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Abstract

Real-time path tracing becomes more and more realistic and is usable for all kinds of graphical ap-plications. Still most implementations of a path tracer tend to see each pixel as equal and they discardall the received results when there is a movement or change in the scene. With our adaptive samplingmethod, we show that each pixel can be treated differently, based on the variance per pixel receivedby the path tracer. By using a probability, which indicates how complex a pixel is compared to others,we distribute samples across all the pixels in the screen. Our reprojection method can reuse pixels fromprevious frames. Not all pixels can be reused, because of material properties, which are dependent onthe view position. Therefore, we created an error function, based on the material property and the in-coming light energy, which can determine if a reprojection will exceed a specified maximum error. Bycombining both the methods we can give more priority to pixels with fewer samples and to pixels thatare more complex. We demonstrate that our methods can improve a default implementation of a pathtracer within the first milliseconds, which is an advantage for real-time applications.
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1 Introduction
Physically based rendering becomes increasingly viable for real-time applications with better hardwareand new techniques. It is already used to render animations and photo realistic images, but it is not yetapplied in games. The reason for this is that games need to produce at least 24 frames per second, whileanimations have in principle an unlimited time budget per frame. Also all camera scenery positions withinan animation are known, which would be impossible for a game, duo to the interactive nature of theseapplications.

Most applications discard all the information gained from a physically based rendering technique afterrendering a frame. This is a waste, because the next frame is typically similar to the previous frame. Similarpoints can be reprojected from frame to frame, so you do not have to start with zero information. Withinanimation rendering reprojection is already in use, by taking two frames and reprojecting points betweenthe two frames. Reprojection would only work when there are no drastic changes between the frames.Most games use smoothly moving cameras, so reprojection could be a good improvement for games.
Physically based rendering techniques also tend to spread their focus evenly over all the pixels. Thevariance of individual pixels depends on local materials and illumination. By using adaptive sampling itis possible to focus more on pixels who have a higher variance. This can reduce the amount of samplesneeded to get the same result.
By combining the two techniques some information of a previous frame can be reused by reprojection.All the information that is still missing can be focused on by using the adaptive sampling technique. So thiscombination will ensure data reuse and focus on the right pixels, which makes it possible to improve theperformance of a physically based renderer.

1.1 Thesis goal
This thesis investigates the combination of reprojection and adaptive sampling in the context of interactiveapplications with small changes in the camera view, to improve image quality.

From the goal follows the research question:
• By what factor can we improve the efficiency of a real-time path tracer, using reprojection and/or
adaptive sampling, without exceeding a specified maximum error?

• Research subquestions:
– Does reprojection yield better efficiency?
– How can we calculate an upper bound for the reprojection error?
– Does adaptive sampling yield better efficiency?
– What is the maximum error threshold until it is noticeable from the true value?

1.2 Thesis overview
In chapter 2 related work is discussed which is relevant for this thesis. First the basics of physically basedrendering are discussed, with path tracing as the focused rendering technique. Furthermore other researchabout adaptive sampling and reprojection will be discussed.

The reprojection method in combination with the adaptive sampling method, used in this thesis, isexplained in chapter 3. How pixels are weighted during reprojection and how this relates to the viewpointof the camera is also elaborated in this chapter.
Chapter 4 shows the results of the two individual implementations of reprojection and adaptive sam-pling. The chapter also shows the results of the combination. The approaches are compared against adefault path tracer. The results will be discussed in chapter 5. The final chapter 6 summarizes the thesis.This chapter contains also the conclusions and future research.
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2 Related work

2.1 Physically based rendering
Physically based rendering algorithms all simulate the flowof light in the realworld, by solving the renderingequation by Kajiya (1986):

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

f(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (1)
Lo(x, ωo) is the amount of light coming from point x towards the direction ωo. This comes from

Le(x, ωo) the amount of light emitted from point x towards ωo, plus the integral over all incoming di-rections ωi of the hemisphere Ω on point x, with Li(x, ωi) the incoming radiance which is translated toirradiance by ωi · n where n is the surface normal on point x, multiplied by the Bidirectional ScatteringDistribution Function (BSDF) f(x, ωi, ωo).
For most scenes, it is not possible to directly evaluate the rendering equation. Several rendering algo-rithms use Monte Carlo integration to estimate it:
• Path tracing (Kajiya (1986))
• Bidirectional path tracing (Lafortune and Willems (1993))
• Metropolis light transport (Veach and Guibas (1997))
• Photon mapping (Jensen et al. (2002))

In this thesis we will focus on the path tracing algorithm.
2.1.1 Path tracing

The path tracing algorithm proposed by Kajiya (1986) solves the rendering equation 1, by using a MonteCarlo integration for the integral. Themain idea is to trace a ray from a viewpoint to a light source instead ofthe other way around. Each time the ray hits a non emissive surface it will randomly select a new directionbased on the BSDF. Once the ray hits an emissive object the energy will be returned to the pixel, which willdefine the pixel color. Repeating this procedure for a pixel and averaging the results will lead to the correctresult eventually.
The advantage of path tracing is that it is simple to understand and easy to implement, but withoutany variance reduction techniques, there will be quite a lot of noise before it converges. To reduce thevariance, techniques like Next Event Estimation and Importance Sampling are used.
• Next Event Estimation: Each time a ray hits a non-emissive surface a shadow ray will be cast to arandom light. If the shadow ray is not blocked by another object, it will add the energy of the light tothe path. This approach increases the amount of rays to cast, but surfaces that are visible to a lightwill converge faster to the ground truth.
• Importance Sampling:When a ray takes a new direction within a hemisphere, after hitting a surface,it has to return energy to improve the result. The idea behind importance sampling is to not give eachdirection on the hemisphere the same probability to be chosen, but to give higher probabilities todirections that are expected to yield more energy.

Not only a path tracer converges faster by using variance reduction techniques, but also if the calculationscould be done cheaper. Thismeans that you can takemore samples per pixel (SPP) within the same amountof time. Each ray in path tracing is calculated individually, this makes path tracing perfect for parallel com-putations on the CPU and massive parallel computations on GPU, which increases the amount of calcula-tions. To reach real-time path tracing a GPU is needed. With the increasing performance of hardware, weare getting very close to real-time path tracing.
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2.2 Adaptive Sampling
Adaptive sampling is an approach which estimates which pixels would benefit most from additional sam-ples. In this case not all the pixels will get the same amount of samples. This way a surface in the scenecan get more attention if it converges slower than other surfaces. For instance, a partial refractive surfacewill need more samples than a diffuse surface to converge.

Recent advances in adaptive sampling for Monte Carlo rendering techniques are discussed in Zwickeret al. (2015). They summarize different adaptive sampling and reconstruction techniques with their ad-vantages and disadvantages. The article categorizes the different techniques into a priori and a posteriorigroup. Priori techniques use analytical analysis of the light transport equation, which typically requiresadditional scene information. Posteriori techniques use statistical error estimations based on acquiredsamples.For priori techniques the challenge is to combine the analysis of all relevant effects (motion blur, depthof field, glossy indirect illumination) into one framework. These techniques also require storage of all initialsamples and have a higher reconstruction overhead. In comparison with the priori techniques, the poste-riori techniques get all their information from the renderer, from where the techniques can get the pixelvariances and means. The advantage is that a posteriori technique can be build easily on top of a renderer.A disadvantage, as stated by the authors, is that it is still too expensive for real-time applications evenwhenit is implemented on a GPU.
Next we will discuss a multidimensional method that is known as a priori technique in section 2.2.1.Also we will discuss some image space methods that are known as posteriori techniques in section: 2.2.2.

2.2.1 Priori technique

A priori technique is one fromHachisuka et al. (2008). It is amultidimensional adaptive sampling techniqueand is build further upon the first research into the direction of multidimensional adaptive sampling byMitchell (1991).The multidimensional adaptive sampling technique is used to capture more camera effects like:
1. Motion blur
2. Soft shadows
3. Depth of field

A multidimensional domain can be seen as image locations over time for motion blur, or image locationswith lens aperture for depth of field.
The approach detects discontinuities based on the radiance received from samples within the multidi-mensional domain. This differs from an image space method, which only looks for discontinuities withinthe image space. The first samples are stored within a kd-tree in the multidimensional domain. The leafwith the highest variancewill receive a new sample within the leaf, that is placed such that it has the largestdistance between all other existing samples. If a leaf exceed the amount of samples it will be median-splitalong the longest dimension. This will be repeated until the maximum amount of samples is reached.
The multidimensional adaptive sampling technique seems promising for visual camera effects, but asthe number of effects increase, so will the amount of dimensions. Here the curse of dimensionality willbecome a problem, not only for computation time, but also for memory cost.

2.2.2 Posteriori techniques

Image space methods for adaptive sampling require an estimation of variance in the rendered image. Sev-eral authors suggest different ways to do this and show how they use the variance to determine whichpixels should receive more samples.
One of the earlier image space methods was used for anti-aliasing from Kirk and Arvo (1991). They pro-posed a method that should remove the bias that adaptive sampling introduces. Therefor they estimatedthemean for a pixel, by usingmultiple samples. When the variance, of all samples that are used to estimatethe mean, is higher than a certain threshold, then the pixel will get more samples.
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The paper states that it is not always beneficial to remove the source of the bias, because the error istypically small and an unbiased approach will give additional computation cost.
Tamstorf and Jensen (1997) also had the idea to not waste computation time to small differences that aperson can not see or a display could not show. Their adaptive sampling is based on the paper of Purgath-ofer (1987), who uses the probability that the truemean lies around a certain width of the estimatedmean,to determine the minimum amount of samples per pixel. In addition Tamstorf and Jensen (1997) takes intoaccount the tone operator (gamma correction). For the maximum allowed error they used 1/256, corre-sponding to the color resolution of the final image. Since this approach for adaptive sampling leads tothe bias, they presented the amount of bias in the results. Concluding from the paper is that the bias issignificant, but that it is not a problem, because the error is invisible on a typical display.
A greedy approach is used by Rousselle et al. (2011), using the pixel values gained from theMonte Carlosamples. With the greedy approach they determine where to cast more rays to reduce the mean squarederror. The mean squared error (MSE) can be calculated as followed:

MSE =
1

n

n∑
i

(Ŝi − Si)2 (2)
Where n is the amount of pixels, Si is the true pixel value and Ŝi is the estimated pixel value.
For each pixel they want to calculate the MSE by using Gaussian smoothing filters at different scalesfrom fine to coarse. One problem for calculating the MSE is that the true pixel value is not known duringpath tracing, unless a reference image is already created. Therefore they calculate the expected change inMSE by:

∆MSE ≈
r2
ff

+ r2
fc

r2
ff
− r2

fc

∗ (fc − ff )2

︸ ︷︷ ︸
Approximate bias term

+V ar(fc)− V ar(ff ) (3)

With r the scale of the filters, fc and ff the coarse and fine filtered pixel value and V ar(f) the varianceof the filtered pixel. They use the fine filter whenMSE(fc) −MSE(ff ) ≥ 0. The expected change ofMSE is stored into a priority queue. Now the pixels that have a higher chance of decreasing the total MSEwill be sampled more. At last each pixel is filtered by a Gaussian filter with the selected scale during thecalculation of the expected change in MSE.Their results show that they reduce the MSE with less samples per pixels than a path tracer that giveseach pixel the same amount of samples. For their simplest scene the adaptive sampling and filter selectiontakes 4.36% of the rendering time on a renderer by Pharr et al. (2016). They see this as the worst case,because it is independent on scene complexity. However it takes different rendering times in other sceneswhich could be a cause of the adaptive sampling that chooses more "difficult" samples to trace in a scene.In the future work of the paper they propose to implement the greedy error minimization on a real-timeGPU ray tracer what could be promising.
Li et al. (2012) uses a different approach to estimate the MSE using Stein’s Unbiased Risk Estimator(SURE).

SURE(f(Si)) = ||f(Si)− Si||2 + 2V ar(Si)
df(Si)

dSi
− V ar(Si) (4)

Here f(Si) is a filter function over pixel Si. Instead of taking the first filter that has a MSE differencegreater than zero, they take the filter with the least SURE error. The filter is used at the end of the renderingalgorithm.
The adaptive sampling function is created such that regions with higher variance receivemore samples.They also guidemore samples to darker areas, because human eyes aremore sensitive to see errors in darkregions, this is adopted from Overbeck et al. (2009). The adaptive sampling function looks as follows:

As(Si) =
SURE(f(Si)) + V ar(Si)

I(f(Si))2 + ε
(5)

Where f(Si) is the filtered color using cross bilateral filters (cross bilateral filters proved to give the bestresults in this paper), I(f(Si))
2 is the squared luminance of the filtered pixel color, and ε is a small number
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to prevent division by zero. How many samples pixel Si will receive, when there is a budget ofm samples,could be determined by:
Samples(As(Si)) = m ∗ As(Si)∑

j As(Sj)
(6)

What depends on all the neighboring pixels Sj used in the cross bilateral filter.The results show a comparison of the SURE-based approach with the greedy error minimization (GEM)of Rousselle et al. (2011). In figure 1 it can be seen that the MSE of GEM is comparable to the SURE-basedapproach, but GEM tends to send few rays to regions where most of the samples carry zero radiance. Thelimitation of the SURE-based approach is that it does not preserve details in scenes with high-frequencytextures using a low sample budget. This is due to the noise created by environmental lighting and glossyreflections in combination of using a bilateral filter. Just like Rousselle et al. (2011) this paper also wants aGPU implementation of their approach to see the effects on a real-time path tracer.

Figure 1: Result of the comparison between GEM by Rousselle et al. (2011) and SURE by Li et al. (2012). Alow sample density is represented by the color white. The color black represent a high sample density.

2.3 Reprojection
Each iteration of the path tracing algorithm contributes to the result. This continues until a small changeoccurs within the scene, for example: an object is added, removed, replaced or the camera viewpoint ischanging from position. When this happens the previous result from the path trace algorithm is discardedand it restarts all over again for the few new changes in the scene. By using reprojection, not everythingfrom the previous result is discarded, but previous results are reused as much as possible. On Shadertoythere is a proof of concept of reprojection. Reprojection is mostly used for animations where the camera’sand objects only change slightly in position, because if the camera gets a completely different viewpoint,then there is nothing to reproject.
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2.3.1 Reprojection in animations

Adelson and Hodges (1993) uses reprojection within a ray-tracer to generate animation frames. The initialframe should be fully ray-traced and the intersectionpoint, normal vector, diffuse color, ID’s of the inter-sected object(s) and the shadowing object(s) should be saved. Their technique consists of four stages:
1. Reprojection: Take the samples from the base frame and project them to the new viewpoint. Whentwo samples reproject to the same pixel, the sample with the closest intersectionpoint to the view-point will be chosen.
2. Verification: Test if the reprojected samples are now occluded, due to a moving object or viewpoint.If the reprojected sample is occluded, it should be discarded.
3. Enhancing: All viewpoint dependent phenomena are added: reflection, refraction and specular high-lights. These effects cannot be guaranteed to have remained unchanged since the previous frame.The number of ray-casts in this stage will be approximately equal to the amount in a fully ray-tracedimage.
4. Filtering: The samples are filtered down to image resolution using a desired filter.

In a scene with static light sources this approach saves 50 to 90 percent of the rays to cast and 45 to 56percent in rendering time according to the paper. Scenes that only have diffuse objects save up 60 to 96percent of the rays needed to be cast. What the exact timings are of this approach is not given, but thereduction in ray casts seems promising.
The research of Zimmer et al. (2015) uses decomposed rendered images with motion vectors to inter-polate between animation frames. Not only do they interpolate between frames, but they also denoise andupsample the final result. Decomposition of a rendered image results in disjoint path space components,where each component represents an image buffer. Each component is associated with a set of featuresthat are easily obtained as byproduct of path tracing. The features are extracted from the first non-specularobject that is hit and consists of:
• Reflectance value
• Normal vector
• Object ID
• Face ID
• Texture coordinates
• Amount of emitted radiance from visible light
For the interpolation between frames they use their motion vectors. The primary motion vectors areeasily obtained by mapping the underlying intersections of visible surface positions forward in time andprojecting the 3D motion into screen space. Specular and refraction motion vectors are more challenging.They propose a generalized version of the manifold exploration from (Jakob and Marschner, 2012) to com-pute the apparent motion of objects observed through a sequence of specular reflections or refractions.In their decomposed framework they interpolate between each separate component using the motionvectors.
The results of Zimmer et al. (2015) shows that interpolating between frames improves the quality ofthe animation. The disadvantage in this approach is that the reference frames they use to calculate themotion vectors need to be known in advance. For animation rendering this will not be a problem, becauseall camera positions are known, but for real-time path tracing, where the camera positions are dynamic,the approach will not work.

2.3.2 Reprojection for reflections

Xie et al. (2017) introduce a novel reflection reprojection method to establish the mapping of reflectionsbetween individual frames. For their approach they start by generating reflection buffers B that containthe following information for each pixel:
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1. The normal vector and depth of an intersected object.
2. The specular factor ranging from 1, for a perfectly specular surface, to 0, for a perfectly diffuse sur-face.
3. The reflection color.
4. The traveling distance of the reflected ray

They use a mapping function that describes a pixel’s offset vector from the reference frame due to thecamera movement between the frames. View-independent pixels are validated by a threshold based onthe depth to the intersected object |Distancecurrent −Distanceprevious| < ε.For view-dependent pixels a depth threshold will be invalid, because it varies according to the change incamera position. Therefore they created a distance function for reflective surfaces, which looks at themostsimilar reflectance point in the bufferB. The distance function is calculated for multiple neighboring pixelsand the one that gives the smallest distance, is chosen to use as reprojection value. If non of the otherpixels give a smaller distance than the original reprojected pixel, or if one will fall out of the reflectionsurface, then the pixel will not be reprojected.Their reflectance reprojectionmethod canhandlemultiple reflections by extending the reflection buffersand apply multiple passes recursively. Only the authors state that it is not worth the additional cost overthe visual addition. For future work the authors would like to see an extension to other view-dependentcomponents, like refraction and glossy reflections.
Another approach that tries to reproject specular and even refractivematerials is the one fromLochmannet al. (2014). They use a server to render the images, which are encoded as RGBZ ray trees from Whitted(2005). The server splits the rendered image into diffuse, reflection and refraction including the depths ofthe ray from the camera. This data is send to the client who first retrieves the diffuse positions and normalsand subsequently the specular positions. These are used to create a flow from one frame to the other thatwill be applied to each node in the ray tree. At last the reprojected images are composed for the resultimage.The results show that there is a blurry effect, because of the compressed images. The author statesthat amore adapted compression and blurring schemewould be required to get the right balance betweenquality and performance.

2.3.3 Other reprojection techniques

Reprojection is also used for shadows like in Tole et al. (2002). Here they use a Shading Cache that containsrecently computed shading values within an objects-space mesh data structure. The shading cache is usedto refine the rendered image. Updating the shading cache is done asynchronous from updates of thecamera or moving objects. This way they can display moving objects at high frame rates without error ingeometry or texture, which will be independent of the shading speed. Themain drawback of the approachis that the shading is not correct if an object or camera just moved.
Günther and Grosch (2015) focused more on scene editing, were they try to reuse as much of theprevious scene as possible. For their rendering they make use of stochastic progressive photon mappingfrom (Hachisuka and Jensen, 2009). The equation for a new frame, if something has changed within thescene, is as follows:

Lrepair = (Lpre + Ldiff ) ∗ (1−M) + Lnew ∗M (7)
Here Lrepair is the new value for the changed scene, Lpre is the previous scene, Lnew is the newscene, Ldiff is the difference between the new and previous scene and M is a mask. The value of themask depends on whether an eye ray hits a modified object and on an error value that is bounded by athreshold. When an eye ray hits a modified object, the pixel will be reseted by setting the mask to one.Otherwise the error value will decide the value of the mask. The error value is calculated as follows:

ε =

{
Ldiff

Ldiff+Lpre
if Ldiff ≥ 0

Ldiff

Ldiff−Lnew
else (8)

If ε > τ then the mask will also be set to one. Otherwise the mask will be set to the error value. Herethe τ is a threshold that is manually set between 0 and 1.
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Figure 2: Reprojection result fromGünther and Grosch (2015) using 100 iterations of stochastic progressivephoton mapping. The RMSE over the amount of iterations is shown in the graph.
For camera movements they establish the correspondence of the old and new frame by reverse re-projection (Nehab et al., 2007). For each pixel they shoot a new ray through the center of the pixel andreproject the first intersection point to the old camera view. If the point is within the old camera view andnot occluded the pixel can be reused. When the object has a glossy or glass material, it could be that thereprojection is incorrect, this will increase the error calculated in equation 8 what makes the approach useless of the the previous frame for those pixels.Within this paper they also try their method on a bidirectional path tracer, but only when removinga glass ball. For future research they recommend more experiments with bidirectional path tracing. Theresult when using this method for reprojection can be seen in figure 2. Here they use 100 iterations ofstochastic progressive photonmapping forLpre andLnew. Also they show the RMSEwith different amountof iterations for the refreshed frame and the repaired frame. By combining the old and new frame a smallreduce in the RMSE can be noticed. Calculating the mask is straightforward and it only uses the byproductand outcome of a rendering algorithm. This is an advantage for the memory cost and calculation time. Thedisadvantage of the approach is that it needs the exact same amount of samples of the new frame beforeit can be combined with the old frame.
A GPU implementation for stable ray-tracing is created by Corso et al. (2017). At each frame they repro-ject samples by using a forward reprojection. Therefore they store the first intersection position in objectspace with a transform ID tomake it possible to transform it back to world space coordinates. Tomake surenot too many or few samples are projected to the same pixel, they divide each pixel inM ∗M subpixels. Acorresponding bitmask is used to notify if a subpixel is occupied, which is later used to determine the localsample density. They also use another bitmask to indicate if a subpixel is occluded or not, which will becalculated in a verification phase. When the occupied bitmask for a specific subpixel is 0, the reprojectionsample will be copied and the bit will be set to 1, otherwise they look at the occlusion bitmask. If the desti-nation occlusion bit is one and the source occlusion bit is zero, it will be copied, otherwise the sample willbe discarded.After the reprojection is done, they analyze the data and choose where samples should be added orremoved due to a desired sampling rate. For a good spatial distribution of samples the pixels are dividedinto strata. If they have to remove or add samples, they choose from the stratumwith the highest or lowestamount of samples. The number of samples to remove or add is decided on the local sample density

d = N/A, where N is the amount of unoccluded samples in an area of A around the current pixel. Adensity target and tolerance is set by the user. When the density stays within bounds there are no samplesthat need to be removed or added.In the verification phase a ray is cast to the object intersection point from the new camera positionto validate if there is an occlusion. When the traveling distance of the ray is different than the distancebetween the intersection point and the camera position, the subpixel will be set to occluded. At last all thesubpixel samples are filtered by a truncated spatial Gaussian filter.
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The total overhead of reprojection with this approach is between 1.4x and 1.5x of the overall renderingtime. When they take four samples per pixel, the approach can removemost of the spatial aliasing artifactsand provides a fairly stable result. The advantage of the method is that it combines samples when theyreproject to the same pixel. This reduce instability after reprojection, because now the pixel value will beaveraged. The amount of samples that can be combined is dependent on the size of the buffer, but it is notknown if this influence the result.
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3 Method
In this chapter we explain our proposed method. We implement and evaluate three approaches:

• Adaptive sampling
• Reprojection
• Combination of adaptive sampling and reprojection

First in chapter 3.1 the implementation details of adaptive sampling are elaborated. Then, in chapter 3.2the implementation of reprojection is explained including how the introduced error caused by reprojec-tion is determined. And finally how the combination of adaptive sampling and reprojection is handled, iselaborated in chapter 3.3.
3.1 Adaptive sampling
To determine which pixels should get more samples is done by looking at the variance over all the samplesthat are taken on a pixel. Just like other adaptive image space methods (Rousselle et al., 2011; Li et al.,2012) the variance is taken into account to determine the correct distribution of samples. The varianceover all the samples of a pixel can be estimated dynamically as proposed by Welford (1962). This is doneby remembering the meanM of each color channelMr Mg Mb which is updated by:

Mnew = Mold +
(Sp −Mold)

spp
(9)

And remembering the squired distances from the meanM2 of each color channel, which is updated by:
M2
new = M2

old + (Sp −Mold) ∗ (Sp −Mnew) (10)
There are now six stored color values for a pixel that can give the total pixel variance by averaging thevariance of all color channels:

V arp =
M2
r +M2

g +M2
b

(spp− 1) ∗ 3
(11)

A problem with the variance is that it will be larger in regions that receive a lot of light. So just like themethod of Li et al. (2012) we scale the variance by the luminance, because human eyes are more sensitiveto see errors in dark regions. We also take the squire root of the variance, because we are more interestedin the standard deviation instead of the total variance. The standard deviation makes our method lesssensitive for outliers.
V arp =

√
V arp + ε

L(p) + ε
(12)

WithL(p) the luminance of pixel p and ε a small value to prevent division by zero. The ε above the fractionmakes sure when a pixel does not get any variance and luminance, what is possible with a low amount ofsamples, still can get samples.
The variance is calculated for all the pixels. This happens until they reach aminimumamount of samples

minspp. After they reachminspp a threshold τ is set to one and will linearly decreased to zero. The stepsize to decrease the threshold is based on a maximum amount of samplesmaxspp. Until the threshold iszero the pixels with V arp > τ will gain new samples and update their variance.At the end when τ == 0 and thus maxspp is reached, the amount of samples gained for each pixelwill be divided by themaxspp. The resulting value is used as a probability to gain a new sample until thepath tracing algorithm restarts by a movement or change in the scene. The complete pseudo code can befound in algorithm 1.
We chose for a probability based adaptive sampling method, because it still guarantees that the pathtracer converge to a correct value as longminspp > 0. If we use a static threshold then only some pixelsget new samples, which also update their variance, but after a while the variance will stabilize to the true
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variance of the incoming energy on a pixel. Now the pixelswho stay above the thresholdwith their variance,are the only pixels that get new samples.
itr ← 0 ; // iteration count

τ ← 1 ; // adaptive threshold

minspp ← 4 ;
maxspp ← 32 ;
while itr 6= END do

foreach Pixel P in Pixels do
// calculate probability

if itr == maxspp then
Pvariance ← Pspp

maxspp
;

end

ready ← false ;
if itr ≥ maxspp then ready ← RandomFloat()≤ Pvariance ;
else ready ← Pvariance ≥ τ || Pspp < minspp ;
// distribute samples

if ready then
Psample ← TracePixel();
Pspp++;
if itr ≥ maxspp then continue;
// Update variance

delta← Psample − Pmean;
Pmean += delta

Pspp
;

delta2← Psample − Pmean ;
PM2 += delta ∗ delta2 ;
Pvariance ←

√
P
M2

Pspp−1 +ε

Pluminance+ε

end
end

// Update adaptive threshold

if itr ≥ minspp then
τ -= 1

maxspp−minspp
;

end

itr++;
end

Algorithm 1: Pseudo code for the adaptive sampling algorithm, which will restart when a movementoccurs or when there is a change in the scene.
3.2 Reprojection Method
The reprojection method uses forward reprojection where each pixel is copied to a new assigned pixeldepending on the camera matrix. This is adapted from Corso et al. (2017), where they also use forwardreprojection instead of reverse reprojection as in Nehab et al. (2007), because it is better suited for raytracing.

Before reprojecting pixels after a movement occurs, three different validations are done to make surethe reprojection is valid:
• Validate if the reprojection is still within the screen limits.
• Validate if the intersection point is still visible and not occluded from the new camera position.
• Validate if the introduced error will not exceed the threshold.

To validate if a pixel is within the screen limits, each pixel should store their first intersection point whenthe pixel is not yet reprojected. Now the validation is done by taking a direction from the new camera
14



position towards the stored intersection point and map the direction to a screen pixel. Whenever the pixelis still within the screen limits the reprojection may proceed.
Validate if there is an occlusion is a bit harder. Therefore a ray needs to be cast from the new cameraposition towards the stored intersection point to find out if the distance between the new traced intersec-tion point and the stored intersection point is smaller than a chosen value ε. If the distance is larger, thenthere is an occlusion, which will result in not reprojecting the pixel. These two validating steps are similarto other reprojection methods like the verification stage of Adelson and Hodges (1993).
Most materials are view dependent, for example refractive or slightly glossy materials, which introducehighlights based on the viewing position. This could make the reprojected data not valid from the newcamera angle. Therefore a calculation is done to find out what the view dependency error will be for acertain reprojection. The third validation looks if the view dependency error stays bellow a threshold. Howthe calculation of the viewpoint dependency error works, is explained in chapter 3.2.1. In Günther andGrosch (2015) they also calculated an error for reprojection, but here the error is based on the final colorof the old and new frame instead on material properties.

3.2.1 Viewpoint dependency error calculation

A Lambertian reflectance that defines a perfect diffuse surface gives always the same color result regardlessof the viewing position. This would be an ideal situation for reprojections, because changing the viewpointwill not introduce highlights on the material. When the surface is not pure diffuse, it will be viewpointdependent, which will introduce an error in the reprojected pixels.
In this thesis a microfacet model is used of Walter et al. (2007), using the Beckmann distribution tocreate rough surfaces. The reflection term of the model is as follows:

fr(i, o, n) =
F (i, hr)G(i, o, hr)D(hr, α)

4|i · n||o · n|
(13)

With F (i, hr) as the Fresnel term,G(i, o, hr) as the shadow-masking term,D(hr) as the Beckmann distri-bution and hr as the halfway vector. The hr can be calculated by taking the normalized vector of sign(i ·
n)(i + o). Here i, o and n are respectively incoming, outgoing and surface normal directions. An advan-tage of the model is that it only use one variable α that can be set by the user. The variable α indicatesthe roughness of the material which has a value between 0 and 1, where 0 is pure specular and 1 is a purediffuse surface.

A material is considered specular when α < 0.01 or if the material is refractive. Materials which arespecular are not reprojected, because a small change in perspective for suchmaterials has a high probabilityto yield a total different outcome. It is possible to verify if a specular point can be reprojected like in Xieet al. (2017), but it introduces more complexity especially when there are multiple specular bounces.
To gain a viewpoint dependency error based on the material we need to store some more data basedon the first intersection. So next to the intersection point the following data is needed:
• Outgoing chosen direction Lt−1 from the intersection point.
• Roughness value α of the material.
• Normal of the surfaceN on the intersection point.
• The reflection term value frt−1 for the chosen outgoing direction Lt−1.
• The diffuse color of the material A.
• Irradiance Irt−1 coming from Lt−1.
Whenever a movement occurs the reflection term 13 will be evaluated again with the new incomingdirection Vt and the stored first chosen outgoing direction Lt−1 (see figure 3). Now the two reflectionterms can be used to gain a viewpoint dependency error ε:

ε =
fr(Vt, Lt−1, N)

fr(Vt−1, Lt−1, N)
(14)
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Now the viewpoint dependency error will always be ε ∈ [0, 1] which made it easier to discard some of theprevious result based on this error. The disadvantage of a relative error is that the difference of dark areascan be quite high while it is not visible for the human eye, and such spaces would introduces less visibleerrors when they are reprojected. Another flaw of this viewpoint error calculation, is that it does notaccount for the incoming light energy and the possible outgoing energy. Now the viewpoint dependencyerror will make no difference between brighter or darker areas. To make the viewpoint dependency errortake into account the light energy, the refraction term is multiplied by the irradiance Irt−1 and the diffusecolor A. Also an absolute error is calculated instead of a relative error. Now a threshold can be based onthe difference in color value. The new viewpoint dependency error will become:
ε = abs(fr(Vt, Lt−1, N)− fr(Vt−1, Lt−1, N)) ∗A ∗ Irt−1 (15)

This gives an error of ε ∈ [0,∞], which cannot be used to discard some of the previous results, but gives abetter understanding of how much the reprojected color will deviate from the new viewpoint.
To make the reprojection correct, each sample that contributes to the final pixel color should be repro-jected on its own, because the incoming irradiance Lt−1 is different for each new sample. Reprojectionin this way will increase the used memory linear to the amount of samples taken and the reprojectioncalculation time will also increase linear based on the amount of accepted reprojections. When there isunlimited memory and time this would be no problem, but for a real-time application it will not work yet.Therefore an approximation is made by averaging all the incoming irradiance of the gathered samples ona pixel. Now each pixel holds a reprojection state with the stored data and will reproject all the gatheredsamples all at ones, based on the error calculated with an approximated irradiance.

Figure 3: Shows the difference in BRDF based on the viewpoint with the same outgoing direction Lt−1.
3.2.2 Aliasing artifacts

Reprojecting pixels that are not only sampled through the center of the pixel may introduce aliasing arti-facts. Such artifacts can be seen in figure: 4. The artifacts are created during reprojection, when the storedintersection point is correctly validated and the current pixel in the previous frame had multiple objectswithin his bounds. When going to a new viewpoint the pixel that has the intersection point within boundsdoes not necessary need to have the same objects within his bounds as the previous pixel.If we look at the figure in 5, we see how the problem occurs. The red dot is the first stored intersectionpoint for that pixel in frame t − 1. Through the pixel a total of five rays are traced (red and black dots),which determine the color. The color would be more orange than green, because more of the rays hit theorange triangle. After a movement to the right the pixel is still reprojected to frame t. This is caused bythe first intersection point, which is still reachable in the new frame. Now the color of the pixel in frame tcontains a bit of orange passed by the previous frame, which should be total green.
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Figure 4: Aliasing artifacts are visible after movement when using reprojection.

Figure 5: Five samples acquired on a pixels in frame t − 1 are reprojected to frame t, which introduce analiasing artifact.
By always trace pixels through their center the problem will be solved, but now aliasing will be visible.As a solution an anti aliasing algorithm can be applied in a post process. Another solution is to accept thealiasing artifacts, which can be reduced by saving more samples per pixel and reprojecting each of them,also the artifacts will fade overtime when more samples are taken.
Another way to reduce the aliasing artifacts is to check if the distance between the stored intersectionpoint and the new found intersection points from rays casted through the same pixel is smaller than acertain maximum distance. Whenever a point exceeds the maximum distance, then the pixel will not bereprojected. This solution only works for far distance aliasing artifacts like in 4, but the artifacts can stilloccur on places where objects are closer to each other than the maximum accepted distance. The solutionmay cause a small increase in overhead for reprojection, but it creates a more visual appealing result.

3.3 Combining reprojection and adaptive sampling
When combining the reprojection and adaptive sampling method some advantages come forward. Forexample the additional buffer in reprojection, to keep track of the amount of samples per pixel, can bereused for adaptive sampling. Another advantage is that pixels who are not reprojected can be focused onby giving them priority with adaptive sampling.
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The combination does not deviate much from the explained adaptive sampling 3.1 and reprojection 3.2method, but when a reprojection occurs we need to make some changes. During the reprojection, thepixels that are reprojected do not only copy the samples per pixel and the color value from their previouspixels, they also copy the calculated variance/probability received from the adaptive sampling method.After the reprojection, pixels with fewer samples than the definedmaxspp and for which their is not yeta probability calculated, are the only pixels who get new samples. This continues until all pixels reach the
maxspp. Now each pixel has its own calculated probability which is determined by the adaptive samplingmethod, and based on this probability new samples are distributed until a new reprojection happens. Thepseudo code for the combination method is visible in algorithm 2.By focusing on pixels with less samples than the definedmaxspp and without a calculated probabilityafter a reprojection occurs, the difference between reprojected and not reprojected pixels decreases faster.This can result in a more appealing image.

itr ← 0 ; // iteration count

τ ← 1 ; // adaptive threshold

ε← 1
256 ; // maximum reprojection error

minspp ← 4 ;
maxspp ← 32 ;
// restart loop on movement itr ← 0
while itr 6= END do

foreach Pixel P in Pixels do
// calculate probability

if itr == maxspp then
Pvariance ← Pspp

maxspp
;

PprobabilityCalculated ← True ;
end

// apply reprojection if verification is accepted

if itr == 0 then
if ReprojectError(P)≤ ε then Reproject(P) ;

end

// distribute samples

ready ← false ;
if itr ≥ maxspp then

ready ← RandomFloat()≤ Pvariance;
else if !PprobabilityCalculated then

ready ← Pvariance ≥ τ || Pspp < minspp;
end

if ready then
Psample ← TracePixel();
Pspp++;
UpdateVariance(P);

end
end

UpdateAdaptiveThreshold();
itr++;

end
Algorithm 2: Pseudo code for the combination algorithm, which will restart when a movement occursor when there is a change in the scene.
In the combination of adaptive sampling and reprojection a different distribution for the probability ofsampling pixels can happen, when it is compared with the adaptive sampling method. This occurs whenthe variance of pixels is reprojected while the pixels do not yet have a calculated probability. So after thereprojection these pixels get new samples and update their variance, based on the adaptive thresholdwhich has just been reset. Now it is possible that a pixel can get more samples than the maxspp. This
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results in incorrect probabilities. We expect that this is no problem, because if the same pixel is reprojectedmultiple times, the chance increase that it will exceed themaximumerror of the reprojectionmethod, whatresults in a rejection for another reprojection. Also we expect that such cases rarely occur.
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4 Results
In the following chapters the results of all the different methods can be found. The different scenes weuse for the tests are elaborated in chapter 4.1. The adaptive sampling results are in chapter 4.2, wherethe spreading of the mean squired error (MSE) is compared against a default path tracer, with differentsettings for the minspp and maxspp. Chapter 4.3 shows the reprojection results against a default pathtracer, fromwhich we can deduct if it yields a better efficiency. Also a measurement on the overheat of thereprojection method is elaborated. In the last chapter 4.4 the combination of reprojection and adaptivesampling is tested against the default path tracer, by using the best settings from 4.2.The default path tracer is implemented on a GPU and it uses next event estimation and importancesampling to accelerate the outcome.

All the results are acquired on aNVidia GeForceGTX 1070 graphics card. It process 6,463GFLOPS (billionfloating point operations per second) and it has a memory bandwidth of 256.3GB/s. All the tests are donewith a screen size of 1280x720.
4.1 Scenes
To test the methods we use three different scenes, which are well known for graphics research. Each scenediffers in amount of triangles lighting and material complexity. The scenes used in this thesis are:

• Cornell box: Our Cornell box consists of 34 triangles with one surface area light. Each Cornell boxcan contain a different model inside. We choose to use two glossy boxes. The walls of the Cornellbox are also slightly glossy (see figure: 6).
• Sponza: This scene consists of 262267 triangles (see figure: 7). It contains different textures withbump maps and there is an area-light in the center above the hall. In the reference image we seethat the floor is a little reflective.
• SanMiguel: This scene contains 9980693 triangles (see figure: 8) and is a very detailed terrace scene,which only contains directional light and textures with bump maps and specular maps.
For each scene a reference image is taken to compare with the methods. Each reference image takes4096 samples per pixel on our default path tracer.

Figure 6: Reference image of the Cornell box scene.
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Figure 7: Reference image of the Sponza scene.

Figure 8: Reference image of the San Miguel scene.

4.2 Adaptive sampling results
We test adaptive sampling against the default path tracer by looking at the decrease in variance of thedistance to the reference pixels. The distance to the reference pixel is calculated in euclidean distance.

Min Max Min probability2 16 0.1254 16 0.258 16 0.52 32 0.0634 32 0.1258 32 0.2516 32 0.5
Table 1: Minimum and maximum spp for adaptive sampling

21



In table 1 theminspp andmaxspp used for adaptive sampling can be seen, with their minimum prob-ability for a pixel to get a new sample.
4.2.1 Cornell box

Figure 9 shows the reference image with 4096 samples per pixel created by the default path tracer, andthe heatmap created by adaptive sampling. The brightness of the pixels on the heatmap indicates theprobability to get a new sample. A higher brightness means a higher probability.On the heatmapwe see that the adaptive samplingmethod targets the darker areas. Next to the darkerareas, the method also seems to target caustics in the left top corner, created by the glossy box.

(a) Reference image of the Cornell box, which is comparedwith the adaptive sampling method.
(b) Heatmap of the distributed probability in the Cornellbox. Created by adaptive sampling after 233 ms with 32spp.

Figure 9

Figure 10
The decrease in variance of the distance to the reference pixels with different settings for theminsppand maxspp can be seen in figure 10. Adaptive sampling with minspp = 4 and maxspp = 32, seemsto have the most stable outcome in comparison with the default path tracer. This means that the overalldistance to the reference image around 70milliseconds has a better spreading than the default path tracer.
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Figure 11: The default path tracer results over time(upper row) compared against the adaptive samplingmethod results (bottom row).
In figure 11, the difference over time between adaptive sampling and the default path tracer is visualizedwith the reference and heatmap image. The bottom row shows the results of adaptive sampling when weuse minspp = 4 and maxspp = 32. The top row shows the results of the default path tracer. When wecompare the images there is a small difference visible on spots that are brighter in the heatmap.

4.2.2 Sponza

An increase of the Sponza scene complexity and triangles, naturally creates a longer render time before itgenerates the heatmap in figure 12, when we compare it with the Cornell box scene. The heatmap showsthat areas which receive energy directly from a light source, like the wall above the arc, gain a lower prob-ability to be sampled. This is exactly what the adaptive sampling method should do, because such areasdo not need many samples to converge to the correct value. Furthermore the method mainly focuses onthe dark areas in this scene.

(a) Reference image of the Sponza scene, which is com-pared with the adaptive sampling method.
(b) Heatmap of the distributed probability in the Sponzascene. Created by adaptive sampling after 660ms with 32spp.

Figure 12
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Figure 13
When we look at the graph in figure 13, the best setting for the adaptive sampling method seems to be

minspp = 2 andmaxspp = 32, which is different than for the Cornell box scene. This is possible due tothe amount of samples taken over time and the different probability distributions on the scenes.
4.2.3 San Miguel

In the San Miguel scene we only use a directional light, which is visible in the generated heatmap by theadaptive sampling method (figure 14). All the surfaces that are directly hit by the directional light gain alower sample probability than surfaces in the shade. The surfaces in the shade are quite dark, which givesthem a high sample probability from the adaptive sampling method.

(a) Reference image of the San Miguel scene, which iscompared with the adaptive sampling method.
(b) Heatmap of the distributed probability in the SanMiguel scene. Created by adaptive sampling after 1150 mswith 32 spp.

Figure 14
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Figure 15
Adaptive sampling does not improves the reduction in variance of distance to the reference pixels withany minspp and maxspp combination, compared with the default path tracer (see figure 15). Multiplereasons can be the cause of this, like the increase of triangles, different lighting and the complexity ofscene materials. In the next chapter 4.2.4 these different reasons are tested in the Cornell box scene.

4.2.4 Scene property tests

A few different properties can influence the effectivity of the adaptive sampling method. By changing thescene properties and measure the reduce in variance of distance to the reference pixels, we can measurewhich property influences the method the most. The properties are:
• Scene lighting: Surface light, point light and directional light.
• Amount of triangles: 34, 69461 and 1087726 triangles.
• Material complexity: Soft glossy, high reflective and glass materials.
The default scene contains 34 triangles with soft glossy materials and a surface light, which is used insection 4.2.1. We take for theminspp ∈ (2, 4) andmaxspp = 32, because these two combinations showthe best results obtained in the above chapters.Results of the default, directional light and high reflective materials can be seen respectively in figures:16, 17, 18. The other results are in the appendix: A.1.1.

Figure 16: Reference image of the default Cornell box, with the result graph.
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Figure 17: Reference image of the Cornell box with directional light, with the result graph.

Figure 18: Reference image of the Cornell box with low roughness materials, with the result graph.
From the graphs it is clear that the adaptive samplingmethod is not effective for sceneswith directionallight or for scenes that contain a lot of reflective materials. The measurements show that theminspp = 4setting gives a better result than theminspp = 2 setting, especially in the scenes where adaptive samplingis not very effective.

4.3 Reprojection results
For testing the reprojection method we first turn the camera around, for one hundred degrees, in differedstep sizes, beforewemeasure themean squired error. For each step a certain amount of samples are taken,32 and 64 respectively. The step sizes are: 5°, 10°, 20° and 50°with different maximum reprojection errorsof 1

256 , 4
256 and 8

256 . Next to all these possibilities a reprojection can also reproject multiple samples perpixel, so therefore a test is done by reprojecting four samples per pixel instead of one.
The amount of overhead for reprojection is measured for reprojecting one and four samples per pixel.Wedo this bymeasuring the render time per frame, while there is a continuous rotation. The average frametime over 250 measurements, while using reprojection, is compared against the average frame time of thedefault path tracer, which gives the overhead. Extra required memory for the reprojection method for ascreen resolution of 1280x720 is 133 MB, which increases linear on the amount of pixels and reprojectedsamples per pixel.

4.3.1 Cornell box

Figure 19 shows the reference image of the default Cornell box after turning one hundred degrees. Nextto the reference image a visualization of the reprojection is shown for the last step of five degrees. In thisvisualization the pixels who are reprojected, are shown in white. The pixels who are discarded are shownin black. It is clearly visible that the edges of the boxes are not reprojected, this is because of the depthtest, which removes aliasing artifacts (see chapter 3.2.2).
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Figure 19: Reference image of the default Cornell box after rotating one hundred degrees, with a reprojec-tion visualization of the last five degrees turn.
All the different possibilities of samples per step and amount of samples reprojected for steps of 5°withamaximum error of 1

256 , give a lowermean squired error than the default path tracer, which can be viewedin figure 20. Around 1500 milliseconds the mean squared error becomes equal for all the combinations,but the most important part are the first milliseconds, because the focus of the thesis is on real-time ap-plications. In the first 100 milliseconds we see the largest difference between the default path tracer andthe reprojection method reprojecting four samples per pixel and taking 64 samples per step (see figure21). The difference between the amount of samples per step taken before rotating is quite like expected,because the mean squared error becomes lower when more samples are reprojected from the last frame.As for the difference in rotation degrees, it is obvious that the smallest rotation gives the best results.A smaller rotation gives fewer pixels from which we do not have any samples yet. But still the maximumturning degree of 50° improves the quality compared with the default path tracer. All the results of theCornell box can be viewed in the appendix B.1.

Figure 20: Graph of the difference in mean squared error for different amount of samples per step andamount of samples reprojected. Here we use a step size of 5° and a maximum error of 1
256 .
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Figure 21: Difference between the default path tracer (left 39ms) and the reprojection method of 64 sam-ples per step while reprojecting four samples per pixel (right 52ms). Both methods take four samples afterthe final rotation.
In figure 22 the different maximum errors are compared against each other for reprojection with astep size of 5° and 32 samples per step. Only two lines are visible on the graph, one for the default pathtracer and one for the maximum error of 8

256 . This means that the maximum error does not affect thereprojection method using these three different error thresholds. Using different step sizes, samples perstep and scenes yield the same result for all the maximum errors, which can be seen in the appendix B.

Figure 22: Graph of the mean squired error difference for different maximum errors, using a step size of5° and 32 samples per step.
The overhead introduced by reprojection in the Cornell box is 26%when we take one sample per pixel,and 25% if we take four samples per pixel. It seems to be quite a lot, but the average measured rendertime per frame for one sample per pixel is 12, 53 milliseconds instead of 9, 30 milliseconds for the defaultpath tracer. Both frame times are acceptable for a real-time application.

4.3.2 Sponza

The Sponza scene reference image we use for the reprojection tests, with the corresponding visualizationof the reprojected pixels are visible in figure 23. Just like in the Cornell box scene, we can see that edgesare not reprojected. It is extremely visible from the plant model in the Sponza scene. Most of the pixelsare not reprojected for this model, because it is small and complex.
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Figure 23: Reference image of the Sponza scene after rotating one hundred degrees, with a reprojectionvisualization of the last five degrees turn.
The results of different amounts of samples per step, while reprojecting one or four samples, is shownin figure 24. The level of quality is in the same order as for the Cornell box, but the distance between thereprojection method and the default path tracer keeps continuing after 1500 milliseconds. The maximumdifference between the default path tracer and the reprojection method is visualized in figure 25, for allthe other results of Sponza see appendix B.2.

Figure 24: Graph of the difference in mean squared error for different amount of samples per step andamount of samples reprojected, using a step size of 5° and a maximum error of 1
256 .
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Figure 25: Difference between the default path tracer (left 106ms) and the reprojection method of 64samples per step while reprojecting four samples per pixel (right 125ms). Both methods take four samplesafter the final rotation.
The average time for a frame with one sample per pixel without reprojection is 25, 99 milliseconds,which is almost three times slower than for the Cornell box scene. One reason for the increase in frametime is the amount of triangles that are in the scene. The material complexity with textures also causesan increase in frame time. The time for one frame with reprojection is 31, 64 milliseconds, which givesan overhead of 18%. When reprojecting four samples per pixel the overhead becomes 17%. This is a 8%reduce in overhead compared with the Cornell box, what can be a cause of the scene complexity.

4.3.3 San Miguel

The San Miguel scene contains more refractive materials and it has a directional light. The refractive ma-terials can be seen in black in the visualization image of the reprojected pixels in figure 26. Such materials,the fountain water and glasses on the table, are not reprojected because of their material complexity andhigh view dependency.

Figure 26: Reference image of the SanMiguel scene after rotating one hundred degrees, with a reprojectionvisualization of the last five degrees turn.
From the results in figure 27, we can see that reprojection still improves the image quality over thedefault path tracer. But the difference between 32 or 64 samples per step does not seem to matter in thisscene. Also the distance between the reprojection method and the default path tracer decreases fastercompared to the other scenes. Next to these differences, we see that a rotation of step size 50° does nothave any effect on the San Miguel scene (appendix B.3). We try to find the reason for the different resultwith some scene property tests in chapter 4.3.4.
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Figure 27: Graph of the difference in mean squared error for different amount of samples per step andamount of samples reprojected, using a step size of 5° and a maximum error of 1
256 .

Figure 28: Difference between the default path tracer (left 145ms) and the reprojection method of 64samples per step while reprojecting four samples per pixel (right 170ms). Both methods take four samplesafter the final rotation.
The frame time for one frame with one sample is increased to 36.35milliseconds without reprojection,because the scene complexity and the amount triangles is increased compared to the Sponza scene. Withreprojection it takes 43.01 milliseconds, which gives an overhead of 15%. For reprojecting four samples atonce it gives an overhead of 18%. The measured overhead for the San Miguel scene is comparable to theoverhead of the Sponza scene.

4.3.4 Scene property tests

Which scene property influences the quality of our reprojection method is tested with the same scenes asin chapter 4.2.4. The following figures 29, 30, 31 show the results of reprojection in the different scenes ofthe Cornell box, making use of reprojection with 32 samples per step and a maximal error of 1
256 . For allthe results see the appendix B.1.5.
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Figure 29: Reference image of the Cornell box with directional light, with the result graph.

Figure 30: Reference image of the Cornell box with refractive materials, with the result graph.

Figure 31: Reference image of the Cornell box with a Buddha model of 1087726 triangles, with the resultgraph.
From the result we can notice that different lighting or the amount of triangles in the scene does notinfluence the effectivity of our method. Figure 30 shows that the material complexity does matter, just likethe high reflective scene, which is in the appendix B.1.5. This explains why the reprojection method is lesseffective in the San Miguel scene than in the other scenes, because the San Miguel scene contains morecomplex materials.

4.4 Combination results
For the combination of the two methods we use a few of the previous tested settings. So we take the bestsettings for theminspp ∈ (2, 4) andmaxspp = 32 founded in chapter 4.2. For reprojection we take thebest rotation step size 5° with the smallest acceptable reprojection error 1

256 . The amount of samples wetake per step is both tested for 32 and 64 samples per step. The amount of samples reprojected is alsotested with one or four samples. The same kind of test is preformed like the reprojection method tests inchapter 4.3 and the results are compared with the reprojection method and the default path tracer.
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4.4.1 Cornell box

Figure 32 shows the results of all different settings on the combination method, which uses adaptive sam-pling and reprojection. Just like the results of the reprojection method it improves the default path tracerin the first few milliseconds. Only now, if the methods useminspp = 2, the default path tracer catches uparound 200 milliseconds, which is less promising than the reprojection method.

Figure 32: Result graph of the combination method with different settings.
As a comparison of the default path tracer against the reprojection and combination method, we takethe settings of 64 samples per step withminspp = 4 andmaxspp = 32, while reprojecting one sample at atime. This comparison can be viewed in figure 33. The graph shows that the combination and reprojectionmethod do not give very different results. In figure 34 the image comparison after 100 milliseconds isvisualized. Here is a small noise reduction visible between the combination and reprojection method onthe right border of the image. In this part of the image, a new part of the scene is introduced that does nothave any samples yet that can be reprojected. The combination method uses adaptive sampling to focuson such parts of an image.
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Figure 33: Comparison between the default path tracer, reprojection and the combination method.

Figure 34: Comparison between the default path tracer (left 109ms), reprojection (center 106ms) and thecombination (right 106ms).
4.4.2 Sponza

The results of the combination method in the Sponza scene in figure 35, show a longer advantage over thedefault path tracer compared to the results of the combination method in the Cornell box scene. Also theresults show an order of improvement: 64 samples per step improves on 32 samples per step, aminspp =
4 improves on a minspp = 2 and reprojecting four samples gives a better result than reprojecting onesample.
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Figure 35: Result graph of the combination method with different settings.
For the comparison of the combination method with the reprojection method and the default pathtracer, the same settings are used as for the comparison in the Cornell box scene. For the first 700millisec-onds the combination method seems to give a better result instead of the reprojection method (see figure36). This is possible, because the Sponza scene is more complex and needs more time per frame, wherethe adaptive sampling in the combination method gives a reduction in frame time, by choosing pixels thatneed more samples. In the comparison images in figure 37, which are taken after 200 milliseconds, wesee a noise reduction between the default path tracer and the reprojection method. However, when wecompare the reprojection method with the combination method, an improvement is hardly visible. Onlyabove the blue curtain on the right, a small noise reduction can be noticed.

35



Figure 36: Comparison between the default path tracer, reprojection and the combination method.

Figure 37: Comparison between the default path tracer (left 221ms), reprojection (center 201ms) and thecombination (right 201ms).
4.4.3 San Miguel

In chapters 4.2.4 and 4.3.4 we have seen that directional light influences the adaptive sampling results andcomplex scenematerials influence the reprojection results. The SanMiguel scene has both directional lightand complex scene materials. The results can be seen in graph 38. All the different settings do not deviatemuch from each other, but they all give an improvement on the default path tracer for a small amount ofmilliseconds.
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Figure 38: Result graph of the combination method with different settings.
The comparison gives the same results as in the Sponza scene (see figure 39). Here the combinationmethod improves on the reprojection method, but only for a short time, which is the same on all otherresults on the San Miguel scene. In figure 40, the improvement is hardly visible between the combinationmethod and reprojection method. Still the dark areas get a reduction in noise compared to the defaultpath tracer.

Figure 39: Comparison between the default path tracer, reprojection and the combination method.
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Figure 40: Comparison between the default path tracer (left 412ms), reprojection (center 422ms) and thecombination (right 414ms).
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5 Discussion
Chapter 4 shows all the results of both methods and the combination method, while using different pa-rameters and scenes. From the results of the scene property tests, we know that both methods dependon the scene complexity. Still most of the results give a higher quality measure in a shorter amount of timecompared with the default path tracer.

Adaptive sampling improves the quality of the image in the first milliseconds compared with the de-fault path tracer, by resolving pixels who got a higher chance of noise. This only applies for the Sponzascene and Cornell box scene, because the San Miguel scene contains directional lighting, which affects theadaptive sampling. After an amount of milliseconds, the default path tracer catches up with the adaptivesampling method. We, however, are focused on low render times which gives us the preference to theadaptive sampling method. When we useminspp = 8, the default path tracer gives a better result thanthe adaptive sampling method. We expect that a minspp of eight increases the learning time too muchbefore the method has effect, which gives worse results compared to the default path tracer within thefirst few milliseconds.The heatmaps of the scenes, which show where the focus of our adaptive sampling method lies, showthat we focus on darker areas and ignore brighter spots. This is exactly what we want to see, becausebrighter spots converge faster, like the stonewall above the arc in the Sponza scene. There seems to be nodifference in sampling probability when we look at shaded areas in the heatmap of the San Miguel scene.Here we scale the variance too much by the luminance, which gives the same probability to all shadedareas.By first resolving pixels who have a higher chance to get noise, the outcome of the adaptive samplingmethod can be a better source for filtering algorithms. Such algorithms depend on the input, becausewhen there is less high frequency noise the output of a filtering algorithm gets more appealing.If the render time does not matter, the adaptive sampling method will not improve on the default pathtracer. We make an approximation on how much more samples we need, based on the variance knownso far. If the approximation is not correct, then the probability of some pixels is too small to get enoughsamples, in which case the default path tracer preforms better over time.
The reprojection method improves the quality of the image in an early stage, what is practical for smallcamera movements in real-time applications. Using the material properties as a guideline if we reject oraccept a reprojection, like we do, has not yet been done by the mentioned work in chapter 2. Günther andGrosch (2015) has an increase in error when an object contains glossy or glass material, but this is causedby the difference in color and not by looking explicitly at the material property. Using the reflection termfromWalter et al. (2007) for the error calculation is promising, because highlights are not reprojected on aglossy material, but other parts of a glossy material are. This is not visualized in the results, because we usea rotation of the camera instead of a movement of the camera towards another position, which is neededfor a change in the highlights.By ignoring glass and high reflective materials, the advantage of reprojection method decreases whilethe quantity of such materials in a scene increases. Establishing a mapping of reflections between frames,like they do in Xie et al. (2017), could solve this. We recommend using adaptive sampling, to solve this, be-cause mapping reflections introduces more overhead, memory usage and unnecessary complexion whena ray reflects multiple times.The benefit of the reprojection method increases when we rotate less, which is clearly visible in all theresult graphs. It is also an obvious conclusion, because with a smaller rotation more of the previous frameis still visible in the new frame. However, while rotating with 50° the reprojection method is less effective,it still improves the default path tracer in the Sponza scene and Cornell box scene. Just like the amount ofrotation the amount of samples per step gives an expected result. If we takemore samples per step, we geta better result, because more samples, which are already closer to the correct value, get reprojected. Wecan also see an increase in result when the amount of samples we reproject is set to four. The reason thatit improves, is because the chance that a pixel reprojects at least one value increases, where reprojectingone of the four samples is always better than none. Changing the maximum allowed error between 1

256and 8
256 , does not seem to affect the result of the reprojection method. Therefore we advise to use thelower maximum error to come closer to a physical correct image.The frame time of a path tracer increases more based on the amount of triangles in the scene, but theoverhead of reprojection decreases when more triangles are added. This is because the execution time ofreprojection scales less on the amount of triangles compared to the path tracing algorithm. The only partof reprojection that is influenced by the amount of triangles is the verification phase, because here a ray
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needs to be traced. Overall the reprojection method increases the frame time on every scene, but withinthe same amount of milliseconds as the default path tracer, it still gives a better result.
Combining the methods is useful for small movements in a real-time application. Noise introduced innew visible parts of a scene, after a movement occurs, are quickly reduced (see figure 34), which is anadvantage for filters and the visual aspect of the image. The adaptive sampling method also amplifies thepixels that could not be reprojected by the reprojection method.The benefit of combining adaptive sampling with reprojection seems to be dependent on the scenecomplexity. On the Cornell box scene the combination method results are worse compared to the repro-jection method. A reason could be that the final rotation in the Cornell box scene does not introducecomplex scenery, which makes the adaptive sampling focus first on parts that are not important. For theSponza and SanMiguel scene the combinationmethod gives the best result. The difference with the repro-jection method is small, but there still is an improvement in the first 500 milliseconds for the Sponza andSan Miguel scene. Using different parameters within the combination method gives the expected result.Just like in the reprojection method, there is an improvement in order of amount of samples per step andamount of samples reprojected. For the setting of minspp, we recommend using four, because in mostcases it improves on aminspp = 2.
Improvement on the default path tracer is a good step towards real-time applications, but as we cansee in themeasurements the amount of milliseconds it takes to get one frame is still toomuch for real-timeapplications (at least 30 frames per second). Even if the frame timewas below 33milliseconds the graphicsquality result would not be satisfying enough, because the results still contain noise what we can see infigures 21, 25, 28, 34.
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6 Conclusions and future work
The goal of the thesis is to improve the efficiency of a real-time path tracer using reprojection and/oradaptive sampling, without exceeding a specified maximum error. Within the same amount of time asthe default path tracer, which uses variance reduction techniques, the reprojection method improves theefficiency after a movement occurs in the first milliseconds. Here we chose a maximum reprojection errorof 1

256 , because it is the smallest integer value difference that can be visualized on most of the standardmonitors. We calculate the reprojection error with the reflection term of Walter et al. (2007), which takesthe roughness of the materials into account. For glass or highly reflective materials we do not reprojectsamples, because such materials are very dependent on the view position.
Using adaptive sampling on top of the default path tracer yields a better efficiency, if we compare thevariance of the distance to the reference pixels, with the default path tracer. The amount of efficiencydepends on the minimum and maximum amount of samples we take, where in between samples are dis-tributed by a decreasing threshold based on the variance of the pixels. The amount of samples a pixel getsbetween the minimum and maximum amount of samples determines a probability, which is used to dis-tribute new samples. By scaling the variance with the luminance of a pixel, our adaptive sampling methodfocuses more on dark areas of a scene.
Combining the methods gives adaptive sampling more focus on the pixels that are new or did not geta sample from the reprojection method. Therefore, it quickly reduces the largest amount of noise whichis useful for other techniques like filtering. The combination is a small improvement on the reprojectionmethod when used in larger scenes. Different scene properties like: lighting, materials and amount oftriangles, influences both the adaptive sampling as the reprojection method. This makes the amount ofefficiency that both methods provide scene dependent.
Currently the methods are only available for static scenes. For future work we would like to see animplementation of the methods in scenes with moving objects and lights. For moving objects, an object IDcould be stored on the first intersection point. The ID can be compared with the object that is found duringthe verification phase. Moving lights are more difficult, but should be possible by casting shadow rays tothe moving light and verificate if it is still visible. The bidirectional scattering distribution function can alsobe used to determine a reprojection error for moving lights, by using the incoming light direction.Future work for the adaptive sampling method is dynamically increasing or decrease the probabilityof sampling a pixel. This could be done by keeping the variance of the pixels updated, or, if the rendertime does not matter, taking neighbour pixels into account to estimate an error to the reference pixel likeRousselle et al. (2011) and Li et al. (2012).We would like to see the method in combination with a real-time filter, which may remove all the noisein the first milliseconds. An implementation of the method into a bidirectional path tracer would also beinteresting, because a bidirectional path tracer gives a faster result on complex scenes, especially for glassmaterials that introduce caustics. We expect that the combination method will enhance the result of abidirectional path tracer, but a drawback would be the frame time, which increases for a bidirectional pathtracer.
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B.1.1 Results for 1spp 32sps

B.1.2 Results for 1spp 64sps

50



B.1.3 Results for 4spp 32sps
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B.1.5 Results for different scene properties
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B.2 Sponza
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B.2.1 Results for 1spp 32sps
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B.2.2 Results for 1spp 64sps

B.2.3 Results for 4spp 32sps
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B.2.4 Results for 4spp 64sps

B.3 San Miguel
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B.3.1 Results for 1spp 32sps
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B.3.4 Results for 4spp 64sps
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