
SMART CONTRACT AUDIT

Dec 21, 2020 | v.	1.0

GOOD

PASS
Zokyo’s Security Team has 
concluded that this smart contract
passes security qualifications to be
listed on digital asset exchanges.

This document outlines the overall security of the Nimbus smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical Summary

The scope of this audit was to analyze and document the Nimbus smart contract codebase for
quality, security, and correctness.

There were no critical issues found during the audit. Contracts suite is based on Uniswap
projects:

Contract Status

LOW Risk

. . .

1

Nimbus Smart Contract Audit

https://github.com/Uniswap/uniswap-v2-coreUniswap Core ();
https://github.com/Uniswap/uniswap-v2-peripheryUniswap Peripheral ();

https://github.com/Uniswap/uniswap-v2-peripheryUniswap Governance ();
https://github.com/Uniswap/liquidity-stakerUniswap Liquidity Staking ().

Customizations list:

Uniswap text occurrences were replaced with Nimbus substring;
Uniswap Governance Uni token contract lost the minting feature;
Uniswap Governance Uni token contract acquired the burning feature.

https://github.com/Uniswap/uniswap-v2-core
https://github.com/Uniswap/uniswap-v2-periphery
https://github.com/Uniswap/uniswap-v2-periphery
https://github.com/Uniswap/liquidity-staker

. . .

2

Nimbus Smart Contract Audit

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and
rapidly changing environment, we at Zokyo recommend that the Nimbus team put in place a
bug bounty program to encourage further and active analysis of the smart contract.

Testable Code

Testable code is 97% which is above the industry standard of 95%.

100%75%50%25%0%

YOUR AVERAGE

INDUSTRY STANDARD

Table of Contents

4Auditing Strategy and Techniques Applied

5Executive Summary

6Structure and Organization of Document

7Manual Review

12Tests written by Nimbus team (original test coverage)

12Automation testing by Zokyo Secured team

12Code Coverage and Test Results for all files

. . .

3

Nimbus Smart Contract Audit

4

Nimbus Smart Contract Audit

Auditing Strategy and Techniques Applied

https://github.com/nimbusplatformorg/nim-smartcontract
The Smart contract’s source code was taken from the following repository -

. 
Commit id – 54bfea423fdb006a590635dfd2b0de1e3c6ced27.

. . .

Throughout the review process, care was taken to ensure that the token contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices in efficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Nimbus smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. In summary,
our strategies consist largely of manual collaboration between multiple team members at
each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

https://github.com/nimbusplatformorg/nim-smartcontract

Executive Summary

. . .

5

Nimbus Smart Contract Audit

Based on the code analyzed, we can give a Good score to the codebase provided. The issues
found and described below are stopping us from giving the Excellent score.

Structure and Organization of Document

. . .

6

Nimbus Smart Contract Audit

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the ability of the contract
to compile or operate in a significant way.

Critical

Manual Review

. . .

7

Nimbus Smart Contract Audit

MEDIUM

Smart contracts are using outdated Solidity compiler versions (0.5.16, 0.6.6).

Recommendation:
Use up-to-date Solidity compiler version for all contracts.

INFORMATIONAL

File NimbisFactory.sol has an incorrect name.

Recommendation:
Rename file to NimbusFactory.sol

INFORMATIONAL

Complicated dependency management, Solidity files contain all dependencies required for
specific Contract.

Recommendation:
Split FACTORY.sol, ROUTER.sol, NUS.sol, NUS_WETH.sol, REWARDSFACTORY.sol to have one
contract per Solidity file.

MEDIUM

NUS.sol, NUS_WETH.sol, REWARDSFACTORY.sol are not referring to specific Solidity compiler
version.

Recommendation:
Stick to the specific Solidity compiler version.

. . .

8

Nimbus Smart Contract Audit

INFORMATIONAL

NUS.sol, Code-style issue, method tokensBurner has incorrect name as it is not clearly states
the goal of method.

Recommendation:
Rename method to reflect behaviour, like burnTokensByBurner or
burnOwnerTokensByBurner

INFORMATIONAL

NUS_WETH.sol, Code-style issue, Owned & NUS_WETH contracts are having unexpected
property names: NUSITERATOR, SWAPROUTER, NUSTOKEN, NUSWETH.

Recommendation:
Use camel case for all properties that are not constants.

MEDIUM

StakingRewards.sol is a complete copy of the StakingRewards contract located at
StakingRewardFactory.sol, and is not utilized by end product as StakingRewards has to be
created by StakingRewardsFactory.

Recommendation:
Remove StakingRewards.sol

. . .

9

Nimbus Smart Contract Audit

INFORMATIONAL

NUS_WETH.sol, Code-style issue, Nus_Weth contract name should be in Pascal case instead of
Pascal Snake Case.

Recommendation:
Use pascal case for contract names.

Re-entrancy Not affected Not affected Not affected

Unexpected Ether Not affected Not affected Not affected

Arithmetic Over/Under
Flows

Not affected Not affected Not affected

Access Management
Hierarchy

Not affected Not affected Not affected

Delegatecall Not affected Not affected Not affected

Hidden Malicious Code Not affected Not affected Not affected

Default Public Visibility Not affected Not affected Not affected

External Contract
Referencing

Not affected Not affected Not affected

Entropy Illusion (Lack of
Randomness)

Not affected Not affected Not affected

Unchecked CALL Return
Values

Not affected Not affected Not affected

Short Address/
Parameter Attack

Not affected Not affected Not affected

Race Conditions / Front
Running

Not affected Not affected Not affected

General Denial Of
Service (DOS)

Not affected Not affected Not affected

NimbusFactory NimbusRouter NimbusPair

. . .

10

Nimbus Smart Contract Audit

Signatures Replay Not affected Not affected Not affected

Tx.Origin Authentication Not affected Not affected Not affected

Floating Points and
Precision

Not affected Not affected Not affected

Uninitialized Storage
Pointers

Not affected Not affected Not affected

Pool Asset Security
(backdoors in the
underlying ERC-20)

Not affected Not affected Not affected

Re-entrancy Not affected Not affected Not affected

Unexpected Ether Not affected Not affected Not affected

Arithmetic Over/Under
Flows

Not affected Not affected Not affected

Access Management
Hierarchy

Not affected Not affected Not affected

Delegatecall Not affected Not affected Not affected

Hidden Malicious Code Not affected Not affected Not affected

Default Public Visibility Not affected Not affected Not affected

External Contract
Referencing

Not affected Not affected Not affected

Entropy Illusion (Lack of
Randomness)

Not affected Not affected Not affected

Unchecked CALL Return
Values

Not affected Not affected Not affected

Short Address/
Parameter Attack

Not affected Not affected Not affected

WETH StakingRewardFactory StakingReward

. . .

11

Nimbus Smart Contract Audit

Race Conditions / Front
Running

Not affected Not affected Not affected

Signatures Replay Not affected Not affected Not affected

Tx.Origin Authentication Not affected Not affected Not affected

General Denial Of
Service (DOS)

Not affected Not affected Not affected

Floating Points and
Precision

Not affected Not affected Not affected

Uninitialized Storage
Pointers

Not affected Not affected Not affected

Pool Asset Security
(backdoors in the
underlying ERC-20)

Not affected Not affected Not affected

Code Coverage and Test Results for all files

Tests written by Nimbus team (original test coverage)

Automation testing by Zokyo Secured team

. . .

12

Nimbus Smart Contract Audit

The Nimbus team did not write or provide any integration/e2e tests.

As part of our work assisting Nimbus in verifying the correctness of their contract code, our
team was responsible for supplying additional tests by porting tests from the Uniswap project
using the Waffle testing framework.

NimbusERC20
✓ name, symbol, decimals, totalSupply, balanceOf, DOMAIN_SEPARATOR, PERMIT_TYPEHASH
✓ approve
✓ transfer
✓ transfer:fail
✓ transferFrom
✓ transferFrom:max
✓ permit

NimbusFactory
✓ feeTo, feeToSetter, allPairsLength
✓ createPair
✓ createPair:reverse
✓ createPair:gas
✓ setFeeTo
✓ setFeeToSetter

NimbusPair
✓ mint
✓ getInputPrice:0
✓ getInputPrice:1
✓ getInputPrice:2
✓ getInputPrice:3

. . .

13

Nimbus Smart Contract Audit

✓ getInputPrice:4
✓ getInputPrice:5
✓ getInputPrice:6
✓ optimistic:0
✓ optimistic:1
✓ optimistic:2
✓ optimistic:3
✓ swap:token0
✓ swap:token1
✓ swap:gas
✓ burn
✓ price{0,1}CumulativeLast
✓ feeTo:off
✓ feeTo:on

NUS
✓ permit
✓ nested delegation

UniswapV2Router02

✓ quote
✓ getAmountOut
✓ getAmountIn
✓ getAmountsOut
✓ getAmountsIn

fee-on-transfer tokens

✓ removeLiquidityETHSupportingFeeOnTransferTokens
✓ removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

. . .

14

Nimbus Smart Contract Audit

✓ swapExactETHForTokensSupportingFeeOnTransferTokens
✓ swapExactTokensForETHSupportingFeeOnTransferTokens
swapExactTokensForTokensSupportingFeeOnTransferTokens

✓ DTT -> WETH
✓ WETH -> DTT

fee-on-transfer tokens: reloaded
swapExactTokensForTokensSupportingFeeOnTransferTokens

✓ DTT -> DTT2

StakingRewardsFactory
✓ deployment gas

deploy
✓ pushes the token into the list
✓ fails if called twice for same token
✓ can only be called by the owner
✓ stores the address of stakingRewards and reward amount
✓ deployed staking rewards has correct parameters

notifyRewardsAmounts
✓ called before any deploys
after deploying all staking reward contracts

✓ gas
✓ no op if called twice
✓ fails if called without sufficient balance
✓ calls notifyRewards on each contract
✓ transfers the reward tokens to the individual contracts
✓ sets rewardAmount to 0
✓ succeeds when has sufficient balance and after genesis time

StakingRewards
✓ deploy cost

. . .

15

Nimbus Smart Contract Audit

✓ rewardsDuration
✓ notifyRewardAmount: full
✓ stakeWithPermit
✓ notifyRewardAmount: ~half
✓ notifyRewardAmount: two stakers

We are grateful to have been given the opportunity to work
with the Nimbus team.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based 
on them.

Zokyo's Security Team recommends that the Nimbus team put
in place a bug bounty program to encourage further analysis
of the smart contract by third parties.

