
KAUNAS UNIVERSITY OF TECHNOLOGY

Department of Multimedia Engineering

Master Thesis

3D visualization of sailing regatta in real time

Student: Benito Ponappan, SunithaAnilkumar

 (Group, Name, Surname, Signature)

Supervisor: assoc.prof. Armantas Ostreika

Business consultant:

(Position, Degree, Name, Surname, Signature)

Ričardas Novošinskas

 (Position, Degree, Name, Surname, Signature)

Reviewer: Lekt. Dr. Šarūnas Packevičius

 (Position, Degree, Name, Surname, Signature)

Kaunas, 2015

2

Table of Contents
1 Introduction .. 6

2 Analysis of existing approaches ... 7

2.1 Literature review ... 7

2.2 GIS data processing .. 8

2.3 3D Wave Generation ... 8

2.4 Modelling and Rendering Ocean Waves .. 10

2.5 Comparison with Existing Ocean models ... 11

2.6 Terrain generation ... 12

2.7 Level of Detail .. 13

2.8 Related Work .. 15

3 Methodology .. 16

3.1 Unity3D ... 16

3.2 Sail navigation... 16

3.3 Ocean Models ... 18

3.4 Simulating & Animating Ocean Waves .. 23

3.5 Terrain generation ... 23

4 Implementation and Result ... 26

4.1 Boat Controller .. 26

4.2 Boat Information ... 28

4.3 Ocean Waves ... 29

4.4 Generating Wave ... 33

4.5 Generating Wake ... 34

4.6 Heightmap and Normal Maps ... 34

4.7 Creation of Water Shader .. 35

4.8 Landscape generation .. 38

4.9 Performance Test .. 43

5 Future Scope ... 51

5.1 Web Player Streaming .. 51

5.2 Tuning for Portals ... 51

5.3 Live Streaming .. 51

5.4 Publishing Streaming Web Players ... 53

6 Conclusion .. 54

List of Figures

Figure 2.1 Procedural terrain generation methods .. 12
Figure 3.1 Sail regatta course with markings to waypoints and routes ... 16
Figure 3.2 Crossing points of start and finish line .. 17
Figure 3.3 Sailboat heading to mark for rounding .. 18

Figure 3.4 Frequency curvature spectra .. 22
Figure 3.5 Arrangement of terrain tiles around a point of interest .. 24
Figure 3.6 Re-arrangement of terrain tiles system .. 25
Figure 4.1 Architecture overview of the 3D visualization system .. 26
Figure 4.2 Block diagram of the sail system ... 27

Figure 4.3 Boats position from routeline... 29
Figure 4.4 Class Diagram of Ocean Simulator.. 30
Figure 4.5 Sequence Diagram of setup stage .. 31
Figure 4.6 Main Loop .. 32
Figure 4.7 Size of different IFFT domains. ... 33

Figure 4.8 Wake created when boat is moving ... 34
Figure 4.10 Height maps ... 34
Figure 4.9 Normal Maps ... 34

Figure 4.11 Elevated mesh .. 35
Figure 4.12 Gradient Texture that controls front wave and foam intensity 38
Figure 4.13 Static terrain representing a shoreline ... 39

Figure 4.14 Terrain generated using TIFF files .. 40
Figure 4.15 Terrain generated from RAW image ... 41
Figure 4.16 Terrain generated from RAW image and textured using splatting 41

Figure 4.17 (a),(b) and (c) are Terrains generated after processing data received from Goole services

and viewed at various zoom levels ... 43

Figure 4.18 FPS of Current ocean model and Philips spectra in 8 * 8 Grid 44
Figure 4.19 FPS of Current ocean model and Philips spectra in 16 * 16 Grid 44
Figure 4.20 FPS of Current ocean model and Philips spectra in 32 * 32 Grid 45

Figure 4.21 FPS of Current ocean model and Philips spectra in 64 * 64 Grid 45

Figure 4.22 FPS of Current ocean model and Philips spectra in 128 * 128 Grid 45
Figure 4.23 FPS of Current ocean model and Philips spectra in 256 * 256 Grid 46
Figure 4.24 FPS of Current ocean model and Philips spectra in 512 * 512 Grid 46
Figure 4.25 Comparison of load time using the implemented terrain generation techniques 47

Figure 4.26 Time comparison of dataset types for generation of 9 terrains .. 48
Figure 4.27 Time comparison of dataset types for generation of 25 terrains .. 48
Figure 4.28 FPS from Core i3 processor ... 49
Figure 4.29 FPS from AMD A10 Processor ... 49
Figure 4.30 FPS from Core i5 processor ... 49

Figure 4.31 FPS from Core i7 processor ... 50
Figure 5.1 Live streaming Process .. 52

file:///C:/Users/buddy/Downloads/3D%20Visualization%20of%20sailing%20regetta%20in%20real%20time%20Updated.docx%23_Toc420316931

List of Tables

Table 3-1 Relations between oceanographic terms. The subscript ∞ indicates a deep water term 19
Table 4-1 Physical size of domains ... 33
Table 4-2 FPS comparison with Current ocean model and Philips spectra .. 44
Table 4-3 FPS comparison with Different System .. 48

5

ABBREVIATIONS AND NOTATIONS

GPS Global Positioning System - a space-based satellite navigation system that provides

location and time information in all weather conditions, anywhere on or near the Earth

where there is an unobstructed line of sight to four or more GPS satellites.

LOD Level Of Detail - In computer graphics, accounting for level of detail involves

decreasing the complexity of a 3D object representation as it moves away from the

viewer

2D Two-dimensional_space

3D Three-dimensional_space

iOS iPhone Operating System - is a mobile operating system developed by Apple Inc

CPU Central processing unit

GPU

Graphics processing unit - a specialized electronic circuit designed to rapidly manipulate

and alter memory to accelerate the creation of images in a frame buffer intended for

output to a display

BRDF

FPS

GUI

CFD

IFFT

Bidirectional reflectance distribution function

Frame Rate per Second

Graphical User Interface

Computational Fluid Dynamics

Inverse Fast Fourier Transform

6

1 Introduction

In Sail racing, while most sailors say that sailing is the most involved and exciting sport they

participate in, it can be difficult to watch, especially for untrained spectators. This is because racing

occurs half a mile from the shore and as sails drift away from shore, they become invisible and in-

transparent from the water, making it hard for spectators to identify their friend or teammates. Even when

races take place close to land, the view that spectators have is highly skewed due to the perspective,

making very difficult to identify what boat is leading and which are trailing. The experience of

participants is limited to real-time subjective information and makes it unpredictable to analyze the race

and compare with competitors. Spectators, Coaches and Media have a hard time to understand the

competition and it is impossible to visualize key moments.

Using the Global Positioning System (GPS), which are installed in the sails and buoyant (marks), will

record the two numbers that pin-point the precision of unlocking a huge potential in global tracking –

latitude and longitude, are transmitted to the shore‘s base station. The information is processed and

graphically presented along with the current environmental conditions on the sea to the viewers online.

The system will store the tracks of individual boats participating in sailing regattas; users will be able to

review these tracks at their convenience for post race analysis and other educational purposes. The

intention of this project is to develop a complete dynamic and competitive 3D Visualization system for

sailing regattas in real time and lay emphasis on graphical effects. In order to attain this realistic view, a

system is designed by taking into account the physics of sailing and reciprocates an output and thereby

overlay it with graphical effect providing a visually appealing experience for viewers globally.

The Goal of this project is to develop an online 3D viewing system for sail racing events.

The main objectives of the project are

1. Track sail races using GPS data and efficiently process the data for use within the 3D game engine.

2. Render a real-time ocean water surface for the sail-boats to sail.

3. Dynamically integrate and test real-time shorelines using geospatial data using different data types-

TIFF and RAW.

4. Create a prototype for live video streaming in webplayer.

The real-time data can also be used by sailors to make tactical decisions during a race. For example,

the system can alert dock staff when boats stray too close to shore, or when sails are drifting away from

the course line. At the outcome of this project, we also aim to enhance our knowledge on application

development and learn new aspects of graphic design.

7

2 Analysis of existing approaches

2.1 Literature review

Stan Melax in [4] discusses his method of achieving polygon reduction algorithm is to take a high

detail model with many polygons and generate a version using fewer polygons that looks reasonably

similar to the original. Having initially implemented real-time Boolean operations, it was noticed that the

repeated use of Boolean operations performed on polygonal objects generated lots of additional triangles.

Many of these additional faces were small or splinter triangles that didn’t contribute to the visual quality

of the game — which in turn just slowed it down. Most of the better techniques were variations of the

progressive meshes; these techniques reduce a model’s complexity by repeated use of the simple edge

collapse operation. The trick Stan Melax used to produce good low-polygon models, was to select the

edge that when collapsed, will cause the smallest visual change to the model and this was done at cost of

collapsing an edge as the length of the edge multiplied by a curvature term.

This technique was good enough to generate the level of detail (LOD) models for the game engine. An

improved version of this basic algorithm has since been incorporated into Bioware’s 3D graphics engine,

Omen. One problem with swapping models is that players often notice when this occurs (the phenomenon

known as “popping”). Another technique for doing LODs in a game is to represent an object’s geometry

using parametric surface patches, which are tessellated on the fly to the desired detail.

An important component in many games is the LOD of models. Frank Losasso and HuguesHoppe[5]

describe Geomerty clipmaps for Terrain rendering using Nested regular grids - which caches the terrain in

a set of nested regular grids centered about the viewer. As the viewer approaches the surface, finer grid

levels are produced than the stored terrain using fractal noise displacement. In this paper they mention

texture clipmap which lead to geometry clipmaps, the former based on LOD per-pixel. Geometry

clipmaps on the other hand use LOD in worldspace based on viewer distance, using a set of nested

rectangular regions about the viewpoint and does not require special hardware. Each level contains an𝑛×𝑛

array of vertices, stored as a vertex buffer in video memory. For each level of the clipmap, a set of

rectangular regions called clip region is rendered and updated per frame depending on viewers motion.

Each clipmap level also contains associated texture image(s) for use in rasterization but this will require

more memory when letting the hardware control mipmapping. To overcome this, mipmapping is disabled

altogether, and LOD is performed on the texture using the same spatial transition regions applied to the

geometry i.e based on viewer distance rather than on screen-space derivatives as in hardware

mipmapping. In order to optimize the rendering, view frustum culling was used to avoid rendering terrain

that lies outside the viewport.

Filip Strugar[6]in his paper presents a technique for GPU-based rendering of heightmap terrains,

which is a refinement of several existing methods which draws the terrain directly from the source

heightmap data using a quadtree of regular grids and let the GPU to handle the creation of meshes instead

of having the CPU do it. LOD layer selection is based on the actual three-dimensional distance from the

observer. He introduces Continuous Distance-Dependent LOD, which organizes the heightmap into a

quadtree, which is used to select appropriate quadtree nodes from different LOD levels at run time. The

selection algorithm is performed in such a way as to provide approximately the same amount of on-screen

triangle complexity regardless of the distance from the observer. The quadtree structure is generated from

the input heightmap. It is of constant depth, predetermined by memory and granularity requirements.

Once created, the quadtree does not change unless the source heightmap changes. Every node has four

8

child nodes and contains minimum and maximum height values for the rectangular heightmap area that it

covers.

2.2 GIS data processing

 Geospatial data or geographic information is the data or information that identifies the geographic

location of features and boundaries on Earth, such as natural or constructed features, oceans, and more.

Spatial data is usually stored as coordinates and topology, and is data that can be mapped. Spatial data is

often accessed, manipulated or analyzed through Geographic Information Systems (GIS).

Data acquisition of 3D objects to build highly accurate models of real 3D objects are rapidly

becoming more affordable. LIDAR or laser scanning technology determines the range to an objecct by

measuring the time delay between transmission of a pulse and detection of the reflected signal and

registers distrubted data spatially. This tchonology is highly reliable as it has the ability to penetrate the

vertical profile of a forest canopy and quantify its structure. Knut Stolze[26], describes of the standard to

store, retrieve and process spatial data in a relational database system where a set of types and methods

are defined for reprsenation of multi-dimentional geographic features.

Alastair Aitchison[24], uses the approach of converting DEM images into useable format as ASCII

text file and import them to SQL serevr through an excel template. Once the excel file is imported into

SQL Server, a new table is created and the table is populated with a point in each row correspoinding to

its geographic tile location. Inorder to create a terrain map, the database is queried for a subset of data

corresponding to the map tile or quadkey (Bing maps tile). The data subset (which is a set of distinct

elevation recordings, recorded on a grid spaced at regular intervals) is determined by cetrain parameters

corresponding to the zoom level. Bing map tile system[25] describes the projection, coordinate systems,

and addressing scheme of the map tiles.

Delauney Triangulation is applied to the set of distinct points to create a continuous smooth surface in

WPF. The rendered terrain showed hard edges between triangles faces because many of the vertices in the

mesh list were duplicates. To overcome the triangles from being rendered individually, the mesh list was

updated to store only unique points and then use the Triangle Indices property to list the index positions

of each vertex that forms a triangle. The aftereffect was a smooth looking terrain. The final render uses a

map overlay as texture for the terrain.

Haala, Brenner and Anders [Hierarchical Storage and Visualization of Real-Time 3D Data] built a

structure for the dynamic acquisition, insertion, and use of global geospatial data. Data acquisition can be

of any geospatial form and follow an acquisition process which includes some pre-analysis steps that

functions both for subsequent efficient data access and detail management and for improved

understanding of the data thereafter apply a fast clustering algorithm to identify the overall acquisition

pattern and make the acquired data available in a more efficient form. This method utilizes time as a

parameter to tracks space and time patterns in data distributions. The approach is efficient in rendering

terrain based on view dependence as data is organized in a hierarchical clustering format.

2.3 3D Wave Generation

There are a lot of approaches available for 3D wave generation; basically three approaches are taken

into account for creating 3D water waves. Sum-of-sines, Computation Fluid Dynamics (CFD) and Inverse

Fast-Fourier Transform (IFFT).

9

2.3.1 Sum-of-Sines

The sum-of-sines approach, where some number of waves are added together and used to displace a

water mesh. But, computing individual waves like this and adding them all together each frame can be

expensive and burn up GPU resources, so it end up being very limited with the number of waves you can

simulate at once. Not having enough waves will result in a lack of detail on the water – Need thousands of

them before it looks like a real ocean. This problem can be mitigated somewhat through the use of normal

and displacement maps to add high-frequency detail over the lower-frequency procedural waves.

2.3.2 Computational Fluid Dynamics

Computational Fluid Dynamics is the branch of fluid dynamics providing a cost effective means of

simulating real flows by numerical method of governing equations. The governing equations for

Newtonian fluid dynamics, namely the Navier-Stokes equations, have been known for over 150 years.

However the development of reduced forms of these equations is still an active area of research, in

particular, the turbulent closure problem of the Reynolds-averaged Navier-Stokes equations. For non-

Newtonian fluid dynamics, chemically reacting flows and two phase flows, the theoretical development is

at less advanced stage.

Experimental methods has played an important role in validating and exploring the limits of the

various approximations to the governing equations, particularly wind tunnel and rig tests that provide a

cost-effective alternative to full-scale testing. The flow governing equations are extremely complicated

such that analytic solutions cannot be obtained for most practical applications.

Computational techniques replace the governing partial differential equations with system of algebraic

equations that are much easier to solve using computers. The steady improvement in computing power,

since the 1950’s, thus has led to emergence of CFD. This branch of fluid dynamics complements

experimental and theoretical fluid dynamics by providing alternative potentially cheaper means of testing

fluid flow systems. It also can allow for the testing of conditions which are not possible of extremely

difficult to measure experimentally and are not amenable to analytic solutions [9].

This method is Real-time since this approach simulate pretty much any intersection water can have

with its environment, it is complex and generally limited to very small areas for real-time usage on

today’s hardware and research improves. Hybrid approaches that blend CFD for effects near the camera

with other larger- scale techniques could prove interesting.

2.3.3 Inverse Fast Fourier Transform

The best approach today is using a mathematical technique called an inverse Fast-Fourier

Transform(IFFT).Basically pre-compute a 2D array of individual waves, defined by their amplitudes,

directions, and wavelengths. Each frame, the FFT transform is applied to this array to convert it into

animated 3D wave displacements. An array of 256x256 waves will result in 65,536 individual waves

being simulated at once. FFT's may be accelerated using GPGPU technologies such as CUDA, OpenCL,

or DirectX11 compute shaders. Waves created in this manner can cost less than one millisecond per frame

- but this depends a lot on proper implementation. Need to displace the final waves to make them look

pointy and "choppy", and this involves further FFT computations. Another complication is that fast FFT

transforms may not be available on every platform user plan to support, or different platforms may

require different techniques. Can assume DirectX11 graphics hardware, DX11 has very fast FFT

10

functions built into it. But to target DX9-level hardware, or platforms such as iOS, user need to

implement and support multiple approaches to generating these waves depending on the platform they are

running on. However still found FFT to be the best tradeoff between performance and visual quality

available today, and Rendering infinite oceans in 1-4 milliseconds with this technique. IFFT is explained

in detail under section 4.3.3.

2.4 Modelling and Rendering Ocean Waves

A simple model for the surface of the ocean, suitable for the modelling and rendering of most

common waves where the disturbing force is from the wind and the restoring force from gravity. It is

based on the Gerstner, or Rankine, model where particles of water describe circular or elliptical stationary

orbits. The model can easily produce realistic wave’s shapes which are varied according to the parameters

of the orbits [10]. The surface of the ocean floor affects the refraction and the breaking of waves on the

shore; the model can also determine the position, direction, and speed of breakers. The ocean surface is

modelled as a parametric surface, permitting the use of traditional rendering methods, including ray-

tracing and adaptive subdivision. Animation is easy, since time is built into the model. The foam

generated by the breakers is modelled by particle systems whose direction, speed and life expectancy is

given by the surface model. To give designers control over the shape of the ocean, the model of the

overall surface includes multiple waves, each with its own set of parameters and optional stochastic

elements. The overall "randomness" and "short crestedness" of the ocean is achieved by a combination of

small variations within a train and large variations between trains.

2.4.1 Real time synthesis and Rendering Ocean water

A multi-band Fourier domain approach used for synthesizing and rendering deep-water ocean waves

entirely on the graphics processor. The technique begins by using graphics hardware to generate and

animate a Fourier domain spectrum of ocean water. Subsequently use the graphics hardware to apply an

IFFT to transform the spectrum into a realistic height map of ocean water in the spatial domain. As a

result, this technique can be used to efficiently synthesize and render height maps and normal maps which

are spatially periodic. GPU-synthesized low frequency height maps are used to displace geometry while

broad spectrum GPU-synthesized waveforms are used to generate a normal map for shading. The model

also allows for compositing of other waveforms such as wakes or eddies caused by objects interacting

with the water [11]. The importance is the GPU to perform all synthesis and rendering steps as well as the

multi-band approach which enables efficient simulation of the natural filtering of high frequencies at

different points on the water surface due to depth variation or the presence of plant matter.

2.4.2 Second Order Spectral Simulation of Directional Wave Generation and Propagation

The second order spectral simulation of directional wave generation and propagation is based on time

accuracy. The flow is described in the framework of potential theory, with second order Stokes expansion

of nonlinear boundary conditions on the free surface and on the wave maker. The resulting initial

boundary value problem is solved using a recently developed spectral formulation. The basic principles of

the numerical scheme are first presented. Then, some illustrative results on the generation of oblique

waves in the new ECN offshore wave tank are given, comparing the standard snake's principle, and

Dalrymple's method [12].The objective of this method is to investigate both in time and in space the

11

usable test area in our multi-directional wave tank, for required sea states. The drawback of this method is

the damping conditions applied at far end of the tank

2.5 Comparison with Existing Ocean models

2.5.1 Multi resolution reflectance model

Multi resolution reflectance models are difficult to design in the general case. In this case the dynamic

surface complicates the problem because it forbids pre-computations. The geometry and spectrum of the

surface is easy to filter, by removing frequencies above the Nyquist limit. In addition, the surface of the

ocean has Gaussian statistic properties, at almost all scales. This is the starting hypothesis of many BRDF

models. This section presents method to transition from geometry to normals and then to shading based

on statistical surface properties, recalling some physical facts about deep water waves.For the BRDF the

variance of the wave slopes needs to be pre-computed and stored in a 3d texture. This only needs to be

done once on start up. To render into a 3d texture in Unity it’s advisable to use a compute shader.

Previous experiments with this method lead to Crash the graphics card. The problem is the calculations

require a rather large loop in the compute shader and it causes the crash. But by reducing number of

threads, crashes can be avoided. Consider moving the calculations to the CPU but it could be rather slow

to compute [13].

2.5.2 Small and large wave Replication model.

In case of Model which is designed to replicate ocean waves on both small and large waves, Phillips

spectrum is considered. It has quite a different effect than the previous model and in some ways looks

much more ‘watery’. Jerry Tessendorf released a paper called ‘Simulating Ocean Water’ [14]. In this

paper the math for using Phillips spectrum was outlined and Keith Lantzconverted this into code [18].

The Code was written in C++ so it was just a matter of converting that to a C# script for Unity. The issue

is class of complex numbers with operator overloading. This is fine in C++ but in a C# script operator

overloading does not perform as well as in C++. By performing the complex number math by just using

floats and storing the results in Unity’s Vector2 class, the frame rate from 10fps to 60fps. The slope and

displacement both consist of two complex numbers which could be stored in array of Vector4’s and have

the Fourier transformed applied at the same time instead of separately. The frame rate changes from 60fps

to 100 fps. The Fourier transform is calculated on the CPU and in some of the previous ocean projects,

the Fourier transform is calculated on the GPU.

This method uses the wave heights to directly modify a meshes vertices position. User can interact

directly with the mesh for physics effects. The mesh created is tileable and have added the ability to tile

as many meshes. There are some problems with this approach however. For a start since the results are

stored in a mesh instead of a texture there is no way to remove the repeating pattern produce from tiling

multiple meshes. Secondly since larger scenes are made from tiling the same mesh there is no natural way

to create a LOD scheme which would be essential for large scenes. And lastly since the normals are only

per vertex they do not contain enough detail for good lighting calculations.

12

2.6 Terrain generation

A broad range of applications use artificial terrain generation approaches. Few of the applications

where terrain generation is common are 3D architecture, VR applications, computer games and real-time

rendering 3D engines. Terrain generation can be categorized by their various approaches such as

generation of terrains using measuring techniques, modelling approaches and procedural terrain

generation (PTG) algorithms.

The measuring approach uses a dataset containing real-world information, which includes elevation

data, geographic position...Etc. This dataset can be used to create 3D representation of a terrain's surface

and are referred as digital elevation model (DEM). These DEM‘s can be developed in a number of ways

but they are commonly acquired through satellite remote sensing or land survey data. The terrain

generated using DEM produce highly realistic looking models with less intervention in the process of

generation. However these are more or less static datasets and cannot be manipulated easily but at the

expense of time, we can have them transformed to achieve a terrain with added features or produce a

terrain with the specific expectations of a designer.

Modelling is a method where terrains are sculpted using 3D modelling tools such as Blender, 3DS

Max, World Machine, Grome etc. the design pipeline varies as per the tool selection. This process helps

deliver a model which is an exact replica of designers thought to evolve terrains accordingly to their

aesthetic feelings. While the final outcome is considered excellent as per design requirements, this

technique is not as time efficient compared to its peers, as the process depends on the skill and expertise

of a designer.

PTG is achieved programmatically rather than manually. Inside this category comes a variety of sub

categories based on their generation techniques. Representations of these fields are shown in Figure 2.1.

PTG use voxels, which represent a value on a regular grid in three-dimensional space. Voxels are

useful for storing 3D data; they are also ideal candidates for the application of procedural noise shaping

functions. Voxel datasets can be quite memory hungry since they define forms as density clouds which

record data for empty space as much as for solid objects, however they are very flexible and structurally

formal.[23]

Generation of terrain using mesh is traditional in PTG. The mesh is used to create a topology of the

terrain using an input function such as height, thereby laying out vertices according to the corresponding

height values. When creating large terrains, we can have a single mesh with a uniform resolution but this

would require large memory buffer. Using a dynamic quad tree [17], it would be better to draw a mesh

with more details near a point of interest and decrease the mesh resolution around areas away from the

point of interest to reduce poly-count or rendering load.

Figure 2.1 Procedural terrain generation methods

13

Since a large number of virtual environments, games are built around terrains or maps, a heightmap

specifies elevations of various parts of the maps. In particular, many strategy games are heavily

dependent on maps and the character of the map can strongly influence the game play. Height-map is

a raster image used to store values, such as surface elevation data. Most terrains generation methodologies

translate data stored in a heightmap into 3D structures. Heightmaps can be generated using a variety of

approaches, and some of the commonly used approaches are physical, fractal and spectral synthesis.

Olsen J [19], presents a terrain evolution algorithm for physically based terrains which cater to real-

time situations like thermal, hydraulic erosion using a set of desirable traitsto measure erosion rate for a

height map. He also touches on the pink noise, which is characterized by the spectral energy density being

proportional to the reciprocal of the frequency

P(f) = 1/ fa (2.6.1)

Where P(f) is the power function of the frequency and a is close to 1.This kind of noise approximates

real-world uneroded mountainous terrain well.

Spectral synthesis simulates 1/f noise by adding several octaves (layers) together, each octave

consisting of noise with all its spectral energy concentrated on a single frequency. For each octave, the

noise frequency is doubled and the amplitude A is calculated by [19].

A = pi (2.6.2)

Where i is the octave number starting with 0 at the lowest frequency and p is called the persistence.

Using the inverse Fast Fourier Transform (FFT), the frequencies can be converted to altitudes.

The fractional Brownian motion(fBm), developed by Mandelbrot was implemented by A.

Fournier[20] to compute the surface to arbitrary levels of details without increasing the database, thereby

allowing objects with complex appearances to be displayed from a very small database. Furthermore,

with the modification of few parameters, the character of the terrains surface could be controlled. Using

the fractal approach, the resolution of a terrain is recursively increased and the height of each new point

on the terrain is adjusted to provide a blended randomness. A fractal generation algorithm generates

unique terrain at each execution, thereby making it interesting for strategy genre layout.

Ashlock et al. [21] proposed that a midpoint L-system or Linden-Mayer system can be effective at

generating fractal style terrains using the principles of midpoint displacement fractals. The authors uses

an evolutionary algorithm (EA) to generate the right set of rules to render them into the desired type of

object and use this approach to evolve fractal landscapes to fit specific shapes.

2.7 Level of Detail

In computer graphics, geometric datasets can be too complex to render at interactive rates, therefore

the solution is to simplify the polygonal geometry of small and distant objects. This theory is besides

being known as Level of Detail (LOD), also known as polygonal simplification, geometric simplification,

mesh reduction, decimation, and multi-resolution modeling.

Luebke et al. (2003) [7] state that LOD is used to improve the performance and quality of three-

dimensional (3D) visualization in computer graphics. It follows a simple fundamental rationale: when 3D

scene is rendered, it is optically sufficient and computationally efficient to use a less detailed

representation for small, distant, or unimportant portions of the scene. Their definition is that LOD is “the

real-time 3D computer graphics technique in which a complex object is represented at various resolutions

and the most appropriate representation chosen in real time in order to create a trade-off between image

fidelity and frame rate. This term is often used interchangeably to refer to both the graphics technique and

a single representation of an object.”

14

LOD can be categorized as follows: discrete LOD, continuous LOD, and view-dependent LOD.

The discrete LOD move is conventional: a fixed number of LODs are created for each object

separately and preprocessed, and at game play, LOD is determined by its distance or size for point of

view. They are called discrete LOD since the LODs are pre-determined at set distances. This approach

has the advantages that it is simple – decouples simplification and rendering, and it does not have to

address real-time rendering constraints. Run-time rendering needs only to choose The LOD for an object

is only chosen during runtime. However, the drawback to this approach is its adaptation to extreme details

where huge objects need to be subdivided and combined with small object (e. g. massive Computer-Aided

Design (CAD) models) due to the popping effect which can occur when the graphics system switches

between different levels of detail.

The continuous LOD approach provides an advantage over the discrete LOD that creates a data

structure from which a desired level of detail can be extracted at run time. It provides better fidelity (LOD

is specified exactly, not chosen from a few pre-created options), and smoother transitions (continuous

LOD can adjust detail gradually and incrementally, reducing visual pops).

In the end, the continuous LOD leads to view-dependent LOD which uses current view parameters to

select best representation for the current view. Single objects may thus span several levels of detail. For

instance, nearby portions of an object can be shown at higher resolution than distant portions. Such

approach provides even better granularity (allocates polygons where they are most needed, within as well

as among objects), and enables drastic simplification of very large objects.

15

2.8 Related Work

2.8.1 GeoRacing

GeoRacing, is a product developed by R&D team of TRIMARAN, a Broadcast Graphics Specialist

for Sport on TV. They provide GPS tracking with Timing, Ranking and 2D & 3D Views for various

outdoor sport events which include sailing as well. During SVG Europe’s interview with Trimaran CEO

Olivier Emery about the development and key feature-set of the system [1], Olivier Emery stated the

innovation solution includes individual trackers (e.g., GPRS, SAT, and RF), a cloud platform to manage

live data and to serve customers with Mac and PC-based 2D players, apps for iOS and Android-based

devices, and a 3D rendering engine for broadcast and webcast.

2.8.2 Virtual Eye Sailing

The Virtual Eye sailing system [2] (developed since 1992) has been another solution for sailing events

worldwide. Virtual Eye, often only associated with the Americas Cup and the Volvo Ocean race, has

evolved into an easily deployable system at any event. Some of these include the Audi MedCup and

world tour events like the Monsoon Cup, the Korea Cup and the Louis Vuitton Trophy Series. Virtual Eye

can show an entire race course, including marks, laylines, advantage lines and distances between the

boats. Virtual Eye also displays timing information from starts, mark rounding and finishes. All of this

information is available in real-time for immediate review and post-race analysis. They rely on Igtimi.Ltd

for GPS and data network to develop an accurate and reliable system. Tracking data is sent at a rate of 1-

10 times a second, and the tracking system is capable of transmitting this data over a dual network.

Eventually this data is used to create the necessary graphics with higher quality.

2.8.3 RaceQs

RaceQs is a sailing system designed to improve sailboat racing performance. The system includes a

free smart phone app that functions as a race computer and GPS tracker. The phone app records sailing

data to produce 3D animated replays for post-race analysis. After sailing, the phone app automatically

uploads race data to raceQs.com to create a 3D animated replay of the entire race. The shareable 3D

replays are viewed on raceQs sailing social network [3]. This is one other application to view races online

and monitor performance each time.

16

3 Methodology

3.1 Unity3D

Unity3D, by Unity Technologies, is a real time 3D engine which can handle huge databases, stream

geometric asset bundles, pre-calculate lighting or perform real-time lighting, provide interactions and

animations capabilities, attach behaviour scripts to objects, while preserving a fluent visualization of the

final product.

Unity represents y-axis to be in the upward direction whereas in real-world, the z-axis point up. The

effect of this transition causes objects imported in Unity to be off orientation. The fix is easier when

placing static models because the rotation can be brought back to its normal orientation using the editor

but when models are imported dynamically, they need to be redrawn to transform their axis assuming end

pixels to be start pixels and vice-versa.

The indie version of Unity does not support LOD for objects but has a built-in process to which does

imply LOD and batching. Setting up multiple terrains to form a large landscape leads to seams along the

border of terrains, making it seem partially broken rather than continuous. Unity has a fixed method –

SetNeighbours() to overcome this break but this does not really resolve the problem, the terrains still have

seams which are obvious. To have seamless terrains, it is necessary to implement terrain stitching by

redrawing pixel on the outer edges of a terrain tile match the outer edge of its neighbours.

3.2 Sail navigation

The need to establish a connection between the skipper and the sail was necessary to generate a path

using the race waypoints or marks. Using the position of boat during the race, it was required to set up a

Figure 3.1 Sail regatta course with markings to waypoints and routes

17

state machine which can transition the state of the sailboat with respect to an approaching waypoint. The

states are based on the waypoint tags - start, finish, gates and marks namely. Start and finish denote the

line drawn between waypoints marked as start line and finish line; these are also considered as start and

final target nodes. Similarly, the gates denote a line or crossing between two waypoints. The marks are

termed as single waypoints.

To determine the state of a waypoint, the route path is required. Route information is recorded based

on the waypoint tags. For example, during the race event, the sailboat are set to sail behind the start line

and once the race starts, the distance travelled by the sails to reach or cross the start line is consider to be

the initial course of the route. Similarly, the route taken from start line to the preceding waypoint is taken

as the next successive route. The route information is stored in the route array using a route index an

identifier. Figure 3.1 illustrates a sail regatta course with markings to waypoints and the route index used

to identify routing path.

Waypoint states play an important role in calculating the time take by the sail to cover the set route.

Waypoint states have two transition states - crossing and rounding. If the waypoint is tagged start, then

the sailboat select the crossing state whereas when sailboats approach a mark, they are set to select the

rounding state.

Crossing is a state which takes two waypoints into consideration while making calculations to find the

crossing point between these waypoints. Considering an imaginary line drawn between the waypoints to

make the process explanatory, the process checks the position of a sailboat and calculates the distance

between the imaginary axis and the skipper. As the distance nears zero, it will compare the x, z

coordinates of sailboat with the x, z coordinates of the referenced line. If the coordinates match each

other, then the sailboat is on the line and when the comparison states a difference as positive i.e. sailboat

coordinates greater to the line coordinates. Figure 3.2 indicates crossing points of start and finish line.

Figure 3.2 Crossing points of start and finish line

Rounding is the second state in the waypoint state machine which takes a combination of three

reference waypoint. The mark that a sailboat is set to head towards is considered as the first waypoint.

Second and third reference waypoints are taken with respect to the current waypoint, the waypoint

immediately after the current waypoint is considered as waypoint next and the waypoint prior to the

current waypoint is marked previous. However, the next and previous are referred to second and third

waypoints in the rounding state.

18

Figure 3.3 Sailboat heading to mark for rounding

A model of the rounding algorithm is represented in Figure 3.3. WYP (n-1), WYP(n) and WYP(n-1) stand

for previous, current and next waypoints of the system respectively. The arc tangent is measured at each

waypoint with respect to the current waypoint and the difference in angle between next and previous is

used to measure angle ɣ. The angle ɣ is bisected to form an imaginary axis which acts like the crossing

line or endpoint of a route path.

The calculated waypoint as shown in Figure 3.3 forms an imaginary line segment (with fixed

endpoint) and if the sailboats were to sail far away from the current waypoints and beyond the calculated

waypoint axis, it is hard to determine if the sailboat crossed this axis and it requires more time to rewrite

an algorithm to enclose such scenarios. Hence, the introduction of an angle θ is used to measure the angle

made by the sailboat with the approaching/current waypoint and the calculated waypoint. Angle θ is

derived by keeping current waypoint stationary. Further, this will help in identifying which boat sailed

first or was the first to make a round across a mark.

3.3 Ocean Models

3.3.1 Definitions and relationships

 The surface elevation, η, is the vertical displacement from the mean water level of the oceanic surface

at given point and time. The wave amplitude, a, is the maximum surface elevation due to this wave. The

wave height, H, is the vertical distance between a trough and an adjacent crest. For a single wave, H = 2a.

The wavelength, λ, is the distance between two successive crests. The period, T, is the time interval

between the passages of successive crests through a fixed point. The frequency, f = 1/T, is the number of

crests that pass a fixed point in 1 second. The wave speed or phase speed, c = λ/T, is the speed of wave

crests or troughs. It can also be expressed as c = ω/κ, where ω = 2πf is the angular velocity or angular

19

frequency, and κ = 2π/λ is the wave number. The water depth, d, is the vertical distance between the floor

and the mean water level.

The concept of deep water is wave dependent and is related to the ratio of the water depth to the

wavelength of the wave. This comes from the transcendental expression

λ =
𝑔𝑇2

2𝜋
tanh(

2𝜋𝑑

λ
) (4.3.1)

Where g ≈ 9.807 m·s−2 is the standard acceleration of gravity. Since tanh(x) ≈ 1 when x > π, and

tanh(x) ≈ x when x < π/10, water is considered deep if d/λ > 1/2 and shallow if d/λ > 1/20. This leads to

some simplifications in the expressions of the terms given above (Table 3-1).

Table 3-1 Relations between oceanographic terms. The subscript ∞ indicates a deep water term

Transitional depth: 1/20 < d/λ <

1/2

Deep water: d/λ >

1/2

c =
𝜆

𝑇
 =

ω

κ

c =
𝑔𝑇

2𝜋 tanh (𝑘𝑑)

c2 =
𝑔

𝑘
tanh (𝑘𝑑)

𝑘=
2𝜋
λ

𝑘∞ = 𝑘tanh (𝑘𝑑)

λ =
2𝜋
𝑘
= 𝑐𝑇

λ =
𝑔𝑇2

2𝜋 tanh (
2𝜋𝑑
λ
)

λ ∞ = λ∞tanh (𝑘𝑑)

ω =
2𝜋
𝑇
= 𝑘𝑐

ω2 = 𝑔𝑘tanh (𝑘𝑑)= 𝑔𝑘∞

c∞ =
𝑔𝑇

2𝜋

c2
∞ =

𝑔

𝑘
(
𝑔

ω
)2

λ ∞ =
𝑔𝑇2

2𝜋

ω2
∞ = 𝑔𝑘

3.3.2 Parametric equations

The base model for ocean waves simulation comes from the linear (or small-amplitude) wave theory

in [30] ,widely used in oceanic engineering, and in Computer Graphics in [31]. It describes waves with a

sinusoidal shape, which corresponds to calm weather conditions. Considering a location x0lying on a 1D

surface at rest, the elevation z = η at time t due to a wave with wavenumber κ, amplitude a and angular

velocity ω = √ gκ is

z(x0,t) = a cos(κx0 − ωt) (4.3.2)

When the steepness of the wave increases, its crests become sharper and its troughs flatter. Therefore,

document [10] used a more realistic description based on trochoids. The surface equation is now

{
𝑥(𝑥0, t) = 𝑥0 + a sin(κ 𝑥0 − ωt)

z(𝑥0, t) = z0 − a cos(κ 𝑥0 − ωt)
} (4.3.3)

20

Where z0 is the surface elevation at rest (typically 0). Note that the important point here is the phase

term difference of −π/2 between x(x0,t) and z(x0,t), not the use of a particular sine or cosine function. This

Lagrangian model describes the trajectory in a vertical plane of a particle (x, z) around its position at rest

(x0, z0) [32].Summing several waves and extending equation 3 to a 2D surface gives

{

 𝑥⃗(𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡) =

𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ + ∑ 𝑘̂𝑘⃗⃗ 𝑎(𝑘⃗⃗)sin (𝑘⃗⃗. 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ − ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗)

𝑥⃗(𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡) =

𝑍0 − ∑ 𝑎(𝑘⃗⃗)cos (𝑘⃗⃗. 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ − ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗)𝑘⃗⃗ }

 (4.3.4)

where𝑥⃗ = (x, y) is the horizontal particle position at time t, 𝑥0⃗⃗⃗⃗⃗ = (x0, y0) its position at rest, 𝑘⃗⃗ = (kx, ky) a

wave vector, i.e. a vector with magnitude‖𝑘⃗⃗‖= 𝑘 ⃗⃗⃗ ⃗/ ‖𝑘⃗⃗‖and direction of the considered wave propagation

and is the unit vector of𝑘 ̂= Because of the presence of uniformly distributed random phase terms,

φ(𝑘)⃗⃗⃗⃗⃗∈ [0, 2π], this model is also known as random waves. Any set of 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ can be taken, which allows

the use of adaptive mesh, for optimal surface sampling [33].

3.3.3 Ocean Wave Generation

Another method for computing equation 4 is the 2D inverse Fourier transform, used in [34][35][14].

The set of N ×M complex numbers Fn,mis transformed into a set of complex numbers fp,q by

fp,q = ∑ ∑ 𝐹𝑛,𝑚 exp (𝑖2π(
𝑛𝑝

𝑁
+

𝑚𝑞

𝑀
)) 𝑀

𝑚=1
𝑁
𝑛=1 (4.3.5)

Where p∈ {1, ..,N} and q∈ {1, .., M}. This is of particular interest because the fast Fourier transform

(FFT) algorithm is an efficient way to compute these sums. However, in comparison with the previous

method, its usage is more restrictive. The set of 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ is defined as a regular grid of N ×M points with

dimensions Lx ×Ly and origin at the center, such that 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ = (nx0Lx/N, my0Ly/M), where nx0∈ [−N/2, N/2[

andmx0∈ [−M/2, M/2[are integers. Equation 4 rewritten as

{

 𝑥⃗(𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡) =

𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ + 𝐼 ∑ 𝑘̂𝑘⃗⃗ 𝐴(𝑘⃗⃗, 𝑡) exp(𝑖 𝑘⃗⃗⃗ ⃗. 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗))

𝑥⃗(𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ , 𝑡) =

𝑍0 − 𝑅 ∑ 𝐴(𝑘⃗⃗, 𝑡) exp(𝑖 𝑘⃗⃗. 𝑥0 ⃗⃗ ⃗⃗ ⃗⃗)𝑘⃗⃗) }

 (4.3.6)

Where I() and R()correspond, respectively, to the imaginary part and real part of the expression, and

𝐴(𝑘⃗⃗, 𝑡) = a(𝑘⃗⃗)exp(𝑖(𝑥0 ⃗⃗ ⃗⃗ ⃗⃗ − ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗) (4.3.7)

Rather than the random phase termφ, authors commonly use normally distributed random amplitude.

To comply with equation 5, the set of wave vectors must be

𝑘⃗⃗ = (2π
𝑛𝑘

𝐿𝑥
 , 2π

𝑚𝑘

𝐿𝑦
) (4.3.8)

21

Where nx and my are defined as nx0 and mx0 above. The resulting surface is periodic in all directions

and can be used as a tile [14].To decrease the FFT computation time by a factor two, real numbers can be

used instead of complex ones. This is achieved by adding two waves with same amplitude and travelling

in opposite directions [14]. Equation 4.3.7 becomes

𝐴(𝑘⃗⃗, 𝑡) = 𝑎(𝑘⃗⃗)exp (𝑖(− ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗)) + 𝑎(𝑘⃗⃗)exp (−𝑖(− ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗)) (4.3.9)

= 2𝑎(𝑘⃗⃗)cos(− ω(κ)t + φ(𝑘)⃗⃗⃗⃗⃗).

This results in a single stationary wave with time dependent amplitude.

3.3.4 Ocean Wave Spectrum

The shape of wave spectra is still under investigation due to absence of a unified universal form.

Significant difference exists between these spectra and unfortunately, there are further examples that

exhibit similar divergence in [36][37][38].The analytical spectrum that is constructed, attempts to take

advantage of spectra developments. Apel’s objective of building an analytical spectrum that can be easily

used in modelling electromagnetic interactions with the sea surface. Indeed, the primary need of EM

models is the autocorrelation of the displacement field or its Fourier transform, i.e., the elevation

spectrum [39].

Omnidirectional spectrum expressed as a sum of two spectra regimes:

S(k) = k-3[B1 + Bh] (4.4.1)

Where subscripts l and h indicate low and high frequencies, respectively, and B stands for the

curvature spectrum (B= K3S).

3.3.4.1 Long-wave curvature spectrum
 Here B1 is written in general form as

B1 =
1

2
 ∝p Cp/ C Fp (4.4.2)

Where ∝p is the generalized Philips-Kitaigorodskii equilibrium range parameter for long waves

dependent on the dimensionless inverse-wave-age parameter Ω = U10/Cp(U10is the wind speed at a height

of 10 m from the water surface) , C(k) is the wave phase speed and Cp = C(kp) is the phase speed at the

spectral peak, and Fpis the long-wave side effect function dependent on dimensionless paramters k/kpand

Ω = U10/Cp.

The long- wave side effect function Fpis given by

Fp= LPM JPexp{−
 Ω

√10
[√

𝑘

𝑘𝑝
− 1]} (4.4.3)

22

Figure 3.4 Frequency curvature spectra

3.3.4.2 Short-wave curvature spectrum
The high-frequency curvature spectrum, Bh ,is expressed as

Bh=
1

2
 ∝m Cm/ C Fm (4.4.4)

where ∝mis the generalized Phillips-Kitaigorodskii equilibrium range parameter for short waves

dependent on the dimensionless parameter (u*/cm), where u* is the friction velocity at the water surface,

c is the short-wave phase speed and Cm is the minimum phase speed at the wave number (km) associated

with a supposed gravity-capillary peak in the curvature spectrum, and Fm is the short-wave side effect

function dependent on dimensionless parameters k/km and Ωm = u*/Cm·

The short-wave side effect function in (40) is taken here as

Fm= exp−
 1

4
{[√

𝑘

𝑘𝑚
− 1]}2 (4.4.5)

Directional wave spectrum satisfactorily models surface waves from near the main spectral peak up to

the gravity capillary peak. Non developed seas were also modeled by using the modified JONSWAP

formulation for long waves together with a new fetch versus wave age relationship that extends its

validity to large fetch values in Open Ocean. The secondary gravity-capillary peak increases with the

wind friction velocity as a two-regime logarithmic function as derived from Jiihneand Riemerand Hara et

al tank data. The omnidirectional spectral model reproduces significant wave height for developing seas

and measured mean square slopes (mss) for both clean and oil-slick covered water surfaces (Figure

1).Moreover, when combined with simple spreading function, upwind-crosswind asymmetry also verifies

for both clean and slick mss to within experimental errors.

𝜓(k,𝜑) =
1

2𝜋
 k-4 [B1+Bh][1+∆(𝑘) cos 2(𝜑)] (4.4.6)

WhereB1, Bh' and Â are subsequent formulas from paper Unified directional spectrum [39] With this

modification, the curvature secondary peak moves over to 1.7 cm wave1ength (Figure 3.4).Wind speed,

Wind Amplitude, Inverse wave age are three important parameters which can be adjusted accordingly.

These setting can be used to control the look of the waves from rough seas to calm lakes. A higher wind

speed gives greater swell to the waves, Wind amplitude Scales the height of the waves and the value of

23

Inverse wave age is lower number means the waves last longer and will build up larger waves. This

approach is very flexible and can be used in conjunction with future in situation data to refine these initial

findings.

3.4 Simulating & Animating Ocean Waves

Procedural model for breaking ocean waves that is intended to be used for interactive visualization.

The movement as well as the appearance of the waves is modelled by a set of functions in dependence of

time and space. This continuous surface description allows it to calculate all properties of every point

(including foam) on the ocean surface at every time without any information from previous time steps. By

using an adaptive sampling scheme for rendering, the frame rate of the animation only depends on the

screen resolution rather than on the model size. The model is quite simple, easy to implement, fast to

compute and provides a visual appealing interactive animation of infinite large ocean coast scenes. On the

other hand it provides only limited flexibility due to its procedural character. For achieving more realistic

scene appearance, it may also easily be combined with models for deep-water waves presented in the

past.

The challenge of this work is a procedural method to be used for simple interactive ocean animating.

The appearance of the ocean scene can be computed every time without the need for transferring

information over time. Furthermore, in combination with a rendering method that uses adaptive sampling,

the output frame rates are decoupled from the size of the ocean scene. On the other hand, in a procedural

model everything has to be modelled by hand so that much work has to be done to obtain a more realistic

model[40]. This includes the support of different wave forms (for instance spilled breaking waves) and

allowing different wave sizes and a more complex wave behaviour. Furthermore, assuming a given ocean

scene, a mapping operation that automatically adapts the parameterization for the breaking waves (for

instance for wave refraction) would be highly desirable. Many more components have to be included to

enhance the realism. The model can easily be combined with models for deep-water waves (including

sinusoids, trochoids or FFT based approaches and small wave ripples modelled as animated bump maps

.Aside from the waves, environment reflection maps can be used to model sky reflections on the ocean

surface by using graphics hardware.

3.5 Terrain generation

Unity holds a built-in terrain system which comes in handy while developing landscape based

appplications. The system allows for editing terrains, storing heightmaps, detail mesh positions, tree

instances, and terrain texture alpha maps. Unity‘s manual [27] provides a detailed overview explaining

the various options available for terrains and how to make use of them.

Heightmaps are 2-D scalars which represent an elevation value and these values play a vital role in

interpreting terrain in 3D. Heightmaps can be generated using various tools or software’s. Unity is

featured to automatically read heightmaps both internally and externally, provided that an external height

map is of the required format - .raw. However, the implementation of sourcing height maps using other

formats such as .TIFF – required manual effort of creating a .TIFF reader to extract elevation data.

A RAW file contains a set of information recorded by a sensor. They are referred as digital negatives

as they play similar role as negatives used in film photography. Bruce Fraser [29] clearly explains how

RAW data is captured using photosensitive detectors which are arranged in a 2D grid, each element of the

array representing one pixel. The values attained through these sensors are directly proportional to the

24

amount of light captured by them and correspond to grayscale values. The steps post retrieval of raw data

are used in conversion of grayscale to color using color filter array.

Unity does not have any constrains set on terrain‘s size. This means that we can have huge terrains but

from our experience with unity3D during the initial phase of the project, we realized that having large

terrains to fulfill the idea of constructing the real-world dynamically would slow the generation process

and cause memory issues. To overcome these issues, the approach of breaking terrains into smaller

regions to cover a larger area arose but this again just helped improve the load time of terrains. The issue

pertaining to memory remained and this led us to generate terrain tiles based on a sailboats location.

We implement a tilling system by tacking the sails geographic location in terms of latitude, longitude

coordinates and map them to real-world map data. Using the sails position, a region is draw around the

sail marking its boundary for terrains to be generated. At this stage, we divide the bounded region into

n*n grids for the generated terrain tiles to be placed in the right order corresponding to real world map

coordinates. Considering the terrains dimension - width and length, a scale factor is introduced to

determine the maximum number of terrains in a grid.

n = (2 * (scale_factor+1)) - 1; (3.6.1)

Figure 3.5 Arrangement of terrain tiles around a point of interest

In Figure 3.5, the blue dot represents the sail boat and the grid tiles denote the terrain region around

the sail.

The position of a sailboat is dynamic at all times through the race and this eventually means that

terrain tiles have to adapt to such change in position of sails. For dynamic terrain generation, we

implemented a boundary limit within the terrain grid. By tacking the position of sails every frame, we

can retrieve the current cartesian coordinates(x,z) of the sail. The terrain tile index on which the sail is

located can be computed by dividing the sailboats x coordinate by terrain width and z coordinate by

terrain length.

The boundary limit is determined by the difference in the number of terrain tiles crossed with respect

to the sart position within a given grid. The boundary limit was a matter of choice in our case, the cutoff

limit, could be m(x,z) where m – difference in position along x znd z respectively, such that m < n (from

equation).

m = Current position – Start position (3.6.2)

When the sailboat moves within the same terrain tile, there is no change in the grid system containing

the terrain set but when the sailboat crosses a terrain tile, the grid system has to makes the necessary

changes to make sure the sailboat is centred to the grid at all times. A pictorial representation of the

system is presented in Figure 3.6.The blue dot is moved to the left and when this happens, a new set on

tiles (green boxes) are generated around the blue dot. The terrain tiles outside the grid area (shaded in red)

are removed from the system.

25

Figure 3.6 Re-arrangement of terrain tiles system

When terrains are re-positioned to maintain the grid structure, it is not necessary to re-generate all terrains

within the grid. Only the missing terrains are re-drawn and using this approach, the memory consumption

of the terrain system remains constant and is directly proportional to the grids size. There is a problem

when the change is position is not smooth or consistent, it leads to dropping wrong terrain tiles around a

target boat. To overcome such situations, a boolean is introduced to check if the terrain load is in progress

and how big is the change in difference with respect to the current position of the sailboat. If the change

in position is large and there is an existing terrain load in progress, the terrain load is stopped and all

existing tiles are removed from their original position and a new set of terrains are generated using the

new position as target point.

26

4 Implementation and Result

Figure 4.1 Architecture overview of the 3D visualization system

A datacenter was initially put in place to test the data processing methodologies and the access to

SailRacer server and SailRacer DB were granted. The server application and race logics were written and

processed on the server-end. The scripts which carried out logic processing, directly communicated with

the MySql DB to fetch race information. The DB stored vital race information which included GPS

coordinates, time, mark data, track information etc.

Similar to most software development kits, Unity allows local or standalone development and build to

publish the files onto a server. The focus on graphic assets and performance were implemented using the

Unity game engine and the implementation of processed data from server is used to complete the race

logic.

An overview of the 3D visualization system is presented in Figure 4.1. The sailing concepts and

regatta design were sourced from SailRacer‘s expertise and it was used to implement a bilateral

processing using their data center. The workflow is such that when a client request a connection to the

SaiRacer system, the page is available for access to clients can access and view the 3D race system.

The main components used in the race system are the Boat Controller and Boat Information blocks.

Figure 4.2 shows the layout and relation between the various classes implemented within the sail race

system.

4.1 Boat Controller

The boat controller is set to be the manager, controlling all the boats that participate in the sailing

regatta. The Boat Controller uses an event‘s ID to set out and retrieve data from the server, this is done by

sending

BOAT CONTROLLER

BOAT INFORMATION

CAMERA

NAVIGATOR

BOAT ANIMATOR

MARK INFORMATION

1 2 3 N

 1 2 3 N

EVENT SAILBOATS

MARK SET

USER INTERFACE

:

;

FLEET 1

Boat 1

Boat 2

.

.

Boat N

FLEET 2

Boat 1

Boat 2

.

.

Boat N

FLEET N

Boat 1

Boat 2

.

.

Boat N

COMPASS

Heading

Speed

VGM

FLEET DATA

Figure 4.2 Block diagram of the sail system

a HTTP request to the server to get information of event data which include registered sailors and

races tagged to an event.

The event data is send to the user interface to give the viewer the option of selecting any particular

race of interest. The selected race triggers a Loadrace() call which does the same as the name describes,

loads the race. Loadrace(), sets the stage for sailboat to start sailing but before that it send a request to the

Sailracer server asking for race specific details. Since an event has many races, the intent is to start with a

selected race and progressively load the subsequent races that start later to the selected race.

When race specific data, such as position of marks, course data, skipper information, start and end

time of race are retrieved from the server, they are stored in separate arrays. The marks array uses the

stored information and pushes a game object to the scene. Course and skipper information is sent to user

boat. A user boat is a game object, in this case it is a boat structure which was modeled in 3dsMax and

imported into Unity, representing a skipper. Looping through all the skippers available in a race will help

setting individual attributes for each skipper; this data is useful at the later stage of processing within the

boat information block. This data will also include data corresponding to the individuals track start and

end time.

The second stage of the user interface is revealed after the selection screen. This stage displays data

relevant to a race and overlays a boat selection list on the upper-left corner of the screen. The list is

segregated by fleets containing the boats sailing in each fleet and this is retrieved by grouping the data

available race using their fleetID. A seek bar is displayed towards the center bottom of the screen to show

progress of the race in terms of time and calculated using the difference between the event‘s end time and

start time.

The interface displays the heading, speed, VMG specific to the selected boat. These data are derived

from the Boat information block which is described in the following section. A camera selection control

is placed for swapping between two views, Orthogonal and perspective namely. The camera perspective

mode is set to activate on race start but can be switched to orthogonal at anytime of the race. The camera

is controlled by the navigator, which is tagged to the ocean water in this project. By transforming the

position and adjusting the quaternion rotation angles, it is easy to swap between the perspective and

orthographic views.

Boat selection is enabled by using the boats order in an array and setting it as an index value, the

camera is transitioned between boats depending on the viewer choice of selection. Further, each boat is

made to display some information about itself. In this case, the boat name, speed and vmg are chosen to

be displayed on moving the mouse pointer over a sailboat. This information is drawn on screen, pulling

data from the boat information class and using the camera index match the boats index.

4.2 Boat Information

Boat information is sailboat specific and sends data to the boat controller to keep track of it position in

a race. The boat information class requests the server to retrieve a set of coordinates corresponding to the

boats position in real time. The coordinates received in unity are pre-processed on the server by

converting latitude and longitudes quires from the DB to Cartesian coordinates. This is done to reduce

application overhead. Apart from just receiving the x,y coordinates of a boat, the data is tagged with a

timestamp measured in seconds, which again is a server side processing. The data set is stored in an array

and iterating though this array helps interpret the path taken by the boat in real-time.

Two points from the data set are considered each having coordinates x1, y1 and time t1. Similarly,

point two forms x2, y2, t2. Using these parameters the change in distance is known and speed can be

29

achieved using the formula distance = speed * time. Next, the position of the boat for a given route is

calculate and this is done by taking the route index 0, 0 being the first in the route table and get the start

and end marks of that route index. As described in Figure 4.3, using the position of boat, the distance to

the route line is calculated, boat to mark and route point to mark are determined.

Completed distance = Route distance - Route point to mark distance.

Figure 4.3 Boats position from routeline

The heading to mark is calculated using the arc tangent the mark makes with the boat, the direction of

wind is not taken into consideration at this stage of development. To track the position of a boat in the

race, it sent a request to the boat controller checking for the leading boat for the result table and validates

the difference in distance. If the difference is greater than zero, then the current boat gets registered as the

first boat in the results table.

4.3 Ocean Waves

The main goal is to make a realistic representation of the ocean wave pattern, capable of running on a

laptop with a decent graphics card. There are several ways to implement a program like this regarding

workload balance, each with their own strengths and weaknesses. With the hardware available today there

are roughly two main strategies to choose amongst. The first strategy is to let the CPU do all the

calculations regarding the wave field, and the GPU take care of the rendering with the requested effects

like lightning and reflections. This requires communication and data transfers between the CPU and the

graphics device. In Current days GPU’s, it is also possible to do all the calculations on the device itself.

The strength of this approach is that there is no need to transfer any data between the CPU and the GPU,

thus removing the transfer rate bottleneck. Compared to the CPU, the GPU has an enormous capacity.

As a result, computing the water elevation on the GPU will be less time consuming. But the

algorithms are more complicated to implement. With a correct setup of the first strategy it doesn‘t require

latest graphics card. In addition, the domain size of the FFT calculations is relatively small so the

computational time of this domain is small compared to the total time needed to draw one frame. Testing

on two computers, the computation time for FFT was 4% and 7% of total computation time. Therefore

not much performance is gained by doing the computations on the GPU. The cpu is therefore chosen to

perform this work.

Figure 4.4 gives an overview over the most important classes, attributes and methods. The class Main

takes care of setting up the windows environment. It also holds the ocean related classes needed for the

simulation and visualization.

30

Figure 4.4 Class Diagram of Ocean Simulator

The Camera class uses mouse and keyboard input in order for the user to move around in the 3D

environment. Two different views for the users were included orthogonal view and perspective view of

the ocean. The wave calculations, which give the heightmap and normal maps are implemented in the

class WaveHeight. ModelObject is a class used to load 3D models. The Wake class calculates the wake

with different vessel velocities based on the hull of the boat. To add reality to the scene, Foam is added

when certain criteria are met.

31

Figure 4.5 Sequence Diagram of setup stage

Figure 4.5 shows the initialization stage of the program. All classes are instantiated with correct

parameters and are ready for further usage while running in the main loop. Three Wave Height objects are

instantiated with parameters regarding domain, height, spread and period. The 3D model of the boat gets

loaded and placed in the center of the scene. Setting up buffers for data transfer between the CPU and

GPU is the last stage before the program is ready to run.

32

Figure 4.6 Main Loop

Figure 4.6 is a simplified diagram for the main loop. The loop starts by calculating the next step of the

wave pattern in the Wave Height objects. Once this is done, the translations and rotations for the boats are

calculated based on the data output from the wave patterns. The calculations are also based on the

WaveHeight objects. The wave object requests the amplitudes and uses these to calculate where the wake

should appear, and returns this information in a mesh. The new data is then sent to the GPU and finally

drawn to the screen with SwapBuffers.

In addition to the events in the main loop there are two triggered events that may occur, time scaling

and keyboard inputs. The program is scaled with time in order to get a constant speed regardless of the

frame rate achieved on a given computer. The frame rate on one specific computer can also vary quite

much as it depends on the current field of view. For instance, turning the camera away from the boat

model only looking at the ocean can double the frame rate. The time scaling is implemented by measuring

the time spent on doing all the calculations and the drawing of the scene, which essentially is the time

spent for a single iteration in the main loop.

When a change in frame rate is detected the WaveHeight objects are updated with the new time and

scaled properly. This ensures that the waves move with constant velocity without any glitches. Keyboard

and mouse inputs can trigger a whole set of function calls. These inputs are mainly used to change wave

parameters, and controlling the camera.

33

4.4 Generating Wave

Generating a realistic wave elevation is done by combining Jonswap spectrum with inverse fast

fourier transformation (IFFT). Explanation of the method is described in section 3.3.3 IFFT is used due to

its running time. Not using a frequency transformation for calculating the wave height would lead to a

vast increase in computation time. Ocean Simulator uses two dimensional IFFT. One dimensional IFFT

could be used for wave generation. Even though it gives a slower solution, computation time will still

scale as N2log(N). N different one dimensional IFFT has to be computed. Then only the wave length will

be restricted, not the direction. Since the current 2D IFFT version is giving satisfying results, the 1D IFFT

solution has not been further investigated. The basis for the waves is three 64 x 64 IFFT transformation

on different domain sizes. For an IFFT algorithm the physical domain size and the size of the matrix limit

both the longest and shortest wave possible to represent. By introducing three different domain sizes,

waves up to 512 meter are calculated, without compromising the details of the smallest waves. The results

from the different IFFT transformations add together to the final elevation. The computation time for

IFFT is O(N2log(N)). Having three 64 by 64 domain requires less computation than computing one more

detailed IFFT. To avoid duplication of singular waves, each domain is given an upper and a lower limit

for the wave length.

Table 4-1 Physical size of domains

Name Domain size Shortest wave Largest wave

small waves 32m -m 15m

Medium Waves 128m 15m 74m

Big Waves 512m 74m -m

Figure 4.7 Size of different IFFT domains.

The three domains are added together to calculate the final wave elevation

4.4.1 Updating wave

For the each iteration the wave pattern has to be updated. The FPS rate is assumed to be constant, the

wave pattern can be updated by multiplying each wave component with a complex value each iteration. A

34

wave component is the same as the input value for the IFFT. This update factor is a complex number of

length 1; with an angle equal to dt.ω the ω value can be found in section 4.3, the updating factor also

includes the boat speed. By adding the boat speed to the updating factor, the boat position will be constant

relative to the wave domain.

4.5 Generating Wake

The algorithm for generating wake is based on the theory in [15]. A more detailed explanation of the

mathematics is found in [16]. The implementation of the wake function has only been tested visually. No

systematic testing or error estimating has been done. Visually the results seem promising. It is therefore to

believe that the algorithm has no major fault. Figure 4.8 shows the result for wake.

 Figure 4.8 Wake created when boat is moving

4.6 Heightmap and Normal Maps

Before anything can be animated or rendered on the screen, the graphics device needs its data. As

mentioned earlier all the calculations are done on the CPU, and the results need to be transferred to the

GPU. The best way of doing this is by structuring the data in a heightmap, also called heightfield. A

heightmap is represented by an image where each pixel, instead of representing a RGB color, represents a

 Figure 4.10 Height maps

single displacement value. Heightmaps are often used in geographic information systems to describe

terrain. It is also heavily used in the rendering of terrain, and it is a perfect way to store the elevation of an

ocean surface.

Figure 4.9 Normal Maps

35

When visualizing the data in heightmap directly the result is a greyscale image, as shown in Figure

4.10. Black represents the minimum height, and white represents the maximum height. In Figure 4.11 the

data from the heightmap have been used to elevate the nodes in a 3D mesh.

Figure 4.11 Elevated mesh

4.7 Creation of Water Shader

This section describes how shaders have been used to visualize the ocean.There aretwo different types

of shaders. The vertex shader sets the position of each vertex. The fragment shader describes the color

setting on each fragment. There are two different implementations of the fragment shader.

 To create realistic water in this project, the following elements has been used in the water shader:

Reflection of the cube map (a sky dome), Refraction of the terrain underneath, Creation of waves (using

normal maps), Directional waves (flow maps), Water becomes more transparent at the edges (depth

buffer), Foam at the edges (using the gradient texture created in this project), Lighting, like the sun (using

normal maps). In this report these items will not be handled in detail, since most of these elements are

quite common in the rendering of water in real-time [17].

4.7.1 Vertex Shader

The vertex shader is run for every vertex in the mesh. The vertex shader sets the correct elevation of

each node, based on the data given from the heightmaps. This includes the heightmap from the ocean, and

the heightmap based on the wake contribution. As described in figure 2.4 the ocean consists of three

textures mixed together. These span over different size domains, and they are repeated several times.

Based on the vertex position from the mesh, the correct values from the textures must be chosen. A

texture is clamped on a domain from [0; 0] to [1; 1]. In order to pick the correct heightmap value, the

vertex position has to be converted to a texture coordinate. The code snippet below calculates the texture

coordinates for the medium domain and the big domain. ’v’ is the position of the vertex.

voidvert(inoutappdata_full v)

 {

 v.tangent = float4(1,0,0,1);

 float3worldPos = mul(_Object2World, v.vertex).xyz;

 floatdist = clamp(distance(_WorldSpaceCameraPos.xyz, worldPos) / _LodFadeDist, 0.0,

1.0);

 floatlod = _MaxLod * dist;

 floatht = 0.0;

 ht += tex2Dlod(_Map0, float4(worldPos.xz/_GridSizes.x, 0, lod)).x*2.0-1.0;

 ht += tex2Dlod(_Map0, float4(worldPos.xz/_GridSizes.y, 0, lod)).y*2.0-1.0;

36

v.vertex.y += ht;

 }

Once the texture coordinates are created, they can be used to pick the values stored in the textures.

First the displacement values are fetched. Only the textures describing the two largest domains are used.

The smallest domain is only used for surface details,

float2 slope = float2(0,0);

 slope += tex2D(_Map1, uv/_GridSizes.x).xy*2.0-1.0;

 slope += tex2D(_Map1, uv/_GridSizes.y).zw*2.0-1.0;

 slope += tex2D(_Map2, uv/_GridSizes.z).xy*2.0-1.0;

 slope += tex2D(_Map2, uv/_GridSizes.w).zw*2.0-1.0;

Second, the normals for the vertex are fetched, and sent to the fragment shader for lighting

calculations. Fetching a texture to vertex shader is less time consuming than fetching a texture to the

fragment shader. The grid of the biggest waves is coarser than the grid 28 of the vertices. Fetching the

gradient of the biggest waves can be done in vertex shader without losing data. But the two smaller wave

systems have to be loaded in fragment shader.

 o.Normal = N.xzy;

4.7.2 Fragment Shaders

The fragment shader sets the final color of each pixel. Normals are added together from each of the

wave textures, and the fresnel effect is calculated. Two different fragment shaders have been made, one

version using the skybox approach, and the other using parameterized approach. An option in Ocean

Simulator decides which one to use. Both shaders start with loading the texture values and calculating the

gradients.

First gradients from the different textures are loaded.

half3 bump1 = UnpackNormal(tex2D(_BumpMap, i.bumpuv[0])).rgb;

 half3 bump2 = UnpackNormal(tex2D(_BumpMap, i.bumpuv[1])).rgb;

 half3 bump = (bump1 + bump2) * 0.5;

To be able to calculate the intensity of the light, the reflection vector is calculated.

half4 water = tex2D(_ColorControl, float2(fresnel,fresnel));

 half4 col;

 col.rgb = lerp(water.rgb, _horizonColor.rgb, water.a);

 col.a = _horizonColor.a;

4.7.3 Reflection

The water uses a cube map to give the environment a “sky”. The cube map acts as a so called “sky

dome” to enhance the concept of viewing a virtual world. For reflection and refractions to work, a view

vector is needed. Unity3D comes with a function which does this for user. Now that the “eye” vector is

known for the water surface itself (either calculated in a shader or from a normal map), the Fresnel term

can be calculated.

Using a Fresnel term the amount of reflected light by the viewing angle can be changed. The lower the

viewing angle, surface gets more visually reflective. In shader programming commonly an approximation

37

is used, since a real Fresnel integration would be too much of a computational strain to calculate per

pixel. The Fresnel term is calculated in the shader using:

float3calcfresnel(float3 viewdir, float3 normal, float R0)

{

floatfresnelBias = 0.2f;

floatfresnelScale = 0.1f;

returnfresnelBias + fresnelScale * pow(1 + dot(viewdir, normal), R0);

}

Unfortunately “RenderTextures” cannot be used in Unity3D’s indie version, which means real-time

reflection is impossible to perform at the moment. But in this project there are no other dynamic elements

in the environment, so this is not much of a problem.

4.7.4 Refraction

Refraction is the change of direction of a wave due to its speed or due to crossing a different medium.

Since light also travels in very small waves, refraction also applies. Which means that the land underneath

the water should be somewhat refracted. Water has a common refraction index of 1.33[17].The Cg shader

language has a standard function to perform this calculation:

// Refract the reflection vector, to make the reflection less perfect:

float3 Refract = normalize(refract(normalize(i.eyeDir),final normal, 1.333f));

Eventually the refraction was removed from the shader: Refraction works well with transparent water

and not for the dark water.

4.7.5 Lighting

Lighting is calculated based upon the water normal map in figure 4.9, the flow normal, and a specified

light color and direction. The actual lighting calculation is based upon Lambertian lighting (“N dot L”)

which means that the dot product of the normal vector and the lighting direction vector are used to

determine whether a pixel should be lighted or not. The intensity of light reflected is calculated by the

angle of incidence the light has on the surface. This type of lighting has a rather uniform intensity and the

distance does not matter.

4.7.6 Water Transparency

Unfortunately Unity3D’s indie version does not have the ability to use render textures, which means

that a depth texture cannot be used. With a depth texture the water transparency could have been altered

dynamically based on the distance to the camera. When the camera is closer the transparency should

normally increase. In this case the water transparency could be rendered using the water depth texture

itself created by the interpolation tool.

The transparency slider is introduced, which controls the transparency of ocean water by controlling

the alpha values.

o.Albedo = lerp (_SeaColor, skyColor, fresnel) + Sun(V,N2);

o.Alpha = _Transp;

38

4.7.7 Foam

Foam occurs normally when water mixes with air. This happens when the water reaches the shoreline

at a coast, but also because of water flowing across uneven surfaces, various directions of water merging

each other (like at sea) and so on.

When simulating foam, further manipulation of the color is needed. The following code is only

executed when foam is simulated. The foam is simulated by combining a CPU generated matrix with a

height check in shader. First it makes a check for simulating whether a wave is breaking or not. If a wave

is breaking, the color is changed according to the code below. Foam map is a simple picture used to give

texture to the breaking wave.

Shader "Foam" {

 Properties {

 _Offset ("Offset", Range (0.00,1.00)) = 1.000

 _Color ("Main Color", Color) = (1,1,1,1)

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _Cutout ("Mask (A)", 2D) = "white" {}

 }

 SubShader {

 Tags { "Queue" = "Transparent-110" } // water uses -120

 ZWrite off

 Offset -1, -1

 Blend SrcAlphaOneMinusSrcAlpha

 ColorMask RGB

 Pass {

 Color [_Color]

 SetTexture [_MainTex] {constantColor[_Color] combine texture * primary

double, texture * constant double}

 SetTexture [_Cutout] { combine previous, previous * texture }

 }

 }

In the shader, foam is also created using the gradient texture (Figure 4.12).

Figure 4.12 Gradient Texture that controls front wave and foam intensity

4.8 Landscape generation

Landscape generation was implemented in a number ways.

1. Static terrain

2. Dynamic terrain

a. Using .Tiff files from GIS-Lab

b. Using data from Land Processes Distributed Active Archive Center (LP DAAC)

c. Using data from Google maps

39

4.8.1 Static terrain

The generation of static terrain is an implementations of Unity‘s regular terrain system where a terrain

game object is drawn into the scene and modified to show bumps resembling mountainous regions and set

texture element to give the appearance of a landscape or shore.

Terrain generated for this scenario needs the terrain to follow a sailboat throughout the race and by

default, terrain is stationary and to make the terrain change position, it is required to implement a simple

logic. The terrain is tagged to follow the ocean plane and camera, thereby making it appear as though a

shore is visible to the viewers at all times.

Figure 4.13 is a screen from the outcome of using this approach. The region highlighted in red

indicates the surface of terrain, which is drawn by raising the edges of the terrain, giving the appearance

of a shore. The height of terrain can be tweaked and depends on the terrain designer.

Figure 4.13 Static terrain representing a shoreline

A drawback that was noticed at this stage was the static appearance of the landscape. The terrain

followed the ocean mesh giving a monotonous facade to the landscape. Moreover, this system did not

adapt to real-time changes, thereby moving to a dynamic approach.

4.8.2 Dynamic terrain

4.8.2.1 Using .Tiff files from GIS-Lab

The Tagged image file format (TIFF) is an uncompressed image derived from RAW images captured

by cameras and converted to form TIFF. GIS-Lab has SRTM data available free of charge in several

forms including .tiff. Unity does not have a built-in reader to process .tiff file and to set elevation values

to a height map, it was necessary to have a custom built .tiff reader.

The implementation of the .tiff reader is based on Richard Baxter‘s [50] open sourced project using

the strip method to split an image into separate strips for increased editing flexibility and I/O buffering.

The tilling approach is used to load terrains and each terrain is fed with an elevation data corresponding to

its DEM value extracted and stored to a float array. The terrain dataset uses the float array to read height

values. Edges of the terrain are set using bounds which specify the top, right, bottom and left values of a

.tiff file. These values were retrieved from the High dynamic Range imaging data that is stored inside the

TIFF image.

Corner Coordinates:

Upper Left (-180.0004167, 55.0004166)

Lower Left (-180.0004167, 49.9995833)

Upper Right (-174.9995833, 55.0004166)

Lower Right (-174.9995833, 49.9995833)

Center (-177.5000000, 52.5000000)

40

Figure 4.14 Terrain generated using TIFF files

The terrain drawn using this approach is shown in Figure 4.14. When implementing a real world

system using this technique, it led to a relatively slow processing of elevation data strips. This downtime

eventually led to undrawn terrains and crashed the application since the motion of boats are continuous

and lags to synchronize between ocean, land and sails. Moreover, the memory used by the application is

large since the resource files (TIFF) are stored within the application.

4.8.2.2 Using RAW data from LP DAAC

Land Processes distributed Active Archive Center is yet another data center within NASA Earth

which provides direct access to SRTM data. Here, the LP DAAC system provided access to elevation

data in JPEG format. The below batch process was written to automatically download large set of files

from the server to local system using windows bitsadmin tool. Since these were in a format that needed

editing, it was converted to Raw using Photoshop’s auto-batch process. This saved lot of time compared

to the manual download and conversion process which would have taken quiet a large amount of time.

FOR /L %%G IN (50,1,60) DO (

 FOR /L %%H IN (0,1,40) DO (

 IF %%H LSS 10 (

 bitsadmin.exe /transfer DownloadMap

http://e4ftl01.cr.usgs.gov/SRTM/SRTMGL3.003/2000.02.11/N%%GE00%%H.SRTMGL3.jpg.2.jpg

C:\Unity\map\dl\N%%GE00%%H.SRTMGL3.jpg.2.jpg

) ELSE (

 bitsadmin.exe /transfer DownloadMap

http://e4ftl01.cr.usgs.gov/SRTM/SRTMGL3.003/2000.02.11/N%%GE0%%H.SRTMGL3.jpg.2.jpg

C:\Unity\map\dl\N%%GE0%%H.SRTMGL3.jpg.2.jpg

)

)

)

PAUSE

A naming convention is used while downloading the DEM tiles from the LP DAAC server. The

naming convention helps the terrain tilling system by making it easy for the process to identify its

neighbors. In this case, it is necessary to have all the RAW files stored within the Unity project for

retrieving the height map data in runtime. Figure 4.15 is a representation of the terrain drawn using the

RAW data files with single texture overlaid throughout all terrains.

41

Figure 4.15 Terrain generated from RAW image

Terrains formation rendered as expected but there is no variation in the splat texture. Texture splatting

is introduced to have variance in texture, thereby ensuring the terrains appear natural. Unity3D has a

built-in array - SplatPrototype[] that allows to store 2D texture. Unlike the previous implementation

where only one texture (sand texture) was applied, giving the same pattern look throughout the entire

stretch of terrain. It is possible to store multiple textures and for this part of the project, texture was

generated using terrains normals and steepness. Using a 3D array of floats to store splat data, the x and y

coordinates represent terrain coordinates and z coordinate stores the weight assigned to each texture.

Figure 4.16 is a representation of the generated terrain with splat texture applied.

Unity does not align terrains the way it is imported or read from file. The orientation changes and has

to be handled manually. It required shifting coordinates and redrawing the heights.

using (System.IO.FileStream f = System.IO.File.OpenRead(heighmapFile)) {

using (System.IO.BinaryReader br = new System.IO.BinaryReader(f)) {

for (int x=0; x<512; x++) {

for (int y=0; y<512; y++) {

heightData [x, y] = heights [br.ReadUInt16 ()];}}

for (int y=0; y <512; y++) {

 for (int x=0; x <512; x++) {

 rotHeightData [y, x] = heightData [511 - y, x];}}

After the swap, terrains were rendered in the right orientation corresponding to real world.

Figure 4.16 Terrain generated from RAW image and textured using splatting

During the test phase, loading of terrains blocked the Unity process until all terrains were loaded

onscreen. This seemed to be a road block but Unity allows having multiple scenes within a project. Usage

42

of multiple scenes and setting priority levels to scenes as primary and secondary helped unlock the

hindrance caused while loading terrains. However, this did not solve the problem with load time since

terrains became visible only after the race was underway and yet again the resources were stored within

the applications resource folder causing a memory issue. Further, this process is not a one step retrieval of

data as it required sourcing of resources from LP DAAC and converting them to RAW prior to having

them fed into unity.

4.8.2.3 Using data from Google maps

The Google static map API allows for integration of maps and images and elevation data is retrieved

from the service and this is processed on the server end to create an elevation grid of 128 by 128. It is

faster to read 128*128 compared to a grid with higher resolution. The image is processed and stored as

RAW. Unity requests data from the Sailracer server pertaining to a sailboats position and at the server

backend, the data is processed, stored and simultaneously send to Unity for drawing terrain’s heightmap.

Each terrain tile adapts to a scale in world space and for this project it is considered that each tile

corresponds to 1km in world space. Hence the tiling system implemented, uses this scale to set its

neighbours. By putting this approach in practice, the generation of terrain is fast.

To make appearance look more natural, satellite images form Google are used as splat textures to

cover the terrain surface. However, this again requires the mapping of coordinates of the terrain tile to

match the coordinates of image tiles. The same technique is used to retrieve the image tiles since the

server processes each image as chunks of 128*128 pixels and sets a naming convention similar to its

respective terrain tile. The images are stored as PNG and placed as 2D texture within Unity and applied as

a splat texture on the terrain. A view of the terrain is shown is Figure 4.17.

The data acquired using this method loaded terrains faster compared to the previous tests

implemented. There is a small lag caused in loading terrains on race start but this is covered using a

loading screen which will overcome the initial load. The subsequent loading of terrains occurred during

the race is processed at the backend and is not very obvious to a viewer, thus making it an efficient

technique of terrain generation. Furthermore, the memory handling is managed to make sure unused

memory is released using the garbage collector - System.GC.Collect() and

Resources.UnloadUnusedAssets () functions.

43

Figure 4.17 (a),(b) and (c) are Terrains generated after processing data received from Goole services and viewed at various

zoom levels

4.9 Performance Test

4.9.1 Ocean Model

For the simulation to run smoothly, a frame rate above 50 is required. The table 4.1 below show how

the frame rate responds to a change in the grid size .As expected, the relationship between the

computation time and the grid size seems to be linear. The test is done with current model and Philips

spectra model.

The performance has been tested on a 2 year old computer with Intel core i3 Cpu @ 1.90 Ghz . The

tests have been done without displaying the boat and without simulating foam. The results are varying

with a factor of 8 based on other programs running in Windows. To establish the reason for this variation,

more testing is needed. ’Ocean Simulator’ is optimized to display waves without effects like foam.

Including foam therefore reduces the frame rate significantly. Including boat in addition results in a

reduction of the FPS of approximately one half

.

44

Table 4-2 FPS comparison with Current ocean model and Philips spectra

 Current

Ocean Model

Philips Spectra

Grid Size FPS FPS

8 162.5 102.0

16 102.9 75.3

32 84.4 37.4

64 64.6 26.5

128 36.6 25.4

256 25 15.9

512 8.3 4.9

Figure 4.18 FPS of Current ocean model and Philips spectra in 8 * 8 Grid .

Figure 4.19 FPS of Current ocean model and Philips spectra in 16 * 16 Grid .

45

Figure 4.20 FPS of Current ocean model and Philips spectra in 32 * 32 Grid .

Figure 4.21 FPS of Current ocean model and Philips spectra in 64 * 64 Grid .

Figure 4.22 FPS of Current ocean model and Philips spectra in 128 * 128 Grid .

46

Figure 4.23 FPS of Current ocean model and Philips spectra in 256 * 256 Grid .

Figure 4.24 FPS of Current ocean model and Philips spectra in 512 * 512 Grid .

For grid size below 256, both CPU’s run through the algorithm quite fast. The CPU time is not

significant for the total performance of the program. But when the grid size exceeds 256, both processors

use significantly longer time. Both processors have a L1 cache of 512 kB, which is the same size as a 256

by 256 matrix of complex floating point numbers. The limitation of L1 cache can therefore explain the

jump in time consumption when grid size exceeds 256 by 256 elements. But for the purpose of Ocean

Simulator, a grid size of 64 by 64 is enough. The IFFT algorithm is therefore not a limiting factor.

4.9.2 Terrain generation

The implementations used for terrain generation were carried out successfully to create shorelines on

runtime but not all of them proved to be efficient. The terrains generated using TIFF as an input data,

visibly showed poor load time but this needed test parameters to prove the same. Time, seemed like the

parameter of choice since it was necessary to have a system that generated terrains faster.

47

Firstly, the terrain created using Google map’s services was initialised to generate a 3*3 grid of 9 tiles,

without any texture mapping or any other external game objects in the scene. Time was measured from

starting of scene till rendering of the last terrain tile. The tests were run to capture 10 successive readings.

The average load time taken for terrains to be generated using this approach was 4.1489 seconds.

Secondly, the RAW data from LP DAAC was tested for the same grid size of 3*3 and using the same

terrain size, which was 1024 by 1024. The average load time for 9 terrains showed 4.9078 seconds. The

last test of this series was performed on the data used from GIS-Lab. The TIFF had a poor average load

time of 69.7731 seconds for the generation of 9 terrains in a 3*3 grid.

Figure 4.25 is a graphical representation of time consumed to load a set of 9 terrains using the terrain

generation techniques implemented in this paper.

Figure 4.25 Comparison of load time using the implemented terrain generation techniques

During the process of optimization, it was found that load time can further be improved to render

terrains faster. The test was carried to verify if the dataset type used to store data had an effect on the

processing time.

Once again, time was the deciding factor for the analysis. Two dataset types were considered for the

test. The first being character array and second one, byte array. In both cases, the tests involved

generation of terrain with texture splatting. Each test type went through 11 successive runs under two

different scenarios.

In the first scenario, terrain generation was limited to grid size of 3*3 whereas in the later scenario, a

5*5 grid was used. Figure 4.26 and Figure 4.27 are a time comparison set of 3*3 and 5*5 terrains

generated using the dataset types Char[] and Byte[] respectively.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Load time comparison

RAW data from Google maps

RAW data from LP DAAC

TIFF data from GIS-Lab

48

Figure 4.26 Time comparison of dataset types for generation of 9 terrains

Figure 4.27 Time comparison of dataset types for generation of 25 terrains

4.9.3 3D Sail Racing

As seen in 4.9.1, for the simulation to run smoothly, a frame rate above 50 is required. In this section

Testing and comparison of the current 3D sail racing model with different system is done. All the system

used for this test are 2 year old computers. The FPS of the completed model with different system is

given below.

Table 4-3 FPS comparison with Different System

Operating System RAM Processor Graphics FPS

Windows 8 2 GB Core i3 Cpu @1.90 Ghz 60.2

Windows 8 4GB Core i5 Cpu @ 2.40 Ghz 83.2

Windows 8 16GB Core i7 Cpu @2.40 Ghz 108.0

Windows 8 4GB AMD A10 HD Graphics @2.50

Ghz

79.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11

Time comparison (Char[] vs Byte[])

Using Char Array

Using Byte Array

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11

Time comparison (Char[] vs Byte[])

Using Char Array

Using Byte Array

49

Figure 4.28 FPS from Core i3 processor

Figure 4.29 FPS from AMD A10 Processor

Figure 4.30 FPS from Core i5 processor

50

Figure 4.31 FPS from Core i7 processor

51

5 Future Scope

5.1 Web Player Streaming

Web Player Streaming is critical for providing a great web gaming experience for the end user. The

idea behind web games is that the user can view your content almost immediately and start playing the

game as soon as possible instead of making him wait for a progress bar. This is very achievable, and we

will explain how.

5.2 Tuning for Portals

This section focuses on publishing for online game portals. Streaming is useful for all kinds of

contents, and it can easily be applied to many other situations. Online game portals expect that some form

of game play really starts after downloading at most 1 MB of data. If it is not reached it more likely

doesn’t allow portal to accept the content. From the user’s perspective, the game needs to start quickly.

Otherwise user time is being wasted and user might as well close the window. On a 128 kilobit cable

connection user can download 16 KB per second or 1 MB per minute. This is the low end of bandwidth

online portals target.

The game would optimally be set up to stream something like 50 KB to display the logo and menu (4

seconds),320 KB for the user to play a tiny tutorial level or to do some fun interaction in the menu (20

seconds),800 KB for the user to play the first small level (50 seconds) and Finish downloading the entire

game within 1–5 MB (1–5 minutes).The key point to keep in mind is to think in wait times for a user on a

slow connection and never let user wait.

5.3 Live Streaming

In order to see the live streaming of sail racing, user can request the video by clicking the option live

streaming in web player. Web player will display a prompt window which gives three channels of

Upstream .Then user can select one of the channels to view the live streaming in the prompt available on

the web player. By adding this to the real time simulation project, it will state the accuracy of simulation

with original game object. Video streaming is done by Unity GUI with the help of WWW class. The

prototype is designed in same way of displaying three videos and when user click one of the channel ,the

prompt occur on web player and the video will be played with the same process mentioned above. Figure

5.1 is an outline of the live streaming process.

52

Figure 5.1 Live streaming Process

5.3.1 Video Streaming Prototype

A prototype of video streaming in web player is done by adding three videos url to WWW classes and

then with the help of Unity GUI and Textures a prompt is created on click and it will give three options

for the user and user can select one of the video among it and by clicking, it will play the video available

in that URL.

5.3.1.1 WWW class
 WWW class is used for Simple access to web pages. It is a small utility module for retrieving the

contents of URLs. User start a download in the background by calling WWW (url) which returns a new

WWWobject.

User can inspect the property to see if the download has completed or yield the download object to

automatically wait until it is (without blocking the rest of the game).It can be used to get some data from a

web server for integration with a game such as high score lists or calling home for some reason. There is

also functionality to create textures from images downloaded from the web and to stream & load new web

player data files. The WWW class can be used to send both GET and POST requests to the server. The

WWW class will use GET by default and POST if user supply a postData parameter. URLs passed to

WWW class must be '%' escaped. The code below shows the WWWClass implemented in prototype.

function Start () {

 var www1 = new WWW(video1);

 var www2 = new WWW(video2);

 var www3 = new WWW(video3);

 movieTexture1 = www1.movie;

 movieTexture2 = www2.movie;

53

 movieTexture3 = www3.movie;

5.3.1.2 GUI Texture
 GUI texture is optimised using import setting. After externalizing music, textures easily take up 90%

of the game. Typical texture sizes are too big for web deployment. In a small browser window, sometimes

big textures don’t even increase the visual fidelity. Halving the texture resolution actually makes the

texture size a quarter of what it was. Generally the size of the web player will be reduced. Unity uses

cutting edge LZMA-based compression which usually compresses game data to anywhere from one half

to a third of the uncompressed size.

@script RequireComponent (GUITexture)

@script RequireComponent (AudioSource)

In the below code switching of video as per requirement of user is given

function switchVideo (moveTex : MovieTexture) {

 var gt = GetComponent.<GUITexture>();

 gt.texture = moveTex;

 transform.localScale = Vector3 (0,0,0);

 transform.position = Vector3 (0.5,0.5,0);

 gt.pixelInset.xMin = -moveTex.width / 2;

 gt.pixelInset.xMax = moveTex.width / 2;

 gt.pixelInset.yMin = -moveTex.height / 2;

 gt.pixelInset.yMax = moveTex.height / 2;

 aud = GetComponent.<AudioSource>();

 aud.clip = moveTex.audioClip;

5.4 Publishing Streaming Web Players

Streaming in Unity is level based, and there is an easy workflow to set this up. Internally, Unity does

all the work of tracking assets and organizing them in the compressed data files optimally, ordering it by

the first scene that uses them. In order to use streaming in Unity, select the Web Player Streamed in the

Build Settings. Then the content automatically starts as soon as all assets used by the first level are

loaded. It is good to keep the “menu level” to something like 50–100 KB. The stream continues to load as

fast as it can, and meanwhile live decompresses.

54

6 Conclusion

 Though GPS data is readily available and easy to track, it is important to have them processed

efficiently to meet the requirements pertaining to an event of interest. This paper makes use of

GIS data used in sailboats to calculate the estimated path taken by a skipper and translate it to

cartesian coordinates for Unity3D to immediately process them, saving it from calculation

overhead and thereby use estimated path to determine the point of crossing and rounding at

any given time. Using the physics of sailing, the headings and wind direction intercepted by

the sailboat during the race event are used to animate the boats component such as sail sheets

and heel.

 The implementation of realistic looking ocean simulator with a sail boat floating on the surface

is done in user interactive environment. Foam, and wake is included to add to the realism. The

application is designed to run on a normally equipped laptop with Windows as the operation

system without compromising the frame rate. All calculations except the wake generation are

performed in real time. The waves are represented with the JONSWAP spectrum and ocean

elevation is calculated using fast fourier transformation algorithm. The code is optimized with

respect to common computer architecture to provide realistic visualization at a high frame rate.

To get the required visual effects, shaders are used and cubemapping is done for lighting.

Current ocean model is tested with existing model for performance.

 The dynamic generation of shorelines are procedurally generated using the elevation data from

global data centers, which provide data in various formats. By testing the two data formats –

RAW and TIFF, it is obvious that iterating through a character set represented in RAW was

faster to read compared to the character set in TIFF within Unity3D. TIFF are encoded as

strips of data and since Unity does not have a native TIFF reader, it gets time consuming to

loop through each strip and store them to a buffer before they are redrawn to the terrain mesh.

 The built-in data types in Unity are quicker to access since they have a pre-defined data

structure, which means it is easy to reference and loop through these datatypes. While storing

RAW data to built-in data types of Char[] and Byte[], the process fairly generated terrains in a

similar time span but on further analysis, it is noted that storing a raw values to byte[] rendered

terrains slightly faster to processing them over Char[]. Byte[] gains the higher position since

the Raw data requested by the WWW class in unity has the option of retrieving data in a

couple of formats and one of them being Byte, thus making it readily available for the byte

array to process faster.

 The methodologies and implementations used in developing the 3D visualization system is

viable for real-time use in wide number of area.

 Applications using GPS for tracking can utilize the same coordinates to automate

tracking systems by setting waypoints along its path and with more efficient time

discretion process, making it is possible to attain data responding to sensitive changes

made in position.

 Real-time strategy games involving water bodies or terrain such as sailing, rowing,

windsurfing, wargame..etc

 Simulation of real world using data corresponding to Streets, roads, walkways.. etc

from maps and superimposing 3D models to represent objects in real-time using a path-

find algorithm.

55

References

1. http://svgeurope.org/blog/headlines/trimaran-ceo-olivier-emery-on-current-applications-future-opportunities-

for-the-georacing-virtual-tracking-system/

2. http://virtualeye.tv/index.php/the-sports/virtual-eye-sailing

3. http://pressreleaseping.com/enhance-sailboat-racing-performance-raceqs-sailing-system

4. Stan Melax, A Simple, Fast, and Effective Polygon Reduction Algorithm, November 98 Game Developer

Magazine

5. Hugues Hoppe Frank Losasso. Geometry clipmaps: Terrain rendering using nested regular grids. ACM

Trans. Graphics (SIGGRAPH), 23(3), 2004

6. Filip Strugar. Continuous Distance-Dependent Level of Detail for Rendering Heightmaps(CDLOD).

7. Luebke, D. et al. Level of detail for 3D graphics. Morgan Kaufmann Pub, morgankaufmann publishers ed,

2003.

8. Jordan, L., The Basics of HTTP Live Streaming . Larry's Blog. Larry Jordan & Associates. Retrieved 18

June 2013.

9. Sayma, A. (2009). Computational fluid dynamics. Bookboon

10. Fournier, A., & Reeves, W. T. (1986, August). A simple model of ocean waves. In ACM Siggraph Computer

Graphics (Vol. 20, No. 4, pp. 75-84). ACM.

11. Mitchell, J. L. (2005). Real-time synthesis and rendering of ocean water. ATI ResearchTechnical Report,

121-126.

12. Le Touzé, D., Bonnefoy, F., & Ferrant, P. (2002, January). Second-order spectral simulation of directional

wave generation and propagation in a 3d tank. In The Twelfth International Offshore and Polar Engineering

Conference. International Society of Offshore and Polar Engineers.

13. Bruneton, E., Neyret, F., & Holzschuch, N. (2010, May). Real‐time Realistic Ocean Lighting using Seamless

Transitions from Geometry to BRDF. InComputer Graphics Forum (Vol. 29, No. 2, pp. 487-496). Blackwell

Publishing Ltd.

14. Tessendorf, J. (2001). Simulating ocean water. Simulating Nature: Realistic and Interactive Techniques.

SIGGRAPH, 1(2), 5.

15. Tuck, E. O., Scullen, D. C., & Lazauskas, L. (1999). Sea wave pattern evaluation. Technical report, The

University of Adelaide, 2007

16. Faltinsen, O. M. (2005). Hydrodynamics of high-speed marine vehicles. Cambridge university press.

17. Kryachko, Y. (2005). Using vertex texture displacement for realistic water rendering. GPU Gems, 2, 283-294.

18. www.keithLantz.net

19. Duchaineau, M., Wolinsky, M., Sigeti, D., Millery, M., Aldrich, C., Mineev-Weinstein, M.: ROAMing

terrain: Real-time optimally adapting meshes. In: VIS’97: Proceedings of the 8th conference on

Visualization ’97, Los Alamitos, CA,USA, IEEE Computer Society Press (1997) 81–88

20. Olsen, J., Real-time procedural terrain generation, Real-time synthesis of eroded fractal terrain for use in

computer games. Department of Mathematics And ComputerScience (IMADA), 2004.

21. A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering ofstochastic models,” Communications of

the ACM, vol. 25, no. 6, pp.371–384, 1982.

22. D. Ashlock, S. Gent, and K. Bryden, Evolution of l-systems forcompact virtual landscape generation,

Evolutionary Computation,2005, The 2005 IEEE Congress on, vol. 3. IEEE, 2005, pp. 2760–2767.

23. P. Walsh and P. Gade, Terrain generation using an Interactive GeneticAlgorithm, Evolutionary Computation

(CEC), 2010, The IEEE Congress on. IEEE, 2010, pp. 1–7.

24. Nullpinter; http://www.nullpointer.co.uk/content/how-to-make-an-infinite-world

25. Alastair Aitchison;https://alastaira.wordpress.com/2010/12/17/examining-3d-terrain-of-bing-maps-tiles-with-

sql-server-2008-and-wpf-part-1/

26. Bing Maps Tile System; https://msdn.microsoft.com/en-us/library/bb259689.aspx/

http://svgeurope.org/blog/headlines/trimaran-ceo-olivier-emery-on-current-applications-future-opportunities-for-the-georacing-virtual-tracking-system/
http://svgeurope.org/blog/headlines/trimaran-ceo-olivier-emery-on-current-applications-future-opportunities-for-the-georacing-virtual-tracking-system/
http://virtualeye.tv/index.php/the-sports/virtual-eye-sailing
http://pressreleaseping.com/enhance-sailboat-racing-performance-raceqs-sailing-system
http://www.larryjordan.biz/app_bin/wordpress/archives/2369
http://www.keithlantz.net/2011/11/ocean-simulation-part-two-using-the-fast-fourier-transform/
http://www.nullpointer.co.uk/content/how-to-make-an-infinite-world
https://alastaira.wordpress.com/2010/12/17/examining-3d-terrain-of-bing-maps-tiles-with-sql-server-2008-and-wpf-part-1/
https://alastaira.wordpress.com/2010/12/17/examining-3d-terrain-of-bing-maps-tiles-with-sql-server-2008-and-wpf-part-1/
https://msdn.microsoft.com/en-us/library/bb259689.aspx/

56

27. K. Stolze, The Standard to Manage Spatial Data in Relational Database Systems, Database and Information

Systems Group, BTW 2003, Leipzig, Feb 2003

28. Unity Manual., http://docs.unity3d.com/Manual/index.html/

29. B. Fraser., Understanding Digital Raw Capture, Adobe Systems Incorporated , Whitepaper, 2004.

30. Le Roux, J. P. (2008). An extension of the Airy theory for linear waves into shallow water. Coastal

Engineering, 55(4), 295-301

31. Heath, J. P., & Peachey, L. D. (1989). Morphology of fibroblasts in collagen gels: a study using 400 keV

electron microscopy and computer graphics. Cell motility and the cytoskeleton, 14(3), 382-392

32. Wess, J., & Zumino, B. (1974). A Lagrangian model invariant under supergauge transformations. Physics

Letters B, 49(1), 52-54

33. Hinsinger, D., Neyret, F., & Cani, M. P. (2002, July). Interactive animation of ocean waves. In Proceedings

of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 161-166). ACM.

34. Mastin, G. A., Watterberg, P. A., & Mareda, J. F. (1987). Fourier synthesis of ocean scenes. Computer

Graphics and Applications, IEEE, 7(3), 16-23.

35. Premože, S., & Ashikhmin, M. (2001, December). Rendering natural waters. InComputer graphics

forum (Vol. 20, No. 4, pp. 189-200). Blackwell Publishers Ltd.)

36. Huang, N. E., Shen, Z., & Long, S. R. (1999). A new view of nonlinear water waves: The Hilbert Spectrum

1. Annual review of fluid mechanics, 31(1), 417-457.

37. McClain, C. R., Chen, D. T., & Hart, W. D. (1982). On the use of laser profilometry for ocean wave

studies. Journal of Geophysical Research: Oceans (1978–2012), 87(C12), 9509-9515.

38. Sobieski, P., Guissard, A., Baufays, C., & Siraut, P. (1993). Sea surface scattering calculations in maritime

satellite communications. Communications, IEEE Transactions on, 41(10), 1525-1533

39. Elfouhaily, T., Chapron, B., Katsaros, K., & Vandemark, D. (1997). A unified directional spectrum for long

and short wind‐driven waves. Journal of Geophysical Research: Oceans (1978–2012), 102(C7), 15781-

15796.

40. Jeschke, S., Birkholz, H., & Schmann, H. (2003). A procedural model for interactive animation of breaking

ocean waves.

41. R. Baxter., https://sites.google.com/site/raxterbaxter/projects/current-projects/streaming-osm-terrain-unity-

package

http://docs.unity3d.com/Manual/index.html/
https://sites.google.com/site/raxterbaxter/projects/current-projects/streaming-osm-terrain-unity-package
https://sites.google.com/site/raxterbaxter/projects/current-projects/streaming-osm-terrain-unity-package

57

Appendix

This part of document contains additional information not included into main document.

