Application of Schiefspiegler Heritage Anton Kutter's basic ideas

Outline

- A brief discussion of Anton Kutter's early Schiefspiegler and benefits of Schiefspiegler designs in general
- 2. Selection of modern Schiefspiegler
- A Schiefspiegler Laser beam expander telescope for spaced based communication.

The "Kutter" Schiefspiegler

Anton Kutter's request: A mirror telescope for high image definition

- Free of chromatic aberrations
- No obstruction
- Only spherical mirrors (i.e. easiest to manufacture and test)

Schiefspiegler seen as a cut-out of rotational symmetric optical design

Diffraction limited images

Object

Rule of thump: effective Diameter = free aperture diameter minus obstruction diameter

Zeiss Meniscas D= 180 Obstruction d = 60 mm

Kutter with D=110 mm

On Earth 110 mm best compromise between seeing and diffraction blur

- Smaller telescope are less prone to seeing conditions.
- Unbeatable advantage of Schiefspiegler design with respect to obstructed systems.

Schiefspiegler possible drawbacks

 Additional image blur due to geometrical aberrations, for instant use of spherical mirrors.

 Objective: Suppress geometrical aberrations < 0.25 wave for visual systems, best close to zero for professional systems.

Methods to correct geometrical aberrations

#1 High F-number F#

(F# ratio between focal length and aperture)

Means large systems and image brightness goes down with F-number²

#3 more elementsExample Apochromat

#2 asphericHadley
telescope 1721

#4 correctors

Anton Kutter's wedged shaped lens

COSTAR: Glasses for

Hubble

Benefits of Schiefspiegler designs

The combination of an unobstructed aperture together with an all reflective (mirror) design includes:

- Least possible diffraction blur.
- Absence of chromatic aberrations.
- Maximum possible light throughput.
- Absence of all mechanical structures within field of view leading to reduced stray light, no first order scattering.
- No thermal radiation emitting structures within field of view, important for infrared telescopes.
- Absence of secondary support spider, no diffraction spikes
- Relative light weightiness of mirror systems compared to refractive lens systems

1# Multi-Schiefspiegler

Brunn Tetra-Schiefspiegler

"Wolterscope"

2 Newton Schiefspiegler with parabolic mirror

Orion "CLANT"
(Clear Aperture Newton)
91 mm aperture / 1240 mm
focal length (f/13.6)

Same image definition as a good apochromatic refractor with same aperture

#3 Schiefspiegler Collimators for optical system alignment and testing

Schiefspiegler Newton design

All reflective Perform for wavelength from UV to Infrared

For testing of:

- Optical resolution (MTF)
- Line of sight

#4 Example sun telescope

#5 Example for an infrared telescope

+ South Pole

Dome

Dome C: world wide best Seeing

#6: Near infrared Schiefspiegler spectrograph for James Webb Space telescope

LOROP: Schiefspiegler Demonstrator for military reconnaissance pods

TLU project: Schiefspiegler telescope unit for space based LCT

Range : 40000 km; λ 1064 nm; 1-10 W; Data rate > several Gbps

TLU project: Evolution from on axis design to Schiefspiegler design

TLU project: Optical Design

FOV +- 0,2 ° Design error < 3 nm RMS As built WFE < 25 nm RMS (ca. 0,1 wave)

Magnification
11 fold

Weight: 3,6 kg

Mirror material: Zerodur

Structure material: carbon

fibre and Invar

TLU project: Manufacturing of primary mirror Interferometer testing

TLU project : Schiefspiegler off axis primary mirror manufacturing

with Computer Controlled Polishing

WFE < 10 nm RMS

TLU project: Off axis secondary mirror coating (Ag)

TLU project: Schiefspiegler telescope integrated and aligned, ready for performance and load testing.

TLU project: Optical performance tests of Schiefpiegler telescope in thermal vacuum chamber

Operational: 10°C-65°

Non Op.: -40°C-70°

Vacuum : < 10E-5 mbar

TLU: Shock and vibration tests, withstanding the rocket launch!

Test levels: 18 g rms random

TLU: After integration into LCT and satellite and after launch

Final Summary

Schiefspiegler designs has their specific benefits and they are still in production for professional applications!

Presentation Title runs here (go to Header & Footer to edit this text)

Thank you for your attention!

