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Intro

The following results and writing constitute my entry to the ALTER prize. Apart from instances
where I draw on existing literature, which are clearly marked, they represent my own original work;
I received no help in my research, thinking, or writing past using friends and acquaintances as
sounding boards and beta readers. My work takes the form of several smaller results and motivating
writeups, so for ease of comprehension, I have broken down the work I have done into sections, each
sharing an overarching topic, followed by a final section detailing looser ideas and possible nearby
further work. In the ancient tradition of mathematics and research papers, I will use “we” in an
authorial sense, rather than “I”, for the rest of this paper; this should not be taken as indication
that anyone did this thinking or writing but me. The most significant new results in this writeup
are the asymptotics analysis of IB agents playing Generalized Antelope/Boar Hunt - a Generalized
Stag Hunt-like game - and a proposed method of addressing the problem of non-monotonic loss
functions that retains compatibility with refinements of bridge hypotheses.

1. IB Agents Play Population Games

In this section, we build off of work in [4]. Accordingly, Hi is the hypothesis class of player i.
S is the set of states a player can be in, with initial state s0. Player i also has action-set Ai and
observation-set Oi ⊆

∏
−i Ai. Its observation kernel B : S × A → □O is a map taking current

state and chosen action to an infradistribution over observations (ie, what does the agent think it
might observe if it’s in state s and takes action a) and its transition function T : S × A × O is a
map updating the state, given starting state, action, and observation. We also take the setup of
SIB-UCB learning and Generalized Stag Hunt from that draft.

We begin with a review of the description of Generalized Stag Hunt as stated in [4]. In this case,
we have a singleton a ∈

∏
i Ai for a Pareto outcome, and observation-sets given by Oi =

∏
j ̸=i Aj .

Every agent begins by considering only those hypotheses which allow them to force a, if there are
any. Following the optimal policy for such a hypothesis h leads to an infinite sequence of repeating
a after some bounded number of rounds, assuming that h is plausible enough not to have been
ruled out by previous observations. If all agents reach the start of this infinite sequence at the
same time with plausible hypotheses intact, they then get to keep collectively playing a forever,
receiving the Pareto payoff. Because the agents would thus immediately attain Stag Hunt if the
“true” hypothesis - that the players could all attempt to attain Stag Hunt immediately - were in
the hypothesis space, by assumption it is not.
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This brings us to the “grain of truth” problem. In its classical form, we recall that if a bayesian
agent has the true hypothesis or correct answer in its hypothesis space, and it assigns any prior
probability mass to it at all - the titular grain of truth - then it will eventually learn the true
hypothesis. The grain of truth problem is that if the agent assigns prior probability 0 to the true
hypothesis - possibly because the true hypothesis isn’t even in the agent’s hypothesis space - then
trivially it will never learn the true hypothesis, and will begin to display pathological or undefined
behavior once all hypotheses in the space are falsified. Thankfully, infrabayesian agents are more
robust in this regard, as we see throughout the infrabayesian sequence.
Kosoy gives us a relatively asymptotically-small set of sharp infra-RDPs for hypotheses. These
hypotheses, which are of the rough prose form “I have to enter this specific (meaningless) password
in the form of moves in the game. Once I have, the time might be right for all players to attempt to
reach Stag Hunt, and if we do, we can stay there forever.”, are thus called password-hypotheses; we
denote them by hr if the relevant password is r ∈ A∗

i , an unbounded finite word in the action-space
of player i. Notably, these hypotheses are not actually justified, but if everyone has nondogmatic
priors on all such hypotheses above some choice of minimal password length, and tries them out
some meaningful fraction of the time, eventually - by sheer persistence and luck - the players all sync
up when they finish entering their meaningless passwords. More formally, the password-hypothesis
hr is given by

• States: S = {s0, s1, s2, ..., s|r|}
• Observation and transition kernels (for k < |r|): B(sk, rk) = Oi (maximally unconstrained);
T (sk, q, o) = sk+1 if q = rk (advance) and s0 (reset) otherwise.

• Special observation and transition kernels: B(s|r|,ai) = a−i; B(s|r|,¬ai) = Oi; T (s|r|,ai, o) =
s|r|; T (s|r|,¬ai, o) = s0.

For each player i, we specify that its hypothesis space Hi consists of all infra-RDPs of diameter
Di >> 0, and we let each prior ζi ∈ ∆Hi be given by some notion of descriptive complexity. Then
the following sufficiency requirements are also important: that the total probability mass of all
password hypotheses

∑
p ζi(hr) is bounded below by some constant α in the limit we consider, and

that the probability distribution over password hypotheses has non-negligible variance in password
length. The former makes sure that the agents consider password hypotheses a meaningful pro-
portion of the time, and the latter makes sure that we don’t end up with anything like a uniform
distribution over password length, which fails in the limit as maximal password lengths are allowed
to grow large.
We can model the learning process of player i as a random walk in Z/

⌈
1
αmaxjDj

⌉
, given that

an agent will enter one full password at least once per τ =
⌈
1
αmaxjDj

⌉
. With O(2Di) password

hypotheses, we can continue the random walk for time Ω(2Di) >> τ2, so that the walks of all such
players reach the end state at the same time with probability 1, converging to the Pareto outcome
in the process.

Now for our own work, a small but meaningful extension of Generalized Stag Hunt. For Gen-
eralized Antelope/Boar Hunt, we posit instead that the Pareto outcome set P ⊆

∏
i Ai is instead

given by exactly two points, namely P = {a,b} ⊆
∏

i Ai. We’ll also introduce two flavors of agent:
antelope-hungry players p|a ∈ PA and boar-hungry ones p|b ∈ PB , PA ∪ PB = P, whose only
distinction will be a reward difference such that for some parameter k ≥ 1, the reward functions are
related as r(p|a, o = a) = k · r(p|a, o = b) and similarly r(p|b, o = b) = k · r(p|b, o = a). Players will

be drawn from the player pool randomly between the two as given by another parameter ρ = |PA|
|P|
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- we now need such a parameter to describe the population, and it’s also important in determining
the final equilibrium outcome.
The password hypotheses hr will need to be expanded as well, if we want to extend Generalized
Stag Hunt. Now they come in two flavors: hr,a and hr,b. As the notation suggests, these are
password hypotheses “seeking” to achieve Pareto outcomes a,b.

• States: S = {s0, s1, s2, ..., s|p|}
• Observation and transition kernels (for k < |p|): B(sk, pk) = Oi (maximally unconstrained);
T (sk, q, o) = sk+1 if q = pk (advance) and s0 (reset) otherwise.

• Observation and transition kernels (special cases for outcome a, only in ha,p): B(s|p|, ai) =
a−i; B(s|p|,¬ai) = Oi; T (s|p|, ai, o) = s|p|; T (s|p|,¬ai, o) = s0.

• Observation and transition kernels (special cases for outcome b, only in hb,p): B(s|p|, bi) =
b−i; B(s|p|,¬bi) = Oi; T (s|p|, bi, o) = s|p|; T (s|p|,¬bi, o) = s0.

As before, we let the hypothesis space for each player i contain in its hypothesis space Hi all infra-
RDPs of some radius Di >> 0, with a starting distribution ζi ∈ ∆Hi given by some reasonable
notion of descriptive complexity. We note the sufficiency of the two conditions described earlier:
namely, that the total probability mass of all password hypotheses

∑
p ζi(ha,p) is lower-bounded

in the limit we consider, and also that the probability distribution over different passwords has
non-negligible variance in password length. Like before, the agents spend a lower-bounded fraction
α of time trying password hypotheses; generalizing from before, we take this to mean that k

k+1 · α
of the time, an agent will test hypotheses drawn from the class matching its agent type, and the
other 1

k+1 · α of the time, the agent will try hypotheses from the “wrong” class.

Proposition 1.1. Agents using the infra-RDPs specified to learn to play Generalized Antelope/Boar
Hunt will eventually converge to one of the Pareto outcomes with probability 1.

Similar to before, we can model the learning process of player i as a random walk in Z/
⌈
1
αmaxjDj

⌉
,

given that an agent will enter one full password at least once per τ =
⌈
1
αmaxjDj

⌉
. With O(2Di+1)

password hypotheses, we can continue the random walk for time Ω(2Di) >> τ2 just like before,
which still results in - on expectation - all players reaching the end state at the same time well
before the walk ends. This time, though, we need to consider what happens each time all players
are in their respective states s|p| - the question then remains of whether that player is trying for
outcome a or b. Assume that we have N players, and recall that we use ρ for the proportion of
type-a players and k for the payout ratio, which also determines hypothesis-test share.

Proposition 1.2. If N = 2, k = 1, ρ = 1
2 , the probability of success per universal s|p| occurrence is

1
2 , and the resulting outcome is equally likely to be a or b.

In the minimal symmetric case where N = 2, k = 1, ρ = 1
2 , we have a success probability per

universal s|p| incidence of [ρ2 + (1− ρ)2] · [ k
k+1

2
+ 1

k+1

2
] + [2ρ(1− ρ) · 2k

(k+1)2 ] =
1
2 ·

1
2 + 4 · 1

4 ·
1
4 = 1

2 ;

a quick analysis of subcases gives us equal chances of settling in outcomes a and b both.
This is both good and bad news: the good news is that the success probability, at least for small
N , is decidedly not immediately negligible and in fact quite good, and will contribute an expected
constant-factor slowdown in any case of concern; the bad news is that this still scales quickly in
N especially. We may take this as indication that while carefully defined IB agents can beat more
prosaic agents, they still fall prey to some extent to Buridan’s ass and similar such failures of
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symmetry-breaking.

Proposition 1.3. If N = 2, k >> 1, ρ ≃ 1
k , the probability of success per universal s|p| occurrence

is 1− 2ρ− 2
k+1 , and the resulting outcome is b with probability ∼ 1.

Brighter news is obtained if we approximate a different 2-player case, where type-a players form a
small minority of the players but have commensurately bigger payouts. To first order, ρ2, 1

k2 ,
ρ
k ≃ 0

and ρ · k ≃ 1, so that this time, the success probability per universal s|p| incidence is given by

2∑
i=0

(
2

i

)2

ρi(1− ρ)2−i ki

(k + 1)2
≃

[ρ2 + (1− ρ)2] · [ k

k + 1

2

+
1

k + 1

2

] + [2ρ(1− ρ) · k

(k + 1)2
] ≃

[0 + 1− 2ρ+ 0] · [1− 2

k + 1
+ 0 + 0] + (2ρ− 0) · k

(k + 1)2
≃

(1− 2ρ) · (1− 2

k + 1
) +

2ρk

(k + 1)2
≃

1− 2ρ− 2

k + 1
+

4ρ

k + 1
+ 0 ≃

1− 2ρ− 2

k + 1
,

that is, as long as ρ, 1
k << 1

2 , the agents should still generally converge almost as quickly as in
the single-optimum case, and will generally (p ∼ 1) converge to the population-favored b-outcome.
This time, a more detailed analysis of how often each case happens is startlingly easy thanks to the
realization that the only term contributing to an a-outcome is the case where for the two agents,
we draw an a-agent and a b-agent, and they both happen to seek to bring about outcome a; this is
represented by 2ρ(1−ρ) · k

(k+1)2 ≃ 2ρk
(k+1)2 ≃ 0, which is thus approximately the expected proportion

of the time the agents settle on a instead of b.

If instead we have 2 < N < 1
ρ << 1

ρ

2
, that is, only a few players, the (ρ + (1 − ρ))N factor in

our corresponding first-order approximation collapses to ≃ 1 −Nρ +Nρ − (N2 −N)ρ2 + N2ρ2

2 =

1− ρ2N2−2N
2 ≃ 1; that is, taking larger draws from the populations of players even more strongly

tilts the resulting equilibrium towards the majority equilibrium, with the minority equilibrium oc-
curring only negligibly often.

Taken together, and contrasting against instances where there exists no Pareto outcome, as in
Chicken, or where the Pareto outcome is not a Nash equilibrium, as in Prisoner’s Dilemma and its
variants, we begin to see more clearly how the use of an IB agent mitigates the “grain of truth”
problem. In the Stag Hunt-based examples above, the fact that the true optimal hypothesis - that
all the agents can immediately cooperate and achieve the Pareto outcome - is absent from the
hypothesis space is utterly irrelevant to the final outcome. As the asymptotics analysis shows, the
agents can still make use of hypotheses that are unjustified and which only dimly resemble the true
hypothesis; all the same, they still eventually result in a Pareto outcome, just the same as if a true
hypothesis had been available in the hypothesis space.
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It might then occur to us to wonder: can a “grain of truth” be subdivided? We might posit a dis-
crete valuation on the IB agents’ provided hypothesis space, based somehow on a suitably defined
distance metric on the larger “true” hypothesis space, which contains both the provided hypothesis
space - one which might already be known to be sufficient to induce Pareto outcomes in groups of
agents using it - and the true hypothesis, which would cause those same agents to immediately settle
on the Pareto outcome. To be useful as a discrete valuation, the valuation would need in particular
to be exponentially decaying in terms of bits of relative entropy between the (very simple) “true”
hypothesis and (for instance) a password hypothesis.
In the specific case of password hypotheses, the exponent should be dependent on password strength
measured in bits - the weaker, the better. In the case of a hypothesis which never predicts arrival
at the Pareto outcome, this value would always need to be 0. Using “grains of truth” as a unit
of account, we can then sum up all these valuations under the distribution ζ over the hypothesis
space to see how many grains’ worth of truth reside in the (smaller) hypothesis space. Having done
this, we might observe that for a Pareto outcome to be achievable, agents using it must always
have priors over the hypothesis space such that the priors-weighted sum of the grain-values is al-
ways positive; this holds true for both the classical and IB cases, the major difference being that a
classically Bayesian agent can’t usefully assign grain-valuations outside {0, 1}.
Using this framework, we can get some more concrete results for more specific cases. In the case
of Generalized Stag Hunt above, suppose we assume that |Ai| = 2, that for any given password p,
∀i,Di = O(|p|), and that ζ ∈ ∆Hi is given by the appropriately normalized version of ζ(hp) = 2−|p|

whenever p is long enough for hp to have diameter ≥ Di and 0 otherwise, with N representing
the minimal password length for which hp has sufficiently large diameter. Then a lower bound on

our grain-valuation is given by
∑

p ζi(hp) · 2−|p| ≤
∑

i≥N 2i · 2−i · 2−i = 1
2N−1 , that is, the smaller

our N , the greater the total strength of the “subgrains of truth”, but the value is always positive.
Importantly, in the Generalized Stag Hunt cases examined here, the two hypotheses from before -
a lower bound on total password-hypothesis probability mass, and non-negligible variance in prob-
ability mass by password length - ensure that this value remains positive. It never gets anywhere
near 1 if N >> 0, but this is what we should expect - after all, in the classical case of a single
indivisible “grain of truth” in the hypothesis space, ζ will (by nontriviality assumption) not assign
full probability mass to that hypothesis. Because IB agents can tentatively believe in hypotheses
that are in strict sense false or unsupported, they can make use of any such hypotheses close enough
to the (nonrealizable) true hypothesis to have nonzero valuation; classical agents, founded on more
rigid inferential rules, cannot.

2. Interpreting the Monotonicity Criterion

This section builds on the ideas set forth in [3]. Recall Theorem 3.1 from IBP[3], which says
that the expected value of a downward-closed HUC Θ on any functional f : X → R, where X is a
poset, is entirely determined by fmax, which is given by fmax(x) = maxy≥xf(y), which is monotone
nondecreasing. Applying this to our favorite case, that of loss functions, we begin by assuming that
we have for a hypothesis a downward-closed HUC Θ ∈ □celΓ. We then construct Lmax : elΓ → R,
which is nondecreasing in 2Γ, so that for g ∈ α ⊊ β ∈ 2Γ, Lmax(g, α) ≤ Lmax(g, β). Then by
Theorem 3.1, Θ(L(g, α)) ≡ Θ(Lmax(g, α)) for all g ∈ α ∈ 2Γ. But this seems strange - surely
non-monotone loss functions should give rise to different valuations? And if they don’t, surely it
would make more sense to simply require that loss functions be monotone? And having done that,
what then to say of ordinary human loss functions?
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The case of ordinary human loss functions gives rise to two major philosophical issues. First, a
physicalist agent as described in this way would feel nothing at all about anything happening in a
causally disjoint universe from it. By contrast, human loss functions can care quite a lot about what
might occur in causally disjoint universes from it. Second, and more troublingly, for a physicalist
agent, (g,Γ) must be an argmax of Θ ◦ L; that is, the physicalist agent must perceive a universe
where no computations can be said to run at all as a worst possible outcome1. On the other hand,
human loss functions are perfectly happy to posit the existence of worlds that they disprefer to
literally nothing existing at all.

The first of these conundra is easier to address. Regarding this problem, the physicalist agent
is normatively correct: by assumption it has no causal influence over any other causally disjoint
universe, and they have no causal influence over it, and if this were ever to change, so would the
physicalist agent’s attitude. Until such time, though, it does not and should not care about things
it has no chance at all of influencing, let alone controlling to any good extent.
The second conundrum is thornier, and the answer lies in the use of HUCs. A homogeneous ultra-
contribution, just like a cohomogeneous infradistribution, is best understood as being pessimistic
yet nondogmatically hopeless - not in the mathematical sense, but rather in emotional valence.
Interpreting its expected values on loss functions, we see that it implicitly assumes that the worst
that can happen over the possible futures of the agent using it, will be what it assumes will happen,
and all the same does not totally rule out possible futures it likes better. Since this also extends
to assuming that the grimmest possible manifest fact that could explain the element of elΓ the
agent finds itself in, a HUC will spit out identical expected valuations for L,Lmax. But clearly
this need not actually correspond to the observed outcome, even if a cautious agent of the kind
that relies on such pessimism knows better than to rely on miraculous decreases in loss function
- such eventualities can still occur, to say nothing of actions with uncertain but much less mirac-
ulous outcomes. This nuance is not something that a HUC will capture; we might cash out the
monotonicity criterion in the fact that when we pass from α to its superset β, Θ doesn’t care
about unusually pleasant new outcomes - only about any new worst outcomes β has past α that
facts corresponding to α and not to β would otherwise rule out. In other words, if there are facts
that could explain elements of β but not α which the agent would find more pleasant, the HUC
is not interested in those facts; passing to a larger set of indistinguishable possibilities is never good.

Consequently, an IBP agent assigns loss-values to universes where it dies or where nothing ex-
ists at all which are exactly the same as the loss-value it assigns to world-states that human loss
functions would consider to be much worse than nothing at all. Even in such universes, it nondog-
matically holds out hope that there’s something that it can do to move the world-state to one it
prefers on expectation. The same cannot be said of a totally empty universe, or one in which it
doesn’t exist. In light of this, the “afterlife” posited by alternative 3 in the subsequent discussion
need not be anything nonphysical - it represents the difference between the true worst possible
outcome - that of the void - and the agent’s death, which may well still occur in a universe whose
suitably-restricted “final” outcome is something that the agent would still consider to be a good
outcome, were it alive to do so. We might thus reinterpret “non-survivalist” preferences not as a
disbelief in death, but a disbelief that death is the absolute end, that it means that the agent’s
preferences must necessarily be pessimized; a disbelief that its death is meaningfully and certainly

1This in turn because only the empty fact can explain any arbitrary subset of Γ being the subset corresponding

to which computations appear to be run.
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the end for its preferences. Certainly dying is generally bad, by such an agent’s lights - it severely
limits how much an agent can affect the universe around it, no matter where it finds itself inside elΓ

- but even if an agent knows that it will soon die, it may well be counting on plan-oriented actions
it took earlier in its history to bear fruit after it’s gone. In the extreme case of this, the agent’s
death might be critical to a plan which will pay off immediately after it dies, and the successful
execution of which it considers to be of such extreme value that it is willing to sacrifice itself to
enact it. We may therefore think of Lmax as the agent’s loss function after it has been corrected
for the background fact that less computation being run - and thus less existing meaningful stuff -
in the universe is generally worse for agents with reasonably complex goals.
All the same, we may want to pass to the hull of maximal points of the bridge transform. This will
likely be in pursuit of computational efficiency or the ability to disambiguate L from Lmax; addi-
tionally, we consider there to be an outside chance that we might decide to reject the monotonicity
principle for loss functions for philosophical reasons instead. In any case, the approach by Harfe
and Yegreg as found in [2] seems part of a promising solution to us. Briefly, it involves modifying
the beforeness relation on contributions to only sample from 1-Lipschitz functions rather than more
generally continuous or measurable functions; we may motivate this through recourse to the defi-
nition of the space of signed measures M± - in particular, its use of the Kantorovich-Rubenstein
metric to impose desirable metric structure - as in [1]. Finally, this would require modifying the
definition of a HUC to use this new partial ordering. Although the approach as described there
doesn’t quite work, the fact that a stricter notion of homogeneity results in e.g. a M(∧) which is
continuous (although not 1-Lipschitz-continuous) seems hopeful.
We weren’t able to satisfyingly extend this in time2, but we have some initial thoughts and notes
that look promising.

Definition 2.1. Let Θ ∈ □c(Γ× Φ) be a physicalist hypothesis. The bridge space of Θ, denoted

by BΘ, is the set of all candidate bridges θ ∈ □c(Γ× 2Γ × Φ) such that supp θ ⊆ elΓ × Φ.

More plainly: a hypothesis θ ∈ □c(Γ× 2Γ ×Φ) is a candidate bridge for a physicalist hypothesis
Θ if it comes from the same space as any choice of Br(Θ) would have to come from, and it also
already satisfies the first condition for what it means to be a bridge transform - containment of
support within elΓ×Φ. Elements of BΘ which aren’t in Br(Θ) look like elements β ∈ □c(Γ×2Γ×Φ)
for which some map s : Γ → Γ, the projection prΓ×Φ(χelΓ×Φ · (s× id2Γ×Φ)∗β doesn’t look like any
such projection of an element from Θ.
In particular, we propose the following method for addressing the way in which “[passing] to the
hull of maximal points of the bridge transform... spoils compatibility with refinements” [3]. Let

Θ ∈ □c(Γ×Φ) be a physicalist hypothesis with bridge transform Br(Θ), and let B̂r(Θ) be the hull
of maximal points of Br(Θ), which will no longer be a bridge transform, but will have identical
expected-valuations on monotonic loss functions. Monotonic loss function or not, we can then

regenerate Br(Θ) from B̂r(Θ) by adding back in all η ∈ BΘ such that for some θ ∈ Br(Θ), η ⪯ θ in
the sense of Harfe and Yegreg [2]. We clean up by trimming away any elements β of BΘ for which
there exists even one s : Γ → Γ for which we ever have prΓ×Φ(χelΓ×Φ · (s× id2Γ×Φ)∗β /∈ Θ. At this
point, we have a bridge transform again, and we can now refine freely.

Proposition 2.2. Bridge transforms Br(Θ) are returned effectively unchanged by the above process.

2We first heard of the ALTER prize in June 2023, and started work on this writeup in late August.
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3. Directions for Further Work

The analysis we’ve written at the end of the section about IB agents playing population games
after [4] is thus far limited to the case of a discrete set of Pareto outcomes which are also Nash
equilibria; the clear direction of further research would be in figuring out what happens in the more
general case of Pareto outcomes which fail to be equilibria. We have some unfinished notes on
using the SIB-UCB framework to model a tit-for-N-tats + password-guessing strategy for (I)PD,
but suspect that it will be necessary to either give the agents access to the other players’ histories
(or something equivalent, like their source codes, for use in logical-time pseudo-iterated games) or
else require gains from cooperation in order to survive - this latter possibility drives the success of
tit-for-N-tats strategies in trembling-hand setups. More prosaically, there’s some more likely-easy
work to be done in further analysis of asymptotics of suitably-defined population games.

Another major direction is that of physically-manifested facts. Contrasting with [3], we don’t
think that physically-manifested facts are - or can be - truly objective; the major obstructions for
IBP agents G,G′ would be in first knowing for certain that each other are rational physicalist agents,
and then in making sure that their respective physicalist hypotheses and bridge transforms on those
hypotheses line up perfectly. Despite these problems, we can relax our requirements slightly to get
suggestive initial results: if G,G′ have bridge transforms that overlap heavily, the corresponding
overlap on agreement about physically-manifested facts means that they can at least achieve a joint
co-subjectivity on those facts, such that for the shared purposes of G,G′, those facts might as well
be objective. However, it remains to be seen whether (or how badly) this fails in the case of more
agents agreeing and disagreeing about more possible facts, especially in ways that might not be
linearly orderable or which might reflect irreconcilable differences in bridge transform or physicalist
hypothesis - more plainly, the agents can agree on what Φ and Γ look like, and even have broad
pairwise agreement (large-measure overlap) on physicalist hypotheses and bridge functions on those
hypotheses, and even then any triplet of agents could possibly disagree arbitrarily badly on what
that means for (for example) the same physicalist hypotheses they pairwise agree broadly on. Less
controversially, and perhaps less originally, we point out explicitly that admissible facthood is an
inclusion-reversing operation on subsets of Γ; that is, for α ⊆ β ⊆ Γ, if some fact B admits β, then
it also admits α, and there exist facts that admit α and not β. We thus consider such facts as admit
more computations - and fewer possible universes - to be sharper or stronger facts; in the lower
limit, the empty fact admits all of Γ, and perfect knowledge of exactly which facts are physically
manifest admits a singleton set inside Γ.

Finally, from a larger-scale view, we observe that HUCs currently exist in tension with other IB
primitives as they are presently defined, and thus believe that some part of the solution to the philo-
sophical problem with monotonicity as described above will involve a refactoring of the definition,
or a different choice of primitive somewhere. Its snags with IB logic - which mostly have to do with
continuity - and its issues with evaluation on reasonable-seeming loss functions - especially with
respect to the mutual incompatibility between passing to maximal points of the bridge transform
and subsequent refinement of the bridge transform - both point towards some technical issue with
the definition of HUCs; the current best formulation of IB logic, with M(∨) being given by the
intersection but M(∧) being given by the convex hull of the union, looks to fall in the same vein.
More fortunately for the approach in [2], our experience with model theory as found in sections 4
and 5.1 of [5] also leads us to strongly suspect that passing to a first-order infrabayesian logic on
finite sets will prove to be entirely sufficient, without the need - for most practical purposes - for
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the use of higher-order logics.
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