
MD2ME
A man ual

Revised by Stephanie Björk1 on January 9, 2018

1. Intr oduction
MD2ME (Markdown-to-ME) is a file converter written entirely in sed that con verts
a document formatted in Markdown into a document that can be processed by
TROFF with the help of the -me macros. In other words, it converts Markdown
syntax to TROFF syntax whilst also offering other extra features that extends
Markdown. It is free and open-source software (c.f. § License).

Its original purpose was to convert simple Markdown documents that consisted of
a few sections of paragraphs of text into Troff documents which drives the printer
to print the page appealingly. It is an attempt to combine the convenience of writ-
ing prose in Markdown and the ability to print beautiful documents in Troff. The
process of writing and printing is now separated; documents can be written virtu-
ally distraction-free without any worries about the printing process. From the
original purpose, the converter has grown to cover more areas, and it is now
quite capable of understanding a substantial amount of Markdown syntax.

Because MD2ME was made in sed , it can only parse a proper subset of stan-
dard Markdown. To make up for this, MD2ME adds and extends features from
standard Markdown wherever it can by taking advantage of TROFF’s flexibility
and programmability, and of some of its preprocessors like eqn and tbl. Most of
these are special requests and additional HTML-style entity characters. Conse-
quently, standard Markdown syntax is also a proper subset of MD2ME’s Mark-
down, and the two syntaxes will never completely match any time soon.

Fortunately, MD2ME’s special requests are actually HTML-style comments in
standard Markdown. So, if those special requests cannot be understood by the
typical Markdown parser, then they simply do not appear on the resulting page.
This guarantees that the special requests will affect the page if and only if they
can be understood by a proper parser, like MD2ME. Unfortunately enough, addi-
tional HTML-style entity characters will not appear so well on a web browser.

This makes MD2ME very compatible with Markdown. Almost any Markdown doc-
ument should be parsable by MD2ME and also any MD2ME document should be
parsable by any standard markdown parser. In essence, MD2ME is just a

1 Author’s current address: 〈katt16777216@gmail.com〉

markdown parser with a few extra things.

MD2ME is not a Markdo wn-to-man converter. It does convert Markdown syntax
to troff- and consequently nroff- compatible documents, but the intention is not to
convert to a format suitable for UNIX manual pages. For those purposes, see
[Ronn](https://rtomayko.github.io/ronn/).

MD2ME was made with the UNIX philosophy in mind. It uses the very basic utili-
ties found in UNIX to achieve great things: document conversion. Thus, almost
anyone with a terminal can use it, as sed and groff are v ery likely already
installed amongst other things!

For succinctness, henceforth read Markdown as the standard Markdown format-
ting syntax itself and markdown as any program that parses standard Markdown
code unadorned by MD2ME. Notice the different letter casings. To clarify,
MD2ME is not markdown , but it understands Markdown .

1.1. Short intr oduction to TR OFF
TROFF is a document formatting program along with its own document formatting
language. A TROFF document is simply a text file of largely plain-text with its for-
matting language interspersed. The TROFF program reads a TROFF document
and parses its formatting language. The language gives the program instructions
on how text should look like on paper: the typeface, font style, font size, &c. The
program then interprets the instructions and instructs a printer on how the printed
page should look like.

The TROFF program itself knows very little about the layout of a page actually.
That is, it is very easy to keep typing your document in the plain language of
TROFF and have the text uncomfortably touch the margins. This is not seen as a
disadvantage, but rather signifies TROFF’s capability of flexibility: some day in the
future, you might want to accurately recreate a 3-year-old’s scribble on a page in
TROFF, which obviously requires a lot of flexibility.

Because of the flexibility and programmability offered by TROFF, it allows for the
development of other pre-programmed set of instructions written in the formatting
language. The instructions give structure to the flexibility by defining commonly
used constructs in a typical prose (e.g. paragraphs, lists, and footnotes) while
also defining standard layouts (e.g. margins and automatic pagination). These
aforementioned pre-programmed set of instructions are often called macros .
Together, they make up a macro package . They are typically stored in a file
called at TMAC file, dubbed from Troff MACros .

When writing a quintessential essay that is compliant with most style guides, it is
appropriate to use TROFF with a macro pac kage. Two of the good macro pack-
ages for miscellaneous writing are called -me and -ms which all result in
approximately the same page layouts and prose style. However, if you do want
utmost control and flexibility and probably not actually typing paragraphs, plain
TROFF is the way to go.

Writing a document in TROFF with the help of a macro package and using
TROFF to compile and print the document is quite like using a WYSIWYG word
processor like Microsoft Word or LibreOffice Writer for that process. However,
there are a few significant differences of which to be mindful:

• When used with a good macro package (like -me), the layout of the prose is
automatic and consistent throughout the entire document. The writer is not
responsible for the style of the prose. They are only responsible for the actual
written content itself and properly laying out a few instructions to denote the
semantic significance of parts of prose. All the styling details are abstracted
to the macro package.

• In word processors like Word , the writer is most often responsible for keeping
the styles consistent by manually adjusting spacing, sizes, and minor aspects
here and there. This is okay for smaller documents, but a real nuisances for
larger ones like books spanning several volumes.

• TROFF documents are simply plain text. This means that an intermediate
user of TROFF can look at the TROFF source file with almost any text editor,
including ed , read from it on paper even without access to a computer or a
compiler, and even make a few adjustments. The last bit is important when
you need to collaborate with other users. Since implementations like GROFF
are free and open-source, it means that anyone can collaborate on a docu-
ment project, regardless of how much money they have. The TROFF syntax
has also been fairly consistent since 1973, so there should not be any
unpleasant surprises like older formats being incompatible with newer ver-
sions of the software and vice versa.

• In word processors like Word , the document is likely in a proprietary format
that cannot normally be read or made sense out of without a proper software
on a proper computer. The only way to read it is to use Word or a Word-com-
patible software. Word itself is not free software, so technically, not everyone
has access to it. A particular version of the document format can also be
made de-facto obselete at anytime, often causing unpleasant surprises.

• There is a catch! TROFF does seem to be better than word processors, but
the price to pay for all the convenience and comfort is that you have to
remember necessary commands and practise them. This is one of the rea-
sons that make document formatters like TROFF not very appealing to the
general public. However, users who have gotten used to them do find word
processors very inefficient, slow, and unwieldy.

• In word processors, commands hardly need to be learnt. Just type as you go!
Formatting options are accessible by the click of a mouse, or a convenient
shortcut combination.

• In TROFF, it is not possible to view documents live as you type character-by-
character, unless you tell the computer to use TROFF to compile your docu-
ments every ½ second, which usually is not very efficient.

• In word processors, this ability to view documents live as you go is generally
the main feature that is most likely taken for granted by many.

This makes TROFF in tandem with a macro package very similar to LATEX than to
any particular WYSIWYG software. Plain TROFF without a macro package is thus
very similar to plain TEX.

TROFF is a document formatting system that first saw the light of day in around
1973 at Bell Labs. Back then, it was originally written by the late Joseph F.
Ossanna. A few years later, it was rewritten in C and improved upon with the
help of Brian W. Kernighan. Development continued slowly albeit steadily until
Joseph F. Ossanna’s death as a consequence of heart failure in 1979.

Thankfully, TROFF’s development did not stop there for too long. In the conse-
quent years, TROFF had undergone many significant improvements so as to be
typesetter-independent2 amongst other things, largely led by Brian W. Kernighan
who has been using TROFF until today for many of his books.

Unfortunately, TROFF was proprietary and under AT&T’s hands until its release
not so long ago. Due to this, James Clark underwent an attempt to write a fork of
TROFF in C++ in before 1990. Since 1999, Werner Lemberg and Ted Harding
took over the maintainance of TROFF as one of GNU’s projects, which is com-
pletely free and open-source. The fork is called GROFF.3

The importance of GROFF is that it has made significant improvements and
added more features to classical AT&T TROFF and made TROFF widely accessi-
ble to the public domain. Along also came other free and open-source imple-
mentations, most notably Heirloom TROFF.

TROFF was derived from NROFF, which was derived from the original ROFF
(run-off), which was pronounced like rough . Therefore, NROFF is pronounced
like en-rough , TROFF is pronounced like tee-rough , and GROFF is pronounced
like gee-rough . It is not necessary to write TROFF, NROFF, or GROFF in all capi-
tals. Few publications do this, and would prefer troff , nroff , and groff instead.

It is not necessary to ha ve familiarity with TROFF to use MD2ME, but it can defi-
nitely help. For more information about TROFF, see the Wikipedia page
〈https://en.wikipedia.org/wiki/Troff〉, [a TROFF resource site](http://troff.org/).

1.2. Short intr oduction to Markdo wn
In a sense, the idea for Markdown is quite similar to that of Troff. The writer
writes her prose in a normal manner and intersperses special instructions to
denote special things she needs in her document; like, * (asterisk) for italics, **
(double asterisks) for bold, # (hash tag) for sections, and ` (grave accent) for

2 In the late 1900s, a typesetter was kind of analogous to a printer today. However, pro-
grams like TROFF in their early days were very much dependent on and relied upon the ability of
a specific typesetter (i.e. printer) to drive the printhead print what must be printed onto paper.

3 The dramatic suspense was not intended.

code. Markdown syntax is quite easy to type and quite obvious as to what they
mean: for example, modes of emphases in Markdown look very natural for
emphasis, and sections look just like sections.

Like TROFF, a Markdown document source file with interspersed instructions
resides as a plaintext file. So, anyone can understand, read, and edit the docu-
ment without any special or fancy software that cost large sums of money. Even
without any computers, the source file can be printed as-is on paper and is still
very much understandable.

Markdown is designed as a writing tool for the web. If you want to write an arti-
cle, a draft, or take notes in a class, Markdown is likely for you. Unlike TROFF,
the markup language for Markdown is very far from as complicated or as
detailed. Markdown just needs to know what different parts of the document
mean (italics, bolds, lists, section headers) and let the web browser handle the
displaying of the content, which should be consistent throughout.

This means that it should be very easy to write naturally in Markdown as would
anyone who can write with pen on paper.

Because MD2ME is a Markdown-to-Troff converter, it expects a certain amount of
Markdown literacy from its users. Trust me on this: Markdown syntax is a million
times less hellish than TROFF’s and everything will most likely just click. For
more information about Markdown, see Markdown Basics 〈https://daringfire-
ball.net/projects/markdown/basics〉 and move on to Markdown Syntax
〈https://daringfireball.net/projects/markdown/syntax〉 if you have time.

2. Using this man ual
This manual aims to completely and precisely describe all the Markdown syntax
that MD2ME understands, their idiosyncrasies, and how they differ from standard
Markdown syntax. Where necessary, it also documents any special requests and
extended features provided by MD2ME that do not exist in standard Markdown,
and features in standard Markdown that do not exist in MD2ME.

The sed script itself is already v ery well-commented throughout. So, taking a
look at the source file may as well be a good idea if you want to understand how
the parsing works.

Material in this manual assumes that you are already familiar with Markdown and
TROFF. Very little to no introduction will be given for any technical points that
may arise. Therefore, the manual does not serv e as an introduction or reference
manual for the standard Markdown syntax or TROFF syntax. If you need some
familiarity or a reference manual for those two, see the introductory subsections
above this section.

For a table of contents which enumerates all sections in this document, refer to
the last page.

This manual was written by Stephanie Björk on January 9, 2018. It is licensed
under Creative Commons BY-SA 4.0. Make sure you understand your rights and

limitations as stated by [the license](https://creativecommons.org/licenses/by-
sa/4.0/).

The entirety of this document was written in Markdown with some special MD2ME
syntax interspersed here and there. If the document you are reading has been
rendered using TROFF or a compatible compiler like Groff or Heirloom Troff
through MD2ME, it stands as an example of MD2ME’s conversion capabilities and
also as a showcase for the special requests it provides.

For the original Markdown document, see 〈https://google.com/ncr〉

3. Usage
MD2ME is a sed script that adheres to the UNIX philosophy. All input and output
data are in plaintext format and relies on the concept of the standard input and
standard output, programs can be glued together to form metaphorical pipelines
with valves and mid-stream processors, and all data that must be prolonged are
stored as plaintext in files on disk.

Assuming MD2ME is in one of the paths in $PATH and its basename has not
been changed, executing MD2ME can be as simple as typing md2me on the shell
and pressing ENTER. Without a list of files provided as arguments to be pro-
cessed, md2me resorts to processing the standard input. Options to md2me are
the same options to sed . Lik e sed , md2me oper ates in a line-oriented man-
ner, which actually poses a few limitations as we shall see further.

Therefore, the synopsis for MD2ME goes something like this:

md2me [options]... [file]...

where [file]... is a list of one or more files separ ated by spaces.

3.1. Examples
3.1.1. Generating prints
MD2ME is very likely used for generating PDF or Postscript files with structured
layout ready for priting out of Markdown documents. This can be done through a
TROFF compiler called GROFF and specifying the output device (format) to PDF
or PS. The following is an example that will generate PDF output to arti-
cle.pdf from a Markdo wn file article.md , which ma y contain UTF-8 char-
acters like åäö , equations, and tables within the prose.

md2me article.md | groff -Tpdf -Kutf8 -e -t > article.pdf

First, md2me converts Markdown syntax into TROFF syntax. The TROFF syntax
is then passed over to groff which converts the human-readable TROFF instruc-
tions into PDF instructions which describe how text should end up on a page.
Finally, the PDF output is redirected out of standard output into a file called
article.pdf , which should be a v alid PDF file if nothing goes wrong some-
where in the pipe line.

To groff, the option -t tells g roff to preprocess the document and look for tables
set in tbl, the option -e tells g roff to preprocess the document and look for equa-
tions set in eqn, the -Kutf8 tells g roff to convert UTF-8 byte sequences into
equivalent character entities that groff can understand, and -Tpdf tells g roff to
postprocess its machine-friendly typesetter-independent instructions using a PDF
maker of some sorts called gropdf . Thus , the intellectual may use the follow-
ing command, which achieves the same thing as the one before.

md2me article.md | groff -Z -Kutf8 -e -t | gropdf > article.pdf

Likewise, to have the output be Postscript, the following commands do the same
thing as the examples above. The only difference is that the output is now in
Postscript.

$ md2me article.md | groff -Tps -Kutf8 -e -t > article.ps
$ md2me article.md | groff -Z -Kutf8 -e -t | grops > article.ps

The latter variant is reserved for the very smartest people. By default, groff does
the postprocessing from a typesetter-independent format into Postscript. So,
there is no need to specify the option -Tps , as the output will be in PS an yway.
Thus, the following command will do the same thing.

md2me article.md | groff -Kutf8 -e -t > article.ps

It is possible to omit the -e option if y our document does not have equations
(very likely), the -t option if y our document does not have tables (likely), and the
-Kutf8 option if y ou don’t write anything beyond ASCII (unlikely). Expect groff
to run faster by a few milliseconds as the following command:

md2me article.md | groff -Kutf8 -e -t > article.ps

is internally run like this:

md2me article.md | tbl | eqn | preconv -eutf8 | troff | grops > article.ps

3.1.2. Getting a print pre view
Another practical example is using zathura to read the Postscript output from
groff directly from the Standard Output. This is a good way to preview your docu-
ment before printing. The following example illustrates the command to be used.
This assumes that Zathura is installed with a Postscript interpreter like gs .

md2me article.md | groff -Kutf8 | zathura -

For more information on options and arguments to md2me, groff, and zathura,
see their respective pages on the section 1 of the manual pages.

3.1.3. Inspecting the TR OFF sour ce
The output from md2me is just TROFF, but there is no guarantee that it is very
appealing to read. Nonetheless, it can be useful for those who want to inspect
the TROFF source code to check for quality or to satisfy their curiosity. Though, it

is more often the case that the output TROFF source file may occasionally need
to be edited to cater for something that MD2ME cannot do. The following com-
mand pipes the Troff output to a file called article.tr .

md2me article.md > article.tr

The author does not mind close examination of the generated TROFF output.
Just do it for your own sake.

4. Initialization
4.1. TROFF document header
At the beginning of any input file read, whether it is a real file or the standard
input, MD2ME will insert approximately 80 lines of plain GROFF instructions and
comments. These comments give general information about what piece of soft-
ware generated the TROFF file; the comments are obvious and also documents
almost every line of instruction quite well, so read them if you want to. The
instructions are a little bit more complex and all play a part in making the MD2ME
possible.

sed cannot do e verything, so some logic must be outsourced to TROFF. None-
theless, the logic, whether it be processed by sed or TR OFF, they still pertain to
typesetting and getting text laid out on a page. The following list vaguely details
what the instructions do listed in the order that they appear on the output file and
are thus executed by TROFF.

(1) Is the compiler Heirloom TROFF or GNU TROFF? If it is, proceed. If
not, fail with a message telling the user that their compiler is not compati-
ble. The instruction lines following this and the typographic features
required by MD2ME are simply not catered for by the classical AT&T
TROFF.

(2) Are the -me macros already loaded, perhaps as a command-line option
to groff earlier? If they have not been loaded, then automatically load it
now. It’s best practice not to load the macros first anyway for conve-
nience and flexibility during the header of the document. This basically
checks for the existence of the .lp macro which giv es left-justified para-
graphs.

(3) The format for the 24-hour clock is set with appropriate 0-paddings.

(4) Some strings are defined for [] (a pair of square brackets), ... (horizontal
ellipses), links 〈#〉, the TEX logo, and the LATEX logo. They shall be used
throughout the document wheresoever necessary.

(5) Some macro definitions are defined that toggle italics , bold , and bold
italics f onts. A macro is defined that toggles the monospace typef ace,
and one is defined that collects all information about section headers,
their numbers, and the number of the page in which they occur. Two
blank macros, .XS and .XE , are also defined as placeholders f or

verbatim blocks of TROFF code. They will get interspersed within the out-
put wheresoever necessary. A macro also gets extra instructions
appended to it so as to allow blockquotes to be nested.

(6) The typeface, font numbers, and standard point sizes are defined. The
typeface Helvetica is defined to be the active and default typeface. Its
fonts, roman, italics , bold , and bold italics , are mounted on slots , 1, 2 ,
3 , and 4 respectively. The monospaced f ont is mounted on slot 6 for
convenience. Paragraphs shall be set in 12 points, titles (headers and
footers) in 12 points, block quotations in 10 points, section headings in 14
points, and footnotes in 10 points. Any non-paragraph text other than
those shall be set in 12 points.

(7) Colours are enabled. Some colours are defined: black (bk), blue (bl). All
text shall be set in black. Links are set in blue.

4.2. URLs f or ref erence-style links
URLs for reference-style links like [link][ref] are collected when the y are
defined into a file called reflinks.md2me . This means that the sed script
will need write access to the current working directory. If there are reference-
style links in the document, they will be collected into that file. If such is the case,
after the sed script e xits, you must rename the file to reflinks.md2me.tr on
the same directory, then rerun the sed script again on the same input file. After
the initialization sequence detailed above, the contents of reflinks.md2me.tr
will be placed there. Only then will URLs for reference style links show up prop-
erly.

The file reflinks.md2me.tr simply contains string definitions f or every link
whose URL has thus far been collected. Note that the file will be placed after the
first line. Therefore, the first input line may not contain reference-style links but
the 2nd and subsequent lines can, as the string definitions do not get loaded
before the first line is processed, but right after it.

Two passes are necessary as sed tr averses through the lines of the file in a sin-
gle-pass mode. It cannot go in reverse, only forwards is allowed. Since the
actual URLs for reference-style links may very well be defined after its associated
reference-style links occur, this becomes quite a problem. This is analogous to
why LATEX ToCs need to be generated by running the LATEX compiler twice.

For grace and simplicity, avoid reference-style links if at all possible.

For more information about using reference-style links, see the relevant section
hereafter.

5. Token precedence
Not all lines, or tokens are created or interpreted equally. Some of them are pro-
cessed with higher precedence than the others, though the level of precedences
are always consistent throughout every input line read by MD2ME. The following

list enumerates each token in the order that they are processed by the sed
script, starting from higher precedences to lower ones. Operands to and and or
conjunctions used in the list are written to reflect on the precedence at which they
are processed.

(1) HTML block elements

(2) HTML span elements

(3) HTML comments that are not special requests to MD2ME

(4) HTML doctypes

(5) MD2ME requests that stay on one line

(6) MD2ME footnote block entries

(7) MD2ME TROFF preprocessor blocks and TROFF-copy blocks

(8) MD2ME requests that do not exist

(9) Section headers

(10) Paragraphs

(11) Backslash escapes

(12) Implicit URLs and emails to be made as links

(13) HTML tags that cannot be parsed

(14) Horizontal rules

(15) Unordered and ordered lists

(16) Hard line-breaks

(17) Inline code and modes of emphases

(18) Capitalized names and acronyms whose point size need to be reduced

(19) English ordinal numbers with correct grammar

(20) Footnote numbers which need to be interpolated

(21) Markdown-style images

(22) Reference-style and inline-style links

(23) Sentences separated by a full stop, an exclamation mark, or a question
mark; and followed by 3 spaces. Extra trailing spaces at the start or end
of line that need to be removed.

(24) Proper names and acronyms which require special typographic features

(25) HTML and MD2ME-additional character entities

Assuming two tokens x and y in any string, if x has a greater precedence (value)
than y , then y has a greater anti-precedence (value) than x . In this case, within
any given string, x is processed before y is processed. A list of precendence is
the inverse over the set of natural numbers of the anti-precendence list; likewise,
a list of anti-precedence is the inverse over the set of natural numbers of the
precedence list. In other words, the list above is an anti-precedence list, as

increasing values denote decreasing precedence. If the numberings in list above
is in reverse order, then the resultant list is a precedence list, as decreasing val-
ues denote increasing precedence.

From the list above, a few of many conclusions can be derived:

• It is possible to have links (anti-precedence 22) within section headers (anti-
precedence 9). The links will be set in the same font and size as regular sec-
tion header text. This is because 22 > 9, and following from the axiom in the
previous paragraph, the token with lower anti-precedence shall be processed
first, then the token with the higher anti-precedence is processed later. Thus,
the section header environment is already prepared before list items are.

• It is possible to have capitalized names and acronyms whose sizes shall be
momentarily reduced (a.p. 18) within section headers (a.p. 9) and paragraphs
(a.p. 10), entailing the same axiom.

• It is possible to have inline code and emphases (a.p. 17) within section head-
ers (a.p. 9), entailing the same axiom.

Quod erat demonstrandum. However, the last conclusion is not possible in prac-
tice due to TROFF’s limitations.

There is no need to memorise or practise these precedences. They are put in
such a way that it should be natural for a Markdown writer.

6. Syntax
In the subsections to follow, Markdown syntax implemented by MD2ME and
MD2ME-specific syntax will be described. The subsections are ordered by the
anti-precedence values from the list in the previous section.

6.1. HTML elements
Only a very small proper subset of standard HTML elements are understood by
MD2ME. These include some block-level elements and span-level elements.

6.1.1. Bloc k-level elements
Markdown-style block quotations and block codes are not supported. The follow-
ing HTML alternatives shall be used instead. The reason for this is because of
how complicated it is to parse those constructs.

6.1.1.1. Bloc k quotations
<blockquote> elements can be used to enclose a quotation. The y can be
nested. MD2ME does not support the email-style b lockquotes that markdown
supports comfortably. So, use this HTML element for any blockquotes and any
other markdown parser will happily parse it too!

The <blockquote> tags themselv es can be indented from the leftmost column
by spaces.

Blockquotes in MD2ME differ from standard Markdown in that all syntax, including
italics and bolds, still get processed and rendered within a blockquote.

Here is an example of a blockquote:
Selection sort iterates through an array of size n once. Each iteration introduces another
iteration over the subarray whose size is n - k - 1 for any given k th iteration. In other
words, each main iteration comes with a smaller iteration that shrinks as a function of
the number of main iterations. Therefore, the total number of subiterations is...

It was typed like this:

<blockquote>
Selection sort iterates through an array of size *n* once. Each iteration
introduces another iteration over the subarray whose size is *n - k - 1* for any
given *k*th iteration. In other words, each main iteration comes with a smaller
iteration that shrinks as a function of the number of main iterations.
Therefore, the total number of subiterations is…
</blockquote>

6.1.1.2. Code b loc ks
<code> elements can be used to enclose a b lock of code. There really is no
need to nest <code> elements , and doing so will only cause confusion to
MD2ME: never nest them. MD2ME does not support Markdown’s 4-space-/tab-
indented code blocks. So, use this HTML element instead, and any markdown
parser will happily parse it too!

<code> tags themselv es cannot be indented. Nonetheless, they should not be
indented even if they could be, as it causes a lot of confusion in prose.

Within code blocks, no tokens or lines are processed. The only processing pro-
cedures done are:

• Backslashes are automatically escaped wherever they occur.
• Dots (.) and apostrophes (’) on the first column of a line get escaped to avoid

misinterpretation by TROFF.
• A line with just <code> starts another code b lock. To get a literal <code> ,

type &Mnn;<code> .
• A line with just </code> will end the entire code b lock. To get a literal

</code> , type &Mnn;</code> .
• The following character entities will be replaced with their characters:

&Mnn; with nothing, < with <, and > with >.

It is best to use < and > f or angle brackets when talking about HTML
code. This is not necessary as HTML tags are normally not understood by
TROFF anyway. It is quite a hassle, but it is just to be compatible with other mark-
down processors.

To be able to fit 80-column lines of code onto an A4 page, even if it hits the mar-
gin, code blocks are set 1 point size smaller than normal text and inline code
spans. They are also set in no-fill mode, i.e. all newlines are displayed as new-
lines.

Here is an example of some code:

.\" Prints integers from 1 to 10, inclusive.

.nr i 0 1

.while \n+i<=10 \{ \

. nop \ni

.\}

It was typed like this:

<pre>
<code>
.\" Prints integers from 1 to 10, inclusive.
.nr i 0 1
.while \n+i<=10 \{ \
. nop \ni
.\}
</code>
</pre>

The inclusion of the <pre> tags is not necessary . They are simply there to be
compatible with other markdowns so that web browsers know to set code in no-
fill mode. In MD2ME, <pre> tags are deleted.

6.1.1.3. Comments
Single-line comments reside on a line of their own. They start the line with <!--
and end it with --> . These comments will not appear on the final output, b ut
will be copied into TROFF, again as comments.

For example, a single-line comment may look like this:

<!-- Sir, yes, sir! -->

Large block comments spanning many lines start with <!-- on a single line of
its own and end with --> on a single line of its o wn. Again the contents of the
comments will not appear on the final output, but will be copied into TROFF, again
as comments.

For example, as block comment may look like this:

<!--
It’s a piece of cake to bake a pretty cake.
If they way is hazy,
you gotta do the cooking by the book.
You know you can’t be lazy!

-->

Naturally, contents within the comments are not processed by MD2ME, unless
they are a closing --> . If a line begins with a series of 2 or more dots , then that
line is escaped, so that it does not accidentally close the comment.

Be mindful of one very important detail. Auto-increment number registers will be
affected within a block comment. If you do not know what this means, you can
ignore this paragraph.

DOCTYPES, or lines that start with <!DOCTYPE are treated somewhat like com-
ments regardless of what line it lies in the file. Unlike comments, they are not
copied into the TROFF output, but rather deleted instead.

Be careful with comments that start with an ! (exclamation mark), i.e. <!-- ! .
These are not comments . They are not processed as comments, but rather as
MD2ME’s special requests. If you want a literal asterisk at the start of a comment,
escape them using a backslash (\e) or &Mnn; , whichever you are comfortable
with.

6.1.2. Span-le vel elements
Only a few span-level elements are processed. If the span-level element cannot
be processed, it is left as-is and passed to the final output.

6.1.2.1. Super scripts and subscripts
Superscripts and subscripts are done using <sup> and <sub> elements an y-
where within a line.

Thus, on the same line of input, I can say ax2 and xi.

This is what was typed:

Thus, on the same line of input, I can say ax² and x_i.

6.1.2.2. Short quotes
Short “quotes” anywhere on a line can be set using “ elements .

The paragraph above was typed like this:

Short <q>quotes</q> on a line can be set using
‘<q>‘ elements.

It is generally recommended that you use the entities “ and ”
for double quotes, and ‘ and ’ f or single quotes instead.

6.1.2.3. Underlines
To get an underlined piece of text, use the <u> element.

So, I can say Hello there!

Note that an underlined block of text may not span to more than one line, and
there should only be one underlined block of text for each line. Otherwise, pre-
pare for a mess.

6.2. MD2ME special requests
Special requests by MD2ME are additional features only available on MD2ME and
are not implemented by Markdown. A Markdown document with these special
requests should still be compatible with markdown parser out there. Therefore, if
the markdown parser cannot parse the requests, they simply will not appear on a
web browser when the document is parsed using markdown. If the markdown
parser like MD2ME can, then there shall be some special meaning associated to
it.

For example, the following equation was set using eqn — an equation setter for
TROFF. The instructions to eqn are sent directly to TROFF through the Markdown
document, by using MD2ME’s special requests. If you cannot see the equation,
your markdown parser simply is not capable of processing the copy request; no
errors or warnings are generated either.

x =
−b ± √b2 − 4ac

2a

This means that documents in MD2ME are fully compatible with regular mark-
down parsers. The heart of this trick lies in the fact that the equation above was
typed like this:

<!-- !eq
x = {-b +- sqrt {b sup 2 - 4ac}} over 2a
!eq -->

Yes! Special requests for MD2ME are simply comments in standard Markdown.
If the parser sees it as a comment, it simply gets ignored and removed. If the
parser sees it as an equation, it gets set on the final output.

This subsection lists all special requests by MD2ME along with their description.
Please note that the requests’ names are quite terse. If you are afraid you can-
not remember them, create an account (if you haven’t already) on Memrise
〈https://memrise.com〉, create your own course, and add into the course requests
and their definitions that you struggle to remember.

6.2.1. Single-line requests
These requests only take up one line.

6.2.1.1. Page header s and f ooter s
Within a page’s margins, there can be header and footer texts. These are
defined by the following requests. The headers are defined as 3-part titles. So,
in a header string like ’foo’bar’lol’ , the left part of the margin tak es takes

’foo’, the centre takes ’bar’, and the right takes ’lol’. The titles are printed without
the quotes.

• <!-- !he ’foo’bar’lol’ --> defines the page header of all pages to
be ’foo’ on the left, ’bar’ in the centre, and ’lol’ on the right. All requests for
page titles take the same type of 3-part titles; the 3-part titles will henceforth
be omitted.

• <!-- !fo --> defines the page f ooter of all pages.
• <!-- !oh --> defines the page header of only od d pages, i.e. pages

whose page number is not divisible by 2.
• <!-- !of --> defines the page f ooter of only odd pages, i.e. pages

whose page number is not divisble by 2.
• <!-- !eh --> defines the page header of only e ven pages, i.e. pages

whose page number is divisible by 2.
• <!-- !ef --> defines the page f ooter of only even pages, i.e. pages

whose page number is divisble by 2.

6.2.1.2. Page mar gins
The margins of a page can be set using the following commands where neces-
sary. Values given here are not defaults. They are simply examples, and they
should be replaced by whatever your use case demands.

• <!-- !po 1i --> defines the page offset, or the amount of spacing from
the left most of the paper to the first character of a left-justified paragraph, to 1
inch.

• <!-- !pl 11i --> defines the page length, or the amount of v ertical
space that text can span before a pagination (page break) is forced upon it, to
11 inches. Try not to use this one in particular; it’s a little bit complicated.

• <!-- !ll 8i --> defines the line length, or the amount of horiz ontal
space that text can span before the line is broken, to 8 inches.

• <!-- !lt 8i --> defines the length of title (headers and f ooters) to 8
inches. If this value is smaller than the amount occupied by the titles, the
titles may overlap.

• <!-- !m1 0.5i --> defines the v ertical spacing between the top of the
paper to the top of the page’s header line, to ½ inch.

• <!-- !m2 0.5i --> defines the v ertical spacing between the bottom of
the page’s header line to the first line of actual content, to ½ inch.

• <!-- !m3 0.5i --> defines the v ertical spacing between the bottom of
the last line of actual content to the top of the page’s footer line, to ½ inch.

• <!-- !m4 0.5i --> defines the v ertical spacing between the bottom of
the page’s footer line to the bottom of the paper, to ½ inch.

• <!-- !mm 0.5i 0.25i 0.25i 0.5i --> (see ne xt paragraph).

There is also a construct like <!-- !mm 0.5i 0.25i 0.25i 0.5i --> ,
which is equivalent to:

<!-- !m1 0.5i -->

<!-- !m2 0.25i -->
<!-- !m3 0.25i -->
<!-- !m4 0.5i -->

i (inches) is just one of the man y scaling factors provided. These are the same
scaling factors as the ones provided by TROFF. There are also c for centime-
tres, v for one line-space, m for ems, n for ens, and many more. For more infor-
mation, see TROFF’s user manual.

6.2.1.3. Chapter s and Parts
Although Markdown is designed with writing for articles for the web in mind,
MD2ME provides the facility to subdivide a Markdown document into several
chapters and parts (Abstract, Preliminaries, Main Content, Bibliography, Appen-
dices). This means that a Markdown document can easily be a small book, with
the help of MD2ME.

The following requests pertain to this:

• <!-- !ch Introductory Mathematics --> creates a chapter called
“Introductory Mathematics.” There is also an additional amount of vertical
space from the top of the page. This amount of space is the same amount
used by PhD theses at UC Berkelly.

• <!-- !ct x --> defines the current portion of the book to x . x can be
replaced with: AB for the Abstract, P for the preliminaries, C for the main
content, B for the bibliography, and A for appendicies. This information is
used to give the right page numbering and chapter style. For example, page
numbers for preliminaries will be in roman numerals, and chapter titles for
appendices will be titled like APPENDIX A .

6.2.1.4. MD2ME-style sections
Instead of using Markdown-style sections with one or more hashtags to indicate
levels, MD2ME-specific sections can be used, but are not compatible with stan-
dard Markdown.

The following requests pertain to this:

• <!-- !sh n Hello World --> creates a section titled Hello World
on level n . The levels can be from 1 to 6, inclusive.

• <!-- !uh Final thoughts --> creates an unn umbered section on the
first depth called Final thoughts .

6.2.1.5. Section indentation as a function of section depth
To adjust the amount of indentation per section depth, the <!-- si -->
request can be used.

For example, <!-- si 2n --> sets section indents to 2 ens per section depth.
So, on the first section depth, the section’s text will be indented by 2 ens from the
left margin; on the second section depth, the subsection’s text will be indented by

4 ens from the margin, and henceforth.

All scaling factors provided by TROFF apply.

6.2.1.6. Changing point sizes
The point size can be adjusted momentarily using the request <!-- sz --> .

For example, <!-- sz 16 --> mak es any text right after it set in 16 points .
The point size is then reset to the defaults upon the next paragraph or block-
quote.

The default sizes are defined in the first few lines at the start of the TROFF output
file. To change them, either change the output file or use a TROFF-copy block.
The reason for not giving much control on point sizes is because there are very
many constructs whose point sizes can be customized, and it is generally better
to use just “plain” TROFF for it.

6.2.1.7. Delimiter s for inline EQN equations
EQN allows for equations or mathematical expressions to appear within a line of

text. This paragraph, for example, contains an inline equation:
x→0
lim

1
x

= ∞.

Unlike block-level equations seen in the introductory part of the section on spe-
cial requests, inline equations will appear as cacophonous jargon as paragraph
text if the Markdown document is parsed by a typical markdown processor.
Therefore, inline equations are not compatib le with Markdown. So, it is recom-
mended only to use them if your intention is only to use MD2ME.

Most writers who use TROFF use the $ (dollar sign) to delimit inline equations, so
eqn can differentiate between text and mathematics. Another popular alternative
delimiter is the @ (commercial at). By default, the delimiter for EQN is not set,
thus in-line equations are not initially possible. To set it, <!-- !ed --> request
can be used.

To use dollar signs ($) as eqn delimiters, do this:

<!-- !ed $$ -->

A few points are to note. Firstly, it is not possible to use HTML or MD2ME charac-
ter entities to represent delimiter characters, for those will not be processed.
Secondly, the delimiter character has to be typed twice, so it is <!-- !ed $$
--> , not <!-- !ed $ --> . Thirdly , if a character is used as a delimiter, that
same character cannot be used as anything else: not even within code blocks;
otherwise, the delimiter character may get interpreted wrongly as an equation.

To turn off inline equations and restore the delimiter for normal usage, the follow-
ing request will do:

<!-- !ed off -->

Quick tip: If you use the dollar sign as a delimiter for EQN and you want to use
the dollar sign to represent currency or something else again, you must use
MD2ME’s dollar sign character entity: &Mdo; . These entities will be able to
escape the grasps of EQN and avoid misinterpretation.

Therefore, it is possible to say: Michael and Jack both share $

√ 2x
log 5

+
5y
6

, with

the delimiters on as dollar signs.

6.2.1.8. MD2ME-style ima ges
Images can be included into the document using a TROFF macro called PSPIC .
To avoid having to use plain TROFF just to call PSPIC, the <!-- !ps -->
request exists. All arguments to the request are directly passed to PISPIC without
any further processing done to the line.

The only image type supported is .eps or encapsulated postscript . Theref ore,
not only is the request not interpreted by Markdown, the image type is not gener-
ally supported by most web browsers either. For this reason, you should only go
through the hassle of converting your JPG or PNG files to EPS if you are certain
your document is only going to be used with MD2ME. Tools to convert include
ImageMagick.

Thus, to include a picture from selfie.eps , y ou can type:

<!-- !ps selfie.eps -->

Since arguments to the request are the same as arguments to the .PSPIC
macro, the line above is equivalent to:

<!-- !tr .PSPIC selfie.eps -->

The size, alignment, and indentation of images can optionally be specified as
options to .PSPIC . F or more information, consult groff_tmac on section 7 of
the manual pages.

6.2.1.9. Keeps
For important or long parts of prose or figures, it may be necessary to make sure
they are able to utilise the most amount of paper as possible with little to no inter-
ruptions in flow. This is where the concept of keeps come in.

For any text within a keep , if the text reaches the end of the page (too long to fit
current page), then that text gets moved over in one whole lot to the next page.
However, if the text does not reach the end of the page (short enough to be in
one page), then it is left untouched.

There are two types of keeps and they all try to achieve the same purpose, but
with different behaviour.

• A bloc k keep is a simple b ut selfish beast. If the text it is guarding is too
long, it simply moves itself and its precious text to the next page and leave a

potentially large blank space bereft of content behind its wake. Otherwise, it
does nothing and stays where it was put.

• A floating keep is a more complicated b ut thoughtful soul. If the text it is
guarding is too long, it moves itself and its precious text to the next page, but
also pulls in the other content that came after it. Otherwise, it moves itself
and its text and resides on the bottom of the page.

In other words, with a floating keep, any holes are filled and text can flow without
interruptions.

In MD2ME, keeps should never be nested.

6.2.1.9.1. Bloc k keeps
Block keeps are started and ended using two requests respectively:

<!-- !bs -->
<!-- !be -->

The requests take no arguments. Any normal text in between those two lines are
protected in the keep, obviously. <!-- !be --> m ust come before EOF.

6.2.1.9.2. Floating keeps
Floating keeps are started and ended using two requests respectively:

<!-- !zs -->
<!-- !ze -->

The requests take no arguments. Any normal text in between those two lines are
protected in the keep, obviously. <!-- !ze --> m ust come before EOF.

6.2.1.10. Table of Contents
Each occurrence of a section, whether in MD2ME or Markdown style, will have
their numbers, names, and the page numbers in which they occur automatically
recorded as entries in an accumulative buffer. Two buffers are used:

• sh for numbered sections of depth 1–6, inclusive;
• uh for unnumbered sections.

To print out the buffer(s) of your choice, use the request <!-- xp --> which
takes one argument: the buffer to dump.

For example: to dump the sh buffer and list out all the numbered sections and
the pages in which they occur, type:

<!-- !xp sh -->

For an example of this, see the end of this manual.

6.2.1.11. n- column pr ocessing
Text can be set in 1-, 2-, or more col-
umns. That is, text on a page can be
subdivided into many columns on the
same page.

This can help save space for certain
types of prose, or it could just be a
style choice. This is an example of
2-column processing.

MD2ME offers facilities to display text in multiple columns using the following
requests:

• <!-- !2c --> . Unadorned, this request s witches to 2-column process-
ing. Arguments to the request specify the amount of spacing between col-
umns (TROFF units apply) and how many columns are to be set. Two is
cramped enough, actually. So, <!-- !2c 5n 3 --> sets subdivides a
page into 3 columns separated by 5 ens of horizontal space.

• <!-- !1c --> . T akes no arguments. Simply turns off multi column pro-
cessing.

6.2.1.12. Pagination
A new page or column break can be called for with the following requests respec-
tively:

• <!-- !bp --> . Unadorned, this request simply starts a ne w page. All the
footers are printed, nonetheless. Optionally, an argument may specify the
number of the next page: you might be on page 21 (20) now and you want the
next page to be page 64; so, you type <!-- !bp 64 --> .

• <!-- bc --> begins a ne w column in multi-column mode. If not in multi-
column mode or there are no columns to traverse on the same page, a new
page is started.

6.2.1.13. Mystery
<!-- FR --> . Can y ou guess what it does? ;)

6.2.1.14. TROFF-cop y line
To copy one line directly into TROFF without any processing. Simply put the
TROFF code with the <!-- !tr --> request in juxtaposition, lik e this:

<!-- !tr .sp 0.5i -->

That line directly instructs TROFF to yield ½ inch of space.

No further processing is done within the line, so asterisk and backslashes can be
used freely without any misinterpretations. It also means that HTML and MD2ME
entities are not supported. Thus, the following line is possible.

<!-- !tr .ds s "*(wk *(td -->

6.2.1.15. Miscellaneous
The following requests are truly miscellaneous and may or may not be removed
some point in the future.

• <!-- !mx --> causes MD2ME to abort all te xt processing and quit with an
exit status of 0. Anything beyond the request is not processed or output at all.

• <!-- !ln --> causes MD2ME to dump the current n umber of input lines
thus far processed. The number also takes into account the current line with
that request.

• <!-- !ex --> causes the TR OFF compiler to abort right at that point.
More like a trap to annoy people who want to compile your documents.

6.2.2. Bloc k-level requests
These are requests that can span many, many lines long. There are not many
and are all comments in standard Markdown.

6.2.2.1. Footnote entries
For any given footnote, an entry that corresponds to that footnote can be added.
The entry will be put at the end of the page on which the footnote entry is entred.
A footnote entry starts with <!-- !fn on one line and ends with !fn --> on
another line of its own. Thus, to get footnotes like this4, type this:

<!-- !fn
This is a fun footnote entry!
!fn -->

The superscripted number for footnotes is made by doing surrounding any cardi-
nal number or one hashtag with two enclosing square brackets, like [123] or
[#] . These will get replaced as the current f ootnote number superscripted. For
them to be set in superscript, these footnotes need to be on a line that does not
have any inline code blocks. The numbers within the brackets do not actually
matter. Footnote numberings are kept by the -me macros and cannot be
changed.

A footnote entry is not interpreted as Markdown. Rather, it is interpreted as plain
TROFF. Therefore, using an HTML entity or Markdown-style emphases will not
work. Use TROFF’s requests instead.

6.2.2.2. Prepr ocessor support
There exist a handful requests that properly intersperse and copy instructions to
a TROFF preprocessor. Like footnote entries, the start and end must be on a line
of their own, and the content is encompassed therewithin. The requests are as

4 This is a fun footnote entry!

follows.

• <!-- !eq , !eq --> f or equations to eqn.
• <!-- !tb , !tb --> f or tables to tbl.
• <!-- !pc , !pc --> f or diagrams to pic.
• <!-- !xx , !xx --> f or literal troff code to be copied directly to troff.

There is no such preprocessor as xx , actually. This is simply a delimiter to
mark the boundary of Markdown and TROFF.

Unlike footnote entries, the start and end requests can take arguments. The
arguments get parsed directly to the preprocessor’s start/end requests. There-
fore, it is possible to get a centred, continued, and number equation like this:

(1.1)

π

0
∫ sin(x) dx = cos(0) − cos(π)

= 2

by typing this:

<!-- !eq C (1.1)
int from 0 to pi sin (x) ˜ dx mark = cos (0) - cos (pi)
!eq C -->
<!-- !eq
lineup = 2
!eq -->

A preprocessor entry is not interpreted as Markdown. It simply gets passed
TROFF as if it were a copy block. Therefore, it is not possible to use HTML- or
MD2ME-style character entities or Markdown-style annotations, since this is when
you enter the world of plain TROFF.

For more information about each preprocessor, see their respective manuals. It
may also be required to add extra options to groff during compile time so as to
make sure the lines meant for preprocessors get preprocessed.

6.2.3. Catch all
If a command to a preprocessor does not exist, it is still not treated as a com-
ment, but rather removed.

So, typing this obviously invalid request:

<!-- !qwerty -->

will result in that line being removed.

6.3. General syntax
This section details syntax mostly from Markdown, but also a few other points
that make MD2ME different will also be detailed. There are also a few syntax that
are specific to MD2ME; those will be described as well.

6.3.1. Section header s
MD2ME supports Markdown’s atx-style headers of levels from 1 through 6 inclu-
sively, but not settext-style headers. The reason for this is because settext-style
headers are rather difficult to parse. It also supports unnumbered sections as
well.

Note that numbered sections are intrinsic to standard Markdown and will get
parsed properly, but unnumbered sections are a special feature provided by
MD2ME.

A paragraph after a section should not be separated by a single back line,
because upon spawning a new section, a paragraph mark is already created.
Thus, it is better to type this:

First section
First paragraph

than this:

First section

First paragraph

Numbered sections
The number of hashtags for atx-style headers has a positive linear correlation to
the depth of the section headers in the TROFF output. Section headers from 1
through to 6 inclusively are supported. So, to get a section header on the 6th

depth, type:

Challenger deep

The section numbers are kept and incremented automatically in lexicographical
order by TROFF.

This manual is an example that extensively uses numbered sections.

Unnumbered sections
For unnumbered section headings that do not interfere with section numbers, use
7 hash tags. So, the following will result in an unnumbered section:

####### Earth’s core

This section is an example that contains two unnumbered sections.

6.3.2. Paragraphs
Paragraphs are denoted with one blank line before the paragraph text, just like in
Markdown. Paragraphs are seldom confused for other typographical elements
like lists and MD2ME’s special requests that must start a new line.

Paragraphs are normally glued together, but in quite a weird way. Like Mark-
down, there could be 20 blank lines but there will just be one paragraph. Unlike
Markdown, paragraphs are glued together correctly only 50% of the time.

This is the situation in MD2ME. Imagine two paragraphs. If the two paragraphs
are separated by one blank line, they are considered two separate paragraphs.
However, if the two paragraphs are separated by two blank lines, the two para-
graphs are considered as one very long paragraph. If the two are separated by
three blank lines, they are considered two separate paragraphs; if the two are
separated with four, the two are considered as one very long paragraph. The be-
haviour goes on in this pattern.

If we let n be the number of blank lines between two paragraphs, then the follow-
ing piecewise function determines if the two paragraphs are seen as paragraphs
or not.

areParagraphs(n) =

true
false

if n mod 2 = 1
if n mod 2 = 0

What remains certain is that one will never get more than one paragraph mark for
two separate paragraphs. This means that excessive paragraph marks, and
therefore excessive spacings, can be mitigated.

6.3.3. Backslash escapes
Both MD2ME and Markdown provide backslash escapes for the following charac-
ters. To get them on your page, simply put a backslash (\) before them.

• [] (square brackets)
• \ (backslash)
• ` (backtick)
• * (asterisk)
• (underscore)
• { } (curly braces)
• () (parentheses)
• # (hashtags)
• + (plus sign)
• - (hyphen)
• . (dot)
• ’ (apostrophe)
• ! (exclamation mark)

For example, to get a literal asterisk, you would type &Mas; .

Additionally, MD2ME also provides backslash escapes for the following charac-
ters.

• < > (angle brackets)
• & (ampersand)

All of these backslash escapes may not work correctly when used on the same
line as inline code.

6.3.4. Horizontal rules
Horizontal lines within the document can be made by typing 3 or more asterisks
or hyphens on one line, optionally separated by spaces, like * * * or - - - .

The line above is a horizontal rule.

6.3.5. Lists
MD2ME provides support for both unordered and ordered lists. The lists cannot
be nested to higher depths or orders. Each list item cannot span paragraphs.
Each list item may not consist of other block elements.

For the ability to typeset more complex lists with paragraphs, nested lists, custom
lexicographical set, you may need to touch TROFF and check out
[lists.tmac](https://github.com/katt64/lists.tmac).

6.3.5.1. Unor dered lists
Unordered lists are lists whose items’ designator do not follow a particular lexico-
graphical order. Unordered lists begin on a “paragraph” of their own. Each item
of the list juxtaposes the next and should not be separated by blank lines. Here
is an example of an unordered list:

• Attend high school class early: class project starts at 7.30.
• Meet Malin after school.
• Do the chores and help parents move house.
• Feed the hamster.
• Do homework.

It was typed as such:

- Attend high school class early: class project starts at 7.30.
- Meet Malin after school.
- Do the chores and help parents move house.
- Feed the hamster.
- Do homework.

Each item of an unordered list may start a line with - , * or + interchangeab ly.

6.3.5.2. Ordered list
Ordered lists are lists whose items’ designator follow a particular lexicographical
order. In MD2ME, the total order is assumed over the set of natural numbers from
1 to some limit n . For a total order assumed over other sets (alphabetical, roman
numerals, &c.) refer to lists.tmac above.

Each item of the list juxtaposes the next and should not be separated by blank
lines. Here is an example of an ordered list:

(1) This is an odd number.

(3) This is an odd number.

(4) This is an even number.

(8) This is an even number.

(17) This is a prime number.

The list was typed by:

1. This is an odd number.
3. This is an odd number.
4. This is an even number.
8. This is an even number.
17. This is a prime number.

Unlike in Markdown, the numberings of an ordered list as you type it matter .
You must make sure to type the numbers as you want it to display on screen, as
these are not automatically kept by MD2ME or TROFF.

6.3.6. Hard line breaks
To force a newline to be broken within the same paragraph, end a line with two
spaces and a newline character and the next line shall be broken. In other
words, given two consituent parts within the same paragraph, if two space char-
acters followed by one linebreak separates them, a line break is generated
between the two consituents.

For example, this
is a paragraph whose constituents
have been broken with hard breaks.

Essentially, it is the same rule as in Markdown. It is very hard to demonstrate the
example above in a code block due to invisible whitespaces at the end of the
lines. Though, if the lines above were to be parsed as input to sed ’l;d’ , y ou
would get something like this:

For example, this $
is a paragraph whose constituents $
have been broken with hard breaks.$

6.3.7. Inline code
Inline code is any block of code that exists within a paragraph of normal text.
Inline code is delimited by ` (backticks) as if they were quotes.

Therefore, this line contains an inline code: .. int *addr_af = a[b][c] +
’\n’ . That w as invalid C code, but it is just an example.

Inline code may span many input lines long. However, only the lines that do con-
tain the delimiting backticks will have backslashes, square brackets, underscores,
asterisks, &c. escaped appropriately. This escaping affects the entire input line
on which the backticks are. This provides convenience in that all the backslashes
and stuff are escaped automatically, but also means that any emphases, links, or
backslashes on the same line as a backtick but outside of the inline code will not
render properly. Simply break to a new input line if you need to have other inline
annotations appear on the same line as code.

To have inline code that consists of a backtick within itself, use two backticks to
delimit the inline code. Therefore, .tl `left`centre`right` renders w ell.

Although both types of inline code will escape all characters that otherwise have
special meanings properly, there are several differences between double-backtick
and single-backtick inline code. Firstly and obviously, double-backtick inline code
allows the use of single bacticks or two non-contiguous backticks within the inline
code it encompasses. Secondly, however, double-backtick code may onl y span
one line in put, no more than that.

Within double-backtick inline codes, it is necessary to leave a space between a
literal backtick you want to appear on your document and the two backticks that
delimit the inline code. Just like in Markdown.

Unlike block codes, inline code is set in fill-mode. Meaning, any newlines within
single-backtick inline codes will not be interpreted literally. Nonetheless, the
inline code is set in a monospaced typeface.

The two paragraphs containing code were typed like this:

Therefore, this line contains an inline code: ‘.. int *addr_af = a[b][c] + ’\n’‘.
That was invalid C code, but it is just an example.

To have inline code that consists of a backtick within itself, use two backticks
to delimit the inline code. Therefore, ‘‘.tl ‘left‘centre‘right‘ ‘‘ renders
well.

HTML enties and MD2ME special characters will still need to be escaped within
inline code. Therefore, to get & , you need to type &amp; .

6.3.8. Fonts
Special fonts for italics , bold , and bold italics are pro vided for use within a
paragraph. To activate them anywhere within a paragraph use asterisk(s) or
underscore(s) to delimit the part you want the font changed. The number of
asterisks denote different emphasis levels and therefore call for different fonts.

• Single asterisks like *OMG* call for italics.
• Double asterisks like **OMG** call f or bold.

• Triple asterisks like ***OMG*** call f or bold italics (i.e. both bold and italics).

It is not normally possible to have underlined bold italics, except you can do it if
you are willing to use plain TROFF and accept the fact that your document may
not completely display on a standard markdown compiler.

There can be italics, bolds, and bold italics on the same line, and each annotation
can span several input lines.

Requests for special fonts within a line do not work properly on the same line as
backticks.

6.3.9. Capitalized names and acr onyms
Names like FORTRAN and BASIC have their point size reduced by 1 point before
being displayed on the document. More generally, names and acronyms that
consist of 3 or more capitalized letters consecutively from one or more of the
English, Swedish, and Norwegian alphabets are surrounded by TROFF instruc-
tions to lower the point size by 1.

Therefore, simply typing in all capitals without any adornments, ABCÅÄÖÆØÉ,
will work.

This is an automatic feature that is unique in MD2ME. The reason for having this
is to give visually-pleasing output for names that consist of many capital letters. If
those names were typed in the normal point size, they would look rather big and
shouty due to an optical illusion; reducing their point sizes by 1 helps with that
tremendously.

Capitalized names separated by spaces or newlines before there are ≥ 3 consec-
utive characters do not work. Compare ABCD and AB CD.

To get ≥ 3 capitalized letters printed in the same point size is a little bit difficult. In
such cases, this feature can be quite a nuisance. Nonetheless, this can be done
by interspersing &Mnn; after every 2nd character, like this: ABCD.

6.3.10. English or dinal n umber s
In English typography and certain style guides, it is a convention to superscript
the last two characters of the written ordinal numbers in shortened form. first ,
second , third , and fourth end with st , nd , rd , and th respectively. Therefore,
they can either be written in full or as “shortened” ordinal numbers like: 1st, 2nd,
3rd, and 4th.

Unlike in Markdown, MD2ME treats these shortened ordinal numbers specially by
superscripting the last two characters after the digits if and onl y if it is g rammati-
cally correct to do so. This superscripting feature is automatic; simply typing an
ordinal quantity will spring this feature.

Thus, typing 1st 2nd 3rd 4th , will get y ou: 1st 2nd 3rd 4th superscripted
properly; but typing 1nd 2st 3th 4rd will get y ou: 1nd 2st 3th 4rd without any
superscripting.

MD2ME is actually pretty smart. 11th 12th 13th and 14th will have their last two
characters superscripted propery as will 21st 22nd 23rd and 24th, but since 11st
12nd and 13rd is grammatically incorrect, no superscripting is done.

This superscripting does not work at all on the same line as bac kticks. This is so
as to avoid any code list print("3rd") from being potentially misread as
something else.

On a line of plain-text, if you would like to avoid superscripting, this automatic fea-
ture can prove to be quite nuisance. Nonetheless, to do this, put an &Mnn;
between the number and the two-letter suffix, like this: 3&Mnn;rd .

6.3.11. Footnote n umber s
To get superscripted footnote numbers anywhere within a paragraph, simply sur-
round any positive integer or one hashtag within encompassing square brackets.
These would work: [1] and [#] .

The integer within the superscripted footnotes are simply for aesthetics if the doc-
ument should later be compiled with a Markdown compiler, which do not have the
capabilities for text footnotes. As a matter of fact, in MD2ME, the integers do not
matter; they get auto-incremented by TROFF for each footnote entry called.
Thus, the integers within brackets are ultimately ignored.

The advantage of using an integer over a hashtag is that it will still look good if
the document should be rendered by a web browser later on. It will continue to
look good until the reader cannot actually find a footnote entry associated to it.
Thus, the writer may look like she has schizophrenia.

Footnote numbers are usually put after w ords, clauses, or sentences that need to
be elaborated elsewhere without distracting the reader. In the case that they are
put after clauses or sentences, the footnote numbers are usually put after any
punctuation marks. This is just a style guide. Of course, in MD2ME you can put
footnote numbers anywhere in a section header, paragraph, blockquote, except...

You cannot put footnote numbers on the same line as a backtick that has been
used for inline code. The reason is the same: square brackets are escaped for
code. If you want footnotes on the same logical line as code, put the square
brackets on another physical input line that does not contain any quotes.

Of course, square brackets within code blocks and TROFF-copy lines/blocks are
passed literally as square brackets.

This is a paragraph with a footnote number.5 See the associated footnote entry
for more details.

5 Hello! See the section on footnote entries in MD2ME special requests!

Footnote numbers and footnote entries are MD2ME-specific features. Markdown
does not support them.

6.3.12. Links
There are three types of links supported by both Markdown and MD2ME.

• Inline links with and without a title.
• Reference-style links with and without a title.
• Implicit links with no link text.

6.3.12.1. Inline links
To get an inline link without a title anywhere within a paragraph, intersperse
something like this:

[my website](https://katt64.github.io)

This should get you: my website 〈https://katt64.github.io〉 . In TROFF, this is not
a clickable link. Rather, it is set in blue without any underlines. The link’s text is
in regular font and the link’s URL is surrounded by wide angled brackets.

To get an inline link with a title anywhere within a paragraph, intersperse some-
thing like this:

[my website](https://katt64.github.io "Personal Website")

This should get you: my website (Personal Website) 〈https://katt64.github.io〉 . As
with titleless links, the link is set in blue. The link’s text is set in regular font, the
URL is surrounded by wide angled brackets, and the title is surrounded by paren-
theses after the link’s text.

6.3.12.2. Reference-style links
Reference style links work the same as they would in Markdown. The following
will be replaced with a link proper:

[my website][mywebs]

Between the link’s text and reference ID, there can be one delimiting space, like
this:

[my website] [mywebs]

The defintion for the link(s) whose reference ID is mywebs is defined on another
line of its own:

[mywebs]: https://katt64.github.io (My personal website)

Within a link definition like that, the URL can optionally be surrounded by angled
brackets. There can optionally be a link title after the URL, which can be sur-
rounded by either a double quote ("), a single quote (’) or a pair of matching
parentheses ().

Reference IDs can be implicit. To clarify, the link’s text can be a reference ID, but
iff the link’s text does not contain spaces. So, you can do something like this:

Please visit my [website][].

[website]: <https://katt64.github.io> "My personal website"

Most markdown parsers make it easy to use reference-style links, but in MD2ME,
reference-style links are quite painful. When MD2ME finds a line that is a defini-
tion for a particular reference ID like the line above, it converts the line into
TROFF instructions and stores it in another file called reflinks.md2me on the
current working directory. This file contains all the reference IDs and their associ-
ated definitions.

reflinks.md2me is a file that collects all the link definitions thus f ar found.
This is neccessary because sed runs through its input files in a one-pass f ash-
ion. Once it finds a link definition, it is not very feasible to go back to the link
associated with that defintion and add more information to it. Therefore, if refer-
ence-style links are used in a document, the normal operation of md2me is a little
bit different and you must follow these steps:

(1) Run md2me on your input file. You can pipe the output to /dev/null
this time.

(2) Rename reflinks.md2me to reflinks.md2me.tr . Notice the
additional extension: tr .

(3) Run md2me on the same input file again. The output from md2me on
this run is the final output with all link definitions resolved.

On the 2nd run, md2me reads from the file called reflinks.md2me.tr and
puts it after the 1st line of input from the file . This means that it is impossible to
have reference-style links working properly if the link exists on a the first line of
the file.

Unlike Markdown, IDs for reference-style links are case-sensitive and must never
contain spaces.

There are no examples of reference-style links in this manual because of how
complicated they are for MD2ME to parse.

6.3.12.3. Notes about links
There is a known bug in MD2ME. If a full stop or apostrophe is to follow a link,
you must put a space between the full stop and the link, like this:

Visit [my website](https://katt64.github.io) .

No part of inline or reference style links may span more than one line. They must
be kept on one line at all costs. Link definitions for reference-style links must also
stay on one line no matter what.

6.3.12.4. Implicit links
Standard-compliant URLs and email addresses enclosed within angled brackets
will be set in blue and the angled brackets will be replaced with more obtuse-
angled brackets.

For example, interspersing this:

<https://katt64.github.io>

will get you something like this: 〈https://katt64.github.io〉.
Interspersing this:

<katt16777216@gmail.com>

will get you something like this: 〈katt16777216@gmail.com〉.
In MD2ME, email addresses are not obscured with random decimal/hexadecimal
character entities. This is simply because there is no need to do it on if the docu-
ment is to be printed on paper.

URLs must follow the following regular expression to be recognized as a URL to
be transformed into a link. Ignore the space and backslash at the end of lines.

https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+˜#=]{2,256}\.[a-z]{2,6} \
([-a-zA-Z0-9@:%_\+.˜#?&\/\/=]*)

Likewise, email addresses must follow the following regular expression to be rec-
ognized as an email address to be transformed into a link.

[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}

To get a literal URL or email address within angle brackets, simply break the reg-
ular expressions by interspersing &Mns; or &Mnn; where necessary . So, inter-
spersing this:

<http&Mns;s://katt64.github.io> <katt16777216@gmail.com&Mns;>

ill get you this: <https://katt64.github.io> <katt16777216@gmail.com>

Implicit links must remain on one line at all costs.

6.3.13. Images
Images can be included in two ways:

• Using an MD2ME’s special request
• Using Markdown’s syntax

The special request for MD2ME has already been detailed in a previous section.
In this section, only the Markdown syntax will be mentioned.

Anywhere within a paragraph or on a line of its own, pictures can be included as
such:

![alt text](images/first.eps "Title")

The title in double quotes is optional, and so is the alternate text. What is
mandatory is the URL images/first.eps . Unlik e standard Markdown, it is a
lot more difficult to get images onto a TROFF document. Here are some criteria
for the URL:

• The URL must point to a local resource. It can be an absolute path beginning
at / or a relativ e path beginning in the current working directory.

• The local resource to which the URL points must exist, obviously.
• The local resource must be an image file that points to an encapsulated post-

script (EPS) image.

The last criterion is what draws the line of what is possible in both Markdown and
MD2ME. Most web browsers cannot open EPS files, but TROFF can only open
EPS files for images. So, this is quite a major compatibility issue. In other words,
you may choose either to work with web browsers or TROFF: your choice. :p

As mentioned long before, it is possible to convert images to EPS using free and
open-source tools such as ImageMagick.

Images within the output document will not stay inline even if the instruction for
an image was interspersed within a paragraph. They will ultimately start their
own line and break the paragraph. Thus, it is best to use them on a line of their
own.

The image will be centralized and will span the full width of the document. The
alternate text and title will be put right under the image and set in italics.

It is not possible to have reference-style images, like this:

![alt text][ref]

6.3.14. Sentences

If you were born in the very late 20th century to present (1990-present), you are
very likely taught to just leave one space after full stops when you write or type.
It is good; just keep doing that for your grades, but...

The documents produced by MD2ME are designed to eventually be compiled by
TROFF. The TROFF compiler then compiles the output document and generates
it in print. This means that we must obey TROFF’s line justification algorithm,
which works a little bit differently from what you expect.

TROFF algorithm fills and justifies text on a line basis, not a paragraph basis.
Thus, to make things easy for this algorithm, each sentence should start on a line
of its own. In the modern world, this is kind of unacceptable.

A more acceptable solution to meet both ends is that, if possible, each sentence
should be separated by two spaces. Your writing should then look something like
the first line, not the second below. Notice the inter-sentence spacings.

Hello. Anyone here? OMG! ARGH...
Hello. Anyone here? OMG! ARGH...

There should be two spaces after full stops, question marks, exclamation marks,
or any sentence-boundary punctuation mark. The reason for this is that MD2ME
will look for the specific permutation of a “punctuation mark followed by a space”
and substitute that for a new line. Therefore, this automates the stipulation put
out by TROFF’s algorithm that two sentences must be put on a line of their own.

There are implications if you let TROFF’s algorithm take its own course and you
follow by its rules, sentences in the output document will be separated by two
spaces. This is generally the desired and recommended behaviour. I like it. Do
you like it? No? Oh, dear!

Two spaces are recommended for separating sentences, even in the Markdown
file, because this distinguishes sentences that need to be double-space sepa-
rated from acronyms like A. B. C., which have dots that do not act as sentence
delimiters. The only way MD2ME knows whether the full stop finishes a sentence
or just delimits letters in an acronym is if the full stop is followed by two spaces.

That is all you need to do to help MD2ME satisfy TROFF’s algorithm, really. The
rest of this section details things MD2ME does automatically to save the day.

Additionally, to satisfy TROFF’s algorithm, MD2ME automatically strips beginning
and trailing spaces from lines. This improves the algorithm’s performance
greatly.

6.3.15. Proper names
MD2ME recognizes the following names as proper names or trademarks. The
names will be replaced with the proper renditions of those names anywhere
within a paragraph.

At present, the following names are known:

• MD2ME by MD2ME
• AT&T by AT&T
• C++ by C++
• LATEX by LaTeX
• TEX by TeX

From this list, it can be seen clearly that to get the LATEX mark, type LaTeX .
The names are case-sensitive and will only render properly if the input name’s
casing matches.

To override this behaviour. Either intersperse &Mns; or &Mnn; an ywhere within
the name on input. For example, to get a literal LaTeX, type LaTe&Mnn;X

6.3.16. Character entities
Character entities are useful when you need special characters you cannot type
yourself or you need certain characters on the final output without interfering with
other aspects of document rendition.

At present, the following HTML entities are supported:

• & by &
• © by ©
• < by <
• > by >
• ≤ by ≤
• ≥ by ≥
• by
• — by —
• – by –
• by
• — by —
• – by –
• − by −
• § by §
• ∈ b y ∈
• ∼ b y ∼
• ¢ by ¢
• £ by £
• « by «t;
• » by »t;
• ® by ®
• ° by °
• ± by ±
• ¶ by ¶
• ⋅ by ·
• ½ by ½
• ‘ by ‘
• ’ by ’
• ‚ by ‚
• “ by “
• ” by ”
• „ by „
• ∀ b y ∀
• ∃ b y &exists;
• † by †
• ‡ by ‡
• • by •
• ... by …
• ′ by ′
• ′′ by ″
• € by €
• ™ by ™

• ≈ by ≈
• ≠ by ≠
• ≤ by ≤
• ≥ by ≥
• É by &Eaccute;
• é by &eaccute;

Additionally, entering the hexadecimal unicode for any character is possible using
the entity &#x...; where the dots are replaced with the he xadecimal unicode
of the character, with 4-5 digits padded where necessary, and in all capitals.
Thus, to get a kissing emoji ()6, the HTML entity to be typed is: .

Note that does not giv e a non-breaking space. It is actually an
unpaddable space, but the space can be broken break.

The entities above get replaced by TROFF’s characters in the output.

Furthermore, MD2ME supports the following character entities. These entities
start with a capital M after the ampersand and occupy only 1 – 2 characters.
They are not compatible with standard Markdown.

• ½ by &M12;
• by &Mds; (a space the siz e of a digit)
• by &Mhs; (a space that is half of)
• by &Mks; (a space that is a quarter of)
• by &Mns; (a space of no width, remo ved by TROFF)
• ∅ b y &Mø; (an empty set)
• ∅ b y &Mes; (an empty set)
• * by &Mas; (asterisk)
• _ by &Mus; (underscore)
• $ by &Mdo; (a dollar sign that can escape EQN’s delimiters)
• January 12, 2018 by &Mtd; (T oday’s date)
• Friday by &Mdw; (Today’s day)
• 02:33:02 by &Mtm; (Current time in the 24-hour clock)
• [by &Mos; (special opening square br acket for dire times)
•] by &Mcs; (special closing square br acket for dire times)
• ` by &Mga; (literal grave accent)
• ´ by &Maa; (literal accute accent)
• by &Mbs; (Bell System’s logo)
• “ by &Mlq; (left doub le quote)
• ” by &Mrq; (right doub le quote)
• ∼ b y ⤅ (approximately equal to)
• by &Mhb; (hyphenless breaking point)

6 For TROFF viewers, the emoji looks like �

• ☞b y &Mlh; (hand pointing left)
• ☞ by &Mrh; (hand pointing right)
• @ by &Mca; (liter al commercial at)
• (by &Mlp; (liter al left parenthesis)
•) by &Mrp; (liter al right parenthesis)
• ! by &Mex; (liter al exclamation mark)
• - by &Mhy; (liter al hyphen)
• by &Mnn; (a character that is removed by MD2ME)
• 38 by &Mpn; (the current page number)
• by &Mee; (An escape character to TROFF)

Additionally, for more knowledgable users of TROFF, entering a named-character
in TROFF is possible with the entity &Mx...; which corresponds to \[...] in
the output. For example, to get the Bell System’s logo, type &Mxbs; which will
get substituted for \[bs] .

These characters might be really confusing for those not familiar with typography
and TROFF. These are characters that are mostly used internally by MD2ME as
ancillary entities that will get replaced by the appropriate characters at a later
time. Some of these entities are really, really, really unstable if you do not know
how to use them properly.

Give your skills a try: when I had to type \[bs] and get it to displa y on this doc-
ument, do you know why I had to type &Mee;e[bs] ?

7. Aftermath
In the future, I wish to implement a better Markdown-to-TROFF converter made in
an actual programming language like Python or C.

Doing it in sed is absolutely crazy. I never thought that the parser would be
coerced into expanding to cover this much of Markdown’s syntax. All I initially
wanted was a quick way to take notes and print them out as proof-readable
essays.

There are too many idiosyncracies and rules that could be relaxed. There are
also a few flaws here and there that I haven’t got the energy or time to fix.

Consider this parser implementation not as a real Markdo wn-to-TROFF con-
verter, although it does work to some extent. Consider this as an idea I had
when I was 17 (I am 17 as I am writing this). Above all, consider this as a start-
ing point and a draft for an idea that I think is worthwhile living for, that I think is
worthwhile implementing into another fully-featured programming language when
I have the wherewithal.

Nonetheless, you are welcome to make improvements or derivatives of this sed
script.

8. Author s
Stephanie Björk (Katt) 〈katt16777216@gmail.com〉. The writing of the sed script
began on January 3 2018, and reached stability on January 12, 2018.

9. Licenses
The script is licensed under the 3-clause BSD license.

BSD 3-Clause License

Copyright (c) 2018, Stephanie Björk
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license text above is not included as a comment within the sed script
because it is rather quite long.

This manual was written in Markdown and took 3 days to write. It is licensed
under CC BY-SA 4.0 〈https://creativecommons.org/licenses/by-sa/4.0/〉 .

10. Special thanks
I would like to thank the following persons who have been with me throughout
this endeavour. It was such a fun, great, and enlightening experience. These are
the persons I could not have done anything without.

• My mom , a f orever understanding and loving person.
• Francesca f or the addition of ∀ and ∃ entities in MD2ME.
• Many people at w ork . The y are the reason why I needed to create the sed

script, which was quite an enlightening experience.
• Hund f or his support on everything and for trying out the script in its early

stages. He makes many interesting blog posts. Visit his blog on
〈https://hund.github.io/〉

I also have to thank my ex-partner for her patience and absolute radio silence
over the emails. Her birthday was on the same day I made the sed script. I w as
going to write her a birthday card, but she will have to wait. Haha!

