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For many years it has been believed that animals cannot make morphine. However,
within the last 30 years scientific documents have emerged reporting on endogenous
animal opiate synthesis, including morphine biosynthesis in animals and specific tis-
sues. These data are complemented by other reports demonstrating the presence of
opiate receptors specifically used for morphinergic signaling in animal tissues, bring-
ing together the lock-and-key concept for an animal morphine chemical messenger
hypothesis.
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Presence of Opiate Alkaloid
in Vertebrate and Invertebrate

Animals

An endogenous morphine presence1–7 in
mammals occurs in nerve tissue (bovine, rat
brain),8 adrenal gland,9 and human plasma.10

Furthermore, concentrations of endogenous
morphine in the sub-picomol/g range have
been found in rat brain,11 as determined
by a new extraction technique, HPLC and
gas chromatography–mass spectrometry (GC–
MS)/quadrupole time of flight (Q-Tof) MS.
Recently, morphine has been identified in hu-
man brain.12 Importantly, morphine precursor
molecules, tetrahydropapaveroline (THP), reti-
culine, salutaridine, thebaine, and codeine were
also detected in various vertebrate tissues.5,13–15

These findings have provided strong presump-
tive evidence for the physiological relevance of
endogenous morphine.

Morphine has also been found in human
plasma,16,17 suggesting a hormonal action with
immune, vascular, and gut tissues as tar-
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gets.18,19 Our laboratory has demonstrated re-
cently that normal, human white blood cells
(WBC), specifically polymorphonuclear cells,
contain and have the ability to synthesize mor-
phine20 as well as release morphine into their
environment.

Interestingly, in invertebrates, THP, reticu-
line, and codeine also were identified along
with morphine, suggesting that opiate signal-
ing exists in invertebrate tissues.11 The discov-
ery of morphine in the nervous system, using
techniques, such as MS, has generated in-
terest in determining its distribution, sites of
action, and functional significance. In inverte-
brates, specifically with Mytilus edulis, the pres-
ence of morphine, morphine 6-glucuronide,
morphine 3-glucuronide, codeine, THP, and
reticuline have been reported.11,21–24 Endoge-
nous opiate levels can be induced to change fol-
lowing starvation, surgical stress, and bacteria
infection.11,25–29 Morphine and morphine-6-
glucuronide, a morphine metabolite, have been
identified and quantified in Modiolus deminissus

pedal ganglia as well.22

In the American lobster, Homarus ameri-

canus, morphine was found in nerve cord,
eye stock, and hemolymph via the same rig-
orous techniques. It was quantified via ra-
dioimmunoassay (RIA) and was identified via
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Q-Tof–MS.30 In stressed (pereiopod-ablated or
lipopolysaccharide-injected) animals, the en-
dogenous morphine levels initially increased
significantly by 24% for hemolymph and 48%
for nerve cord. By day 5, the stressed and con-
trol values for endogenous morphine, in both
tissues, was lower and nondistinguishable. In
both hemocytes and neural cells, morphine, not
met-enkephalin, stimulated constitutive nitric
oxide (NO) release in a naloxone antagonizable
manner, demonstrating a μ opiate receptor-
mediated phenomenon, suggesting the pres-
ence of the mu opiate receptor subtype μ3 since
it is opiate alkaloid selective and opioid peptide
insensitive.21,31,32 Reverse transcriptase (RT)-
PCR revealed the presence of a μ opiate re-
ceptor transcript in Homarus neural and im-
mune tissues, which exhibits a 100% sequence
identity with its human counterpart.30,32 Thus,
morphine is present in lobster tissues, poten-
tially demonstrating hormonal and neurotrans-
mitter functions that are involved in the ani-
mal’s stress response.

Moreover, the parasitic worm, Ascaris suum,
contains the opiate alkaloid morphine, as de-
termined by HPLC coupled to electrochemical
detection and by GC–MS.33,34 Ascaris main-
tained for 5days contained a significant amount
of morphine as did the medium used, demon-
strating their ability to synthesize the opiate
alkaloid since nonspecific host accumulation
would only last for 2 days. The anatomic dis-
tribution of morphine immunoreactivity in the
parasite reveals that morphine is in the sub-
cuticle layers and in the animal’s nerve cords.
Furthermore, as determined by RT-PCR, As-

caris does not express the transcript of the neu-
ronal μ receptor. Failure to demonstrate the
expression of this opioid receptor as well as the
morphine-like tissue localization in Ascaris sug-
gests that the endogenous morphine is intended
for secretion into the microenvironment, influ-
encing host gastrointestinal functions.

By using the same analytical methods,
adult Dracunculus medinesis and Schistosoma man-

soni both contain the opiate alkaloid mor-
phine, and D. medinesis also contains the ac-

TABLE 1. Presence of Opiate Alkaloids in Animals

Invertebrate Tissue distribution

Mollusk
Mytilus edulis Ganglia, hemocyte
Modiolus deminissus Ganglia

Parasites
Ascaris suum Nerve cord, subcuticle

layers, uterus, eggs
Dracunculus medinesis Whole body extraction
Schistosoma mansoni Whole body extraction

Lobster
Homarus americanus Nerve cord, eye stock

hemolymph
Vertebrate

bovine Brain, adrenal
toad Skin
rat Brain, amygdale, adrenal
pig Arterial blood
human Brain, heart tissue,

white blood cells, plasma
Vertebrate cell lines Rat adrenal chromaffin cells

Human neuroblastoma cells
Human pancreas carcinoma cells

tive metabolite of morphine, morphine 6-
glucuronide.35 From these and previous obser-
vations it would appear that many helminthes
are probably using opiate alkaloids as potent
immunosuppressive and antinociceptive sig-
nal molecules to downregulate immunosurveil-
lance responsiveness and pain signaling in their
hosts.

Mammalian Cell Lines and Tumor

Morphine has also been identified in many
vertebrate cell lines. Morphine is present
in rat adrenal medulla chromaffin PC-12
cells,36,37 human neuroblastoma cells, and hu-
man pancreas carcinoma cells.38,39 Morphine-
6-glucuronide was found in secretory granules
and is a secretion product of SHY cells.38 Since
morphine has been found in these cancer cell
lines, originating from human and animal cells,
it became important to demonstrate that ac-
tual tumors also contain this opiate alkaloid.
Indeed, it has been found in human gliomas,40
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suggesting that it may exert an action that af-
fects tumor physiology/pathology.41,42

Morphine distribution in various animals
and their tissues is shown in Table 1.

Morphine Biosynthesis Pathway:
Precursors and Key Enzymes

Recent studies from our group employing
well-established, ex vivo, invertebrate nervous
tissue preparations and primary cultures of
human WBC20,43,44 and those by Zenk and
co-workers using human tumor-derived cell
lines45,46 have markedly facilitated the formu-
lation of an evidence-based model of de novo for-
mation of endogenous morphine in animal cells
(Fig. 1) with remarkable similarities to the well-
characterized enzymatic pathway described in
poppy plant.47 We have demonstrated that
WBC, specifically polymorphonuclear cells,
contain and have the ability to synthesize mor-
phine.20 We also show that WBC expresses
CYP2D6,20 an enzyme capable of synthesiz-
ing morphine from tyramine, norlaudanoso-
line, and codeine. Significantly, we also show
that morphine can be synthesized by another
pathway via L-3,4-dihydroxyphenylalanine
(L-DOPA).20

The same synthesis structure occurs in M.

edulis. In Mytilus, pedal ganglia incubated with
either tyramine or tyrosine or whole animals
receiving injections exhibited a statistically sig-
nificant concentration- and time-dependent
increase in their endogenous morphine and
dopamine levels.43 Incubation with quinidine
and/or alpha-methyl-p-tyrosine (AMPT) di-
minished ganglionic morphine and dopamine
synthesis at various steps in the synthesis pro-
cess. We also demonstrated that CYP2D6 me-
diates the tyramine to dopamine step in this
process, as did tyrosine hydroxylase in the step
from tyrosine to L-DOPA. Furthermore via
RT-PCR, we identified a cDNA fragment of
the CYP2D6 enzyme in the ganglia that ex-
hibits 94% sequence identity with its human
counterpart.20 Evidence that tyrosine and tyra-

mine was, in part, being converted to dopamine
then morphine and that this process can be in-
hibited by altering either or both CYP2D6 or
tyrosine hydroxylase is also provided.43

These studies demonstrate that L-tyrosine,
its monoamine homolog tyramine, and their
respective catechol derivatives L-DOPA and
dopamine serve as substrates for de novo mor-
phine production and that pharmacological
characterization of tyramine utilization as a
morphine precursor indicates one or more cat-
alytic steps mediated by microsomal CYP2D6
(Fig. 1).20,43 The significance of tyramine as
a biosynthetic intermediate is validated by
in vitro enzyme kinetic studies demonstrating
dopamine formation via CYP2D6-catalyzed
ring hydroxylation of tyramine,48–51 which
in turn lends support to the existence of
a potentially important tyrosine hydroxylase-
independent pool of cytosolic dopamine that
is available for endogenous morphine expres-
sion.20,43,44 These data are complemented by
metabolic labeling/isotope enrichment studies
employing SH-SY5Y neuroblastoma cells,45,46

indicating asymmetric isotopic labeling of the
benzyl and isoquinoline chemical domains of
newly formed morphine that is operationally
determined by the type of L-tyrosine-derived
precursor molecule that is employed: L-tyrosine
and L-DOPA are incorporated in both the
benzyl and isoquinoline chemical domains of
morphine, whereas dopamine and tyramine
are only incorporated into the isoquinoline
domain. Over all, based on the findings in
vertebrates and invertebrates, we surmise that
morphine biosynthesis in animals has been pre-
served during evolution.52

Characterization and Function of
Novel μ3 Opiate Receptors in

Animals

Kosterlitz and co-workers demonstrated that
exogenous morphine can bind to receptors in
the mammalian brain.53 This report indicated
that morphine binds to the same sites as those
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Figure 1. Evidence-based model of de novo morphine biosynthetic pathway in animals. Question marks
represent unidentified enzymes in the pathway. (Abbreviations: L-DOPA, L-3,4-dihydroxyphenylalanine.)
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used by the endogenous opioid peptides (e.g.,
enkephalins). Since then, demonstration of the
multiplicity of receptor types has suggested that
both opioid peptides and opiate alkaloids may
bind to more than one opiate receptor sub-
type.54–57

By comparing affinity constants and rela-
tive strength in competitive binding assays,
different degrees of selectivity have been recog-
nized for various ligands. Both high- and low-
affinity binding sites for [3H]-dihydromorphine
(3DHM) and [3H]-naloxone in the rat brain
have been reported.58 The higher affinity
type was designated μ1 and the lower affin-
ity morphine-selective type was designated
μ2.59,60

Stefano, and later Cadet, et al., were cru-
cial in finding a novel μ opiate receptor sub-
type, designated μ3, located on immunocytes
and neural tissues of invertebrates, such as M.

edulis, and on human monocytes, granulocytes,
vascular endothelial cells, and other neuronal
and non-neuronal cell types.21,32 More recently,
they have extended this finding to the human
multilineage progenitor cells.61 This receptor
differed from previously described neuronal
opioid receptor subtypes. It exhibited nonde-
tectable or exceedingly low affinities for nat-
urally occurring endogenous opioid peptides,
peptide analogues, μ1 opioid-selective endo-
morphins 1 and 2, and synthetic opioid alka-
loids of the benzomorphan and phenylpiperi-
dine classes.21,31,62–65 In contrast, the μ3 opiate
receptor displayed high-affinity binding for
morphine-related morphinan alkaloids, such as
dihydromorphine and the clinically established
antagonists naloxone and naltrexone.21,32 It
was also established that the μ3 receptor is cou-
pled to G protein isoforms, based on guanine
nucleotide effects on agonist binding.63

Molecular cloning of a μ3 receptor encod-
ing cDNA employed a screening probe derived
from a conserved region of the human μ1 re-
ceptor and a human testis cDNA library.32 A
full-length 1338 base pair cDNA was cloned
and subsequently sequenced.32 The National
Center for Biotechnology Information (NCBI)

basic local alignment search tool (BLAST) anal-
ysis indicated that the clone exhibited 100%
identity to the μ1 opioid receptor subtype in its
central conserved region, with most of exon 1
spliced out at its 5′-end (Fig. 1). The 3′-end of
the μ3 receptor cDNA contained the 3′-end of
the μ1 receptor protein coding sequence, with
a spliced insert of 263 bases containing a stop
codon and terminated by a μ1-specific 202 base
untranslated region.32

RT-PCR and subsequent sequence analysis
revealed the presence of this opiate receptor
subtype in human vascular endothelial cells,
mononuclear cells, and polymorphic nuclear
cells.32 To determine if the cDNA clone we
isolated was functional and had the biochemi-
cal properties expected of the μ3 receptor, the
cDNA was expressed in a heterologous sys-
tem (Cos-1 cells). Following exposure to mor-
phine, the transfected Cos-1 cells released NO
in a naloxone-reversible manner.32 Untrans-
fected Cos-1 cells failed to produce any de-
tectable NO upon addition of morphine.32 The
addition of Met-enkephalin, DPDPE, or Leu-
enkephalin did not stimulate NO release in the
controls or transfected cells.32 In sum, heterol-
ogous cellular expression of the cloned μ3 opi-
ate receptor cDNA by Cos-1 cells resulted in
morphine-selective stimulation of NO release,
consistent with previous biochemical data pre-
sented above.11,32,66

Functional Studies

Documentation of the functional association
of morphine action on this μ receptor is that
NO production and release were stimulated.
Interestingly, earlier reports have demonstrated
that peripheral morphine analgesia involves
NO-stimulated increases in intracellular cyclic
guanosine monophosphate (cGMP).67 NO has
been associated with antinociception68 as well
as tolerance and dependence.69 In addition,
the morphine-induced suppression of splenic
lymphocyte proliferation has been shown to
involve NO.70 Morphine and NO have been
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TABLE 2. Animal μ3 opiate receptor expression

Invertebrate Mytilus ganglia, hemocytes
Homarus americanus ganglia and hemocytes

Vertebrate Human white blood cells
(polymorphonuclear, morphonuclear,
Raji, U937), vascular tissues
(endothelium cells), human multilineage
progenitor cells

Human brain tissue, human heart tissue
Rat brain, gastrointestinal tract
Human neuroblastoma cells (SHY5Y,

HTB11)

linked in gastrointestinal regulation.19,71 Fur-
thermore, morphine, not opioid peptides, stim-
ulate constitutive NO release in macrophages,
granulocytes, various types of human and rat
endothelial cells, invertebrate neurons and im-
munocytes, and in rat median eminence frag-
ments.8,31,72 All these observations were doc-
umented to be naloxone antagonizable and
blocked by L-NAME, an NO synthase in-
hibitor.65,73–81 These data suggest that the μ3

receptor is coupled to constitutive NO release
in these cells found in evolutionarily diverse
animals.76,82,83

Morphine’s actions in these diverse tissues
(Table 2) complement what is known about
NO mediating immune and vascular functions,
namely that it can downregulate them from
an excitatory state or prevent the excitatory
state from occurring.7,73,79,81 Additional infor-
mation on opiate alkaloid signaling substances
can be summarized as follows: Injection of
vertebrate animals with morphine results in
deficient macrophage function84 and an alter-
ation of T cell activity.85 Morphine also antag-
onizes interleukin-1-α or tumor necrosis factor-
α-induced chemotaxis in human granulocytes
and monocytes.86,87

Conclusion

It appears that after more than 30 years
of research into an animal’s ability to make
morphine the empirical evidence is now over-

whelming. Recent reports have also demon-
strated that major substances of abuse, i.e.,
nicotine, alcohol, and cocaine, appear to work
via altering endogenous morphinergic signal-
ing in a common manner, i.e., inducing mor-
phine release.25,88–93 Furthermore, endoge-
nous morphine participates in physiological
processes transcending pain, making it an im-
portant chemical messenger. It would appear
that at the present time we are only skirting
around the significance of this chemical mes-
senger humans have been using exogenously
for over 6000 years. It is interesting to surmise
morphine gave rise to the catecholamine signal-
ing family since it functions as an information
transmitter in plants, invertebrates, and mam-
mals, whereas the catecholamine pathway is
only complete in mammals.52
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