob}$	0.24	0.048	0.3
	$g^{(2)}(0)$	0.14	0.0051	0.10

Telecom-Wavelength QKD-Testbed

→ T. Gao, L. Rickert et al., Applied Physics Reviews 9, 011412 (2022)

Home > Applied Physics Reviews > Volume 9, Issue 1 > 10.1063/5.0070966

Free 🔸 Submitted: 10 September 2021 🔸 Accepted: 05 January 2022 🔸 Published Online: 26 January 2022

A quantum key distribution testbed using a plug&play

telecom-wavelength single-photon source 🔊 🖲

Applied Physics Reviews 9, 011412 (2022); https://doi.org/10.1063/5.0070966

i Timm Gao¹, Lucas Rickert¹, Felix Urban¹, Jan Große¹, Nicole Srocka¹, Sven Rodt¹, Anna Musiał², Kinga Żołnacz³, Paweł Mergo⁴, Kamil Dybka⁵, Wacław Urbańczyk³, Krzegorz Sęk², Sven Burger⁶, Stephan Reitzenstein¹, and Croes Heindel^{1,a)}

VCQ Summer School 2022 - Vienna

[1] J. Liu et al., Nat. Nanotechnol. 14, 586 (2019) [2] H. Wang et al., Phys Rev. Lett. 122, 113602 (2019) CM Wave Support by Philipp-Immanuel Schneider and Sven Burger greatfully acknowledged

Tobias Heindel

Towards Telecom FC-SPS

→ L. Rickert et al., Optics Express (2019)

Blueprint for Telecom-Wavelength Quantum Light Sources

Fiber-pigtailing Microcavity-LEDs

→ L. Rickert et al., Appl. Phys. Lett. 119, 131104 (2021)

Micropillar-SPS

T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

berlin

T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

Tobias Heindel

T. Heindel et al., Appl. Phys. Lett. 96, 011107 (2010)

Tobias Heindel

905

Wavelength (nm)

910

900

Outline – Part III

RecapBB84 & Rate vs. Loss Diagramm

Optimization & Certification • About How Bob Should Measure

...and Other Usefull Tools

Developing Practical Single-Photon QKD Systems
Plug'n'Play Quantum Light Sources
Benchtop QKD Testbeds

Emerging Materials Atomically-Thin Single-Photon Sources for QuCom

Summary & Outlook Towards Quantum Communication Networks

QKD using 2D-TMDCs? NEWS

Lab

om

group

T. Gao, M. von Helversen, C. Anton-Solanas, C. Schneider, and T. Heindel, arXiv.2204.06427 (2022)

Tobias Heindel

VCQ Summer School 2022 - Vienna

berlin

Carl von Ossietzky

Universität Oldenburg

Outline – Part III

RecapBB84 & Rate vs. Loss Diagramm

Optimization & Certification • About How Bob Should Measure

About How Bob Should Measure
 ...and Other Usefull Tools

Developing Practical Single-Photon QKD Systems
Plug'n'Play Quantum Light Sources
Benchtop QKD Testbeds

Emerging Materials Atomically-Thin Single-Photon Sources for QuCom

Summary & Outlook Towards Quantum Communication Networks

Metropolitan Area QKD Networks

Qu**Com** group

Towards a Berlin Quantum Network

Installation Time-lapse of World's First (ATTODRY 800)²

Quantum Communication Group of Tobias Heindel - TU Berlin 2022

Summary & Outlook

International Quantum Year 2025

→ https://quantum2025.org/

berlin