
CONVEX HULL PROBLEMS

by

Raimi A. Rufai
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Computer Science

Committee:

Dr. Dana S. Richards, Dissertation Director

Dr. Fei Li, Committee Member

Dr. Jyh-Ming Lien, Committee Member

Dr. Walter D. Morris, Jr., Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2015
George Mason University
Fairfax, VA

by

CONVEX HULL PROBLEMS

Raimi A. Rufai
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

In Partial fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Computer Science

Committee:

~

~'4- ..

Dr. Dana S. Richards, Dissertation Director

Dr. Fei Li, Committee Member

Dr. [yh-Ming Lien, Committee Member

Dr. Walter D. Morris, Jr., Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Spring Semester 2015
George Mason University
Fairfax, VA

•

Convex Hull Problems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Raimi A. Rufai
Master of Science

King Fahd University of Petroleum & Minerals, 2003
Bachelor of Science

University of Ilorin, 1998

Director: Dr. Dana S. Richards, Professor
Department of Computer Science

Spring 2015
George Mason University

Fairfax, VA

Copyright c© 2015 by Raimi A. Rufai
All Rights Reserved

ii

Dedication

To my beloved mother, who recently passed on to the great beyond. And to my generous
father, who had departed before her. May they be reunited in heavenly splendor.

iii

Acknowledgments

I am extremely grateful to my advisor Dr. Dana Richards for his support, encouragement,
generosity, and superb advising. I feel extremely privileged to have had the chance to work
closely with him. I am also indebted to my committee members, Dr. Fei Li, Dr. Jyh-Ming
Lien, and Dr. Walter Morris for valuable discussions, countless feedback, and generosity
with their time.

I am greatly indebted to my friends Aliou Sylla and Mayowa Aregbesola, who hosted
me during my sojourns to the Fairfax area to complete my dissertation.

I am also indebted to my current employer, SAP Labs, Inc., for supporting me in many
ways through the course of this project. I am equally indebted to my work colleagues and
team mates – Angelo, Aqib, Jean-Nicolas, Joel, Mitch, Mourad, Nasir, Nicola, Qiu Wen,
Robin, Theodore, and Yasamin – for their support and encouragement.

I am also indebted to my previous employer, Sonex Enterprises, Inc. I am particularly
indebted my supervisor, Dr. Moataz Ahmad and his family, and the company president
Mr. Dean Xenos.

I would be remiss if I do not express my unreserved gratitude to Dr. David C. Rine,
who was my first advisor when I arrived at GMU. Thank you Dr. Rine for your generosity
to and caring for my family and me, at a time when we were totally new to America and
to the Fairfax area. You essentially guided us every step of the way, from getting our visas
to renting our first apartment, and the list goes on.

I am equally indebted to the staff at the international programs office, especially Amy
Moffit, Cynthia Tasaki, and Brian Lenius.

I would also like to thank Ms. Therese Michael at the Computer Science Department
office for the many things she helped to take care for me, being a remote student for more
than half of the time, and for her attention to detail and her genuinely palpable concern
for our success.

My debt of gratitude to my parents, both of whom have now passed on, is incalculable.
They gave my siblings and me everything they had, so we could attain our dreams. They
taught us discipline, morality, kindness, justice, and generosity by doing.

My thanks also go to my siblings, who have always been there for me. My first com-
puter, compiler and programming book were gifts from by brother Latif. That marked the
beginning of my journey into computers. I sometimes wonder how things would have
turned out without these gifts.

Finally, I would like to thank my family – my generous spouse, Ganiat, and my kids,
Mariam and Adam, who endured my several long absences from home. I cannot thank
them enough.

iv

Table of Contents

Page

List of Tables . vii
List of Figures . viii

List of Algorithms . ix

Abstract . x
1 Introduction . 1

1.1 Convex Hull . 1
1.2 Convex Hull Approximation . 2

1.3 Streaming Algorithms for the Convex Hull 2

1.4 Convex Layers . 3

1.5 Organization of Thesis . 4

2 Convex Hull Approximation . 5

2.1 Introduction . 5
2.2 Contributions . 5

2.2.1 Framework for Approximate Convex Hull Algorithms 6

2.2.2 Approximate Convex Hull Algorithms 9

2.2.3 New Convex Hull Approximation Algorithms 22

2.3 Conclusion . 27
3 Convex Hull Streaming Algorithm . 28

3.1 Introduction . 28
3.2 Related Work . 28
3.3 Contributions . 29

3.3.1 Streaming Algorithm . 29

3.3.2 Complexity Analysis . 33

3.3.3 Error Analysis . 37

3.3.4 Empirical Results . 41

3.4 Refinement . 42
3.5 Conclusion . 44

v

4 Convex Layers . 45

4.1 Introduction . 45
4.2 Layering Problems . 46

4.3 Applications of Convex Layers . 48

4.4 Related Work . 49
4.4.1 Peeling-based Techniques . 49

4.4.2 Plane-Sweep Technique . 50

4.4.3 Other results . 50
4.5 Contributions . 51

4.5.1 Hull Tree Data Structure . 52
4.5.2 Tree Construction . 54
4.5.3 Hull Peeling . 59

4.5.4 Merge . 69

4.6 Conclusion . 73
5 Conclusion . 74
A Link to Code Repository . 76

Bibliography . 77

vi

List of Tables

Table Page

4.1 Fields of a Hull Tree Node . 52
4.2 Operations supported by the Hull Chain Structure 53

4.3 Operations supported by the Hull Tree Data Structure 54

4.4 Invariants for the Hull Tree Data Structure 55
4.5 Preconditions for INSERT . 55
4.6 Postconditions for INSERT . 56
4.7 Preconditions for EXTRACTHULL . 59
4.8 Postconditions for EXTRACTHULL . 59
4.9 Preconditions for GETEXTREMES . 60
4.10 Postconditions for GETEXTREMES . 61
4.11 Preconditions for GETBRIDGE . 62
4.12 Postconditions for GETBRIDGE . 63
4.13 Preconditions for TANGENTS . 63
4.14 Postconditions for TANGENTS . 64
4.15 Preconditions for DELETE . 64
4.16 Postconditions for DELETE . 65
4.17 Preconditions for MERGE . 70
4.18 Postconditions for MERGE . 70

vii

List of Figures

Figure Page

1.1 Convex Layers . 4

2.1 A sample run using |S| = 10, k = 4. 10

2.2 A sample run using |S| = 100 and k = 10 . 11

2.3 Area Approximation Error of Bentley et al.’s Algorithm 15

2.4 Area Approximation Error of Kavan’s Algorithm – Underestimate 21

2.5 Area Approximation Error of Kavan’s Algorithm – Overestimate 22

3.1 k = 4, arrival sequence: A,B,C,D,E, F . D is evicted after E arrives, and B

after F . 32
3.2 k = 4 with arrival sequence: A,B,C,D, F,E. B is evicted after F arrives. E

is discarded as an interior point. 34

3.3 Convex Hull . 36
3.4 Empirical Area Error sandwiched between Lower and Upper Bound curves 42

3.5 Distance and Area Relative Errors . 43
4.1 Case 1: Invariant I3 not violated. 66

4.2 Case 2: Invariant I3 violated only by right child. 66

4.3 Case 3: Invariant I3 violated only by left child. 68

4.4 Case 4: Invariant I3 violated by both. 68

viii

List of Algorithms

2.1 APPROXSUBSET(S, k) . 7
2.2 APPROXHALFPLANES(S, k) . 7
2.3 COMPUTESUBSET(S, k) . 10
2.4 COMPUTESUBSET(S, k) in Bentley et al.’s Algorithm 13
2.5 COMPUTESUBSET(S, k) . 23

3.1 INITIALIZE(Sk, k) . 31
3.2 PROCESS(T,H, c, k, p) . 31
3.3 UPDATEHULL(T,H, c, n) . 33
3.4 SHRINKHULL(T,H) . 34
3.5 QUERY(T) . 34
3.6 PROCESS(T,H, c, k, p) . 43

4.1 INSERT(C, T) . 56
4.2 BUILDTREE(P) . 57
4.3 EXTRACTHULL(T) . 59
4.4 GETEXTREMES(Tl, Tr, al, ar) . 61
4.5 GETBRIDGE(Tl, Tr) . 62
4.6 TANGENTS(al, ar, Tl, Tr) . 64
4.7 DELETE(C, T) . 65
4.8 MERGE(TNW , TNE , TSE , TSW , R) . 71

ix

Abstract

CONVEX HULL PROBLEMS

Raimi A. Rufai, PhD

George Mason University, 2015

Dissertation Director: Dr. Dana S. Richards

The convex hull problem is an important problem in computational geometry with

such diverse applications as clustering, robot motion planning, convex relaxation, image

processing, collision detection, infectious disease tracking, nuclear leak tracking, extent

estimation, among many others.

The convex hull is a well-studied problem with a large body of results and algorithms

in a variety of contexts. In this thesis, we consider three contexts: when only an approxi-

mate convex hull is required, when the input points come from a (potentially unbounded)

data stream, and when layers of concentric convex hulls are required.

The first context applies when input point sets may contain errors from noise or from

rounding, or when the accuracy provided by exact algorithms are simply not required.

This thesis proposes a framework for examining convex hull approximation algorithms

so that they can be better compared. The framework is then used to assess a number of

existing algorithms and new algorithms proposed in the thesis. This framework can help

an engineer to select the most appropriate algorithm for their scenario and to analyze new

algorithms for this problem. Moreover, our new algorithms exhibit better space, time, and

error bounds than existing ones.

The second context applies to a base station in a wireless sensor network that receives

incoming input points and must maintain a running convex hull within a memory con-

straint. This thesis proposes a new streaming algorithm that processes each point in time

O(log k) where k is the memory constraint, while maintaining very good accuracy.

And finally, the last context applies when all the convex layers are sought. This has a

variety of applications from robust estimation to pattern recognition. Existing algorithms

for this problem either do not achieve optimal O (n log n) runtime and linear space, or are

overly complex and difficult to implement and use in practice. This thesis remedies this

situation by proposing a novel algorithm that is both simple and optimal. The simplicity is

achieved by independently computing four sets of monotone convex layers in O (n log n)

time and linear space. These are then merged together in O (n log n) time.

Chapter 1: Introduction

This thesis addresses three problems – convex hull approximation, streaming algorithms

for the convex hull, and the convex layers problem. Since the convex hull is central to the

three problems, we begin by summarizing known results about the convex hull. We then

briefly introduce each of the three problems.

1.1 Convex Hull

The convex hull of a finite point set S in a Euclidean space, often denoted as conv(S), can

be defined as the intersection of all half-spaces that contain S. An equivalent definition for

the convex hull is as the union of all convex combinations1 of the elements of S. There are

more definitions of the convex hull that are all provably equivalent to each other (see for

instance [44]).

The convex hull problem is to compute the convex hull of a given set of points. The

convex hull problem occurs as a subproblem in a large number of computational geometry,

computer graphics, computational statistics, image processing and even spatial database

and optimization problems.

Several exact algorithms for finding the convex hull have been proposed. These algo-

rithms can be broadly categorized as either offline, where all the points in S are available

prior to computing conv(S), or online, where the points arrive incrementally.

Efficient offline algorithms typically run in O (n log n) [23, 47] . At first, it was thought

that this was the best that could be achieved, until optimal output sensitive algorithms

were discovered. An algorithm whose complexity depends on the size of the output is
1Recall that a convex combination of m points, p1, p2, · · · , pm, is defined as any point p satisfying p =∑m
i=1 λipi such that each λi ≥ 0 and

∑m
i=1 λi = 1.

1

termed output-sensitive. One of the earliest output-sensitive algorithms is Jarvis march

which runs in O (nk) time [32], where k ≤ n is the number of points on the hull. A few

output-sensitive algorithms run inO (n log k) [37, 12]. It is easy to see that when the output

vertices of a convex hull algorithm are required to be in a sorted order, the sorting prob-

lem can be reduced to the convex hull problem. This directly suggests a lower bound of

Ω(n log n). Yao [58] proved Ω(n log n) worst-case lower bound for the general convex hull

problem, by showing that ternary decision trees for this problem have n! leaves and thus,

Ω(n log n) height.

In fact, sorting algorithms have often inspired new convex hull algorithms. For in-

stance, the quickhull [22, 10] algorithm drew inspiration from quick sort and the divide-

and-conquer algorithm of Preparata and Hong [47] could have been appropriately named

merge hull for its resemblance to merge sort. Jarvis march reminds us of selection sort,

while Graham scan is somewhat reminiscent of insertion sort.

There is, however, one crucial difference between the convex hull and sorting. In the

sorting problem, every element of the input ends up in the output. This contrasts with the

convex hull problem where not every input point necessarily remains in the output.

1.2 Convex Hull Approximation

When dealing with input point sets that are themselves approximate, a fast convex hull

approximation algorithm might be more practical as long as the approximation error is

reasonably bounded. We shall have a lot more to say about convex hull approximation

algorithms and their error bounds in Chapter 2.

1.3 Streaming Algorithms for the Convex Hull

An algorithm is called online, if it gets its input data a piece at a time and must compute a

partial result, which it updates while the rest of the input comes through. Preparata [46]

2

proposed a Θ(n log n) online realtime algorithm that incrementally updates its current con-

vex hull with each arrival of a new point inO (log n) time. Preparata’s algorithm improves

on Shamos’s algorithm, which, though also runs in Θ(n log n), could only process new

points in time O
(
(log n)2

)
[46]. Another optimal online algorithm was later discovered

by Kallay [33]. There are also algorithms that run in O (n) expected time [5, 22, 4] for pla-

nar and 3D point sets, if the point sets satisfy certain conditions, such as being uniformly

distributed.

Online algorithms that are further restricted by how much memory they are allowed

(i.e. a memory budget) are called streaming algorithms. Thus results that require more mem-

ory than the allowed budget must make decisions on what is worth keeping and what

must be discarded. An example of a streaming algorithm for the convex hull is Hersh-

berger and Suri’s algorithm [28, 30, 29]. Their algorithm maintains extreme points in k

uniformly spaced directions and another k extreme points in adaptively sampled direc-

tions. Their algorithm has a distance error of O
(
1/k2

)
. This distance is defined as the

height of the tallest uncertainty triangle. The uncertainty triangle of an edge ei is the tri-

angle formed by extending its immediate neighbor edges ei−1 and ei+1 until they meet,

assuming all such triangles are bounded. Chapter 3 introduces streaming algorithms and

proposes a new convex hull streaming algorithm.

1.4 Convex Layers

The convex layers problem, also known as the onion peeling problem, can be defined as follows:

Given a set of points P in the plane, construct a set of non-intersecting convex polygons,

such as would be constructed by iteratively constructing the convex hull of the points left

after all points on all previously constructed convex polygons are deleted. Figure 1.1 is an

example of the convex layers for a set of forty-five randomly-generated points. Convex

layers will be dicussed further in Chapter 4.

3

Figure 1.1: Convex Layers

1.5 Organization of Thesis

The next three chapters present the contributions of this thesis. Chapter 2 introduces an

analytical framework for describing convex hull approximation algorithms and then ap-

plies the framework to a number of published algorithms as well as to new algorithms

proposed in this thesis. Chapter 3 presents a new streaming algorithm for the convex hull

and analyzes its runtime and error bounds. Chapter 4 presents a new simple algorithm

for the convex layers problem, and presents correctness and optimality proofs. Finally,

Chapter 5 concludes the dissertation.

4

Chapter 2: Convex Hull Approximation

This chapter introduces the problem of approximating convex hulls. The convex hull of a

finite set of points P ⊂ R2 is the smallest simple polygon that contains P . In Section 2.1, we

introduce the problem, present our contributions in Section 2.2, and conclude the chapter

in Section 2.3.

2.1 Introduction

In many domains, where the convex hull is applied, point sets may contain errors from

noise or from rounding. In either case, it might be more desirable to compute an ap-

proximate hull using a very fast algorithm than to compute an exact one using a costlier

algorithm as long as the approximation error is reasonably bounded.

2.2 Contributions

The contributions in this chapter are of two types. The first is a proposed analytical

framework for describing convex hull approximation algorithms using a common set of

attributes. This framework is then applied to a number of algorithms found in the liter-

ature with the goal that these algorithms can be better compared, and gaps in published

knowledge about them discovered and filled. The second type of contributions proposed

are new algorithms with improved runtime and error bounds.

5

2.2.1 Framework for Approximate Convex Hull Algorithms

This section proposes a common framework for discussing known approximation algo-

rithms for the convex hull, with the goal that these algorithms can be more easily com-

pared.

Underlying Convex Hull Definition. Often, convex hull algorithms derive directly from

one of the many equivalent definitions of the convex hull. This attribute is used

to map algorithms to definitions that could have inspired them, even if so only in

hindsight. The algorithms have been mostly inspired by two of the definitions of

the convex hull mentioned above – the convex hull defined as the intersection of

half-planes (intersection idea) and as the union of convex combinations (union idea).

Hull Approximation Type. Does the algorithm compute an inner, an outer, or a mid-hull?

Analogous Sorting Algorithm. Sorting algorithms also often inform convex hull algo-

rithms. Is there such a mapping? If yes, what is the mapping for a convex hull

approximation algorithm?

Generalization to d-space. How well does an algorithm generalize to higher dimensions?

Input Space. What assumptions does the algorithm make about the input space? Does

the algorithm work only with integer coordinates or does it apply more generally?

Does the algorithm have corner cases, that might lead it to fail for some classes of in-

puts? What are these classes of inputs and how could such degeneracies be handled?

Complexity. What are the the time- and space-complexities of a convex hull approxima-

tion algorithm?.

Accuracy Measures. How good is an algorithm in terms of accuracy under various accu-

racy measures?

Parallelizability. How easily can the algorithm be parallelized?

6

Streaming model. Can this algorithm process streaming data, where input points arrive

one at a time and memory is limited? If not, how easily can it be adapted to handle

streaming data?

All the algorithms discussed below fit into one of two models 1, shown in Algorithm 2.1

and Algorithm 2.2 below. Individual algorithms, however, differ in how each algorithm

defines the COMPUTESUBSET(S, k) or the COMPUTEHALFPLANES(S, k) functions.

Note that algorithms that follow the COMPUTESUBSET model tend to be inner hulls,

while those following the COMPUTEHALFPLANES model tend to be outer hulls.

Algorithm 2.1: APPROXSUBSET(S, k)

Input : A point set S and a parameter k ≥ 3
Output: The vertex set of an approximate convex hull of S in sorted order
� Compute a subset, L, of S �

1 L← COMPUTESUBSET(S, k)

� Return the convex hull of L, computed with a linear-time convex hull

algorithm �

2 return conv(L)

Algorithm 2.2: APPROXHALFPLANES(S, k)

Input : A point set S and a parameter k ≥ 3
Output: The vertex set of an approximate convex hull of S in sorted order
� Compute the half-planes of S, H = {hi : hi is a half-plane containing S} �

1 H ← COMPUTEHALFPLANES(S, k)

� Return the intersection of the half-planes H. �

2 return
⋂
i(hi)

1Models such as these are sometimes called control abstractions, or meta-algorithms.

7

2.2.1.1 Accuracy Measures

Approximate convex hull algorithms have been evaluated using a number of accuracy

measures. These measures usually come in two forms:

Relative Distance Measure. Given a finite point set S, let P be the vertices of conv(S) and

P ′ the vertices of conv∗(S) where conv∗(S) denotes some approximate convex hull of

S. The relative distance measure of P to P ′ is defined as:

errδ,diam(P, P ′) = δ(P, P ′)/ diam(P) (2.2.1)

i.e. the distance between the true hull and the approximate hull relative to the diam-

eter of S. The distance δ(·, ·) most commonly used is the Hausdorff distance2.

Relative Extent. Let P and P ′ be similarly defined as above. We define the relative extent

measure between P and P ′ with respect to an extent measure g as follows:

errg(P, P
′) =

|g(P)− g(P ′)|
g(P)

(2.2.2)

where g(·) is some extent measure of the given point set, such as diameter, area,

or even cardinality. For instance, if we define the function g as the area, then the

relative area measure for approximating a convex polygon P by P ′ can be expressed

as follows:

errarea(P, P
′) =

|area(P)− area(P ′)|
area(P)

(2.2.3)

2The Hausdorff distance from a finite point set P to another Q, δ(P,Q) is the maximum distance between
any point in P to its nearest point inQ, i.e. δ(P,Q) = max(maxp∈P minq∈Q ‖p− q‖ ,maxq∈Q minp∈P ‖q − p‖).

8

Another interesting question immediately comes to mind here: Can we analyze these

algorithms using a common template, including a common set of accuracy measures?

2.2.2 Approximate Convex Hull Algorithms

This section uses the framework presented above to discuss several published convex hull

approximation algorithms.

2.2.2.1 Klette’s Algorithm [38]

Klette [38] describes two kinds of approximate convex hulls: an outer and an inner hull.

The inner hull, true to its name, is wholly contained in the exact hull. Its vertices form a

subset of those of the exact convex hull. The outer hull always contains the exact convex

hull. Klette’s algorithm, presented in Algorithm 2.3 below3, takes an integer k and a point

set S as input parameters. It starts out by constructing k directions ∆ = {0, 1k2π, 2k2π, · · · , k−1k 2π}.

An extreme point pi for a direction αi ∈ ∆ is a point such that the line li, perpendicular

to the direction αi, passing through pi divides the plane into two half-planes one of which

wholly contains S. The set of extreme points for all the directions forms the vertex set for

the approximate inner hull Ak. The intersection of the half-planes forms the outer hull Hk.

Because the extreme points pi found this way are not necessarily distinct, both Ak and Hk

might actually have cardinalities smaller than k.

Below, we discuss Klette’s algorithm using the framework given earlier in Section 2.2.2.

Underlying Convex Hull Definition. Klette’s inner hull approximation algorithm uses the

idea of union of convex combinations (simplices), while his outer hull approximation

uses that of intersection of half-planes.

Hull Approximation Type. Klette defined both an inner and an outer hull approximation

in his paper.

3Note that Algorithm 2.3 along with Algorithm 2.1 only compute the inner hull

9

Algorithm 2.3: COMPUTESUBSET(S, k)

Input : A point set S and a parameter k ≥ 3
Output: A subset of S

1 L← ∅
2 foreach α ∈ {2πk i|i ∈ [0, k − 1]} do
3 Get the points P that are extreme in direction α
4 L← L ∪ P

� Return the subset L �

5 return L

Figure 2.1: A sample run using |S| = 10, k = 4.

Analogous Sorting Algorithm. The operation of selecting the maximum length point along

each direction reminds one of selection sort. However, the consideration of k direc-

tions is reminiscent of bucket sort. It seems this algorithm does not fit into a single

sorting “bucket”.

Generalization to d-space. Klette’s algorithm was rediscovered some fifteen years later

by Xu et al [57] in 1998 and generalized to higher dimensions and to real inputs.

10

Figure 2.2: A sample run using |S| = 100 and k = 10

Input Space. As originally presented, Klette’s algorithm assumes the input points have

integer coordinates4, however, the algorithm can be made to work with arbitrary

precision points as demonstrated by Xu et al [57] in their generalization of the algo-

rithm to higher dimensions.

Complexity. Klette’s algorithm runs in O (nk) time. Kim and Stojmenovic [36] suggest

ways to improve it to O (n log k) worst-case and O (n+
√
n log k) average-case time.

The approach is to start with d = 2 directions and double the number of directions

repeatedly until d ≥ k.

Klette proved that the inner hull always converges to the true hull given a large

enough number of directions. Ẑunić [55] found that m2 directions are necessary to

guarantee convergence, where m is the diameter of the point set (i.e. the maximum

number of grid cells orthogonally spanned by the point set). Another interesting

property of the inner hull is that all the vertices of the inner hull V (Ak(S)) are vertices

4Point sets with integer coordinates are sometime called grid or digital point sets.

11

of the exact hull V (conv(S)) (i.e. V (Ak(S)) ⊆ V (conv(S))).

Accuracy Measures. Klette reports that empirically, the inner hull algorithms perform ex-

tremely well under the area measure

area(Ak(S))

area(conv(S))
= .977

on average for k = 8 and point set of sizes ranging from 11 to 5175. A sample output

from our implementation of this algorithm is shown in Figure 2.1, in comparison

with an exact convex hull algorithm and a randomized version where the k directions

are randomly generated. For this particular run, we found the area ratios 0.996862

and 0.976057 for the Klette and the randomized Klette respectively.

Notwithstanding these empirical results, the worst-case relative distance error is

tan(1/k) [36]. Since 1/k ∈ (0, 1], the relative distance error is no greater than than

tan(1.0) ≈ 0.0174.

The area error bound is O (1) [36].

Parallelizability. The computations for each direction α in Algorithm COMPUTESUBSET

Algorithm 2.3 can be done independently and thus handed off to a different proces-

sor. This will result in a parallel runtime of Tp = O
(
nk
p

)
, where p is the number of

processors in a PRAM model of computation.

Streaming model. Klette’s algorithm assumes that the whole input point set is available

to the algorithm, so it does not fit into the streaming model.

2.2.2.2 Bentley et al.’s Algorithm [3]

The algorithm of Bentley, Faust and Prepaprata is one of the earliest published for this

problem. Given a point set S ∈ R2 and a parameter k, the algorithm finds the two points

12

with the minimum and maximum x-coordinates (ties split using the y-coordinates) and

adds them to its subset L. It then splits the point set into k vertical strips, each of width

diam(S)/k, where diam(S) denotes the diameter of S. Within each strip, the algorithm

finds the two extreme points with the minimum and maximum y-coordinates and adds

them to L. Finally, the algorithm computes the convex hull of L using a version of Gra-

ham’s scan that skips the sorting step. The pseudocode for the algorithm is given in Algo-

rithm 2.4.

Algorithm 2.4: COMPUTESUBSET(S, k) in Bentley et al.’s Algorithm
Input : A point set S and a parameter k ≥ 3
Output: A subset of S

1 L← ∅
2 pmax = argmax

pi=(xi,yi)∈S
xi

3 pmin = argmin
pi=(xi,yi)∈S

xi

4 L = L ∪ {pmin, pmax}
� Initialize each strip’s extreme points �

5 foreach i ∈ [1, 2, · · · , k] do
6 pminsi = (∞,∞), pmaxsi = (−∞,−∞)

7 foreach p ∈ S do
8 i =

⌊
1
k (p.x− pmin.x)(pmax.x− pmin.x)

⌋
9 pminsi ← argmin

v∈{p,pminsi}
yv

10 pmaxsi ← argmax
v∈{p,pmaxsi}

yv

11 foreach i ∈ [1, 2, · · · , k] do
12 L← L ∪ {pminsi , pmaxsi}

� Return the subset L �

13 return L

Underlying Convex Hull Definition. Union idea – union of convex combinations.

Hull Approximation Type. This algorithm is clearly an inner hull algorithm.

13

The authors also suggested an outer hull version as well as a “mid”-hull version.

The outer hull version essentially replaces each extreme point p = (x, y) with two

new points pl = (xl, y) and pu = (xr, y), where xl is the x-coordinate of the left

boundary of the strip containing p and xr that of the right boundary. This amounts

to essentially adding the four corners of the minimum enclosing box for each strip to

the subset.

The “mid”-hull is constructed by shifting each extreme point horizontally so that

they lie in the center of their respective strip. This variant is noted to have a slightly

smaller distance error ratio of 1/2k rather than 1/k.

Analogous Sorting Algorithm. Clearly, this algorithm resembles bucket sort, since it splits

the point into vertical strips, which is similar to the idea of buckets in bucket sort.

Generalization to d-space. Bentley et al. discussed a generalization of their algorithm to

d-space. The key idea here is to generate k + 2 strips along each of the dimensions

1, 2, · · · , d− 1 and then find the extreme points in the d dimension to obtain L.

Input Space. The input space is R2, but can be generalized to support Rn.

Complexity. The time and space complexity of Bentley et al.’s algorithm is O (n+ k) and

O (n) respectively.

When generalized to d-dimensional space, it runs inO (n+ g(k, d)) time andO
(
kd−1

)
storage, where g(k, d) is the time-complexity for computing the convex hull of k

points in d-space. In 3-dimensional space, g(k, 3) = O
(
k2 log k

)
. For d > 3, the

best worst-case g(n, k) known is due to Chazelle [16] and runs inO
(
n log n+ nbd/2c

)
time. Unlike in the planar case, there is no known algorithm that takes advantage of

the existing ordering in L to compute the convex hull faster thanO
(
n log n+ nbd/2c

)
,

which is optimal in the worst-case [16].

14

Accuracy Measures. Bentley et al. showed a relative distance error bound ofO (1/k). The

area error bound is Θ (1) [36], as shown in Figure 2.3.

a

b

d

c

Figure 2.3: Area Approximation Error of Bentley et al.’s Algorithm

Note that the algorithm of Bentley et al. as well as that of Soisalon-Soininen’s algo-

rithm [52, 53] will both return the line segment ab as the approximate hull, whereas

the exact hull is the trapezoid abcd, thus giving a worst-case relative area error of

Θ (1)

Parallelizability. This algorithm is easy to parallelize since the processing of each strip is

independent and can thus be delegated to a different processor.

Streaming model. Bentley’s algorithm as defined assumes that the whole point set is known

at the start of the algorithm. However, we only need the point set in order to com-

pute the x-range of the input point set. In the streaming model, this information

15

is not fully known until all the points have been seen. A two-pass streaming algo-

rithm can be devised however, where the first pass computes the extrema of the point

set, so that the strip width can be computed and the second pass computes the subset

two per strip and finally the approximate hull is then computed from the subset. The

parameter k can be understood to be the memory budget of the streaming algorithm.

Miscellaneous Issues. Kim and Stojmenovic [36] proposed two approximate hull algo-

rithms — one of which is an extension of Bentley et al.’s. The only difference be-

tween this algorithm and that of Bentley et al. is that in computing the extreme

points within each vertical strip, it takes the points that are farthest above or farthest

below the line segment connecting the horizontal extreme points.

Soisalon-Soininen’s algorithm [52, 53] improved slightly on Bentley et al.’s algorithm

by splitting the point set both vertically into k1 strips as well as horizontally into k2

strips. The algorithm starts by finding the two extreme points along the horizontal

axis xmin and xmax, and the two along the vertical axis ymin and ymax. Then it splits

the point set into k1 vertical strips and then into k2 horizontal strips. Next, it com-

putes the vertical subset L1 as the set of extreme points within the vertical strips. It

also computes L2 as the extreme points along the horizontal strips. The intricate part

of the algorithm is the merging of L1 and L2 to form the subset for the entire point

set L in sorted order. This is achieved by first finding a common point between the

L1 and L2 at the corners and then filtering out the points that are farther in to make

it into the convex hull of the merged set. Finally, it computes conv(L) using an exact

algorithm just as is done in Bentley et al’s.

This algorithm runs in time O (n+ k) where k = max(k1, k2) and uses O (k) space,

not counting the input. The paper proved that the Hausdorff distance from the true

hull to the approximate hull produced by this algorithm is no more than
√

2/2k of

the diameter of the input point set.

16

2.2.2.3 Ẑunić’s Algorithm [55]

This algorithm is an extension of Jarvis march. It constructs both an outer and an inner hull

approximation. It starts out by constructing an axis-parallel bounding box of the point set

S. Denote the four corners of the bounding box by ti where i = 1, 2, 3, 4. Thus, in the first

iteration, the vertices of the approximate convex hull, V1, consist of these four corners as

well as any other points lying on the four sides of the bounding box and adjacent to the

four corners. In other words, V1 = {t1, · · · , t4} ∪ {l1, · · · , l4, r1, · · · , r4}, where li (ri) is the

point adjacent to vertex ti on the left (right). Note that some of the li’s might coincide with

the ri’s.

The algorithm proceeds by successively replacing each ti with three points, l′i, t
′
i, r
′
i,

from within the triangle litiri. The point l′i (r′i) is the point that maximizes the angle

�(l′i, li, ri) (�(r′i, ri, li)). The point t′i is the point of intersection of the two line segments lil′i

and rir′i.

Underlying Convex Hull Definition. Intersection of half planes.

Hull Approximation Type. Since the approximate convex hull computed by the above

algorithm contains points ti, which are not necessarily points from S, it is clearly an

outer hull approximation. In order to compute an inner hull, the algorithm simply

takes the outer hull Vk and computes the inner hull as conv(Vk\{ti}), i ∈ [1, · · · , 4].

Analogous Sorting Algorithm. Underlying sorting algorithm is selection sort.

Generalization to d-space. The generalization to arbitrary dimension follows from the

generality of the gift-wrapping paradigm that informs the Jarvis march [14].

Input Space. The original algorithm was designed for grid points, so the input space is

Z2, but can be generalized to support Rn.

Complexity. This algorithm runs in O (kn) time and O (n) space, where k is the number

of refinement iterations taken by the algorithm.

17

Accuracy Measures. The relative distance error and the area error are shown to be O (1)

by Kim and Stojmerovic [36].

Parallelizability. The gift-wrapping paradigm is inherently sequential, as each iteration

depends on the output of the previous one.

Streaming model. The algorithm assumes that the entire point set is available at the out-

set, so that its bounding box can be computed, and then its bounding 8-gon, and so

on. In the streaming model such structures cannot be reliably computed until all the

points have been seen.

2.2.2.4 Kim and Stojmenovic’s Algorithms [36]

Kim and Stojmenovic [36] proposed two approximate hull algorithms — one of which is

an extension of Bentley et al.’s. The only difference between this algorithm and that of

Bentley et al. is that in computing the extreme points within each vertical strip, it takes the

points that are farthest above and below from the line segment connecting the horizontal

extreme points.

The second algorithm in the work of Kim and Stojmenovic [36] is an adaptation of

quickhull [22, 10]. This algorithm is essentially the quickhull algorithm, but breaking out

at the k-th iteration or recursive depth. This second algorithm is analyzed using our frame-

work below.

Underlying Convex Hull Definition. Intersection of half-planes.

Hull Approximation Type. Inner hull.

Analogous Sorting Algorithm. Quick sort.

Generalization to d-space. Generalizable to d-space, since it is essentially quickhull, with

fewer iterations or recursive depth.

Input Space. The input space is the real plane, R2.

18

Complexity. O (n log k) worst-case time.

Accuracy Measures. Both the relative distance and area error bounds are O
(

1
k2

)
.

Parallelizability. Parallel version of quickhull [41] can be adapted to obtain a parallel ver-

sion of this algorithm.

Streaming model. Algorithm assumes the entire point set is available from the outset.

2.2.2.5 Kavan et al.’s Algorithm [35]

The algorithm proposed by Kavan, Kolingerova, and Zara [35] works roughly as follows.

Given a point set S and an integer k, it splits the point set into the k sectors of a circle with

an arbitrary center c ∈ S. Each sector si has an angle of 2π/k. The algorithm projects all

the points in a sector onto a half-line li that originates from c and bisects si. The trivial

extreme point pi for a sector si is defined as follows:

pi = argmax
p∈si∩S

p ·
−→
li , (2.2.4)

where · is the dot-product and
−→
li is the unit vector pointing away from c and collinear with

li. Unfortunately, when such extreme points are used to generate an approximate hull, the

distance from a point outside the hull to the hull is unbounded. So, the authors compute

another set of extreme points p∗i , from the pi’s above as follows:

p∗i = argmax
p∈P

p ·
−→
li , (2.2.5)

where P =
⋃
j∈{1,2,··· ,k} pj . Next, for each of the extreme points p∗i , a half-space hi is de-

fined with the normal l∗i to li passing through p∗i . The approximate hull is defined by the

intersection of these half-spaces.

Underlying Convex Hull Definition. Intersection of half-spaces.

19

Hull Approximation Type. Note that the vertices of hulls thus constructed are not nec-

essarily the extreme points. Rather, the extreme points would lie on the edges of

the hull. Thus, these approximate hulls are neither inner nor outer hulls. On the one

hand, they resemble outer hulls in that they result from an intersection of half-planes.

On the other, they also resemble inner hulls as they are sometimes wholly contained

within the exact hull.

Analogous Sorting Algorithm. Since points are divided into sectors just as keys are split

into buckets, the analogous sorting algorithm is clearly bucket sort.

Generalization to d-space. Algorithm can be extended to arbitrary dimensions since most

computations involve computing norms and partitioning the input space into sec-

tors. In d-dimensional space, the surface of the smallest enclosing d-ball, B can be

partitioned into k zones. The half-space that passes through an extremal point for a

zone, defined similarly, that is orthogonal to the ray emanating from the center of B

and passing though the zonal center is computed for each zone. The intersection of

these half-spaces define an approximate convex hull in d-space.

Input Space. The input space is R2.

Complexity. Kavan et al’s algorithm takes O
(
n+ k2

)
time and O (n+ k) space.

Accuracy Measures. It was shown in [35] is that the distance δ to any point external to the

hull produced by this algorithm is bounded by the inequality,

0 ≤ δ ≤ max(r tan
π

k
, 2r sin

π

k
), (2.2.6)

where r < diam(S) is the distance between c and its farthest neighbor in S.

The relative area error for Kavan’s algorithm is also Θ (1) when it underestimates. To

see why, consider Figure 2.4 below.

20

k = 8

a

b

c

d

e
f

Figure 2.4: Area Approximation Error of Kavan’s Algorithm – Underestimate

For the point set in Figure 2.4, Kavan’s algorithm will return the segment be as the

approximate hull, whereas the exact hull is the shaded polygonal area, abcdef . Here

the algorithm grossly underestimates the true hull.

However, when it overestimates, Kavan’s algorithm has an unbounded relative area

error as shown in Figure 2.5. Here the true hull is the segment ac, and thus has

zero area, but Kavan’s algorithm will return a region, making the relative area error

unbounded in this case.

Parallelizability. The computation within each sector can be handed off to a different pro-

cessor. So, a parallel version is conceivable.

Streaming model. Another positive aspect of this algorithm is that it is also an online

algorithm with an update time complexity ofO (k). When implemented as an online

algorithm, the space complexity can be reduced to O (k), since interior points can be

discarded as soon as they are discovered.

21

k = 6

c

b

a

Figure 2.5: Area Approximation Error of Kavan’s Algorithm – Overestimate

2.2.3 New Convex Hull Approximation Algorithms

This section discusses three new approximation algorithms for the convex hull problem.

The first one is based on a bucketing technique – split the point set into sectors and then

select candidate points from each sector. The convex hull of these candidate points then

becomes the approximate convex hull. The second algorithm combines bucketing with

ideas from the quickhull algorithm. The third is an enhancement of Kavan’s algorithm.

2.2.3.1 Radial Bucketing

In combination with Algorithm APPROXSUBSET on page 7, Algorithm COMPUTESUBSET

on page 23, presents the pseudocode for a new convex hull approximation algorithm. It

essentially consists of two steps. Step 2.1 invokes COMPUTESUBSET to compute a subset

and Step 2 computes and returns the convex hull of the subset. The algorithm depends on

a control parameter k – the bigger it is, the better the approximation.

Underlying Convex Hull Definition. Union of convex combinations.

Hull Approximation Type. Inner hull approximation.

22

Algorithm 2.5: COMPUTESUBSET(S, k)

Input : A point set S and a parameter k ≥ 3
Output: A subset of S
� Compute the centroid, c, of S �

1 c←

|S|−1∑
i=0

pi

|S|
2 Select a point p̂ ∈ S farthest from c

3 for i← 0 to k − 1 do
4 Li ← c

5 foreach p ∈ S do
� Let φp be the polar angle of point p about c �

6 φp ← tan−1
‖ projy

−−−→
p− c‖

‖ projx
−−−→
p− c‖

7 i← bφpk
2π
c

8 Si ← Si ∪ {p}
9 if ‖c− p‖ > ‖c− Li‖ then

10 Li ← p

11 for i← 0 to k − 1 do
� Let lb (la) be the ray originating from Li and passing through L(i−1) mod k

(respectively through L(i+1) mod k) �

12 add argmaxp∈Si
dist(p, lb) to L if it exists

13 add Li to L
14 add argmaxp∈Si

dist(p, la) to L if it exists
15 return L � Return the subset L�

Analogous Sorting Algorithm. Bucket sort.

Generalization to d-space. Because of the bucketing step, this algorithm is not easily gen-

eralized to higher dimensions.

Input Space. The input points for this algorithm are arbitrary points from the plane, R2.

Complexity. Clearly, Algorithm COMPUTESUBSET runs in linear time, since all the itera-

tions over the input point set either take O (n) or O (k) as indicated below.

Step 1 O (n)

23

Step 2 O (n)

Step 3 – 4 O (k)

Step 5 – 10 O (n)

Step 11 – 14 O (n)

It is not hard to see that Algorithm APPROXSUBSET with this implementation of

COMPUTESUBSET runs inO (n+ k) worst case time. Step 1 of APPROXSUBSET, which

simply invokes (COMPUTESUBSET), thus also runs in linear time, O (n). The second

and last step 15 of APPROXSUBSET simply invokes an exact convex hull algorithm

such as Graham’s scan for a sorted list of points (polygonal vertices), such as L is.

This only takes linear time Θ(k) [24]. Algorithm APPROXSUBSET then clearly runs in

Θ(n+ k) and is thus comparable to Bentley et al.’s in runtime.

Accuracy Measures. The relative distance error and the area error bounds for this algo-

rithm are both O (1). This is achieved when all the points fall within a narrow rect-

angular band, such that only two sectors are populated.

Parallelizability. Each of the loops in COMPUTESUBSET can clearly be handed off to a

different processor as each iteration is independent.

Streaming model. In a streaming model, we would not have the whole input point set in

order to compute the centroid, so the algorithm must be adjusted to accommodate

this fact. The resulting streaming algorithm is described in Section 3.3.

2.2.3.2 Quickhull + Bentley et al.’s Algorithm

This algorithm combines the preprocessing step of the quickhull algorithm with the idea

of splitting the point set into k vertical strips from Bentley et al.’s algorithm. Given a point

set P , the algorithm starts out by finding the two points pl and pr with the minimum

24

and maximum x-coordinates. Next, the algorithm finds the two points pt and pb respec-

tively farthest above and below from the segment plpr. Together these four points define

a convex quadrilateral Q. Similarly to quickhull, it discards all the points in the interior

of the quadrilateral Q. The algorithm then constructs a rectangle abcd with sides parallel

or perpendicular to the segment plpr with sides ab, bc cd, and da passing through the four

extreme points pt, pr, pb, and pl respectively. Next, it computes the following four sets:

• P (1)
lt – points falling in the interior of the triangle plapt

• P (1)
tr – points falling in the interior of the triangle plbpt

• P (1)
br – points falling in the interior of the triangle plcpt

• P (1)
lb – points falling in the interior of the triangle pldpt

Each of these triangles is then partitioned into k strips perpendicular to the side of the

quadrilateral plptprpb that defines it. Next, the algorithm selects the point within each strip

farthest from its side of the quadrilateral Q. It then constructs the list P ′ using these points

as well as the corners Q in order. Finally, it computes the convex hull conv(P ′) using a

linear time convex hull algorithm such as Graham’s scan for polygonal points.

One possible way to enhance this algorithm’s accuracy is to let the algorithm do a few

more iterations of quickhull until the subproblem size reduces to a certain threshold value,

that is a function of n and k, before applying the bucketing step. It is however not clear

how to achieve this while still maintaining a linear runtime.

Underlying Convex Hull Definition. Quickhull and bucket sort.

Hull Approximation Type. Inner hull approximation.

Analogous Sorting Algorithm. The initial partition part of the algorithm is reminiscent of

quick sort’s PARTITION step. However, the subsequent step of splitting the point

into slabs is more analogous to bucket sort.

25

Generalization to d-space. Because of the bucketing step involved, generalization to higher

dimensions is not obvious.

Input Space. The input points for this algorithm are arbitrary points from the plane, R2.

Complexity. The first step in the algorithm finds the four points with maximum and min-

imum x- and y-coordinates. Together, these define a quadrilateral Q. This step takes

linear time. Similarly, discarding points bounded by the quadrilateral Q takes linear

time. Finally, splitting each group of remaining points into k buckets also takes lin-

ear time. So, does the call to Graham scan, since the points are already sorted. So,

overall, the algorithm takes linear time, O (n+ k) and linear space, O (n).

Accuracy Measures. Both the relative distance and area error bounds are O
(

1
k2

)
.

Parallelizability. This algorithm is parallelizable. Its initial steps can start off with a par-

allel version of quickhull. The bucketing steps that follow are also parallelizable as

well.

Streaming model. It is possible to devise a streaming version, where the quadrilateral Q

is constantly being updated as new points arrive. Points outside of Q are retained

in memory, until the memory budget is reached. At that moment, the algorithm

partitions them into slabs and finds the list P ′.

2.2.3.3 Enhancement to Kavan’s Algorithm

The main reason for the poor relative error of Kavan’s algorithm is that it only computes

one extremal half-plane per sector. By increasing the number extremal half-planes to in-

clude two additional neighboring directions on either side, three half-planes are produced

for each sector. One is orthogonal to the sector’s directional vector, and the other two are

respectively orthogonal to the directional vectors of its adjacent sectors.

26

In other words, rather than compute,

pi = argmax
p∈si

p ·
−→
li (2.2.7)

we compute instead

pi,j = argmax
p∈si

p ·
−→
l i+j , j = −1, 0, 1 (2.2.8)

and similarly,

p∗i = argmax
p∈P

p ·
−→
li (2.2.9)

with P redefined as P =
⋃
i∈{1,2,··· ,k},j∈{−1,0,1} pi,j .

2.3 Conclusion

This chapter has presented an overview of the convex hull problem, and three new approx-

imation algorithms for the convex hull. The chapter has also given complexity and error

analyses for these algorithms. Further, future work will expand on their error analysis by

use of empirical tools.

Future work will also attempt to unify the error analysis for the algorithms presented.

The following questions will also be pursued further:

• Can an algorithm be devised that takes advantage of the ordering inherent in the sub-

set S′ of the input set S produced by Bentley et al.’s algorithms in higher dimension

(d > 2) to compute a convex hull faster?

• Can inspiration be drawn from other sorting algorithms to find better exact or ap-

proximate convex hull algorithms?

• Can other definitions of the convex hull be used to devise better algorithms?

27

Chapter 3: Streaming Algorithm for the Convex Hull

This chapter introduces the problem of computing the convex hull from a stream of points

arriving in arbitrary order. A streaming algorithm is an approximation algorithm con-

strained to work within a memory budget. Thus results that require more memory than

the allowed budget must make decisions on what is worth keeping and what must be dis-

carded. In Section 3.1, we introduce the problem, relate relevant literature in Section 3.2,

present our contributions in Section 3.3, and Section 3.5 concludes the chapter.

3.1 Introduction

A streaming algorithm, typically limited in the amount of resources it is allowed, essen-

tially has three parts: an initialization part, a processing part, and a query answering part.

Initialization. In this part, counters and data structures are initialized. This is the boot-

strap for the algorithm and is executed only at the onset of the streaming process.

Process. This part computes an intermediate structure that can be easily updated with a

new input as well as easily queried to obtain an answer based on the inputs seen so

far.

Query. This part responds to queries using the latest state of the intermediate structure

built in the process step above.

3.2 Related Work

In the case of a finite stream of points P , our algorithm behaves similarly to Preparata’s

exact online algorithm [46] when k ≥ | conv(P)|.

28

The streaming algorithm proposed by Hershberger and Suri [28, 30, 29] maintains ex-

treme points in k uniformly spaced directions and another k extreme points in adaptively

sampled directions. Their algorithm has a distance error of O
(
1/k2

)
. This distance is de-

fined as the height of the tallest uncertainty triangle. The uncertainty triangle of an edge ei

is the triangle formed by extending its immediate neighbor edges ei−1 and ei+1 until they

meet, assuming all such triangles are bounded. No area measure was reported.

Lopez and Reizner [40] proposed two algorithms for approximating an n-gon P by

a k-gon Q. Their first algorithm builds an inscribed k-gon by repeatedly removing an

ear of minimum area until only k vertices remain. So, it does bear some resemblance

to our algorithm, however, it differs from our algorithm in at least two respects. Firstly,

their algorithm is not online, as all the vertices of the n-gon are known ahead of time.

So, the minimum area ear in their algorithm is truly globally minimum. In a streaming

scenario, the minimum area ear is only minimum among the vertices remembered by the

algorithm at an instant of time. Secondly, their algorithm does not and need not ensure

that directional extrema are remembered.

Lopez and Reizner’s second algorithm [40] similarly builds a circumscribing k-gon of

minimum area to approximate an n-gon. At each iteration of the algorithm, a side of the

polygon with minimum-area outer cap is chosen. The outer cap of a side s is the triangle

formed by extending the neighboring sides until they meet. Their meeting point is then a

new vertex of the polygon. So, each iteration eliminates a side, until there are only k sides

left.

3.3 Contributions

3.3.1 Streaming Algorithm

Let C = (p1, p2, ..., pn) be a sequence of vertices of a convex polygon in counter-clockwise

order. Each contiguous 3-sequence (p, q, r) inC defines a measure ∆q = GOODNESS(p, q, r),

29

which is associated with the vertex q. We shall call the measure ∆q the goodness of q. Note

that ∆q is a local measure and depends only on q and its two direct neighbors in C. Thus,

whenever this contiguity relationship is violated, say by deletion of a direct neighbor or

insertion of a new one, q’s goodness must be recomputed. Similarly, when q is deleted, the

GOODNESS of both p and r must be recomputed. By varying the definition of the function

GOODNESS as the area, the perimeter of the triangle 4pqr, the length of the segment pr,

the height of the triangle pqr relative to base pr, or even the angle ∠q in 4pqr, we obtain

different variants of the same algorithm. We shall mainly address ourselves to the area

variant in this section.

3.3.1.1 INITIALIZE

The procedure INITIALIZE in Algorithm 3.1 initializes a height-balanced binary search tree

T and a priority queue H to store the NODE references using two different keys. While

points in T are ordered by their polar angles, points in H are keyed on their goodness

value.

The structure T could be implemented as a left-leaning red-black tree [50, 51] and sup-

ports ordered sequence operations such as PRED, SUCC in addition to regular dictionary

operations of INSERT, DELETEKEY and LOOKUP. It also supports the search operations of

PRED and SUCC. Given an input key k, PRED (SUCC) returns the node with key immediately

preceding (succeeding) k in T .

The priority queue H could be implemented as a binary min-heap and supports the

heap operations of INSERT, DELETEMIN, and CHANGEKEY each in O (log n) time [51, 18].

Each point is inserted into H with its goodness as key, thus the DELETEMIN operation on

H will always return the vertex with the least goodness.

The structure L in Step 1 is a cyclic array and supports PRED and SUCC operations. The

function NODE(p,∆p,Θp, deleted) creates a new node (a 4-tuple), whose attributes can be

accessed using the attribute names POINT, GOODNESS, POLAR, and DELETED respectively.

30

Algorithm 3.1: INITIALIZE(Sk, k)
Input : The first k input points Sk and parameter k.
Output: T : height-balanced BST with vertices of conv(Sk) sorted by polar angles

about centroid c, H : binary min-heap of vertices conv(Sk) using GOODNESS
as priority.

1 L← conv(Sk)

2 c← CENTROID(L)

3 (N,W,S,E)← DIRECTIONALEXTREMA(L, c)

4 foreach p ∈ L do
5 Θp ← POLAR(p, c)

6 if p ∈ (N,W,S,E) then
7 ∆p ←∞
8 else
9 ∆p ← GOODNESS(L. PRED(p), p, L. SUCC(p))

10 node← NODE(p,∆p,Θp, false)
11 T. INSERT(Θp, node)
12 H. INSERT(∆p, node)
13 return (T,H, c, k)

3.3.1.2 PROCESS

Algorithm 3.2: PROCESS(T,H, c, k, p)

Input : T : height-balanced BST with ≤ k of conv(S) where S is the point stream, H :
binary min-heap of ≤ k of conv(S), p: new point, k: memory budget

Output: T : a height-balanced BST update with p if on the hull, H : a binary min-heap
updated with p if on the hull.

1 n← NODE(p, 0, POLAR(p, c), false)
2 (T,H)← UPDATEHULL(T,H, c, n)

3 if |T | > k then
4 (T,H)← SHRINKHULL(T,H)

5 return (T,H)

31

Procedure PROCESS is invoked each time a new point arrives. A new node n is cre-

ated and used to update current hull by invoking procedure UPDATEHULL. The call to

UPDATEHULL(T,H, c, n) in line 2 of Procedure PROCESS updates the structures T and H

with a new node n. If the point associated with the new node, n.POINT, falls within the

interior of the current convex hull or on its boundary, it is discarded. This test can be done

in Steps 1 through 3 of UPDATEHULL.

Whenever the number of nodes in T exceeds k, the procedure SHRINKHULL is called to

choose one vertex for eviction. This is done by calling the DELETEMIN() on the min-heap

structure H to obtain the node q that should be evicted. The procedure then updates q’s

neighbor’s GOODNESSes and deletes q from T .

3.3.1.3 QUERY

Algorithm QUERY is invoked to obtain the current hull at any point in the streaming pro-

cess. It simply traverses T to return the hull vertices in a cyclic list.

The algorithm described is sensitive to the order in which points arrive in the stream.

Consider the six points A,B,C,D,E, F shown in Figure 3.1 and Figure 3.2 below.

C

D

A

B

E

F

Figure 3.1: k = 4, arrival sequence: A,B,C,D,E, F . D is evicted after E arrives, and B
after F .

32

Algorithm 3.3: UPDATEHULL(T,H, c, n)

Input : T : height-balanced BST with ≤ k of conv(S), H : binary min-heap of ≤ k of
conv(S), n: new node.

Output: T : height-balanced BST updated with n if on the hull, H : binary min-heap
updated with n if on the hull.

1 p← T.FLOOR(n)

2 r ← T.CEILING(n)

3 if not CONTAINS(4prc, n) then
4 (s, t)← TANGENTS(T, n)

5 x← T. SUCC(s)

6 while x 6= t do
7 x.deleted← true

8 H. CHANGEKEY(x,−∞)

9 T. DELETEKEY(x.polar)

10 x← T. SUCC(s)

11 q ← H.MINIMUM()

12 while q.deleted do
13 q ← H. DELETEMIN()

14 n.∆p ← GOODNESS(T. PRED(n), n, T. SUCC(n))

15 if n.∆ ≥ q then
16 T. INSERT(n.polar, n)

17 H. INSERT(n.∆p, n)

18 H. CHANGEKEY(s, GOODNESS(T. PRED(s), s, T. SUCC(s)))

19 H. CHANGEKEY(t, GOODNESS(T. PRED(t), t, T. SUCC(t)))

� Update extrema if needed �

20 (N,W,S,E)← UPDATEDIRECTIONALEXTREMA(T, c, n)

21 foreach n ∈ (N,W,S,E) do
� To prevent eviction of direction extrema �

22 H. CHANGEKEY(n,∞)

23 return (T,H)

3.3.2 Complexity Analysis

Theorem 3.1. Procedure INITIALIZE runs in time O (k log k) and uses O (k) space.

Proof. Step 1 of Procedure INITIALIZE runs in time O (k log k) using an optimal output

sensitive planar convex hull algorithm [37, 13]. This step dominates the procedure.

33

Algorithm 3.4: SHRINKHULL(T,H)
Input : T : height-balanced BST with k + 1 vertices of conv(S), H : binary min-heap

of k + 1 vertices of conv(S).
Output: T : height-balanced BST with k vertices of conv(S), H : binary min-heap of k

vertices of conv(S).
1 q ← H. DELETEMIN()

2 p← T. PRED(q.polar)

3 r ← T. SUCC(q.polar)

4 T. DELETEKEY(q.polar)

5 H. CHANGEKEY(p, GOODNESS(T. PRED(p), p, T. SUCC(p)))

6 H. CHANGEKEY(r, GOODNESS(T. PRED(r), r, T. SUCC(r)))

7 return (T,H)

Algorithm 3.5: QUERY(T)

Input : T : height-balanced BST with k vertices of conv(S)
Output: A cyclic list of the vertices in T

1 return TOCYCLICLIST(T)

C

D

A

B

E

F

Figure 3.2: k = 4 with arrival sequence: A,B,C,D, F,E. B is evicted after F arrives. E is
discarded as an interior point.

Lemma 3.1. Procedure UPDATEHULL runs in time O (log k) per point in the input stream S.

34

Proof. Steps 1 through 2 of Procedure UPDATEHULL take O (log k) time since they involve

a binary search on T . Step 3 takes O (1) time. The call to TANGENTS takes O (log k) time

[46]. The rest of the procedure – Steps 5 – 13 – deletes a vertex chain that no longer belongs

to the hull. Since these vertices are only deleted once per point in S, the total cost over all

invocations of the procedure UPDATEHULL is O (n log k), where n is the length of S.

Lemma 3.2. Procedure SHRINKHULL runs in time O (log(k)).

Proof. Every step of Procedure SHRINKHULL takes O (log(k)).

Theorem 3.2. Procedure PROCESS runs in time O (log k) time.

Proof. Each invocation of PROCESS makes a single call to SHRINKHULL and at most a sin-

gle call to SHRINKHULL. Thus, by Lemma 3.1 and Lemma 3.2, procedure PROCESS also

runs in O (log k) time.

Theorem 3.3. Procedure QUERY runs in time O (k).

Proof. Procedure QUERY only does a depth-first (in-order) traversal of T to construct a

cyclic list of its k vertices.

Lemma 3.3. Let Ti−1 be the convex hull computed so far at the moment just before invoking Algo-

rithm UPDATEHULL. Let Ti be resulting hull after UPDATEHULL returns. Then the following is

invariant holds:

|Ti−1| ≤ |Ti| (3.3.1)

Proof. Consider the invocation of UPDATEHULL on an arbitrary point pi. The fate of pi is

one of two:

pi lies in the interior of Ti−1. UPDATEHULL ignores pi, in which case the hull does not

grow and Ti = Ti−1

35

pi lies in the exterior of Ti−1. UPDATEHULL expands Ti−1 by adding pi to the hull and

therefore Ti has a bigger area than Ti−1.

A direct consequence of Lemma 3.3 above is the following statement.

Corollary 3.1. The centroid can never become external to the hull interior, even after an invocation

of procedure SHRINKHULL.

Proof. This follows since the centroid is computed precisely once in Line 2 of INITIALIZE

and never updated afterwards, but the directional extrema are recomputed with each input

point if required in Algorithm UPDATEHULL. Note that the quadrilateral formed by these

extrema will always contain the centroid, since it never gets smaller, since the extrema are

protected from eviction as they have infinite GOODNESS. The only time an extreme point

gets deleted from the hull is when a newly arrived point becomes more extreme than one

of the extrema in one direction, as the extrema p is now being deleted in favor of q in

Figure 3.3. This scenario, however, does not threaten the centroid c.

c
q

p

Figure 3.3: Convex Hull

Lemma 3.4. When k ≥ | conv(S)| the algorithm computes the exact convex hull of S .

36

Proof. The algorithm then is equivalent to that of Preparata [46].

3.3.3 Error Analysis

Recall from Equation (2.2.3) that relative area error is defined as:

errarea(P, P
′) =

|area(P)− area(P ′)|
area(P)

(3.3.2)

Lemma 3.5. Each eviction from a convex (k + 1)-gon by Algorithm SHRINKHULL introduces an

error no worse than O
(
1/k3

)
.

Proof. Let m = k + 1. Let Q be a convex m-gon and let e1, e2, ..., em be its ears. Denote by

|ei| the area of ei. Let Q′i = Q − ei denote the k-gon that would result if ei were evicted.

Therefore, the ratio |ei|/|Q| represents the area error that would result from deleting ei.

Further, let Rm denote a regular m-gon with unit area.

Renyi and Sulanke [49] proved the following result

1

|Q|m
m∏
i=1

|ei| ≤ |r|m (3.3.3)

where r is an ear of Rm.

By taking logarithms and invoking the mean-value theorem, it is clear that there must

exist at least one ear ej in Q such that |ej ||Q| ≤ |r|. The following inequality involving the ear

r of a regular m-gon can be easily shown:

|r| = 4R2 π
3

m3

[
1− π2

m2
+O

(
1

m4

)]
(3.3.4)

37

and thus:

|ej |
|Q|

< 4R2 π
3

m3
(3.3.5)

= O
(

1

(k + 1)3

)
. (3.3.6)

Lemma 3.6. Let e1, e2, ..., em denote the sequence of ears evicted by the streaming algorithm. The

following inequality holds

|ei| ≤ |ei+1| < H.MINIMUM for all i = 1, 2, ...,m− 1. (3.3.7)

Proof. Recall that Algorithm UPDATEHULL only inserts a new node if its goodness is

greater than H.MINIMUM. By definition, H.MINIMUM increases with each eviction. So,

just before the the i-th eviction, H.MINIMUM = |ei|, but increases to |ei+1| right after-

wards.

We shall need a new term, outer ear, to make sense of the next lemma.

Definition 3.1. Let P be a convex k-gon with sides s1, s2, ..., sk where each side si = pi−1pi. We

associate to each side si of P , a triangle ti defined by si and the extension of its neighboring sides

si−1 and si+1 such that they meet on the side of si that is exterior to P . We call ti a finite outer

ear of P . Note that si−1 and si+1 may not meet on the side of si exterior to P , in which case call ti

an infinite outer ear.

Lemma 3.7. Let P be a convex k-gon returned by a call to Algorithm QUERY. Any vertex evicted

in the course of the streaming process, must lie in the interior of P or in one of its outer ears.

Proof. Suppose for the sake of contradiction that there was some vertex q that was evicted,

but does not fall within P or any of its outer ears. This means q must lie within a wedge

defined by two half-lines obtained by extending two successive sides of P , say si and si+1.

38

Note that the (inner) ear defined by q is now bigger than that of pi, but only a minimum

area ear could have been evicted by Lemma 3.6 – a contradiction.

Lemma 3.8. All evictions from within a finite outer ear oi of a convex k-gon P must lie within an

area no greater than 2H.MINIMUM().

Proof. Let si be the side of P associated with the outer ear oi. Suppose a = H.MINIMUM().

Since each one of these evicted ears must fit within oi and have an area no greater than a.

The possible range of all such ears is bounded by a trapezoid A with si as its base and a

height h:

h ≤ 2a

si
(3.3.8)

Since the top of A is less than its base, otherwise it could not have been enclosed in the

finite outer ear oi. Thus, it fits within a parallelogram M of base si and height h. The area

of M is at most 2a, by Equation (3.3.8).

Lemma 3.9. Let S be the stream of points processed in a streaming process. Let P be the con-

vex k-gon created after processing S. The directional extrema of P , (N,W,S,E), maintained by

Algorithm UPDATEHULL define an axis-parallel bounding box B that contains conv(S).

Proof. Note that these directional extrema are extreme over all of S in the four axis-parallel

directions. Suppose there were some point p in S not contained in B. Further suppose,

without loss of generality, that p lies above B, then p must be more extreme than N in the

positive y direction – a contradiction.

Lemma 3.10. Let si = pipi+1 be the side of P adjacent to an infinite ear of P . Then both pi and

pi+1 are extreme points.

39

Proof. Suppose, without loss of generality, that pi is not an extreme point and that it is

closer to the W extreme point than toN . Then, since the chain W, · · · , pi1 , pi, pi+1, · · · , N is

an xy-monotone chain, the outer ear associated with si = pipi+1 is finite – a contradiction.

Lemma 3.11. All evictions from within an infinite outer ear oi of a convex k-gon P must lie within

an area no greater than 2H.MINIMUM().

Proof. Again, let a = H.MINIMUM(). Consider the set of all evictions that have taken place

from the infinite outer ear oi associated with a side si of P . Each one of these evictions has

area less than a, since they could not have been evicted otherwise.

Let si = pipi+1. By Lemma 3.10, both pi and pi+1 are extreme points. Also, by Lemma 3.9,

the bounding boxB must contain these points and all points ever evicted from the oi. Thus,

the intersection of B and oi define a triangle ∆ that contains all ears evicted from oi.

Similarly to Lemma 3.8, the possible range of these evicted ears is bounded by a trape-

zoid A with si as its base and a height h:

h ≤ 2a

si
(3.3.9)

Since the top of A is also smaller than its base, being contained in triangle ∆, the area

of A is at most 2a, by Equation (3.3.9).

Thus, the area of A is bounded above by 2a. This completes the proof.

The following theorem gives an upper bound on the area error for processing n � k

points.

Theorem 3.4. The total area error incurred in the streaming process is bounded above byO
(
1/k2

)
.

Proof. We consider two cases.

40

Case 1. Evictions from within a finite outer ear.

By Lemma 3.8, the total area of all the evictions within one finite outer ear is bounded

above by 2H.MINIMUM.

Case 2. Evictions from within an infinite outer ear.

By Lemma 3.11, the total area of all the evictions within one infinite outer ear is bounded

above by 2H.MINIMUM.

By Lemma 3.5, H.MINIMUM is at most O
(
1/k3

)
and since there are k outer ears, the

total error is O
(
1/k2

)
. This completes the proof.

Note that in general not all evictions would have an impact on the final k-gon returned

at the end, after processing all points in the stream. However, when an adversary could

provide a stream of points that all lie on the convex hull, such as the vertices of a regular

n-gon, the above error bound, being a worst-case bound, would still apply.

Theorem 3.5. Given an adversarial input, the total area error accumulated by all the evictions is

at least

2π2

[
1

k2
− 1

n2

]
. (3.3.10)

Proof. This bound was obtained by [40], but in their case, they had access to all the vertices

offline as discussed earlier in Section 3.2.

3.3.4 Empirical Results

A stream S of ten thousand random points lying on a common circle is generated. We

then feed thirty three random shuffles of S to the streaming algorithm and take the mean

distance and area relative errors. These are then used to compute the lower and upper

bounds as defined in Theorem 3.4 and Theorem 3.5. The empirical area error is neatly

sandwiched between the two bounds as expected.

41

Figure 3.4: Empirical Area Error sandwiched between Lower and Upper Bound curves

For completion, Figure 3.5 also shows the distance and area relative errors.

3.4 Refinement

We consider a refinement of Algorithm 3.2 given below, which uses the idea from Lopez

and Reisner [39]. The essential difference is that rather than invoke SHRINKHULL every

time the k-gon grows into a (k + 1)-gon, the Algorithm waits until the it grows into a mk-

gon for some small constant m before invoking SHRINKHULL. This only works, of course,

if the memory constraint allows use of (m − 1)k extra memory for processing. The main

benefit of this enhancement is that the effect of order in the point sequence depicted earlier

in Figure 3.1 and Figure 3.1 is minimized, while keeping the same overall asymptotic time

bounds.

42

Figure 3.5: Distance and Area Relative Errors

Algorithm 3.6: PROCESS(T,H, c, k, p)

Input : T : height-balanced BST with ≤ k of conv(S) where S is the point stream, H :
binary min-heap of ≤ k of conv(S), p: new point, k: memory budget

Output: T : a height-balanced BST update with p if on the hull, H : a binary min-heap
updated with p if on the hull.

1 n← NODE(p, 0, POLAR(p, c), false)
2 (T,H)← UPDATEHULL(T,H, c, n)

3 if |T | > mk then
4 while |T | > k do
5 (T,H)← SHRINKHULL(T,H)

6 return (T,H)

43

3.5 Conclusion

A new streaming algorithm for the convex hull is presented. Its runtime and error bounds

are analyzed. The gap between the lower and the upper bound can be further explored in

a future work. Hershberger and Suri [28, 30, 29] only provided a distance error bound for

their algorithm. One line of future work will be to derive an area bound of their algorithm.

44

Chapter 4: Convex Layers

To date, published sequential algorithms for the convex layers problem that achieve op-

timal time and space complexities have tended to be involved. In this chapter, we give a

simple O (n log n)-time and linear space algorithm for the problem. Our algorithm com-

putes four quarter convex layers using a plane-sweep paradigm as a first step. The second

step then merges these together in O (n log n)-time.

The convex layers problem, also known as the onion peeling problem, can be defined as

follows: Given a set of points P in the plane, construct a set of non-intersecting convex

polygons, such as would be constructed by iteratively constructing the convex hull of the

points left after all points on all previously constructed convex polygons are deleted. This

chapter briefly describes the convex layers problem (Section 4.1) and some of its applica-

tions (Section 4.3), relates relevant literature (Section 4.4), presents our contributions (Sec-

tion 4.5), and concludes with a list of open problems (Section 4.6).

4.1 Introduction

One can compute the convex layers of a point set P by taking the convex hull of P to

obtain its first layer L1. These points are then discarded from P and the convex hull of the

remaining points are taken to obtain the second layer L2. Those are then discarded and we

continue this process until we run out of points. So, in general a point p belongs to layer

Li, if it lies on the convex hull of the point set P −
⋃i−1
j=1{Lj}.

Definition 4.1. The convex layers, L(P) = {L1, L2, · · · , Lk}, of a set P of n ≥ 3 points is a

partition of P into k ≤ dn/3e disjoint subsets Li, i = 1, 2, · · · , k called layers, such that each

45

layer Li is an ordered1 set of the hull vertices of the set
⋃
j=i,··· ,k{Lj}.

Thus, the outermost layer L1 coincides exactly with the convex hull of P , conv(P). Next,

we define the convex layers problem.

Definition 4.2. Given a point set P , the convex layers problem is to compute L(P).

A related concept is the notion of the depth of a point in a point set.

Definition 4.3. The depth of a point p in a set P is the index i ∈ [1 · · · k], such that p ∈ Li. The

depth of P is k = |L(P)|[48].

It would appear that the convex layers problem can be defined as the the problem of com-

puting the depths of all the points in P . This is not quite right, however, as each convex

layer must be a (counter-clockwise) ordered sequence of the points that have the same

depth. We now define the depth problem below.

Definition 4.4. Given a point set P , the depth problem is to compute the mapping D : P →

{1, 2, · · · k} that assigns a depthD(p) to each point p in P such that all the points having a common

depth i also belong the same layer Li.

It is not hard to see that this problem can be solved easily for a point set P once we have

its convex layers L(P).

4.2 Layering Problems

The convex layers problem belongs to a class of problems called layering problems. Each

problem in this class uses an appropriate notion of depth to partition a set of objects into

subsets, called layers, such that objects in the same layer have a common depth. Examples

of more problems from this class are given below.

1One convention is to have the points sorted in the counterclockwise order starting with the one with the
smallest x coordinate, breaking ties by choosing the one with the smallest y.

46

Upper envelope layers problem. The geometric objects to be partitioned are line segments.

The upper envelope of a set of n line segments are exactly the set of segments that

are visible (even if partially so) from a position above the line segments. The up-

per envelope layers can be obtained by repeatedly computing and discarding the

upper envelopes until no segments remain. The upper envelope can be computed

in O(n log n) time [26]. Thus, the lower bound for the envelope layers problem is

O(n log n). Hershberger [27] obtained an optimal O(n log n) algorithm for the upper

envelope layers when the segments are disjoint and an O(nα(n) log2 n) for the case

when the segments intersect, where α(n) is the inverse Ackermann function. It is still

open whether a faster algorithm can be found for the latter.

Layers of maxima problem. The maximal elements of a point set are the set of points that

are not dominated by any other point. Given a point set P ⊆ Rd, a point p ∈ P is

maximal if there exists no point q ∈ P such that qi > pi for all i = 1, · · · , d, where

pi (qi) is the i-th coordinate of p (q). The layers of maxima problem is to compute

the maximal points, assigning them to layer 1, deleting them and then repeating the

process until no points remain. This is well-studied problem and there are many

published algorithms that are optimal [34, 9, 6]. The general approach is to maintain

a dynamic data structure from which layers are extracted until elements run out.

Nielsen uses a grouping trick to obtain an output-sensitive algorithm for computing

the first k maximal layers in time O(n logHk), where Hk is the number of points

appearing in the first k layers. It is also not hard to imagine a plane sweep algorithm

for this problem.

Multi-list Layering problem. Given k lists, l1, l2, · · · , lk, where each li contains a list of in-

tegers, it is required to assign each distinct integer in the set ∪ili to a layer as follows.

During iteration i of the algorithm, the integer at the top of each list is extracted and

assigned to layer i. Integers in layer i are then deleted from each of the lists. This is

47

repeated until all the lists are empty. This is an easier problem. It can be transformed

into a matrix transpose problem with adequate preprocessing to ensure distinct ele-

ments and padding shorter lists with suitable sentinels.

4.3 Applications of Convex Layers

Convex layers have several applications in various domains, including robust statistics,

computational geometry, and pattern recognition. The following list is not meant to be

exhaustive.

Robust estimation [15]. In statistics, finding an estimator that is not sensitive to slight de-

viations from an assumed distribution is known as robust estimation. A good ex-

ample is the α-trimmed mean. Consider a set S of size n. Let S′ be the subset of S

where the smallest and the biggest α fractions of the data have been taken out. The α-

trimmed mean is the mean of S′. When this is generalized to 2 or higher dimensions,

Tukey and others have suggested peeling off the convex layers until only (1 − 2α)n

of the points remain. The mean of these is then taken [48].

Another application of convex layers to robust estimation mentioned by Green and

Silverman [25] is the multivariate analog of rank-based statistics [31] called depths

[48]. The depth of a point is the index of the convex layer it belongs to. For instance,

points on the outermost convex layer have depth 1, points on the next layer depth 2,

and so on.

Half-plane range search problem [15]. The half-plane range search problem can be stated as

follows: Given a point set and a query half-plane, report all the points lying within

that half-plane. Chazelle et al. [17] were able to derive an optimal solution to this

problem using convex layers.

Pattern Recognition [54]. Suk and Flusser [54] described a technique for matching two

48

images by first mapping each image to a point set. Then, the convex layers of each

point set are computed. Finally, the convex layers are compared using a matching

function. Suk and Flusser reported that their technique works even when the images

are taken at different camera angles. They found that when no points are occluded in

both images, the algorithm can match the images in timeO(n log n) time, whereas the

best known algorithm for the general point set recognition problem under arbitrary

deformation (including occlusion) is O(n5).

4.4 Related Work

A brute-force solution to the convex layers problem is obvious – construct each layer Li

as the convex hull of the set P −
⋃
j<i Lj using some suitable convex hull algorithm. The

brute-force algorithm will take O(kn log n) time where k is the number of the layers. It

essentially computes one convex layer at a time by peeling off the points on that layer.

Abstractly, one can think of this algorithm as peeling off layer vertices one layer at a time

from some geometric structure such as a point set, a Delaunay triangulation, or a Voronoi

diagram. This peeling approach is reminiscent of many convex layers algorithms. Another

general approach to this problem is the plane-sweep paradigm. We shall review algorithms

in both categories below.

4.4.1 Peeling-based Techniques

One of the earliest works that takes this approach is Green and Silverman [25]. Their

algorithm is a repeated invocation of quickhull to extract the convex layers, one layer per

invocation. This algorithm runs in O(n2) worst-case time.

Overmars and van Leeuwen [45] proposed an algorithm for this problem that runs in

O(n log2 n) based on a fully dynamic data structure for maintaining a convex hull under

arbitrary deletions and insertion of points. Each of these update operations takesO(log2 n)

49

time, since constructing the convex layers can be reduced to inserting all the points into the

data structure in time O(n log2 n), marking points on the current convex hull and deleting

them off and then repeating this for the next layer. Since each point is marked exactly once

and deleted exactly once in the life of the algorithm, these steps together take no more than

O(n log2 n) time. Thus, the whole algorithm runs in O(n log2 n).

Chazelle [15] proposed an optimal algorithm for this problem that runs in O(n log n)

time and O(n) space, both of which are optimal.

A new algorithm that belongs to this class is discussed in Section 4.5.

4.4.2 Plane-Sweep Technique

The first algorithm on record that uses this technique is a modification of Jarvis march pro-

posed by Shamos [48]. The algorithm works by doing a radial sweep, changing the pivot

along the way, just as Jarvis march does, but does not stop after processing all the points.

It proceeds with another round of Jarvis march that excludes points found to belong to the

convex hull on the last iteration. This way, the algorithm runs in O(n2).

A natural thought process would lead one to wonder if Chan’s modification of Jarvis

march [11] that uses a grouping trick can help find an optimal solution to this problem.

This is exactly the approach taken by Nielsen [42] to obtain yet another optimal algorithm

for the convex layers problem. Nielsen’s algorithm is output-sensitive in that it can be

parametrized by the number of layers k to compute. It runs in O(n logHk) time where Hk

is the number of points appearing on the first k layers.

4.4.3 Other results

Dalal [19] showed that the expected number of convex layers for a set of n points uni-

formly and identically distributed within a smooth region such as a circle is Θ(n2/3). For a

polygonal region, however, the expectation is Θ(n
logn).

50

The envelope layers problem [27] and the multi-list layering problem [20] have been

shown to be P -complete. It is still not known whether the convex layers problem belongs

to the class NC [2, 27]. Dessmark et al. [20] reported a reduction of the convex layers

problem to the multi-list layering problem, but this reduction does not bring us any closer

to resolving the status of the convex layers problem.

4.5 Contributions

The algorithm builds four sets of convex layers. Each set differs from the others by the di-

rection of curvature of the convex layers. Each set is maintained in an augmented balanced

binary search tree T . The set of points must be known ahead of time, so that each point’s

horizontal ranking (by x-coordinate) can be precomputed. This ranking is determined by

sorting the points using their x-coordinates, breaking ties by their y-coordinates. The par-

ticular order (ascending or descending) depends on the particular set. Below, we give the

order used by each set.

1. North-West: pi 4NW pj if x(pi) ≥ x(pj) and y(pi) ≥ y(pj).

2. North-East: pi 4NE pj if x(pi) ≤ x(pj) and y(pi) ≥ y(pj).

3. South-West: pi 4SW pj if x(pi) ≥ x(pj) and y(pi) ≤ y(pj).

4. South-East: pi 4SE pj if x(pi) ≤ x(pj) and y(pi) ≤ y(pj).

Each of these relations 4∗ is a precedence relation on the vertices of the relevant partial

hulls. For instance, the relation 4NW can be used to place a set of points in a monotone

sequence as defined below. For the rest of this chapter, we shall only restrict ourselves

to the 4NW relation, as the other relations can be realized by rotating the plane to the

North-West orientation, applying the relation and then rotating back.

51

Definition 4.5. A polygonal chain C = (p1, p2, · · · , pn) is monotone if it satisfies the inequality:

pi 4NW pj whenever i < j for all i, j ∈ {1, 2, · · · , n}

Lemma 4.1. Suppose L and R are two monotone convex chains that lie on opposite sides of some

vertical line. Let p denote the rightmost point on the chain L, and q the rightmost point on R. The

bridge between the two chains is monotone if and only if p.y ≤ q.y.

Proof. Follows trivially.

4.5.1 Hull Tree Data Structure

A hull tree T is either nil or has a node. A hull tree node consists of a left child hull tree Tl,

a right child tree Tr, and the following additional fields:

Table 4.1: Fields of a Hull Tree Node

Hull chain, T.hull A linked list of vertices flanked by two virtual sentinels,
T.hull[0] on the left and T.hull[−1] on the right.

Left cursor, T.b A cursor that scans the vertices in T.hull from the left.
Right cursor, T.c A cursor that scans the vertices in T.hull from the right.

The hull chain linked list structure supports the following operations:

Definition 4.6. A bridge between two hull trees Tl and Tr is a line segment blbr such that bl is a

vertex in the hull chain Tl.hull and br is a vertex in Tr.hull and the line passing though blbr is a

tangent to both chains.

The operations supported by the hull tree data structure are given in Table 4.3.

Every one of these operations will maintain the data structure invariants given in Table 4.4

for every hull tree T .

52

Table 4.2: Operations supported by the Hull Chain Structure

EXTRACT(i, j) Extracts the sub-chain with index i through j inclu-
sively.

LISTTANGENT(p) Returns the pair of indices (pointers) of the two tan-
gent vertices to p in T.hull, provided p is not domi-
nated by T.hull.

LISTINSERTAFTER(q, p) Inserts the vertex q as a successor of vertex p.
LISTINSERTBEFORE(p, q) Inserts the vertex p as a predecessor to vertex q.
LISTDELETE(p) Deletes the vertex p from the list.
NEWLIST(p) Creates a new linked list data structure and adds p to

it.

To refer to these invariants, we shall use the notation T.inv(i) to mean the instance

T of the hull tree data structure satisfies Invariant Ii. When two or more invariants are

satisfied, we shall simply list the indices of the invariants, for instance T.inv(3, 4, 5) would

mean that Invariants 3, 4, and 5 hold. When we mean that all the invariants are satisfied,

we shall simply write T.inv(), rather than the rather unwieldy T.inv(1, 2, 3, 4, 5, 6).

Lemma 4.2. The space complexity of a hull-tree T that stores a set P of n points is Θ (n).

Proof. We only need show that the following two quantities are linear in n:

1. The number of nodes in a hull tree.

2. The sum of the lengths of all the hull chains in T .

Since HEIGHT(T) = Θ (log n) by Invariant I5, it has no more than 2n − 1 nodes. Each

node has two subtree pointers Tl, Tr and two cursor pointers T.b and T.c, which together

sum up to a constant.

Each node also has a hull chain with a size that ranges from 0 to n. Fortunately, the

sum of the sizes of hull chains over the entire tree is n, by Invariant I2 of the hull tree data

structure. This completes the proof.

53

Table 4.3: Operations supported by the Hull Tree Data Structure

BUILDTREE(P) Takes a list of points P and returns a hull tree T
containing them.

INSERT(C, T) Takes a monotone convex chain of points, updates
the current hull tree with them and returns the up-
dated hull tree.

PUSHDOWN(C, T) Takes a monotone convex chain of points C, splits
them into a left part Cl and a right part Cr. It then
inserts Cl into the left subtree T.l and Cr into the
right subtree T.r.

EXTRACTHULL(T) Makes a copy h of the convex chain T.hull at the
root node, removes h from T , allowing new ver-
tices from the subtrees to bubble up and take its
place as though the vertices of h were never in-
serted into T . EXTRACTHULL(T) returns h.

DELETE(C, T) Deletes the monotone convex chain, C, from the
hull chain T.hull, adjusts and returns T as though
the vertices in C were never inserted into it.

GETEXTREMES(Tl, Tr, al, ar) Returns a vertex pair p, q such that

p = argmax
pi∈T.l.hull

pi · l

q = argmax
qi∈T.r.hull

qi · l

i.e. p and q are the maxima along l, where l is a line
orthogonal to alar.

GETBRIDGE(Tl, Tr) Returns a vertex pair p, q such that p comes
from T.l.hull and q from T.r.hull and the chain
T.l.hull[0 : p] · T.r.hull[q : −1] is monotone, where
· denotes concatenation.

TANGENTS(al, ar, Tl, Tr) Given two points al and ar such that al.x < ar.x,
returns a pair of vertices, one of which is the tan-
gent to al and the other tangent with Tl going
through ar. This will become clearer shortly when
we describe its use in Algorithm DELETE.

4.5.2 Tree Construction

The algorithm for building a new hull tree is the BUILDTREE routine. We shall come back

to discuss after first looking into its main building block, the INSERT algorithm.

54

Table 4.4: Invariants for the Hull Tree Data Structure

I1: Monotonicity Each hull chain is monotone.
I2: Non-Redundancy No vertex appears more than once within a hull

tree.
I3: Dominance The hull chain for any node in a hull tree dominates

those of its subtrees.
I4: Cursor Existence T.hull contains T.b and T.c.
I5: Logarithmic Height. HEIGHT(T) ≤ dlog2(|T |)e.
I6: Non-Crossing Cursors x(T.b) ≤ x(T.c).

4.5.2.1 INSERT

Algorithm INSERT is a recursive algorithm. It takes as input a convex chain C of vertices

and a hull tree T .

The preconditions for invoking the algorithm are given in Table 4.5.

Table 4.5: Preconditions for INSERT

Precondition 1: |C| > 0
Precondition 2: C is a monotone chain
Precondition 3: TAIL(C).y > TAIL(T.hull).y.
Precondition 4: T.inv()

The postconditions for INSERT are given in Table 4.6.

Lemma 4.3. Given a monotone convex chain C and a hull tree T satisfying all the preconditions

of Algorithm INSERT, Algorithm INSERT correctly inserts C into T .

Proof. The algorithm breaks into two cases:

Case 3. T is an empty tree.

This is the base case of the recursion – all it does is to create a new node and inserts the

chain C into it. T then trivially satisfies the postconditions of INSERT.

55

Algorithm 4.1: INSERT(C, T)

Input : C, a convex chain of points to be inserted into T ,
T , a hull tree built from some point set P not including the vertices of C.

Output: T , a hull tree built from P ∪ C.
1 if T = nil then
2 T = NODE()

3 T.hull = C

4 T.b = T.c = HEAD(T.hull)

5 else
6 k = T.hull. LISTTANGENT(HEAD(C))

7 C ′ = T.hull. EXTRACT(k + 1, |T.hull|)
8 T.hull. LISTINSERTAFTER(C, TAIL(T.hull))

9 T.b = HEAD(T.hull)

10 T.c = TAIL(T.hull)

11 i = 1

12 while C ′[i] belongs in the left subtree do
13 i = i+ 1

14 Cl, Cr = SPLIT(C ′, i)

15 T.l = INSERT(Cl, T.l)

16 T.r = INSERT(Cr, T.r)

17 return T

Table 4.6: Postconditions for INSERT

Postcondition 1: T.inv()
Postcondition 2: T.hull ends with C
Postcondition 3: T = BUILDTREE(P ∪C), see Section 4.5.2.2 for a definition of

BUILDTREE

Case 4. T is not empty.

Step 6 computes the tangent scanning backwards using the right cursor T.c until it

finds the tangent to C. Note that during scanning, if one cursor catches up with the other,

they will both move together in order to preserve Invariant I6 (Non-Crossing Cursors).

This scan is guaranteed to find the tangent by Precondition 3, if one exists and the

56

returned k will point to the the tangent. However, if it does not exist, a reference to the

sentinel is returned. In either case, the chain C ′ that has been scanned past, not including

the tangent, is extracted from T.hull. Chain C is inserted in its place. The new hull chain

preserves the monotonicity invariant I1 and satisfies Postcondition 2.

However, Invariant I4 may be violated since the cursors may no longer be pointing to

an existing member of T.hull, but these are immediately restored by steps 9-10. Moreover,

Postcondition 3 is still not being met. The rest of the algorithm (Steps 11 - 16) recursively

restores the postcondition. This completes the proof.

4.5.2.2 BUILDTREE

Given a point setP , Algorithm BUILDTREE starts by sorting these points by their x-coordinate

values. The zero-based index of a point p in such a sorted list is called its rank, denoted

RANKP (p). A point’s rank is used to guide its descent down the hull tree during insertion.

Algorithm 4.2: BUILDTREE(P)

Input : P , a set of points, {pi | i = 1, · · · , n}.
Output: T , a hull tree built from P .

1 Compute the rank of each point by x-coordinate
2 Insert each point into a min-heap H keyed on the y-coordinate
3 T = NEWHULLTREE()

4 while |H| > 0 do
5 p← H. EXTRACTMIN()

6 INSERT(p, T)

7 return T

The same set of points are then inserted into a min-heap structure H , but this time

the key field (or priority value) in H will be their y-coordinate value. The points are

57

then extracted from H in increasing order of their y-coordinate values and inserted into

T . The INSERT procedure expects a hull chain as the first parameter, so the call to INSERT

in BUILDTREE is a understood to be a chain of one vertex.

Once all the points have been inserted, the hull tree is returned.

Lemma 4.4. Right after a point p is inserted into a hull tree T , the relation TAIL(T.hull) = p

holds.

Proof. Since points are inserted into T in the order of their priority (i.e. y-coordinate value)

in the min-heap H , the most recently inserted point must have the largest y coordinate

value of all the points inserted so far. Thus, the statement follows.

Lemma 4.5. Algorithm BUILDTREE constructs a hull tree of a set of n points inO (n log n) time.

Proof. Note that Step 1 through 3 take linear time. The While loop is executed n times.

Since EXTRACTMIN from a binary heap containing n elements costs Θ(log n) time, it re-

mains only to show that all the invocations of INSERT by Algorithm BUILDTREE take no

more than O (n log n) time overall.

Consider an arbitrary point p inserted into T by BUILDTREE into T . Initially, it goes

into the T.hull by Lemma 4.4. In subsequent iterations, the point either stays within its

current hull chain or descends one level down owing to an eviction from its current hull

chain. The cost of descending a level of a chain C is dominated by the right-to-left tangent

scan. Since only points that will descend will be examined in the scan, the cost of Step 6 is

simply O (|C|). This is equivalent to saying that the amortized cost of descending a level

by p is O (1).

Since there are only O (log n) levels in T , the cost of processing p reduces to O (log n).

This competes the proof.

Lemma 4.6. Algorithm INSERT completes in O (log n) amortized time.

Proof. By Lemma 4.5, the cost of all invocations of INSERT by Algorithm BUILDTREE is

O (n log n), which amortizes to O (log n) per point.

58

4.5.3 Hull Peeling

We begin the discussion of hull peeling by examining Algorithm EXTRACTHULL, which

takes a valid hull tree T and extracts the root hull chain h from it and returns it. We can

state this in the form of preconditions for EXTRACTHULL, given in Table 4.7.

Table 4.7: Preconditions for EXTRACTHULL

Precondition 1: |T | > 0
Precondition 2: T.inv()

Algorithm 4.3: EXTRACTHULL(T)

Input : P , a set of points, {pi | i = 1, · · · , n}.
Output: T , a hull tree built from P .

1 h = T.hull

2 DELETE(h, T)

3 return h

When EXTRACTHULL completes, the new state of T , which we shall denote as T ′, is as

though the points on the extracted chain h had never been inserted into T . We state these

postconditions in Table 4.8.

Table 4.8: Postconditions for EXTRACTHULL

Postcondition 1: T ′ = BUILDTREE(P \h), where P is the set of points in T and
h = T.hull.

Postcondition 2: T ′.inv()

59

The correctness and cost of Algorithm EXTRACTHULL obviously depend heavily on

those of DELETE. We shall state the following theorem without proof in this section and

return to it in Section 4.5.3.4.

Theorem 4.1. Given a valid hull tree T containing n vertices and a valid hull chainC of k vertices,

Algorithm DELETE correctly deletes C from T in O (k log n) amortized time.

Algorithm DELETE itself also depends on two other procedures GETBRIDGE and TANGENTS,

so let us have look at those first.

4.5.3.1 GETEXTREMES

Table 4.9: Preconditions for GETEXTREMES

Precondition 1: Tl.inv()
Precondition 2: Tr.inv()
Precondition 3: Tl 6= Tr()
Precondition 4: TAIL(Tl.hull).x ≤ HEAD(Tr.hull).x

Lemma 4.7. Given two valid hull trees Tl and Tr satisfying the preconditions of GETEXTREMES

and the roof vertices al and ar, Algorithm GETEXTREMES correctly computes the the extreme

points closest in perpendicular distance to the segment alar in linear time.

Proof. The scan for the left extreme point in Tl closest in perpendicular distance to the

segment alar is done using Tl’s right-to-left cursor Tl.c. The scan for the right extreme point

in Tr closest in perpendicular distance to the segment alar, however, is done using Tr’s left-

to-right cursor Tr.b. On completion, the two cursors will be pointing to the extreme points,

as required by GETEXTREMES’s Postconditions 3 and 4. Since, no other state changes were

made to the two trees, the hull tree invariants continue to hold.

60

Algorithm 4.4: GETEXTREMES(Tl, Tr, al, ar)

Input : Tl, a left hull tree of some tree T ,
Tr: a right hull tree of T ,
al: the rightmost end in the left leftover of the roof,
ar: the leftmost point in the right leftover of the roof

Output: cl, br: The closest points to alar in Tl.hull and Tr.hull, respectively
1 cl, br = Tl.c, Tr.b

2 if SLOPE(PRED(Tl.c), Tl.c) < SLOPE(al, ar) then
3 Tl.c = PRED(Tl.c)

4 cl, br = GETEXTREMES(Tl, Tr, al, ar)

5 if SLOPE(Tr.b, SUCC(Tr.b)) > SLOPE(al, ar) then
6 Tr.b = SUCC(Tr.b)

7 cl, br = GETEXTREMES(Tl, Tr, al, ar)

8 return cl, br

Table 4.10: Postconditions for GETEXTREMES

Postcondition 1: Tl.inv()
Postcondition 2: Tr.inv()
Postcondition 3: In Tl.hull, Tl.c is closest in perpendicular distance to alar
Postcondition 4: In Tr.hull, Tr.b is closest in perpendicular distance to alar

Since each vertex is scanned past at most once, the runtime is O (|Tl.hull|+ |Tr.hull|)).

This completes the proof.

4.5.3.2 GETBRIDGE

Given two hull trees that satisfy the preconditions given in Table 4.11, Algorithm GETBRIDGE

scans the hull chains of the given hull trees to find the bridge that connects them.

Lemma 4.8. Given two valid hull trees Tl and Tr, satisfying the preconditions of Algorithm

GETBRIDGE, GETBRIDGE correctly computes the the bridge connecting them in time linear in

their sizes.

Proof. The scan for the left bridge point in Tl is done using its left-to-right cursor Tl.b.

61

Table 4.11: Preconditions for GETBRIDGE

Precondition 1: Tl.inv()
Precondition 2: Tr.inv()
Precondition 3: Tl 6= Tr()
Precondition 4: TAIL(Tl.hull).x ≤ HEAD(Tr.hull).x

Algorithm 4.5: GETBRIDGE(Tl, Tr)

Input : Tl, a left hull tree of some tree T ,
Tr: a right hull tree of T

Output: bl, cr: The left and right bridge points connecting the trees Tl and Tr
1 if Tl = nil then b = (−∞,−∞)

2 else b = Tl.b

3 if Tr = nil or TAIL(Tl.hull).y > TAIL(Tr.hull).y then c = (+∞,−∞)

4 else c = Tr.c

5 if COUNTERCLOCKWISE(Tl.b, Tr.c, SUCC(Tl.b)) then
6 Tl.b = SUCC(Tl.b)

7 b, c = GETBRIDGE(Tl, Tr)

8 if COUNTERCLOCKWISE(Tl.b, Tr.c, PRED(Tl.b)) then
9 Tl.b = PRED(Tl.b)

10 if Tl.b.x > Tl.c.x then Tl.c = Tl.b

11 b, c = GETBRIDGE(Tl, Tr)

12 if COUNTERCLOCKWISE(Tl.b, Tr.c, SUCC(Tr.c)) then
13 Tr.c = SUCC(Tr.c)

14 b, c = GETBRIDGE(Tl, Tr)

15 if COUNTERCLOCKWISE(Tl.b, Tr.c, PRED(Tr.c)) then
16 Tr.c = PRED(Tr.c)

17 if Tr.b.x > Tr.c.x then Tr.b = Tr.c

18 b, c = GETBRIDGE(Tl, Tr)

19 return b, c

The scan for the right bridge point in Tr, however, is done using Tr’s right-to-left cursor

Tr.c. On completion, the two cursors will be pointing to the bridge points, as required by

GETBRIDGE’s Postcondition 3. Since, no other state changes were made to the two trees,

the hull tree invariants continue to hold.

62

Table 4.12: Postconditions for GETBRIDGE

Postcondition 1: Tl.inv()
Postcondition 2: Tr.inv()
Postcondition 3: (Tl.b, Tr.c) is the bridge connecting the chains Tl.hull and

T.r.hull

Since each vertex is scanned past at most once, the runtime is O (|Tl.hull|+ |Tr.hull|)).

This completes the proof.

4.5.3.3 TANGENTS

Given two hull trees and a pair of roof points that meet the preconditions given in Ta-

ble 4.13, Algorithm TANGENTS returns a left tangent point and a right tangent point as

seen from the given roof points.

Table 4.13: Preconditions for TANGENTS

Precondition 1: Tl.inv()
Precondition 2: Tr.inv()
Precondition 3: (al, ar) is monotone

4.5.3.4 DELETE

Algorithm DELETE is a recursive algorithm that breaks into four cases. We shall employ the

analogy of a roof caving in from a heavy snow pile. Restricting our analogy to a vertical

plane cutting through the home, the remaining roof has a left portion ending with point

labeled al and a right portion starting with the point ar.

63

Algorithm 4.6: TANGENTS(al, ar, Tl, Tr)

Input : al, the rightmost end of the left leftover from the roof,
ar, the leftmost point in the right leftover from the roof,
Tl, a child hull tree of some tree T ,
Tr: a child hull tree of T

Output: b, c: tangent to al and ar respectively
1 if Tl.b 6= TAIL(Tl.hull) and CLOCKWISE(al, SUCC(Tl.b), Tl.b) then
2 Tl.b = SUCC(Tl.b)

3 if Tl.b.x > Tl.c.x then Tl.c = Tl.b

4 return TANGENTS(al, ar, Tl, Tr)

5 if Tl.b 6= HEAD(Tl.hull) and COUNTERCLOCKWISE(al, Tl.b, PRED(Tl.b)) then
6 Tl.b = PRED(Tl.b)

7 return TANGENTS(al, ar, Tl, Tr)

8 if Tr.c 6= HEAD(Tr.hull) and CLOCKWISE(Tr.c, ar, PRED(Tr.c)) then
9 Tr.c = PRED(Tr.c)

10 if Tr.b.x > Tr.c.x then Tr.b = Tr.c

11 return TANGENTS(al, ar, Tl, Tr)

12 if Tr.c 6= TAIL(Tr.hull) and COUNTERCLOCKWISE(Tr.c, ar, SUCC(Tr.c)) then
13 Tr.c = SUCC(Tr.c)

14 return TANGENTS(al, ar, Tl, Tr)

15 return Tl.b, Tr.c

Table 4.14: Postconditions for TANGENTS

Postcondition 1: Tl.inv()
Postcondition 2: Tr.inv()
Postcondition 3: (Tl.b, Tr.c) is monotone

Table 4.15: Preconditions for DELETE

Precondition 1: |C| > 0
Precondition 2: C is monotone
Precondition 3: C is a subchain of T.hull
Precondition 4: T.inv()

64

Algorithm 4.7: DELETE(C, T)

Input : C, a chain of points to be deleted from T ,
T : a hull tree

Output: T : The updated hull tree with the chain C deleted from it
1 j = T.hull. LISTDELETE(C)

2 cl, br = GETEXTREMES(T.l, T.r, T.hull[j − 1], T.hull[j])

� Case 1: Neither subtree needed to rebuild the roof �

3 case ¬ COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], cl) and
¬ COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], br)

4 Do nothing
� Case 2: Only the right subtree needed to rebuild the roof �

5 case ¬ COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], cl)

and COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], br)
6 i, k = TANGENTS(T.hull[j − 1], T.hull[j], T.r, T.r)

7 T.hull = T.hull[0 : j − 1] · T.r.hull[i : k] · T.hull[j : |T.hull|]
8 DELETE(T.r.hull[i : k], T.r)

� Case 3: Only the left subtree needed to rebuild the roof �

9 case COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], cl)

and ¬ COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], br)
10 i, k = TANGENTS(T.hull[j − 1], T.hull[j], T.l, T.l)

11 T.hull = T.hull[0 : j − 1] · T.l.hull[i : k] · T.hull[j : |T.hull|]
12 DELETE(T.l.hull[i : k], T.l)

� Case 4: Both subtrees needed to rebuild the roof �

13 case COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], cl)

and COUNTERCLOCKWISE(T.hull[j − 1], T.hull[j], br)
14 i, k = TANGENTS(T.hull[j − 1], T.hull[j], T.l, T.r)

15 bl, cr = GETBRIDGE(T.l, T.r)

T.hull = T.hull[0 : j − 1] · T.l.hull[i : bl] · T.r.hull[cr : k] · T.hull[j : |T.hull|]
16 DELETE(T.l.hull[i : bl], T.l)

17 DELETE(T.r.hull[cr : k], T.r)

18 return T

Table 4.16: Postconditions for DELETE

Postcondition 1: T ′ = BUILDTREE(P \ C), where P is the set of points in T .

Postcondition 2: T ′.inv()

65

Case 1. Neither subtree is needed to rebuild the roof.

This case, depicted in Figure 4.1, results when the deletion of subchain C from T.hull

does not result in the violation of the Invariant I3 (Dominance Invariant). Since no invari-

ant is violated, there is nothing left to do. This case includes the special case when both

subtrees are empty.

al

ar

Figure 4.1: Case 1: Invariant I3 not violated.

Case 2. Only the right subtree is needed to rebuild the roof.

This case leads to a violation of Invariant I3 because now T.hull no longer dominates

the hull chain in the right subtree T.r.hull, as shown in Figure 4.2. To maintain Invariant

I3, a subchain of T.r.hull will have to be extracted and moved up to become part of T.hull.

al

ar

Figure 4.2: Case 2: Invariant I3 violated only by right child.

66

Lemma 4.9. In Case 2, only the vertices of Tr.hull that will be moved up to join the roof are

scanned twice.

Proof. After the call to GETEXTREMES in line 2 of Algorithm DELETE, Tr’s left-to-right cur-

sor Tr.b is positioned on the right extreme point relative to alar, by Postcondition 4 of Al-

gorithm GETEXTREMES, but its left-to-right cursor Tr.b is still pointing to HEAD(Tr.hull),

not having done any scan so far.

The scan for the left tangent point, visible to al and above the segment alar, is done by

having Tr.b walk up the chain, until al can see no further, at which point the left tangent

point has been found. Note that in this walk, all the points that were scanned were seen

for the first time.

Similarly, the scan for the right tangent point visible to ar is done by walking forward

or backward. The decision of which walk to take is done in constant time. If the walk

backward toward Tr.b is selected, then all the points encountered in this walk will be en-

countered for the first time. However, if the scan is forward toward the tail of Tr.hull, then

any point encountered is a point that will be moved up to join the roof.

Case 3. Only the left subtree is needed to rebuild the roof.

This case, depicted in Figure 4.3, is the converse of case 2 – Invariant I3 is violated with

respect to only the left subtree. So, we only need compute the subchain of T.l.hull that

needs to move up to repair the roof and restore Invariant I3.

Lemma 4.10. In Case 3, only the vertices of Tl.hull that will be moved up to join the roof are

scanned twice.

Proof. The argument is symmetric to that of Case 2.

Case 4. Both subtrees are needed to rebuild the roof.

In this case, Invariant I3 is violated by both subtrees, as shown in Figure 4.4. So, we

need to compute two subchains, on from T.l.hull and the other from T.r.hull, which are

then moved up to fix the roof and restore Invariant I3.

67

al

ar

Figure 4.3: Case 3: Invariant I3 violated only by left child.

al

ar

Figure 4.4: Case 4: Invariant I3 violated by both.

Lemma 4.11. In Case 4, only the vertices of Tl.hull and Tr.hull that will be moved up to join the

roof are scanned twice.

Proof. After the call to GETBRIDGE in line 15 of Algorithm DELETE, the two cursors Tl.b

and Tr.c are already pointing to the left and right bridge points, by Postcondition 3 of

Algorithm GETBRIDGE.

The scan for the left tangent point visible to al and above the segment alar is done by

walking Tl.b forward or backward. The decision of which direction to walk can be done in

constant time. If the walk forward toward Tl.c is chosen, then all the points encountered

will be encountered for the first time. However, if the scan is backward toward the head

of Tl.hull, then any point encountered is one that will be moved up to join the roof.

68

Symmetrically, the scan for the right tangent point visible to ar and above the segment

alar, is done by walking forward or backward. The decision of which walk to take is

done in constant time. If the walk backward toward Tr.b is selected, then all the points

encountered in this walk will be encountered for the first time. However, if the scan is

forward toward the tail of Tr.hull, then any point encountered is a point that will be moved

up to join the roof.

We are now ready to prove the theorem stated earlier about the correctness and runtime

of Algorithm DELETE.

Theorem 4.2. Given a valid hull tree T containing n vertices and a valid hull chainC of k vertices,

Algorithm DELETE correctly deletes C from T in O (k log n) amortized time.

Proof. We proceed in two steps. First, we shall consider the correctness argument in Part 1

and then the runtime argument in Part 2.

Part 1. By Lemma 4.7, the points closest to the segment alar are returned correctly from Algorithm

GETEXTREMES. This is used to select the correct case. The correctness of each case is already shown

in Lemmas 4.9 to 4.11.

Part 2. Since points are only ever scanned twice when they will be moved up a level as shown in

Lemmas 4.9 to 4.11, and a point is moved up at most once per level and there are no more than

log n levels in T by Invariant I5, we have that any set of k points C satisfying the preconditions of

Algorithm DELETE can be deleted from T in O (k log n) amortized time.

4.5.4 Merge

The merge routine takes as input the four hull trees TNW , TNE , TSE , and TSW with the

orientations of NW,NE,SE, and SW and then iteratively performs the following actions

for each layer i:

• Extract the root hull chain from each of the hull trees.

69

• Add their unmarked vertices into a new chain l in clockwise order.

• Mark the vertices in l by adding them to R.

• Delete marked vertices that now appear in the root hull chain of each of the hull trees

TNW , TNE , TSE , and TSW .

This process stops when all vertices have been marked.

Table 4.17: Preconditions for MERGE

Precondition 1: min(|TNW |, |TNE |, |TSE |, |TSW |) > 0
Precondition 2: TNW ∩R = ∅
Precondition 3: TNE ∩R = ∅
Precondition 4: TSE ∩R = ∅
Precondition 5: TSW ∩R = ∅
Precondition 6: TNW .inv()
Precondition 7: TNE .inv()
Precondition 8: TSE .inv()
Precondition 9: TSW .inv()

Table 4.18: Postconditions for MERGE

Postcondition 1: Rpre ⊆ Rpost where Rpost(Rpre) is the set of marked vertices
before (after) the call to MERGE.

Postcondition 2: Lpre ⊆ Lpost

Postcondition 3: Int (Li) ∩ Int (Li+1) = Int (Li) for all i = 1, 2, · · · |L| − 1.

Postcondition 4: TNW .inv()

Postcondition 5: TNE .inv()

Postcondition 6: TSE .inv()

Postcondition 7: TSW .inv()

70

Algorithm 4.8: MERGE(TNW , TNE , TSE , TSW , R)

Input : TNW , a hull tree with the NW orientation,
TNE , a hull tree with the NE orientation,
TSE , a hull tree with the SE orientation,
TSW , a hull tree with the SW orientation,
R, the set of vertices already extracted from one of the hull trees.

Output: L, A list of merged convex layers.
1 L = ∅
2 lNW = EXTRACTHULL(TNW)

3 lNE = EXTRACTHULL(TNE)

4 lSE = EXTRACTHULL(TSE)

5 lSW = EXTRACTHULL(TSW)

6 foreach p ∈ lNW \R do
7 l = l · p
8 R = R ∪ {p}
9 foreach p ∈ lNE \R do

10 l = l · p
11 R = R ∪ {p}
12 foreach p ∈ lSE \R do
13 l = l · p
14 R = R ∪ {p}
15 foreach p ∈ lSW \R do
16 l = l · p
17 R = R ∪ {p}
18 L = L · l
19 foreach p ∈ R ∩ TNW .hull do
20 DELETE(p, TNW)

21 foreach p ∈ R ∩ TNE .hull do
22 DELETE(p, TNE)

23 foreach p ∈ R ∩ TSE .hull do
24 DELETE(p, TSE)

25 foreach p ∈ R ∩ TSW .hull do
26 DELETE(p, TSW)

27 if min(|TNW |, |TNE |, |TSE |, |TSW |) > 0 then
28 L = L · MERGE(TNW , TNE , TSE , TSW , R)

29 return L

71

Lemma 4.12. Given a set S of n points and the four hull trees of S with the four orientations of

NW,NE,SE, and SE, the MERGE procedure correctly returns the convex layers of S.

Proof. Denote the output of the MERGE procedure by the sequence L = (L1, L2, · · · , Lm) of

m convex polygons Li, such that:

|Li+1| ⊆ |Li|, for all i = 1, 2, · · ·m− 1 (4.5.1)

We proceed by induction on i. For case i = 1, the set of marked vertices (i.e. vertices

in R) is initially empty, thus the Preconditions 2-5 are trivially true. The algorithm extracts

the four monotone hull lNW , lNE , lSE and lSW and then adds their yet unmarked vertices

into l in clockwise order, and also marks them in the process. Thus, at the end of Line 17, l

contains a clockwise sequence of the vertices from all the four hull chains, as does R – the

set of marked vertices.

At this point, it is possible that one of the preconditions 2-5 might be violated, so the

algorithm restores these preconditions before making a recursive call by deleting marked

points from the new hull chains.

For an arbitrary case i > 1, after Line 17, the following invariant always holds:

R =

|L|⋃
i=1

Li (4.5.2)

Lemma 4.13. Given a set S of n points and the four hull trees of S with the four orientations of

NW,NE,SE, and SE, the MERGE procedure executes in O (n log n) time.

Proof. Lines 1 to 5 of Algorithm MERGE take O (log n) amortized time per point. Lines 6

to 18 take amortized constant time per point. Lines 19 to 26 also take O (log n) amortized

72

time per point. Thus, the non-recursive part, Lines 1 to 26, is dominated by O (log n)

amortized time per point. So, the entire algorithm follows the recurrence relation:

T (n,mk) = T (n−mk,mk−1) +O (mk log n) (4.5.3)

where k is the number of layers in L, and the mk−i+1 = |Li|, the size of the i-th layer.

Expanding this recurrence relation gives:

T (n) =

k∑
i=1

O (mi log n) = O (log n)

k∑
i=1

mi = O (n log n) (4.5.4)

since
∑k

i=1mi = n.

4.6 Conclusion

We have given a simple optimal algorithm for the convex layers problem. The pseudocode

might appear detailed but that is only because the approach is simple enough that we

can deal with all cases explicitly. However, by using four sets of hulls, we only need to

work with monotone chains which simplifies our case analyses and make the correctness

argument straightforward.

It should be noted that while Chazelle [15] used a balanced tree approach as well, the

information stored in our tree corresponds to a different set of polygonal chains.

73

Chapter 5: Conclusion

This thesis presented a framework for describing approximation algorithms for the con-

vex hull problem. This framework is then applied to a number algorithms found in the

literature as well as new algorithms proposed in this thesis. The framework fills a need for

practising engineers who need guidance in choosing an appropriate algorithm for their

problem. The framework can also serve to analyze future algorithms so that they can be

better evaluated and compared to existing algorithms. Many more problems will benefit

from a similar framework to help potential implementers select the algorithm that is most

appropriate to their problem and context.

A new streaming algorithm for the convex hull is also presented. Its runtime and area

error bounds are analyzed. Empirical area and distance error results are also presented.

Future work will address analytical distance error analysis. Hershberger and Suri [28, 30,

29] only provided a distance error bound for their algorithm. One future research direction

will be to derive an area bound of their algorithm. An empirical comparison of the two

algorithms would also be an interesting direction to pursue.

This thesis has studied the problem of maintaining a k-gon within the true convex hull

of a stream of incoming points. One might be interested instead in a k-gon that circum-

scribes the true convex hull. While there are several results [1, 7, 21, 39, 40, 43, 56] for

circumscribing k-gons for an offline point set, we are not aware of any published results

on circumscribing k-gons for a data stream.

Finally, this thesis also gave a new simple optimal algorithm for the convex layers

problem. Detailed pseudocode, space and time complexity results and error bounds of

the algorithm are also given. There are other related problems that will benefit from sim-

pler but optimal algorithms. One example is the dynamic convex hull problem, where

74

the convex hull is to be maintained under arbitrary sequence of insert, delete and query

requests.

To date the most practical algorithm for this problem remains that of Overmars and van

Leeuwen [45], which runs in O
(
log2 n

)
time per update and O (log n) per query request.

While the work of Brodal and Jacob [8] did resolve the long-standing open problem in

2002 by achieving the optimal O (log n) amortized time for update and query requests

while using optimal O (n) space, their solution depends on data structures that are too

intricate and complex to be practical. One line of future work would be to explore simpler

and more practical solutions that are nonetheless optimal, either in an amortized sense or

even in the worst-case.

75

Appendix A: Link to Source Code Repository

All the source code used in this thesis can be downloaded from:

https://github.com/rrufai/jcg.git

76

https://github.com/rrufai/jcg.git

Bibliography

[1] AGGARWAL, A., CHANG, J., AND YAP, C. Minimum area circumscribing polygons.
The Visual Computer 1, 2 (1985), 112–117.

[2] ATALLAH, M., CALLAHAN, P., AND GOODRICH, M. P-complete geometric problems.
In SPAA ’90: Proceedings of the second annual ACM symposium on Parallel algorithms and
architectures (New York, NY, USA, 1990), ACM, pp. 317–326.

[3] BENTLEY, J., FAUST, M., AND PREPARATA, F. Approximation algorithms for convex
hulls. Communications of the ACM 25, 1 (01 1982), 64–68.

[4] BENTLEY, J. L., CLARKSON, K. L., AND LEVINE, D. B. Fast linear expected-time
algorithms for computing maxima and convex hulls. Algorithmica 9, 2 (1993), 168–
183.

[5] BENTLEY, J. L., AND SHAMOS, M. I. Divide and conquer for linear expected time. Inf.
Process. Lett. 7, 2 (1978), 87–91.

[6] BLUNCK, H., AND VAHRENHOLD, J. In-place algorithms for computing (layers of)
maxima. Algorithmica 57, 1 (2010), 1–21.

[7] BOYCE, J. E., DOBKIN, D. P., DRYSDALE III, R. L., AND GUIBAS, L. J. Finding ex-
tremal polygons. SIAM Journal on Computing 14, 1 (1985), 134–147.

[8] BRODAL, G. S., AND JACOB, R. Dynamic planar convex hull. In Foundations of
Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on (2002), IEEE,
pp. 617–626.

[9] BUCHSBAUM, A. L., AND GOODRICH, M. T. Three-dimensional layers of maxima.
Algorithmica 39, 4 (2004), 275–286.

[10] BYKAT, A. Convex hull of a finite set of points in two dimensions. Information Pro-
cessing Letters 7 (1978), 296–298.

[11] CHAN, T. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Discrete & Computational Geometry 16, 4 (04 1996), 361–368.

[12] CHAN, T. Output-sensitive results on convex hulls, extreme points, and related prob-
lems. Discrete & Computational Geometry 16, 4 (04 1996), 369–387.

77

[13] CHAN, T. M. Optimal output-sensitive convex hull algorithms in two and three di-
mensions. Discrete & Computational Geometry 16, 4 (04 1996), 361–368.

[14] CHAND, D. R., AND KAPUR, S. S. An algorithm for convex polytopes. J. ACM 17, 1
(Jan. 1970), 78–86.

[15] CHAZELLE, B. On the convex layers of a planar set. IEEE Trans. Information Theory 31
(1985), 509–517.

[16] CHAZELLE, B. An optimal convex hull algorithm in any fixed dimension. Discrete &
Computational Geometry 10 (1993), 377–409.

[17] CHAZELLE, B., GUIBAS, L. J., AND LEE, D. T. The power of geometric duality. BIT
25, 1 (1985), 76–90.

[18] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[19] DALAL, K. Counting the onion. Random Struct. Algorithms 24, 2 (2004), 155–165.

[20] DESSMARK, A., LINGAS, A., AND MAHESHWARI, A. Multilist layering: complexity
and applications. Theor. Comput. Sci. 141, 1-2 (1995), 337–350.

[21] DORI, D., AND BEN-BASSAT, M. Circumscribing a convex polygon by a polygon of
fewer sides with minimal area addition. Computer Vision, Graphics, and Image Process-
ing 24, 2 (1983), 131 – 159.

[22] EDDY, W. A new convex hull algorithm for planar sets. ACM Transactions on Mathe-
matical Software 3 (1977), 393–403.

[23] GRAHAM, R. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters 1 (1972), 132–133.

[24] GRAHAM, R., AND YAO, F. Finding the convex hull of a simple polygon. Algorithms
4 (1983), 324–331.

[25] GREEN, P., AND SILVERMAN, B. Constructing the convex hull of a set of points in the
plane. Computer Journal 22 (1979), 262–266.

[26] HERSHBERGER, J. Finding the upper envelope of n line segments in o(n log n) time.
Inf. Process. Lett. 33, 4 (1989), 169–174.

[27] HERSHBERGER, J. Upper envelope onion peeling. Comput. Geom. Theory Appl. 2, 2
(1992), 93–110.

[28] HERSHBERGER, J., AND SURI, S. Convex hulls and related problems in data streams.
In Proc. of the ACM/DIMACS Workshop on Management and Processing of Data Streams
(2003).

[29] HERSHBERGER, J., AND SURI, S. Adaptive sampling for geometric problems over
data streams. Computational Geometry 39, 3 (2008), 191–208.

78

[30] HERSHBERGER, J., AND SURI, S. Simplified planar coresets for data streams. In Algo-
rithm Theory–SWAT 2008. Springer, 2008, pp. 5–16.

[31] HUBER, P. J. The 1972 wald lecture robust statistics: A review. The Annals of Mathe-
matical Statistics 43, 4 (1972), 1041–1067.

[32] JARVIS, R. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters 2 (1973), 18–21.

[33] KALLAY, M. The complexity of incremental convex hull algorithms in Rd. Information
Processing Letters 19, 4 (11 1984), 197–197.

[34] KAPOOR, S. Dynamic maintenance of maxima of 2-d point sets. SIAM J. Comput. 29,
6 (2000), 1858–1877.

[35] KAVAN, L., KOLINGEROVA, I., AND ZARA, J. Fast approximation of convex hull. In
ACST’06: Proceedings of the 2nd IASTED international conference on Advances in computer
science and technology (Anaheim, CA, USA, 2006), ACTA Press, pp. 101–104.

[36] KIM, C. E., AND STOJMENOVIC, I. Sequential and parallel approximate convex hull
algorithms. Computers and Artificial Intelligence 14, 6 (1995).

[37] KIRKPATRICK, D. G., AND SEIDEL, R. The ultimate planar convex hull algorithm.
SIAM J. Comput. 15, 1 (1986), 287–299.

[38] KLETTE, R. On the approximation of convex hulls of finite grid point sets. Pattern
Recognition Letters 2, 1 (1983), 19–22.

[39] LOPEZ, M. A., AND REISNER, S. Efficient approximation of convex polygons. Inter-
national Journal of Computational Geometry & Applications 10, 05 (2000), 445–452.

[40] LOPEZ, M. A., AND REISNER, S. Hausdorff approximation of convex polygons. Com-
putational Geometry 32, 2 (2005), 139 – 158.

[41] NÄHER, S., AND SCHMITT, D. A framework for multi-core implementations of divide
and conquer algorithms and its application to the convex hull problem.

[42] NIELSEN, F. Output-sensitive peeling of convex and maximal layers. Inf. Process. Lett.
59, 5 (1996), 255–259.

[43] O’ROURKE, J. Counterexamples to a minimal circumscription algorithm. Computer
Vision, Graphics, and Image Processing 30, 3 (1985), 364 – 366.

[44] O’ROURKE, J. Computational geometry in C (2nd ed.). Cambridge University Press,
New York, NY, USA, 1998.

[45] OVERMARS, M. H., AND VAN LEEUWEN, J. Maintenance of configurations in the
plane. Journal of Computer and System Sciences 23, 2 (1981), 166 – 204.

[46] PREPARATA, F. An optimal real-time algorithm for planar convex hulls. Communica-
tions of the ACM 22 (1979), 402–405.

79

[47] PREPARATA, F., AND HONG, S. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM 20, 1 (01 1977), 87–93.

[48] PREPARATA, F. P., AND SHAMOS, M. I. Computational Geometry: An Introduction,
3rd ed. Springer-Verlag, 10 1990.

[49] RÉNYI, A., AND SULANKE, R. über die konvexe hülle von n zufällig gewählten punk-
ten. Probability Theory and Related Fields 2 (1963), 75–84. 10.1007/BF00535300.

[50] SEDGEWICK, R. Left-leaning red-black trees. In Dagstuhl Workshop on Data Structures
(2008), p. 17.

[51] SEDGEWICK, R., AND WAYNE, K. Algorithms, 4th ed. ed. Addison-Wesley, Boston,
2011.

[52] SOISALON SOININEN, E. On computing approximate convex hulls. Information Pro-
cessing Letters 16 (1983), 121–126.

[53] STOJMENOVIC, I., AND SOISALON-SOININEN, E. A note on approximate convex
hulls. Inf. Process. Lett. 22, 2 (1986), 55–56.

[54] SUK, T., AND FLUSSER, J. Convex layers: A new tool for recognition of projectively
deformed point sets. In Computer Analysis of Images and Patterns (1999), pp. 454–461.

[55] ŽUNIĆ, J. Approximate convex hull algorithm—efficiency evaluations. J. Inf. Process.
Cybern. 26, 3 (1990), 137–148.

[56] WOOD, T. C., AND LEE, H.-C. On the time complexity for circumscribing a convex
polygon. Computer Vision, Graphics, and Image Processing 30, 3 (1985), 362 – 363.

[57] XU, Z.-B., ZHANG, J.-S., AND LEUNG, Y.-W. An approximate algorithm for com-
puting multidimensional convex hulls. Applied Mathematics and Computation 94, 2-3
(1998), 193 – 226.

[58] YAO, A. A lower bound to finding convex hulls. Journal of the ACM 28 (1981), 780–787.

80

Curriculum Vitae

Raimi A. Rufai
rrufai@gmu.edu

Education

2003 MS in Computer Science, King Fahd University of Petroleum, KSA

1998 BS in Computer Science, University of Ilorin, Nigeria

Work Experience

2010- ? Senior Software Developer, SAP Labs, Inc., Montreal, Canada

2009-2010 Consultant, Straj Solutions, Inc., Toronto, Canada

2008-2010 Graduate Teaching Assistant, Computer Science Dept., George Mason Univ., Fairfax VA

2007-2008 Software Engineer, Sonex Enterprises, Inc, Fairfax VA

2006-2007 Graduate Research Assistant, Center for Air Transportation Systems Research (CATSR), Fairfax VA

2005-2006 Graduate Teaching Assistant, Computer Science Dept., George Mason Univ., Fairfax VA

2003-2005 Research Software Engineer/Lecturer, Info. & Comp. Sci. Dept., University of Petroleum & Minerals, KSA

2000-2002 Graduate Research Assistant, Info. & Comp. Sci. Dept., University of Petroleum & Minerals, KSA

1998-2000 Programmer/Analyst, SoftWorks Ltd., Lagos, Nigeria

81

mailto:rrufai@gmu.edu

	 List of Tables
	 List of Figures
	 List of Algorithms
	 Abstract
	1 Introduction
	1.1 Convex Hull
	1.2 Convex Hull Approximation
	1.3 Streaming Algorithms for the Convex Hull
	1.4 Convex Layers
	1.5 Organization of Thesis

	2 Convex Hull Approximation
	2.1 Introduction
	2.2 Contributions
	2.2.1 Framework for Approximate Convex Hull Algorithms
	2.2.2 Approximate Convex Hull Algorithms
	2.2.3 New Convex Hull Approximation Algorithms

	2.3 Conclusion

	3 Convex Hull Streaming Algorithm
	3.1 Introduction
	3.2 Related Work
	3.3 Contributions
	3.3.1 Streaming Algorithm
	3.3.2 Complexity Analysis
	3.3.3 Error Analysis
	3.3.4 Empirical Results

	3.4 Refinement
	3.5 Conclusion

	4 Convex Layers
	4.1 Introduction
	4.2 Layering Problems
	4.3 Applications of Convex Layers
	4.4 Related Work
	4.4.1 Peeling-based Techniques
	4.4.2 Plane-Sweep Technique
	4.4.3 Other results

	4.5 Contributions
	4.5.1 Hull Tree Data Structure
	4.5.2 Tree Construction
	4.5.3 Hull Peeling
	4.5.4 Merge

	4.6 Conclusion

	5 Conclusion
	A Link to Code Repository
	 Bibliography

