DIGITAL DESIGN COEN 212	Ted Obuchowicz/ Asim Al-Khalili	
Time Allowed: 3:00 hrs.	Dec 13, 2017	2 pages
Answer All Questions		No materials are allowed

Question 1

1. Design a 3-8 decoder using NAND gates only. Mark the outputs with their corresponding binary values. (3 marks)
2. Use a 3-8 decoder plus minimal extra logic gates to implement the following functions: (3 marks)

$$
\begin{aligned}
\text { i. } & \text { F1 }(A, B, C)=\sum m(0,1,2) \\
\text { ii. } & \text { F2(A,B,C) }=\sum m(3,4,5) \\
\text { iii. } & \text { F3(A,B,C) }=\sum m(5,6,7)
\end{aligned}
$$

3. Use a 4-1 MUX plus minimal extra logic gates to implement the following function: (4 marks)
F4(A,B,C,D)=AB' + ABC' + AB'D

Question2

1. Design_a circuit that performs the following operations $\mathbf{Y}=\mathbf{5 A}$ where A is an unsigned 4 bit binary number $\mathbf{A}_{3} \mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{0}}$. Give area and delay estimate of your design. [Assume all gates have equal area and delay. A full adder has 5 gates and a half adder has 2 gates]. (6 marks)
2. What size of ROM is required to implement the above multiplier? (2 marks)

Question 3

Design a Decoder that receives a BCD number and displays a \mathbf{L} or \mathbf{S} on a 7segment display as shown in Fig. 1 below. If a BCD number is greater than OR equal TO 5 then \mathbf{L} is displayed, if the number is less than 5 then \mathbf{S} should be displayed. Start with a truth table and derive final output in MINIMAL SOP form. Give final circuit diagram. (8 marks)

Fig. 1

