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Derivation of the refraction equations for
higher-order aberrations of local wavefronts
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From the literature the calculation of power and astigmatism of a local wavefront after refraction at a given
surface is known from the vergence and Coddington equations. For higher-order aberrations (HOAs) equiva-
lent analytical equations do not exist. Since HOAs play an increasingly important role in many fields of optics,
e.g., ophthalmic optics, it is the purpose of this study to extend the “generalized Coddington equation” to the
case of HOA (e.g., coma and spherical aberration). This is done by local power series expansions. In summary,
with the results presented here, it is now possible to calculate analytically the local HOA of an outgoing wave-
front directly from the aberrations of the incoming wavefront and the refractive surface. © 2010 Optical So-
ciety of America

OCIS codes: 000.3860, 080.1005, 080.1753, 080.2720, 080.7343, 330.4460.
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. INTRODUCTION
berrations play a decisive role in optics. In this work, we
eal with them in the framework of geometric optics in
hich the wavelength is neglected ��→0� with respect to
iffraction effects [1,2]. In this case, also the notions of
oth rays and wavefronts still do exist. A wavefront, in
eneral defined as a surface of constant phase, is in this
imit a surface of constant optical path length. A ray is a
irtual infinitesimally small bundle of light, the direction
f which is defined by the normal of the wavefront.

. Rays, Wavefronts, and Aberrations
n imagery will be said to be free of aberrations if every
oint of an object is imaged perfectly. For a given object
oint this will be the case if it is imaged to its paraxially
onjugate image point. In terms of rays, this image point
erves as a reference point that any ray starting from the
bject point through the aperture has to hit. In terms of
aves, the image point serves as the center of a reference

phere, usually through the center of the exit pupil. The
oint will be imaged without aberrations if the wavefront
riginating from the object point coincides with this refer-
nce sphere.

Aberrations are deviations from this situation. They
an be described in either the ray picture or the wave pic-
ure, leading to ray or wave aberrations, respectively [3].
he two pictures, i.e., ray and wave aberrations, are
quivalent and can be translated into each other.

Throughout this paper, we will refer to wave aberra-
ions. A wavefront-based description of these aberrations
an either refer to the geometrical shape of the real wave-
ronts in space (as we will do) or be expressed by a wave
berration function which measures the optical path dif-
1084-7529/10/020218-20/$15.00 © 2
erence (OPD) between the real wavefronts and the refer-
nce sphere along the real occurring rays.

. Classification of Aberrations
he aberration function can be written as a power series
xpansion in both the image coordinates and the pupil co-
rdinates or some combinations of these. Depending on
ymmetry and conventions, this series expansion may
ave different appearances, but in all cases the respective
oefficients are used for classifying the aberrations
resent. In the case of wave aberrations of rotationally
ymmetric systems, for example, it is customary to con-
ider Seidel (primary) aberrations, Schwarzschild (sec-
ndary) aberrations, etc. Synonymously, those are some-
imes also called fourth-order, sixth-order, etc., aberra-
ions. In terms of ray aberrations, different expressions
or the same aberrations would occur, which in that pic-
ure are called third-order, fifth-order, etc., aberrations.
herefore, the “order” of an aberration is meaningful only

n connection with the underlying aberration scheme.
While the treatment of rotationally symmetric systems

s well established in the literature [2,3], there exist
ather few publications about non-symmetric systems.
hompson has treated the third-order aberrations [4] and

he fifth-order aberrations [5] (in the picture of rays) of
isaligned or generally non-symmetric optical systems
ade of otherwise rotationally symmetric optical sur-

aces. Quite recently, Thompson et al. established a real-
ay-based method for calculating these aberrations [6].

It is a very interesting subtopic to consider the aberra-
ion function for a single surface for a fixed image point
nd consequently as a function of the pupil coordinates
nly [2], but without any restrictions on the symmetries of
010 Optical Society of America



s
t
w
a
e
w
e
p
g
t
w
t
o
[
i
d
s
a
l
t
e
a

C
T
t
b
f
t
l
t
f
s
p
(
t
a
s
r

p
w
t
I
t
[
m
f
a
m
h

a
g
l
t
[

C
h
t
t

2
B
I
o
i
t
t
s
g
w
c
s

A

1
I
t
l
�
t
a
c
r
x
p
t
s
p
p
z
p
e
t

w
n
V
p
a
A
s
u
t
f
r
s
e

w
a

I
s
o
f
t

Esser et al. Vol. 27, No. 2 /February 2010 /J. Opt. Soc. Am. A 219
urfaces or wavefronts. In this case, which is the focus of
he present work, the aberration function is often called a
avefront aberration. This aberration is often referred to
plane orthogonal to the chief ray instead of the refer-

nce sphere, which is, e.g., usual in aberrometry [7]. We
ill also do so in this work. The above-mentioned series
xpansion then reduces to an expansion in terms of the
upil coordinates x and y only. The terms in this series
ive rise to the definition of the order of an aberration as
he highest number of added powers of x and y [7,8], as
ill be introduced in detail in Section 2. It is well accepted

hat there is no one-to-one correspondence between the
rder we use and the more general one described above
2]. This situation arises because different orders concern-
ng the image coordinates are summarized within one or-
er of pupil coordinates. Throughout the paper, we will
ummarize first-order aberrations (tilt) and second-order
berrations (comprising defocus and astigmatism) as
ower-order aberrations (LOAs) and all aberrations of
hird order (coma, trefoil), fourth order (e.g., spherical ab-
rration), and higher will be summarized as higher-order
berrations (HOAs), as is also done in [7,9].

. Scope of the Work
he awareness of the role of HOAs has increased in op-
ometry and ophthalmology [7–13]. HOAs are known to
ecome important for large pupil sizes only and are there-
ore associated with a wavefront description over the en-
ire pupil. Despite this, it is the aim of this work to estab-
ish a description of HOA that is based on local deriva-
ives but that is nevertheless suitable for describing all ef-
ects of a large pupil. In Section 2, we show that this de-
cription is indeed fully equivalent to the usual ap-
roaches that are tailored to describing the entire pupil
e.g., by means of Zernike polynomials). Our local descrip-
ion has the advantage of permitting the derivation of
nalytical formulas for computing HOA, which represents
ignificant progress in the general understanding and in
educed numerical effort.

Hitherto for determining HOA, the wavefront in the
upil was calculated by ray tracing [14], a precise method
hen a large number of rays are used but at the same

ime a very time-consuming iterative numerical method.
n the field of spectacle optics, the use of local wavefronts
o calculate power and astigmatism is well established
3,15–20]. Wavefront tracing is a very fast semi-analytical

ethod [15,16]. Especially in spectacle lens optics, local
eatures of a wavefront are very important, because the
perture stop is not stationary as in technical optics. Also,
agnification and anamorphotic distortion previously
ave been calculated locally [21–23].
It is known from the literature how to calculate power

nd astigmatism of a local wavefront after refraction at a
iven surface. In the case of orthogonal incidence this re-
ation is described by the vergence equation [1,2] and in
he case of oblique incidence by the Coddington equation
1,17,18,24].

The purpose of this study is to extend the generalized
oddington equation [3,17–20,24,25] to the case of
igher-order aberrations (e.g., coma and spherical aberra-
ion), in order to decrease the computational effort with
he intrinsic accuracy of an analytical method.
. METHODS AND THEORETICAL
ACKGROUND

t turns out to be very practical to establish the treatment
f refraction including HOA on the basis of wavefront sag-
ttas in space and not directly with OPD-based aberra-
ions. In the end, we provide a connection between those
wo pictures (see Appendix B). Refraction equations are a
et of relations between the incoming wavefront, the out-
oing wavefront, and the refractive surface. Regardless of
hich two of those three surfaces are given, the relations

an always be rearranged in order to determine the third
urface as a function of the other two.

. Definitions and Notation

. Coordinate Systems
n order to describe the incoming wavefront, the refrac-
ive surface, and the outgoing wavefront, three different
ocal Cartesian coordinate systems �x ,y ,z�, �x̄ , ȳ , z̄�, and
x� ,y� ,z��, respectively, are used. (see Fig. 1). They are de-
ermined by the chief ray corresponding to the fixed im-
ge point. The origins of these coordinate systems coin-
ide in the chief ray’s intersection point with the
efractive surface. The systems possess as common axis
=x�= x̄ the normal of the refracting plane, which is the
lane containing the normals of the incoming wavefront,
he refractive surface, and the outgoing wavefront. Con-
equently, the y–z plane, the y�–z� plane, and the ȳ– z̄
lane coincide with each other and with the refracting
lane. The z axis points along the incoming chief ray, the
� axis points along the outgoing chief ray, and the z̄ axis
oints along the normal of the refractive surface. The ori-
ntations of the y axis, the y� axis, and the ȳ axis are such
hat each system is right-handed.

In this work we use the following notation: scalars are
ritten in plain letters, such as x, y, w or S for coordi-
ates, wavefront aberrations, or vergences, respectively.
ectors are written as bold lowercase letters, such as r for
osition or n for normal vectors, and matrices are written
s bold uppercase letters, such as R for spatial rotations.
ny object (i.e., quantity, space point, or vector) that is
pecified in the �x ,y ,z� frame is represented by an
nprimed symbol (e.g., x ,r ,n , . . .), whereas the represen-
ation of the same object in the primed frame or in the
rame �x̄ , ȳ , z̄� is given by a prime or a bar on its symbol,
espectively. The above definitions imply that the repre-
entations of any vector-like quantity v are connected to
ach other by the relations

v = R���v̄, v� = R����v̄, �1�

here R stands for spatial rotations about the common x
xis, defined by the three-dimensional rotation matrix

R��� = �
1 0 0

0 cos � − sin �

0 sin � cos �
� . �2�

n order to avoid confusion between primes for coordinate
ystems and derivatives, we shall denote the derivatives
f a function f�x� as f�1��x� , f�2��x� , f�3��x� , . . . instead of
��x� , f��x� , f��x� , . . ., respectively. Analogously, we denote
he derivatives of a function f�x ,y� as f�1,0��x ,y� , f�0,1��x ,y�,
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�2,0��x ,y� , . . . instead of � /�xf�x ,y�, � /�yf�x ,y�,
2 /�x2f�x ,y� , . . ., respectively. Consequently, for functions

��x�� or f̄�x̄�, the symbolism f��1��x�� or f̄�1��x̄� refers to
/�x�f��x�� and � /�x̄f̄�x̄�, respectively.

In addition to the coordinate notation, we introduce a
ower index notation for labeling whether a quantity be-
ongs to the incoming wavefront, the refractive surface, or
he outgoing wavefront. Regardless of which frame is
sed for mathematical description, the index “In” belongs
o the incoming wavefront (e.g., the normal vector is rep-

ig. 1. Local coordinate systems of the refractive surface of the
ncoming wavefront and the outgoing wavefront. (a) True situa-
ion that the origins of all coordinate systems coincide. (b) Ficti-
ious situation of separated origins for a better understanding of
he nomenclature. The surface normal vectors along the neigh-
oring ray are also drawn, referred to as n̄In, n̄S, n̄�Out in their
referred local coordinate systems �x̄ , ȳ , z̄� coincide. (c) Meaning
f the vector sum in Eq. (25).
esented as nIn, n�In, n̄In in the three frames, respec-
ively), the index “Out” stands for the outgoing wavefront
nOut, n�Out, n̄Out, respectively), and the index “S” stands
or the refractive surface (nS, n�S, n̄S, respectively). Al-
hough all representations are used, the preferred frame
f each quantity is the one in which the corresponding
ormal vector in the origin has the components �0,0,1�T,
here the index T indicates the transpose. Therefore, the
referred frame is the unprimed one for “In” quantities,
he primed one for “Out” quantities, and the frame �x̄ , ȳ , z̄�
or “S” quantities; i.e., the preferred representations for
he normal vectors are nIn, n�Out, and n̄S, and similarly
or all other kinds of vectors.

. Description of Wavefronts
ince the wavefronts and the refractive surface are like-
ise described by their sagittas, here and in the following

he notion “surface” refers to any of the refractive surface,
he incoming wavefront, or the outgoing wavefront, un-
ess those are distinguished explicitly.

Any surface sagitta, provided that it is continuous and
nfinitely often differentiable within the pupil, can be ex-
anded with respect to any complete system of functions
panning the vector space of such functions, which is
athematically denoted by C��P�, where P�R2 is the

ubset of the pupil plane inside the pupil.
For circular pupils it is common to use the orthogonal

omplete system of Zernike circle polynomials [2,26].
ven for these polynomials there exist different conven-

ions, indexing schemes, and normalizations [1,8]. We use
he OSA standard of Zernike polynomials Zk

m�� ,�� of Ref.
8], which describes a surface w�x ,y� within a pupil with
adius r0 as the expansion

w�x,y� = �
k=0

�

�
m=−k

k

ck
mZk

m��,��, �m − k� even, �3�

here �=r /r0, x=r sin �, y=r cos �, and the ck
m are the

ernike coefficients. Alternatively, any other complete
ystem can be used for expansion, e.g., the infinite set of
onomials of the variables, i.e., 1, x, y, x2, xy, y2, etc.,

ielding

w�x,y� = �
k=0

�

�
m=0

k am,k−m

m!�k − m�!
xmyk−m, �4�

hich represents the power expansion in a Taylor series
1,2], and the coefficients are simply given by derivatives
f the surface:

am,k−m = � �k

�xm�yk−mw�x,y��
x=0,y=0

= w�m,k−m��0,0�. �5�

s long as the series expansion is infinite, a transforma-
ion between any of the representations in Eqs. (3) and (4)
s legitimate, well defined, and unique.

In practice, however, an expansion is always truncated
t some finite order, justified by the observation that the
ajor part of the light information content is already suf-
ciently accurately described by the truncated series. In-
tead of a series we then deal simply with a polynomial.
his polynomial can then be considered as a projection of
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he aberration function onto the vector subspace of C��P�
hat is spanned by the finite (incomplete) basis system of
unctions underlying the truncated series. In general, if
wo different complete systems are truncated arbitrarily
o finite basis systems, then the remaining vector sub-
paces spanned by those two basis systems will not nec-
ssarily be identical. If, however, the subspaces happen to
e identical, then the projection of any function onto the
ubspace will be unique, regardless of which basis system
as originally been used for representation. For example,

f a function is described by a Zernike expansion up to ra-
ial order k=6 to some accuracy, yielding a sixth-order
olynomial in x and y, then the same polynomial will be
btained by a Taylor series expansion order up to order
=6, and it will represent the function to the same accu-
acy, because the Zernike basis up to sixth radial order
nd the monomial basis up to sixth order span the same
ubspace of C��P�.

By the order of an aberration term we mean the num-
er k, in either Eq. (3) or Eq. (4). But we draw attention to
he fact that an aberration of a certain order is unique
nly in connection with a specified basis set. For example,
n Eq. (3) the Zernike aberration in the term Z4

0=�5�6�4

6�2+1�=�5�6�x2+y2�2 /r0
4−6�x2+y2� /r0

2+1� due to �=r /r0
ith order k=4, usually called spherical aberration, also

ontains quadratic and constant terms, whereas any k
4 term in Eq. (4) is a monomial with pure value k=4 for
dded x and y powers. An explicit transformation between
he Zernike basis and the monomial basis is provided in
ppendix A.
In contrast to the Zernike polynomials, which are tai-

ored to a surface description over a finite pupil size, it
eems at first glance that a description of local derivatives
ight be valid only in an infinitesimal neighborhood of

he pupil center. However, the above vector space argu-
ents show that a basis of local derivatives does not suf-

er for any loss of information over the entire pupil size
ither, provided that the order of derivatives chosen is
ufficiently high.

For later application, we introduce

wIn�x,y� = �
k=0

�

�
m=0

k aIn,m,k−m

m!�k − m�!
xmyk−m,

w�Out�x�,y�� = �
k=0

�

�
m=0

k a�Out,m,k−m

m!�k − m�!
x�my�k−m, �6�

nd

w̄S�x̄, ȳ� = �
k=0

�

�
m=0

k ām,k−m

m!�k − m�!
x̄mȳk−m �7�

o describe the incoming wavefront, the outgoing wave-
ront, and the refractive surface, respectively.

The central mathematical idea for the method given in
his work is that the coefficients of the unknown
urface—it having been assumed to be describable by a fi-
ite polynomial function so that once the coefficients are
nown the surface is known—may be found by taking de-
ivatives and evaluating them at �x ,y�= �0,0�, where it is
nown that the value of a derivative of order k equals the
alue of coefficient k.

. Local Properties of Wavefronts and Surface
onsidering the infinitesimal area around the optical axis
r rather around the chief ray leads to Gaussian optics (or
araxial optics). For the aberrations of second order the
efraction of a spherical wavefront with orthogonal inci-
ence onto a spherical surface with the surface power S̄
Fig. 2) is described by the vergence equation [1,2]:

S� = S + S̄, �8�

here

S=n /s is the vergence at the object side;
S�=n /s� is the vergence at the image side;
S̄= �n�−n� /r is the surface power;
s is the vertex distance at the object side (axial distance

rom the refractive surface to the object point), which is
quivalent to the radius of curvature of the incoming
avefront;
s� is the vertex distance at the image side (axial dis-

ance from the refractive surface to the image point),
hich is equivalent to the radius of curvature of the out-
oing wavefront;

r is the radius of curvature of the refractive surface
distance from center point of the refractive surface to the
efractive surface);

n is the refractive index of the medium at the object
ide;

n� is the refractive index of the medium at the image
ide;

In the literature, the notion of vergences is usually ex-
ended to three-dimensional (3D) space to describe the
phero-cylindrical power of a surface by the following
teps. First, the curvatures 1/s, 1 /s�, and 1/r in Eq. (8)
re identified with the second derivatives of the sagittas
f the incoming wavefront, the outgoing wavefront, and
he surface, respectively. Further, in 3D space the second
erivatives wIn

�2,0�=�2wIn/�x2, wIn
�1,1�=�2wIn/�x�y, and wIn

�0,2�

�2wIn/�y2, are summarized in terms of 2�2 vergence
atrices [24,27] in the shape

ig. 2. Orthogonal incidence of a spherical wavefront with ver-
ence S=n /s onto a spherical surface with surface power S̄.
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n�wIn
�2,0� wIn

�1,1�

wIn
�1,1� wIn

�2,0�	 ,

nd similarly for w�Out�x� ,y�� and w̄S�x̄ , ȳ�, for which the
refractors are n� and �n�−n� instead of n, and the deriva-
ives are taken with respect to x� ,y� and x̄ , ȳ instead of
,y, respectively.
In addition to the description in terms of vergence ma-

rices, an equivalent description is common in the 3D vec-
or space of power vectors [28–30], which we will apply
hroughout the paper. For the incoming and the outgoing
avefront, as well as the refractive surface, we introduce

he power vectors

s = �
Sxx

Sxy

Syy
� = n�

wIn
�2,0�

wIn
�1,1�

wIn
�0,2��, s� = �

S�xx

S�xy

S�yy
� = n��

wOut��2,0�

wOut��1,1�

wOut��0,2�� ,

s̄ = �S̄xx

S̄xy

S̄yy

� = �n� − n��
w̄S

�2,0�

w̄S
�1,1�

w̄S
�0,2�� . �9�

he symbolism Sxx, Sxy etc., is understood merely as com-
onent labeling of the vector s. Nevertheless, it will re-
ind the reader of the fact that the value of Sxx is propor-

ional to the second derivative wIn
�2,0� of the wavefront

agitta. It is well known that the components of Eq. (9)
re in ophthalmic terms given by

Sxx = �Sph +
Cyl

2 	 −
Cyl

2
cos 2�,

Sxy = −
Cyl

2
sin 2�,

Syy = �Sph +
Cyl

2 	 +
Cyl

2
cos 2�, �10�

here

Sph is the spherical power of the incoming wavefront,
Cyl is the cylindrical power of the incoming wavefront,
� is the axis of the cylindrical Power of the incoming

avefront,

nd equivalently for s� and s̄.
One well-established generalization of Eq. (8) relating

he components of Eq. (9) to one another is the “Codding-
on equation.” It describes the case of a spherical wave-
ront hitting a spherical or astigmatic surface under ob-
ique incidence such that one principal curvature
irection is lying in the refracting plane [1,17,18,24].
The most general case is characterized by an astig-
atic wavefront hitting an astigmatic surface under ob-

ique incidence but such that no special orientation
mong the refracting plane, the directions of the principal
ower of the incoming wavefront, and the directions of the
rincipal power of the refractive surface has to be as-
umed at all. This is the most complex case, described by
he generalized Coddington equation (3), (17)–(20), (24),
nd (25), in compact form written in terms of power vec-
ors,

C�s� = Cs + �s̄, �11�

here we have introduced the matrices

C� = �
1 0 0

0 cos �� 0

0 0 cos2 ��
�, C = �

1 0 0

0 cos � 0

0 0 cos2 �
�

�12�

nd the factor

� =
n� cos �� − n cos �

n� − n
. �13�

nalogously to the definition of the power vectors for ab-
rrations of order k=2, we define for aberrations of higher
rder k	2 similar vectors ek, e�k, ēk of dimension k+1 by

ek = �
Ex. . .xx

Ex. . .xy

]

Ey. . .yy

�ª n�
wIn

�k,0�

wIn
�k−1,1�

]

wIn
�0,k�

� ,

e�k = �
E�x. . .xx

E�x. . .xy

]

E�y. . .yy

�ª n��
wOut��k,0�

wOut��k−1,1�

]

wOut��0,k�
� ,

ēk = �
Ēx. . .xx

Ēx. . .xy

]

Ēy. . .yy

�ª �n� − n��
w̄S

�k,0�

w̄S
�k−1,1�

]

w̄S
�0,k�

� , �14�

uch that in particular e2=s, e�2=s�, and ē2= s̄. We use
he vectors ek, e�k, ēk merely as a device for a compact no-
ation to be used later. Although they form a vector space
which follows directly from the linearity of the deriva-
ive), we do not make explicit use of this fact.

Finally, Eq. (12) can also be extended to all k	2 by the
efinition

C�k = �
1 0 ¯ 0

0 cos �� ]

] � ]

0 ¯ ¯ cosk ��
� ,

Ck = �
1 0 ¯ 0

0 cos � ]

] � ]

0 ¯ ¯ cosk �
� . �15�
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. Mathematical Approach in the Two-Dimensional
ase

. Coordinates in the Two-Dimensional Case
o give insight into the method with smallest possible ef-
ort, we first treat in detail a fictitious two-dimensional
2D) problem in which the third space dimension does not
xist. Later we will transfer the corresponding approach
o the 3D case, the case of interest, but for the moment we
ill drop the x degree of freedom and consider the three

oordinate frames �y ,z�, �y� ,z��, and �ȳ , z̄� spanning one
ommon plane. Instead of a refractive surface in space
here is now only a curve �ȳ ,w�ȳ��T in that plane, and
imilarly the wavefronts are described by curves in that
lane (which, for simplicity, will still be called ‘surface’).
ll rays and normal vectors then lie in that plane, too. We
ummarize this situation with the term “2D.” If one likes
o, one can imagine the problem to be posed as a 3D one
ith the symmetry of translational invariance in the x di-

ection, but this is by no means necessary since it is in-
erent in the mathematics of the two-component system
hat any ray deflection in a direction other than that in
he given plane cannot occur.

The 2D version of the rotation matrix takes the form

R��� = �cos � − sin �

sin � cos �
	 . �16�

. Description of Wavefronts in the 2D Case
he surfaces themselves are each described by power se-
ies expansions specified in the corresponding preferred
rame. Any point on the incoming wavefront is given by
he vector

wIn�y� = � y

wIn�y�	 , �17�

here in the 2D case wIn�y� is the curve defined by

wIn�y� = �
k=0

� aIn,k

k!
yk, �18�

hich corresponds to Eq. (6) in the 3D case. Equivalently,
e represent the outgoing wavefront and the refractive

urface in their preferred frames by the vectors

w�Out�y�� = � y�

w�Out�y��	, w̄S�ȳ� = � ȳ

w̄S�ȳ�	 , �19�

here

w�Out�y�� = �
k=0

� a�Out,k

k!
y�k, w̄S�ȳ� = �

k=0

� āS,k

k!
ȳk. �20�

s in Eq. (5), again the normalization factor k! is chosen
uch that the coefficients aIn,k are given by the derivatives
f the wavefront at y=0

aIn,k = � �k

�ykwIn�y��
y=0

= wIn
�k��0�. �21�

n the 2D case the vector ek in Eq. (14) reduces to a scalar,

k=nwIn
�k�=naIn,k; e.g., for second- and third-order aberra-

ions, we have E2=nwIn
�2�=na2, E3=nwIn

�3�=na3, etc. A simi-
ar reasoning applies for the vectors e�k, ēk and yields the
ocal aberrations E�k, Ēk, connected to the coefficients
�Out,k, āS,k by multiplication by the refractive index n� for
he outgoing wavefront and by the factor n�−n for the re-
ractive surface, respectively.

It is important to note that each surface has zero slope
t its coordinate origin because by construction the z axis
oints along the normal of its corresponding surface. Fur-
hermore, since all surfaces are evaluated at the intersec-
ion point, each of them has zero offset, too. In terms of
eries coefficients, this means that all the prism and off-
et coefficients vanish, i.e., aIn,k=0, a�Out,k=0, āS,k=0 for

2.

. Normal Vectors and Their Derivatives
he normal vector nw�y� of any surface w�y� (i.e., curve in
he 2D case) is given by nw�y�= �−w�1��y� ,1�T /�1+w�1��y�2,
here w�1�=�w /�y. In principle, we are interested in de-

ivatives of nw�y� with respect to y. Observing, however,
hat nw�y� depends on y only via the slope w�1��y�, it is
ery practical to concentrate on this dependence nw�w�1��
rst and to deal with the inner dependence w�1��y� later.
o do this, we set v
w�1� and to introduce the function

n�v� ª
1

�1 + �2�− v

1 	 . �22�

ince at the intersection point all slopes vanish, only the
ehavior of that function n�v� for vanishing argument v
0 is of interest. It is now straightforward to provide the
rst few derivatives n�1��0�
�� /�vn�v��v=0, �n�2��0�
�2 /�v2n�v��v=0, etc.:

n�0� ª �0

1	, n�1��0� ª �− 1

0 	, n�2��0� ª � 0

− 1	 ,

n�3��0� ª �3

0	, n�4��0� ª �0

9	, etc. �23�

n application to the functions of interest, nIn�y�
n�wIn

�1��y��, n�Out�y��=n�wOut��1��y���, n̄S�ȳ�=n�w̄S
�1��ȳ��, this

eans that nIn�0�= �0,1�T, n�Out�0�= �0,1�T, n̄S�0�= �0,1�T,
here each equation is valid in its local coordinate sys-

em. Further, the first derivatives are given by



a

4
O
g
t
i
i
(
o
i

c
b
a
�
�
d
E
s
s
d
s
t
n
�

i
e
t
f
e
c

s
a
i
r
s
r
f
n
w
1
i
c

f
[
p
O
n
f
p
s
f
fi

o
o
w
f
t
m

F
l
p
a
k
i
a
e
n
p


n
u
w
w
i
t

a
f
r
t
t
t
ā
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� �

�y
nIn�y��

y=0


 nIn
�1��0� = n�1��0�wIn

�2��0� = �− 1

0 	wIn
�2��0�,

� �

�y�
n�Out�y���

y�=0


 nOut��1��0� = n�1��0�wOut��2��0�

= �− 1

0 	wOut��2��0�,

� �

�ȳ
n̄S�ȳ��

ȳ=0


 n̄S
�1��0� = n�1��0�w̄S

�2��0� = �− 1

0 	w̄S
�2��0�,

�24�

nd similarly for the higher derivatives.

. Ansatz for Determining the Refraction Equations
nce the local aberrations of two of the surfaces are
iven, their corresponding ak coefficients are directly de-
ermined, too, and equivalently the surface derivatives. It
s our aim to calculate the third surface in the sense that
ts derivatives and thus its ak coefficients [see Eqs.
18)–(21)] are determined for all orders 2�k�k0 for the
rder k0 of interest, and to assign values to its correspond-
ng local aberrations.

Our starting point is the following situation. While the
hief ray and the coordinate systems are fixed, a neigh-
oring ray scans the incoming wavefront �wIn and hits it
t an intercept yIn�0, then hits the refractive surface
w̄S, and finally propagates to the outgoing wavefront
w�Out, where the brackets {.} denote the entity of vectors
escribed by Eqs. (17) and (19) [see Figs. 1(a) and 1(b)].
xcept for the limiting case yIn→0, the three points in
pace, wIn, w�Out, w̄S, in general do not coincide. As
hown in Fig. 1, and consistently with our notation, we
enote as yIn the projection of the neighboring ray’s inter-
ection with �wIn onto the y axis. Analogously, the projec-
ion of the intersection with �w�Out onto the y� axis is de-
oted as y�Out, and the projection of the intersection with
w̄S onto the ȳ axis is called ȳS.

The mutual position of the points and surfaces is shown
n Fig. 1(a). Although both wavefronts in general pen-
trate the refractive surface, the definition of the intersec-
ion coordinates as projections will be meaningful if we
ormally allow all parts of the rays and wavefronts to be
xtended into both half-spaces [indicated as dashed
urves in Fig. 1(a)].

It might appear helpful for the reader to imagine for a
hort instant that the incoming wavefront is evaluated at
distance d�0 before the refraction and that the outgo-

ng wavefront is evaluated at a distance d��0 after the
efraction, measured along the chief ray. In this fictitious
ituation of separated intersections even along the chief
ay (and therefore also separated origins of the coordinate
rames) it is much easier to identify the various coordi-
ates, as shown in Fig. 1(b). The true situation d=d�=0,
hich is relevant throughout the paper, is shown in Fig.
(a). While in Figs. 1(a) and 1(b) all quantities are drawn
n their preferred frames, Fig. 1(c) shows the quantities
oncerning the incoming wavefront and the refractive sur-
ace in the common frame �y ,z�. The vector wIn=wIn�yIn�
see Eq. (17)] points to the neighboring ray’s intersection
oint with the incoming wavefront, and the wavefront’s
PD referred to the refractive surface along the ray is de-
oted by , and correspondingly the vector from the wave-
ront to the surface is − /nnIn. Hence, the vector to the
oint on the surface itself, wS, must be equal to the vector
um wS=wIn− /nnIn. Transforming wS to its preferred
rame by wS=R���w̄S [see Eqs. (1) and (16)] yields the
rst of the fundamental equations in Eq. (25).
Analogously we have w�Out−� /n�n�Out=w�S for the

utgoing wavefront in the frame �y� ,z��, yielding the sec-
nd equation in Eq. (25). A condition for the outgoing
avefront to be the surface of constant OPD is that =�

or all neighboring rays. Inserting this condition, we es-
ablish as starting point of our computations the funda-
ental equations

� yIn

wIn�yIn�
	 −



n
nIn = R���� ȳS

w̄S�ȳS�	 ,

� y�Out

w�Out�y�Out�
	 −



n�
n�Out = R����� ȳS

w̄S�ȳS�	 . �25�

rom Eq. (25), it is now possible to derive the desired re-
ations order by order. For this purpose, it turns out to be
ractical to consider formally both wavefronts as given
nd to ask for the refractive surface w̄S�ȳS� as the un-
nown function. Although only the surface is of interest,
n Eq. (25) additionally the four quantities , yIn, y�Out, ȳS
re also unknown. However, they are not independent of
ach other: if any one of them is given, the other three can
o longer be chosen independently. We use ȳS as the inde-
endent variable and consider the three other unknowns
, yIn, y�Out as functions of it.

We arrive at the conclusion that Eq. (25) represents a
onlinear system of four algebraic equations for the four
nknown functions w̄S�ȳS�, yIn�ȳS�, y�Out�ȳS�, �ȳS�. Even if
e are interested in a solution only for the function

¯ S�ȳS�, we cannot obtain it without simultaneously solv-
ng the equations for all four unknowns order by order. In-
roducing the vector of unknown functions as

p�ȳS� = �
yIn�ȳS�

y�Out�ȳS�

�ȳS�

w̄S�ȳS�
� �26�

nd observing that the initial condition p�0�=0 has to be
ulfilled, it is now straightforward to compute all the de-
ivatives of Eq. (25) up to some order, which yields rela-
ions between the curvatures, third derivatives, etc., of
he wavefronts and the refractive surface. Rewriting
hese relations in terms of series coefficients aIn,k, a�Out,k,
S,k and solving them for the desired coefficients āS,k
ields the desired result.

Before solving Eq. (25), we distinguish whether the in-
ependent variable ȳS enters into Eq. (25) explicitly, as in
he first component of the vector �ȳS,w̄S�ȳS��T, or implic-
tly via one of the components of Eq. (26). To this end, we
efine the function �R4�R��R4 : �p , ȳ ��f by
S
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f�p, ȳS� =�
yIn −



n
ny�wIn

�1��yIn�� − �ȳS cos � − w̄S sin ��

wIn�yIn� −


n
nz�wIn

�1��yIn�� − �ȳS sin � + w̄S cos ��

y�Out −


n
ny�wOut��1��y�Out�� − �ȳS cos �� − w̄S sin ���

w�Out�y�Out� −


n
nz�wOut��1��y�Out�� − �ȳS sin �� + w̄S cos ���

� , �27�
t
p
p
o
r
T
(

w
b
e

here �p1 ,p2 ,p3 ,p4�= �yIn,y�Out, ,w̄S� are the components
f p. Now setting p=p�ȳS�, Eq. (27) allows us to rewrite
he fundamental system of Eq. (25) in a more compact
ay as

f�p�ȳS�, ȳS� = 0, �28�

s can be verified explicitly by componentwise comparison
ith Eq. (25).
The key ingredient of our method is that the relations

etween the derivatives of wavefronts and surfaces can be
btained by the first, second, etc., total derivative of Eq.
28) with respect to ȳS, evaluated in the origin. The ad-
antage of the form of Eq. (28) using Eq. (27) is that the
arious terms can be tracked in a fairly compact manner.
�

g
i
c
d
i
a
t

5
E
E
t

The total derivative of f�p�ȳS� , ȳS� in Eq. (28) is ob-
ained by applying the principles from the theory of im-
licit functions. Hence, the total derivative is given by the
artial derivatives of f with respect to the components pi
f p, times the derivatives of pi�ȳS�, plus the partial de-
ivative of f with respect to the explicit dependence on ȳS.
his transforms the system of algebraic equations in Eq.

25) to the system of differential equations

�
j=1

4 �fi

�pj
pj

�1��ȳS� +
�fi

�ȳS
= 0, i = 1, . . . ,4, �29�

here the matrix with elements Aijª�fi /�pj is the Jaco-
ian matrix A of f with respect to its vector argument p,
valuated for p=p�ȳ �. The Jacobian A reads
S
A ª�
�f1

�yIn

�f1

�y�Out

�f1

�

�f1

�w̄S

�f2

�yIn

�f2

�y�Out

�f2

�

�f2

�w̄S

�f3

�yIn

�f3

�y�Out

�f3

�

�f3

�w̄S

�f4

�yIn

�f4

�y�Out

�f4

�

�f4

�w̄S

� =�
1 −



n
nIn,y

�1� wIn
�2� 0

1

n
nIn,y �

wIn
�1� −



n
nIn,z

�1� wIn
�2� 0

1

n
nIn,z − �

0 1 −


n�
nOut,y��1� wOut��2�

1

n�
n�Out,y ��

0 wOut��1� −


n�
nOut,z��1� wOut��2�

1

n�
n�Out,z − ��

� . �30�
n Eq. (30), the occurring expressions are understood as

In
�1�
wIn

�1��yIn�, wIn
�2�
wIn

�2��yIn�, nIn,y
nIn,y�wIn
�1��yIn��, nIn,y

�1�

nIn,y
�1� �wIn

�1��yIn��, etc., and analogously for the “Out” quan-
ities; additionally, yIn,y�Out, ,w̄S are themselves func-
ions of ȳS.

The derivative vector �fi /�ȳS in Eq. (29) is summarized
s

b ª −
�f

�ȳS
= �

�

�

��

��
� , �31�

here for convenience we have introduced �=sin �, �
cos �, and similarly for � .
Both A and b are deduced from f�p�ȳS� , ȳS� and must in
eneral themselves have the same kind of dependence,
.e., A�p�ȳS� , ȳS� and b�p�ȳS� , ȳS�. However, due to the spe-
ial property of f of being linear in ȳS, b is constant. Ad-
itionally, A has no explicit dependence on ȳS besides the
mplicit dependence via p�ȳS�. Hence we write b without
rgument and A=A�p�ȳS��, and Eq. (29) can be written in
he form

A�p�ȳS��p�1��ȳS� = b. �32�

. Solving Techniques for the Fundamental
quation
quation (32) is the derivative of the fundamental equa-

ion in Eq. (28), and therefore it is itself a fundamental
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quation. But, in addition, it allows a stepwise solution
or the derivatives p�k��ȳS=0� for increasing order k. For-
ally, Eq. (32) can be solved for p�1��ȳS� by

p�1��ȳS� = A�p�ȳS��−1b. �33�

quation (33) holds as a function of ȳS, but of course for
rbitrary ȳS both sides of Eq. (33) are unknown. However,
valuating Eq. (33) for ȳS=0 exploits that then the right-
and side (rhs) is known because p�0�=0 is known! In the
ame manner, Eq. (33) serves as starting point for a re-
ursion scheme by repeated total derivative and evalua-
ion for ȳS=0. Remembering that b is constant, we obtain

p�1��0� = A−1b,

p�2��0� = �A−1��1�b,

. . .

p�k��0� = �A−1��k−1�b,

A−1 = A�p�0��−1 = A�0�−1, �34�

here

�A−1��1� = � d

dȳS
A�p�ȳS��−1�

ȳS=0

, . . . ,

�A−1��k−1� = � dk−1

dȳS
k−1A�p�ȳS��−1�

ȳS=0

re total derivatives of the function A�p�ȳS��−1. The rea-
on that Eq. (34) really does provide solutions for p�1�

�0� ,p�2��0� , . . .p�k��0� is that in any row of Eq. (34) the
ntries on the rhs are all known, assuming that the equa-
ions above are already solved. Although on the rhs there
ccur implicit derivatives p�1��0� ,p�2��0� , . . ., as well, they
re always of an order less than on the left-hand side
lhs). For example, the second row in Eq. (34) reads in ex-
licit form,

p�2��0� = ��
i=1

4 � �

�pi
A�p�−1	pi

�1��
ȳS=0

· b,

here ȳS=0 implies p=0 and where on the rhs the high-
st occurring derivative of p is p�1��0�, which is already
nown as a result of the first row in Eq. (34). Generally,
he highest derivative of p occurring in ���dk−1/
ȳS

k−1�A�p�ȳS��−1��ȳS=0 is p�k−1��0�, which is already known
t the stage when p�k��0� is to be computed by Eq. (34).
Although looking attractive and formally simple, apply-

ng Eq. (34) in practice still requires some algebra. One
art of the effort arises because it is the inverse of A
hich has to be differentiated with respect to p. The other
art of the effort is due to the large number of terms,
ince the higher derivatives will involve more and more
ross derivatives like �2 /�pi�pj. It is straightforward to ex-
cute both tasks by a computer algebra package, but they
re nevertheless lengthy and not the best way to gain
ore insight.
While cross-derivatives are inevitable, there exists an
lternative recursion scheme for which it is sufficient to
ifferentiate the matrix A itself instead of its inverse A−1,
hich means an enormous reduction of complexity! For

his purpose, we start the recursion scheme from Eq. (32)
nstead of Eq. (33). The first �k−1� total derivatives of Eq.
32) are

Ap�1��0� = b, �a�

A�1�p�1��0� + Ap�2��0� = 0, �b�

A�2�p�1��0� + 2A�1�p�2��0� + Ap�3��0� = 0, �c�

. . .

�
j=1

k �k − 1

j − 1	A�k−j�p�j��0� = 0, k 	 2 �d�, �35�

here

A = A�p�0�� = A�0�,

A�1� = � d

dȳS
A�p�ȳS���

ȳS=0

, . . . ,

A�k−j� = � dk−j

dȳS
k−jA�p�ȳS���

ȳS=0

re are total derivatives of the function A�p�ȳS��. For the
ast line of Eq. (35) we have applied the formula for the
th derivative of a product,

�fg��p� = �
j=0

p �p

j	f�p−j�g�j�.

quation (35) represents a recursion scheme where in
ach equation containing p�1��0� ,p�2��0� , . . .p�k��0�, only
�k��0� (in the last term for j=k) is unknown provided that
ll previous equations for p�1��0� ,p�2��0� , . . . ,p�k−1��0� are
lready solved. A formal solution for p�k��0�, expressed in
erms of its predecessors, is

p�1��0� = A−1b, k = 1,

p�k��0� = − A−1�
j=1

k−1 �k − 1

j − 1	A�k−j�p�j��0�, k 	 2. �36�

lthough quite different in appearance at first glance, Eq.
36) yields exactly the same solutions as Eq. (34).

. Solutions for the General Refraction Equations
n the result for p�1��0�, the first rows of both Eqs. (34)
nd (36) involve A�0�−1. To obtain A�0�−1, we evaluate Eq.
30) for p=0 and apply Eqs. (23), yielding
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A�0� = �
1 0 0 �

0 0 − 1/n − �

0 1 0 ��

0 0 − 1/n� − ��
�⇒

A�0�−1 = �
1 − n�/� 0 n��/�

0 − n��/� 1 n���/�

0 − nn���/� 0 nn��/�

0 n/� 0 − n�/�
�

with � = n��� − n�. �37�

he last component of p�1��0�, which is the refractive sur-
ace slope, is obtained as w̄S

�1��0�=−�n���−n�� /�. This is
ormally correct since we have not yet made any assump-
ion about the angles �, ��. If, however, we claim that
¯ S

�1��0�=0, we will obtain the refraction law n���−n�
n�sin ��−n sin �=0. Exploiting this in all further calcu-

ations, the final result for p�1��0� is

p�1��0� = �
�

��

− n�

0
� . �38�

or the orders k	2 we apply Eqs. (36). The derivatives
�1�= ��d /dȳS�A�p�ȳS���ȳS=0, etc., are directly obtained by

otal derivative of Eq. (30) with respect to ȳS, evaluating
or ȳS=0 and again applying Eqs. (23). For the orders k

2 only the results w̄S
�k��0� for the refractive surface are of

nterest; therefore we directly provide those results. The
esulting second-order law is [omitting the argument (0)]

� · w̄S
�2� = ��2n�wOut��2� − �2nwIn

�2�, �39�

hich is well known as the Coddington equation and
urns out to be a special case of our results. The resulting
igher-order laws can be written in a similar fashion:

� · w̄S
�3� = ��3n�wOut��3� − �3nwIn

�3� + R3,

� · w̄S
�4� = ��4n�wOut��4� − �4nwIn

�4� + R4,

. . .

� · w̄S
�k� = ��kn�wOut��k� − �knwIn

�k� + Rk, �40�

ith the remainder terms Rk, which are given for orders
=3,4 explicitly as

R3 = −
3n����

�
�nwOut��2� − n�wIn

�2�����wOut��2� − �wIn
�2��, �41�

R4 = ��wOut��2� + �wIn
�2��wOut��3� + ���wOut��2� + ��wIn

�2��wIn
�3�

+ ���wOut��2��3 + ���wOut��2��2wIn
�2� + �wOut��2��wIn

�2��2

+ ��wIn
�2��3, �42�

ith
� =
2n���3

�
�n��� − 6n��, � =

2n����2

�
�2n��� + 3n��,

� =
3n�2

�2 �2n��2��� − �2�n2�2 + 4n�2��2��,

� =
3n��

n�2 ��2n��� + n���n2�2 + 2nn���� + 2n�2��2���2

− 2��n����2�, �43�

nd ��, ��, ��, �� are obtained from −�, −�, −�, −�, respec-
ively, by interchanging n↔n�, �↔��, �↔��, �↔−�. Re-
ults for even higher orders k=5,6 are provided in[31].

Equation (40) holds likewise for the derivatives and for
he coefficients aIn,k, a�Out,k, āS,k due to Eqs. (18)–(21). In
erms of local aberrations, Eq. (40) reads (after replacing
, �� by the cosines)

� · Ēk = E�k cosk �� − Ek cosk � + Rk, �44�

here in Rk all wavefront derivatives are expressed in
erms of local aberrations.

. Generalization of the Coddington Equation
lthough application of Eq. (34) or Eq. (36) provides a so-

ution for wS
�k��0� up to arbitrary order k, it is very instruc-

ive to analyze the solutions more closely for one special
ase. We observe that the expressions in Eqs. (41) and
42) for R3 (or R4) will vanish if we set wIn

�j�=0 and wOut��j�

0 for all lower orders j
k (for k=3 or k=4, respectively).
his leads to the assumption that the following statement

s generally true: if aberrations only for one single given
rder k are present while for all lower orders j
k we have

In
�j�=0 and wOut��j� =0, then Rk=0, which means for fixed or-
er k that Eq. (40) will be valid for vanishing remainder
erm. This assumption can in fact be shown to hold gen-
rally.

For this purpose, we start from the recursion scheme in
q. (36) and show that only the term containing p�1� can
ontribute to the sum if all aberrations vanish for order
ess than k. To do so, it is necessary to exploit two basic
roperties of the derivatives A�m�= ��dm /dȳS

m�A�p�ȳS���ȳS=0
f the matrix A for the orders 1�m�k−1. As can be
hown by elementwise differentiation of the matrix A, the
ighest wavefront derivatives present in A�m��p�ȳS�� [see
q. (30)] occur in the terms proportional to , and those
re proportional to either wIn

�m+2� or wOut��m+2�. Evaluating
�m��p�ȳS�� at the position ȳS=0 implies =0, such that
�m� cannot contain any higher wavefront derivatives

han wIn
�m+1� or wOut��m+1�. It follows that

(i) The highest possible wavefront derivatives present
n A�m� are wIn

�m+1� or wOut��m+1�.
(ii) If all wavefront derivatives even up to order �m

1� vanish, then A�m� itself will vanish. This is in contrast
o A itself, which contains constants and therefore will be
nite even if all wavefront derivatives vanish.

Analyzing the terms in Eq. (36), we notice that the
ccurring derivatives of the matrix A are
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�k−1� ,A�k−2� , . . . ,A�2� ,A�1� for j=1,2, . . . , �k−1�, respec-
ively. It follows from property (i) that the highest occur-
ing wavefront derivatives in these terms are k , �k
1� , . . . ,3 ,2, respectively. Now, if all wavefront deriva-

ives up to order �k−1� vanish, it will follow from property
ii) that all the matrix derivatives A�k−2� , . . . ,A�2� ,A�1�

ust vanish, leaving only A�k−1�. Therefore all terms in
q. (36) vanish, excluding only the contribution for j=1.
e directly conclude that

p�k� = − A−1A�k−1�p�1� = − �A−1A�k−1�A−1� · b k 	 2.

�45�

o evaluate A�k−1� we set k−1¬m, and it is straightfor-
ard to show by induction that if all aberrations vanish

or order less than or equal to m, then

�m�

=�
− m�m−1�wIn

�m+1� 0
�m

n
wIn

�m+1� 0

�mwIn
�m+1� 0 0 0

0 − m��m−1��wOut��m+1�
��m

n�
wIn

�m+1� 0

0 ��mwIn
�m+1� 0 0

�
�46�

here yIn
�1�, yOut��1�, and �1� have been replaced by their solu-

ions �, ��, and ns, respectively, wherever they occur [see
q. (38)]. Inserting A�m��0� for m=k−1 and A�0�−1 from
q. (37) into Eq. (45) yields directly that

� · s̄�k��0� = ��kn�wOut��k��0� − �knwIn
�k��0� �47�

or all orders k	2.
The resulting refraction equation in the situation of Eq.

47) in terms of local aberrations reads

� · Ēk = E�k cosk �� − Ek cosk �, �48�

hich is indeed Eq. (44) for Rk=0.

. Mathematical Approach in the 3D Case

. Wavefronts and Normal Vectors
lthough more lengthy to demonstrate than the 2D case,
onceptually the 3D case can be treated analogously to
he 2D case. Therefore, we will report only the most im-
ortant differences. Analogously to Eq. (17), the incoming
avefront is now represented by the 3D vector

wIn�x,y� = �
x

y

wIn�x,y�
� , �49�

here wIn�x ,y� is given by Eq. (6), and the relation be-
ween the coefficients and the derivatives is now given by
relation like Eq. (5). The connection between coefficients
nd local aberrations is now given by e2= �Sxx ,Sxy ,Syy�T

n�aIn,2,0 ,aIn,1,1 ,aIn,0,2�T, e3= �Exxx ,Exxy ,Exyy ,Eyyy�T

n�aIn,3,0 ,aIn,2,1 ,aIn,1,2 ,aIn,0,3�T, etc. [see Eq. (14) for ek].
he outgoing wavefront and the refractive surface are
reated similarly.
To treat the normal vectors, we introduce the functions
nalogous to Eq. (22) as

n�u,v� ª
1

�1 + u2 + v2�
− u

− v

1
� , �50�

uch that the normal vector to a surface w�x ,y�
�x ,y ,w�x ,y��T is given by

w�1,0� � w�0,1�

�w�1,0� � w�0,1��
=

1

�1 + w�1,0�2
+ w�0,1�2�

− w�1,0�

− w�0,1�

1
�

= n�w�1,0�,w�0,1�� = n��w�.

n the intersection point, we now have nIn�0,0�
�0,0,1�T, n�Out�0,0�= �0,0,1�T, n̄S�0,0�= �0,0,1�T, and

he derivatives corresponding to Eq. (23) can directly be
btained from Eq. (50).

. Ansatz for Determining the Refraction Equations
he starting point for establishing the relations between

he wavefronts and the refractive surface is now given by
quations analogous to Eq. (25), with the only difference
hat x and y components are simultaneously present and
hat the original 3D rotation matrix from Eq. (2) has to be
sed.
The vector of unknown functions is now given by

p�x̄S, ȳS� =�
xIn�x̄S, ȳS�

yIn�x̄S, ȳS�

x�Out�x̄S, ȳS�

y�Out�x̄S, ȳS�

�x̄S, ȳS�

s̄�x̄S, ȳS�
� , �51�

nd the 3D analog to Eq. (25) now leads to

f�p�x̄S, ȳS�, x̄S, ȳS� = 0, �52�

here f is the 3D analog to Eq. (27).
One important difference from the 2D case is that there

re two arguments with respect to which derivatives have
o be taken. This implies that the dimension of the linear
roblems to solve grows with increasing order: while
here are only 6 different unknown functions, the first-
rder problem possesses already 12 unknown first-order
erivatives, then there are 18 second-order derivatives,
tc.

Another implication of the existence of two indepen-
ent variables is that from the very beginning there are
wo different first-order equations,

A�p�x̄S, ȳS��p�1,0��x̄S, ȳS� = bx,

A�p�x̄S, ȳS��p�0,1��x̄S, ȳS� = by, �53�

here the different inhomogeneities are given as column
ectors:



T
t

a

ª

t
i

a
b

3
T
b

w

Esser et al. Vol. 27, No. 2 /February 2010 /J. Opt. Soc. Am. A 229
bx = −
�f

�x̄S
= �1 0 0 1 0 0�T,

by = −
�f

�ȳS
= �0 � � 0 �� ���T. �54�

he structure of bx arises because there is no respective

ilt in this coordinate direction between the wavefronts w

e
fl
t
b
t
e
p

v

a

nd the refractive surface.
The Jacobian matrix A�p�x̄S, ȳS�� with elements Aij
�fi /�pj is the same for both equations and is analogous

o Eq. (30) but now of size 6�6. It is practical to provide it
n block structure notation,

�A�p�x̄S, ȳS�� = �AIn

0

0

A�Out
� A ĀS	 , �55�
here 0 is a 3�2 block with entry zero,
AIn =�
1 −



n
�nIn,x

�0,1�wIn
�1,1� + nIn,x

�1,0�wIn
�2,0�� −



n
�nIn,z

�0,1�wIn
�0,2� + nIn,z

�1,0�wIn
�1,1��

−


n
�nIn,y

�0,1�wIn
�1,1� + nIn,y

�1,0�wIn
�2,0�� 1 −



n
�nIn,y

�0,1�wIn
�0,2� + nIn,y

�1,0�wIn
�1,1��

wIn
�1,0� −



n
�nIn,z

�0,1�wIn
�1,1� + nIn,z

�1,0�wIn
�2,0�� wIn

�0,1� −


n
�nIn,z

�0,1�wIn
�0,2� + nIn,z

�1,0�wIn
�1,1��
� , �56�
nd a similar block expression for A�Out. The other two
locks are given as column vectors:

A =�
nIn,x/n

nIn,y/n

nIn,z/n

n�Out,x/n�
n�Out,y/n�

n�Out,z/n�

� , ĀS =�
0

�

− �

0

��

− ��

� . �57�

. Solutions for the General Refraction Equations
he direct solutions analogous to Eq. (34) are now given
y

p�1,0��0,0� = A−1bx,

p�0,1��0,0� = A−1by,

p�2,0��0,0� = ��A−1��1,0��bx,

p�1,1��0,0� = �A−1��0,1�bx = ��A−1��1,0��by,

p�0,2��0,0� = �A−1��0,1�by,

. . .

p�kx,ky��0,0�

= �
�A−1��kx−1,0�bx, kx � 0,ky = 0,

�A−1��kx−1,ky�bx = �A−1��kx,ky−1�by, kx � 0,ky � 0,

�A−1��0,ky−1�by, kx = 0,ky � 0,
�

�58�

here
A−1 = A�p�0,0��−1 = A�0�−1, and

�A−1��1,0� = � d

dx̄S
A�p�x̄S, ȳS��−1�

x̄S=0,ȳS=0

,

�A−1��kx,ky� = � dkx

dx̄S
kx

dky

dx̄S
ky

A�p�x̄S, ȳS��−1�
x̄S=0,ȳS=0

,

tc. The fact that there are two starting equations (53) re-
ects itself in the existence of two formally different solu-
ions for the mixed derivatives, e.g., p�1,1�. However, since
oth starting equations originate from one common func-
ion f in Eq. (52), for each p�kx,ky� the two solutions must
ssentially be identical, as can also be verified, e.g., for
�1,1� directly by some algebra.
In analogy to Eqs. (37) and (38) for the 2D case, we pro-

ide here the explicit results,

A�0� =�
1 0 0 0 0 0

0 1 0 0 0 �

0 0 0 0 − 1/n − �

0 0 1 0 0 0

0 0 0 1 0 ��

0 0 0 0 − 1/n� − ��

�⇒

A�0�−1 =�
1 0 0 0 0 0

0 1 − n�/� 0 0 n��/�

0 0 0 1 0 0

0 0 − n��/� 0 1 n���/�

0 0 − nn���/� 0 0 nn��/�

0 0 n/� 0 0 − n�/�
� , �59�

nd, after application of Eqs. (54) and (58) the solutions
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p�1,0��0,0� =�
1

0

1

0

0

0
� , p�0,1��0,0� =�

0

�

0

��

− n�

0
� . �60�

he general result for the refraction equation can be writ-
en in this way:

�w̄S
�kx,ky� = ��kyn�wOut

��kx,ky� − �kynwIn
�kx,ky� + Rkx,ky

. �61�

t is interesting to note that only ky but not kx occurs in
he exponents of the cosines. This is a consequence of the
act that the refraction takes place in the y–z plane,
hereas in the x direction no tilting cosines occur at all.
ummarizing all components of Eq. (61) for a fixed value
f k=kx+ky and applying Eqs. (5), (15), and (14) yields the
efraction equation in terms of local aberrations,

� · ēk = C�ke�k − Ckek + rk, �62�

here rk is a vector collecting the remainder terms Rkx,ky
n Eq. (61) analogously to Rk in Eq. (44). Equation (62) is
he general refraction equation for aberrations of any or-
er in the 3D case.

. Generalization of the Coddington Equation
lthough Eq. (58) represents the full solution, we provide
ere a more detailed result for p�kx,ky��0,0� in the case of
anishing wavefront derivatives wIn

�jx,jy�, wOut��jx,jy� for all
ower orders, i.e., for jx+ jy
kx+ky. This works analo-
ously to the treatment of Eqs. (35)–(47), with the only
ifference that the notation requires more effort.
Analogously to Eq. (36) we obtain the result that

p�kx,0��0,0� = − A−1 �
jx=1

kx−1 �kx − 1

jx − 1	A�kx−jx,0�p�jx,0�,

kx 	 2, ky = 0, �63a�

p�kx,ky��0,0�

= − A−1 �
jx	1,jy	0

jx+jy
kx+ky

�kx − 1

jx − 1	�ky

jy
	A�kx−jx,ky−jy�p�jx,jy�

�63b�

=− A−1 �
jx	0,jy	1

jx+jy
kx+ky

�kx

jx
	�ky − 1

jy − 1	A�kx−jx,ky−jy�p�jx,jy�,

kx � 0, ky � 0, �63c�

p�0,ky��0,0� = − A−1 �
jy=1

ky−1 �ky − 1

jy − 1	A�0,ky−jy�p�0,jy�,

kx = 0, ky 	 2, �63d�

here again for p�kx,ky� two formally different solutions oc-
ur that are essentially identical. We recognize that Eq.
63a) is a special case of Eq. (63b) for ky=0, jy=0, and
imilarly Eq. (63d) is a special case of Eq. (63c) for kx=0,
x=0. By means of a reasoning similar to that in the 2D
ase, it is found that if all lower-order aberrations for jx
jy
kx+ky vanish, then Eqs. (63) will reduce to the low-
st term, yielding

p�kx,0��0,0� = − A−1A�kx−1,0�p�1,0�, kx 	 2, ky = 0,

�64a�

p�kx,ky��0,0� = − A−1A�kx−1,ky�p�1,0�

= − A−1A�kx,ky−1�p�0,1�, kx � 0, ky � 0,

�64b�

p�0,ky��0,0� = − A−1A�0,ky−1�p�0,1�, kx = 0, ky 	 2.

�64c�

o finally evaluate Eqs. (63), we need the partial deriva-
ives of the matrix A under the assumption that all lower-
rder aberrations for jx+ jy
kx+ky vanish, which are
iven as

A�mx,my� = ��AIn
�mx,my� 0

0 AOut
��mx,my�� A

�mx,my� ĀS
�mx,my�	

�65�

ith the block

AIn
�mx,my� = �

− my�my−1�wIn
�mx+2,my−1� − my�my−1�wIn

�mx+1,my�

− my�my−1�wIn
�mx+1,my� − my�my−1�wIn

�mx,my+1�

�mywIn
�mx+1,my�

�mywIn
�mx,my+1� �

�66�

nd a similar expression for the block AOut��mx,my�. The other
wo blocks are given as column vectors,

A =�
�mywIn

�mx+1,my�/n

�mywIn
�mx,my+1�/n

0

��mywOut
��mx+1,my�/n�

��mywOut
��mx,my+1�/n�

0

�, ĀS = 0, �67�

here xIn
�1,0�, xIn

�0,1�, yIn
�1,0�, yIn

�0,1�, etc., have been replaced by
heir solutions according to Eq. (60). Inserting A�mx,my�

rom Eqs. (65)–(67) and A�0�−1 from Eq. (59) into Eqs. (64)
ields one common relation for w̄S

�kx,ky� for the various sub-
ases in Eqs. (64) [omitting the argument (0,0)]:

�w̄S
�kx,ky� = ��kyn�wOut

��kx,ky� − �kynwIn
�kx,ky� �68�

or all orders k	2.
Equation (68) can be summarized similarly to Eq. (61)

o a vector equation in the very appealing form
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�ēk = C�ke�k − Ckek, �69�

hich is Eq. (62) for rk=0. Equation (69), an interesting
esult of the present paper, is the refraction equation for
berrations of fixed order k	2 under the assumption that
ll aberrations with order lower than k vanish.

. RESULTS AND DISCUSSION
ne standard situation in optics is that a given wavefront
its a given refractive surface and that the outgoing
avefront is the unknown quantity. Therefore, we provide

n the following the derived refraction equations, solved
or the outgoing wavefront’s aberration.

. 2D Case
quation (48) describes the special case that for given or-
er k the aberrations of the incoming and the outgoing
avefront for all orders less than k are zero (Ej=0; E�j
0 for j
k). For calculation of the aberrations of the out-
oing wavefront, Eq. (48) can be transformed to

E�k cosk �� = Ek cosk � + � · Ēk. �70�

e could generally show this statement to hold for all or-
ers k	2 including as a special case for k=2 the well-
nown Coddington and vergence equations. Therefore Eq.
70) represents an interesting result of the present paper.

Also Eq. (44) for the general case can be transformed in
uch a way that E�k of the outgoing wavefront is the un-
nown quantity to be determined:

E�k cosk �� = Ek cosk � + � · Ēk − Rk. �71�

quation (71) is the general refraction equation for aber-
ations of any order in the 2D case. In Rk only aberrations
j ,E�j of order j
k occur. These aberrations can be deter-
ined by successively solving of Eq. (71) for lower orders.
For example, assume that the aberrations E�k of the

utgoing wavefront up to order k=3 �E�2
S� ,E�3� are the
nknown quantities and that the aberrations Ek of the in-
oming wavefront and Ēk of the refractive surface are
iven. In a first step the aberrations of order k=2 are cal-
ulated using Eq. (71), which is in this case identical to
he well-known Coddington equation:

S� cos2 �� = S cos2 � +
n� cos �� − n cos �

n� − n
· S̄. �72�

n a second step the aberrations of order k=3 are calcu-
ated using Eq. (71) and the results of Eq. (72),

E�3 cos3 �� = E3 cos3 � +
n� cos �� − n cos �

n� − n
· Ē3 − R3,

�73�

ith

R3 = −
3n sin � cos � cos ��

n� cos �� − n cos �
� n

n�
S� −

n�

n
S	

�� cos ��

n
S� −

cos �

n
S	 .
�

. 3D Case
quivalently to the 2D case, transforming Eq. (69) leads

o C�ke�k=Ckek+�ēk for the case that ej=0 ;e�j=0 for j
k, a statement that we could generally show to hold for

ll orders k	2, including the special case of the Codding-
on equation.

In the general case, Eq. (62) can as well be transformed
n such a way that the unknown aberration vector e�k of
he outgoing wavefront is determined by the incoming
avefront and the refractive surface,

C�ke�k = Ckek + � · ēk − rk, �74�

here in rk, only aberrations of order j
k occur. There-
ore, rk can be determined by successively solving Eq. (74)
or lower orders. Equation (74) is the general refraction
quation for aberrations of any order in the 3D case.

. EXAMPLES AND APPLICATIONS
. Aspherical Surface Correction up to Sixth Order
ne important application of the derived equations is

hat they allow us to determine a refractive surface,
hich not only has a defined power S̄ but also generates
n outgoing wavefront that shows no deviation from an
deal sphere up to the order k=6.

Because of the analytical nature of the equations it is
ot necessary to use an iterative numerical method. The
ask is to determine a rotationally symmetric aspherical
urface S̄, which images an axial object point with the dis-
ance s to the refractive surface to an axial image point
ith the distance s� to the refractive surface (Fig. 2).
The object-side vergence and the image-side vergence

re given by S=n /s and S�=n� /s�, respectively, expressed
n terms of the reciprocals of the object and image dis-
ances. Treating the rotationally symmetric problem as a
D problem in the y–z plane, a sphere with radius r is ex-
ctly described by

f�y� = r�1 − �1 − y2/r2�, �75�

hose series expansion up to the order k=6 is

f�y� =
1

2r
y2 +

1

8r3y4 +
1

16r5y6 + . . . . �76�

pplying Eq. (76) once on f�y�=wIn�y�, r=s and again on
�y��=w�Out�y��, r=s� (including in both cases the sign of s
r s�) allows us to identify the wavefronts’ coefficients in
he sense of Eqs. (18)–(21):

aIn,2 =
1

s
=

S

n
, aIn,4 = 3

1

s3 = 3�S

n	
3

,

aIn,6 = 45
1

s5 = 45�S

n	
5

,
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a�Out,2 =
1

s�
=

S�

n�
, a�Out,4 = 3

1

s�3 = 3�S�

n�
	3

,

a�Out,6 = 45
1

s�5 = 45�S�

n�
	5

. �77�

he solution for the desired refractive surface, described
y the series

s̄�y� =
āS,2

2
y2 +

āS,4

24
y4 +

āS,6

720
y6 + . . . �78�

s in Eq. (20), will be found up to the order k=6 if we pro-
ide expressions for the three coefficients āS,2, āS,4, and
S,6 (the odd coefficients for k=3,5,7, . . . are not present
ecause of the rotational symmetry of the problem).
Since the local aberrations of higher order have no in-

uence on the local aberrations of lower order, the coeffi-
ient of second-order āS,2 can be directly determined by
q. (39). In the present case of orthogonal incidence we
xploit that �=��=0, �=��=1, and �=n�−n such that Eq.
39) reads as �n�−n�āS,2=n�a�Out,2−naIn,2 [equivalent to
he vergence equation S̄=S�−S in Eq. (8)], yielding

āS,2 =
S� − S

n� − n
. �79�

o find āS,4, we have to apply Eqs. (40)–(43). Due to the
rthogonal incidence, Eq. (43) simplifies to

� = 0, � = 0, � =
6nn�

n� − n
, � = −

6nn�

n� − n
, �80�

nd consequently Eq. (42) simplifies to

R4 =
6nn�

n� − n
�wOut��2� − wIn

�2��2�wOut��2� + wIn
�2��. �81�

nserting Eq. (81) into Eq. (40) and replacing wIn
�2�, wOut��2� by

he coefficients in Eq. (77) yields

āS,4 = w̄S
�4� =

1

n� − n
�n�wOut��4� − nwIn

�4� + R4� =
1

n� − n�n�a�Out,4

− naIn,4 +
6nn�

n� − n
�a�Out,2 − aIn,2�2�a�Out,2 + aIn,2�	

=
3

�n� − n�2� �n� + n�S3

n2 −
2S2S�

n
−

2SS�2

n�

+
�n� + n�S�3

n�2 	 . �82�

imilarly, we find that

āS,6 = w̄S
�6� =

45

�n� − n�3�−
�n� + n�2S5

n4 +
3�n� + n�S4S�

n3

−
�n� − 3n�S3S�2

n2n�
+

�n� + n�S�4

n�4 −
3�n� + n�S�S�4

n�3

+
�n − 3n��S2S�3

nn 2 	 . �83�

�

quations (82) and (83) complete the required solution
31]; i.e., the coefficients āS,2, āS,4, and āS,6 of the aspheri-
al refractive surface are determined such that an object
oint with the vergence S is imaged to a point with the
ergence S� without aberrations with order less or equal
o k=6.

The results of Eqs. (79), (82), and (83) can be illustrated
y a numerical example in which the refractive index of
he first medium is n=1, that of the second medium is
�=1.5168, and the object and image distance are given
y s=−50.0 mm and s�=60.0 mm, respectively. Equations
79), (82), and (83) then yield āS,2=0.0876161 mm−1, āS,4
−0.00006550 mm−3, āS,6=0.00002147 mm−5. By means
f a ray-tracing approach using the optical design pack-
ge ZEMAX, we have generated layout plots showing rays
orresponding to these values. As a comparison, we have
rst traced rays through a spherical surface with radius
=1/ āS,2=11.4134 mm [see Fig. 3(a)]. Paraxially the im-
ging is perfect, but the peripheral rays introduce large
rrors. Next, we have considered a parabolic surface with
he same paraxial curvature āS,2 [see Fig. 3(b)], but now
e have chosen a stop with semi-diameter rstop
16.0 mm, which is considerably larger than the surface
adius in Fig. 3(a). Again, the peripheral rays introduce
arge errors.

Although such a system has a very low f-number, it is
ow possible to reduce these errors dramatically by choos-

ng a sixth-order asphere based on the locally determined
alues āS,2, āS,4, and āS,6. Figure 3(c) shows that the er-
ors are reduced to a level that is no longer visible on the
cale of the plot.

. A Spherical Incoming Wavefront Hits a Spherical
efractive Surface at Oblique Incidence

n this example we use the derived equations to deter-
ine the aberrations of the outgoing wavefront up to or-

ig. 3. Ray-tracing plots for example A generated by ZEMAX.
a) Spherical surface with radius r=1/ āS,2. (b) Parabolic surface
ith local curvature āS,2. (c) Strongly reduced aberrations due to
spherical surface of sixth order with coefficients āS,2, āS,4, and
S,6. The vertical lines in the middle of the drawings are con-
truction lines of ZEMAX and have no relevance in our context.
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er k=6 and compare them with the results calculated
ith ZEMAX. Given are the spherical incoming wavefront
ith a vergence S=10D and a spherical refractive surface
ith power S̄=20D. The refractive index of the first me-
ium is n=1, that of the second medium is n�=1.5168,
nd the angle of incidence is �=40°. Therefore, the ver-
ence vector of the incoming wavefront and the power
ector of the refractive surface have the appearances sT

�S ,0 ,S� and s̄T= �S̄ ,0 , S̄�, respectively.
The aberrations of second order of the outgoing wave-

ront are determined by Eq. (11) C�s�=Cs+�s̄, yielding a
ergence vector of the form s�T= �S�xx ,0 ,S�yy�. Numerical
alues for S�xx ,S�yy are given in Table 1.

The third-order error vectors e3 and ē3 are 0, because
he incoming wavefront and the refractive surface are
pherical. Then Eq. (74) simplifies to C�3e�3=−r3 (the vec-
or r3 is shown in Appendix C as a function of the given
ergence S and the quantities S�xx ,S�yy determined be-
ore). Numerical values for e�3 are given in Table 1.

The error vectors of fourth order of the spherical incom-
ng wavefront and refractive surface have the appear-
nces e4

T= �3S3 ,0 ,S3 ,0 ,3S3� and ē4
T= �3S̄3 ,0 , S̄3 ,0 ,3S̄3�,

Table 1. Local Aberrations of the Outgoing
Wavefront in Example Ba

aLeft column, values based on the wavefront sagitta; right column, OPD-based
alues.
espectively. Using Eq. (74) leads to the resulting error
ector of fourth order whose values are again given in
able 1. The fifth- and sixth-order aberrations for the lo-
al wavefront aberrations are also numerically provided
n Table 1.

As mentioned at the beginning of this paper, our whole
reatment is based on the description of aberrations by
heir wavefront sagitta. For completeness, it is important
lso to provide aberration results in the OPD picture. In
ppendix B, we provide relations between sagitta deriva-

ives and OPD derivatives. Analogously to Eq. (14), we de-
ne OPD-based vectors of aberrations for the wavefronts
y

ek
OPD = �

Ex. . .xx
OPD

Ex. . .xy
OPD

]

Ey. . .yy
OPD

� = �
In

�k,0�

In
�k−1,1�

]

In
�0,k�

� ,

ek�
OPD = �

Ex. . .xx�OPD

Ex. . .xy�OPD

]

Ey. . .yy�OPD
� = �

Out��k,0�

Out��k−1,1�

]

Out��0,k�
� , �84�

here In
�kx,ky� ,Out��kx,ky� are in this context OPD derivatives

f the incoming and the outgoing wavefront that play the
ole of the generically used symbol w

�kx,ky� in Appendix B.
he values of the aberrations ek�

OPD are listed in Table 1,
oo, together with their counterparts e�k. In accordance
ith Appendix B, ek�

OPD is equal to e�k up to the order k
3. For k=4, the values of ek�

OPD and e�k are slightly dif-
erent, and for k	5 the deviations between the two pic-
ures are considerable. We remark that this is the reason
hat it was necessary to treat the relations between the
ifferent coordinates simultaneously with the wavefront
erivatives from the very beginning [see Eqs. (26) and
51)]. This confirms that the vector of six unknowns in Eq.
51) does not introduce additional complexity to the prob-
em, but it is rather the only consistent way to treat care-
ully the inherent complexity such that numbers like
hose in Table 1 are meaningful.

Apart from yielding exact values for the local deriva-
ives, our method will also be suitable for computing
ernike coefficients over a full pupil size if local aberra-
ions up to sufficiently high order are involved, as argued
n Section 2. In Table 2, we provide the Zernike coeffi-
ients up to order k=6 for our example, assuming a pupil
ith semi-diameter r0=3.0 mm. The coefficients have
een computed using Eqs. (A2) and (A3) for the order k
6.
For comparison, we have also calculated the solution of

he same problem with a ray-tracing approach using ZE-
AX (see Fig. 4) followed by a Zernike analysis. Those

alues are provided in Table 2 as a reference. The agree-
ent between the two results is obvious. We would like to

tress again that our local aberration values are obtained
y an analytical method and therefore by definition are
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xact. The transformation of our local coefficients to
ernike coefficients, on the other hand, yields only a (how-
ver, very good) approximation for their numerical values
ased on the assumption that the truncated subspaces of
rder k=6 describe the aberrations sufficiently well. But
till, within this approximation, the results are analyti-
al, such that a Zernike coefficient obtained as zero is ex-
ctly zero, whereas a ray-tracing value is always numeri-
al in nature, resulting in small deviations from zero
Table 2).

Table 2. Zernike Coefficients of the Outgoing
Wavefront in Example Ba

order

Symbol
(OSA

standard)

Zernike
coefficients (our

method)

Zernike
coefficients
(ZEMAX)

value/�m value/�m

k=2 c2
−2 0 −2.4�10−8

c2
0 16.672042 16.672048

c2
2 −8.251706 −8.251718

k=3 c3
−3 −0.008734 −0.008746

c3
−1 1.092135 1.092042

c3
1 0 −2.9�10−8

c3
3 0 −5.8�10−9

k=4 c4
−4 0 −2.4�10−8

c4
−2 0 −1.8�10−8

c4
0 0.036792 0.036794

c4
2 0.003041 0.003034

c4
4 −0.003785 −0.003780

k=5 c5
−5 −0.000060 −0.000052

c5
−3 0.000723 0.000719

c5
−1 −0.001026 −0.001058

c5
1 0 1.2�10−8

c5
3 0 1.2�10−8

c5
5 0 1.8�10−8

k=6 c6
−6 0 −1.2�10−8

c6
−4 0 0.000000

c6
−2 0 1.2�10−8

c6
0 0.000089 0.000089

c6
2 0.000085 0.000083

c6
4 0.000005 0.000004

c6
6 −0.000005 −0.000005

aLeft column, values based on our method; right column, values based on ray-
racing �ZEMAX�.
. SUMMARY
n the present work we have developed a general method
or generating refraction equations for local wavefront ab-
rrations of any order under arbitrarily oblique incidence
onditions. These results include as a special case the
ell-known scalar vergence equation as well as the Cod-
ington equation (order k=2) but extend these refraction
quations to aberrations of any arbitrary higher order k
2.
The refraction equations are relations between an in-

oming wavefront, a refractive surface, and an outgoing
avefront. In detail, we have defined local aberrations of

hose three surfaces in terms of local power series coeffi-
ients, which describe the surfaces in local coordinate sys-
ems aligned with the chief rays or the surface normal.
he general refraction equations are established as a se-
uence of analytical relations between these series coeffi-
ients. We have been able to show that to each given order
	2 it is possible to assign one equation taken from that
equence whose leading-order terms represent a straight-
orward generalization of the Coddington equation to the
rder k and which in general contains some additional
erms whose order is always less than k. A direct conse-
uence is that if aberrations of only one single order k are
resent, then the generalization of the Coddington equa-
ion will be exact for that order k; it reads E�k cosk ��

Ek cosk �+� · Ēk for the 2D problem, and the vector-
alued version of it reads C�ke�k=Ckek+�ēk in the 3D
ase.

For convenience, we have distinguished between the
D and the 3D problem in deriving the refraction equa-
ions. While the part representing the generalization of
he Coddington equation can in either dimension be ex-
ressed symbolically as a function of the order k, the ad-
itional terms of order less than k must be derived in a
ecursive process for increasing orders k=2,3,4, . . .. We
ave provided this procedure generally, and for the orders
=3,4 we have provided explicit formulas for the result-

ng terms in the 2D case. As an application of the refrac-

ig. 4. Ray-tracing plot for example B generated by ZEMAX. A
pherical wavefront is refracted by a spherical surface under ob-
ique incidence, giving rise to coma in the outgoing wavefront.
he box drawn around the refractive object consists of construc-

ion lines of ZEMAX and has no relevance in our context.
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ion equations, it is possible to determine an unknown
urface among the refractive surface and the two wave-
ronts up to an order k, provided that the two other sur-
aces are given up to the same order k. The standard situ-
tion is that an incoming wavefront and a refractive
urface are given and that the outgoing wavefront is to be
etermined, as we have illustrated by an example. How-
ver, the reverse problem can likewise be treated. As we
ave shown explicitly in an example, if the incoming and
he outgoing wavefront are both given without deviation
rom an ideal sphere up to the order k=6, our equations
irectly allow determination of the refractive surface nec-
ssary for this imagery.

The main advantage of our approach is that it is based
xclusively on analytical formulas. This saves much com-
utation time compared with numerical iteration routines
hat would otherwise be necessary for determining the
igher-order aberrations.
With the method developed in this work, it is now pos-

ible to calculate the local higher-order aberrations of the
utgoing wavefront directly in an analytical way from the
berrations of the incoming wavefront and the refractive
urface. Although our method is based on local tech-
iques, it yields results that are by no means restricted to
mall apertures, as we have shown theoretically as well
s in two examples.

PPENDIX A
he Zernike coefficients corresponding to a wavefront
�x ,y� are given by the integral
e
s
t
t
t
w
p
i
t

ck
m =

1

�r0
2��

pupil

Zk
m� x

r0
,

y

r0
	w�x,y�dxdy, �A1�

here r0 is the pupil size. If the wavefront is given as a
eries as in Eqs. (6) and (7), then the integral in Eq. (A1)
ill be itself a series, i.e., a linear combination of coeffi-

ients am,k−m. Summarizing up to given order k the coef-
cients ck

m and am,k−m as vectors, a transition matrix T�k�
etween the Zernike subspace and the Taylor series sub-
pace of order k can be defined by

�
c0

0

c1
−1

c1
1

c2
−2

c2
0

c2
2

c3
−3

c3
−1

]

ck
k

� = T�k��
E

r0Ex

r0Ey

r0
2Exx

r0
2Exy

r0
2Eyy

r0
3Exxx

r0
3Exxy

]

r0
kEyy. . .y

� = nT�k��
a00

r0a10

r0a01

r0
2a20

r0
2a11

r0
2a02

r0
3a30

r0
3a21

]

r0
ka0k

� . �A2�

f representations of such a matrix are given in a form
imilar to that in the literature [2,32,33], the prefactors of
he underlying power series in the literature will not be
he same in detail as in our case. Therefore we provide an
xplicit expression for T−1 here for order k=3, given by
T−1�3� =�
1 0 0 0 − �3 0 0 0 0 0

0 2 0 0 0 0 0 − 4�2 0 0

0 0 2 0 0 0 0 0 − 4�2 0

0 0 0 0 4�3 − 2�6 0 0 0 0

0 0 0 4�6 0 0 0 0 0 0

0 0 0 0 4�3 2�6 0 0 0 0

0 0 0 0 0 0 − 12�2 36�2 0 0

0 0 0 0 0 0 0 0 12�2 − 12�2

0 0 0 0 0 0 12�2 12�2 0 0

0 0 0 0 0 0 0 0 36�2 12�2

� . �A3�
PPENDIX B
f a wavefront is given by its sagitta, then the OPD be-
ween the wavefront and a reference plane being tangen-
ial to the wavefront can determined from it, and vice
ersa. In particular, there exists a unique relation be-
ween the aberration coefficients in terms of the wave-
ront (by our definition the sagitta derivatives) and the
berration coefficients in terms of the aberration function
to be defined as the OPD derivatives). For simplicity, we
stablish this relation first in the 2D case. Formally, the
ituation can be imagined to be described by Fig. 1(c) for
he special case that the refractive surface is a plane and
he incidence is orthogonal. Applying to any wavefront in
his context, we generically call the wavefront sagitta
�y� instead of wIn�yIn�, the coordinate in the tangential
lane is ȳt instead of ȳS, and the wavefront’s OPD is w�ȳt�
nstead of �ȳS� (see Fig. 5). The first equation of Eqs. (25)
hen takes the form
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� y

w�y�	 −
w

n
nw = �ȳt

0	 . �B1�

ur question is now posed such that w�ȳt� is the un-
nown function of interest while w�y� is given. In this
ase it is most practical to use y as the independent
ariable, such that the functions ȳt�y� and conse-
uently w�ȳt�y�� enter into Eq. (B1). Inserting nw�y�
�−w�1��y� ,1�T /�1+w�1��y�2 [see Eq. (22)], the second row
f Eq. (B1) can be solved for w�ȳt�y��, yielding

w�ȳt�y�� = nw�y��1 + w�1��y�2. �B2�

hen inserting Eq. (B2) into the first row of Eq. (B1) leads
o

ȳt�y� = y + w�y�w�1��y�. �B3�

o obtain a relationship between the derivatives w
�k��ȳt�

�kw /�ȳt
k and the derivatives w�k��y�, we insert Eq. (B3)

nto the argument of w in Eq. (B2), yielding

w�y + w�y�w�1��y�� = nw�y��1 + w�1��y�2. �B4�

s is generally the key ingredient in this paper, we now
ake the subsequent derivatives of Eq. (B4) and evaluate
t the position y=0. Making use of w�0�=0, w�1��0�=0,
his leads to

w�0� = 0,

w
�1��0� = 0,

w
�2��0� = nw�2��0�,

3w�2��0�2w
�1��0� + w

�3��0� = nw�3��0�,

10w�2��0�w�3��0�w
�1��0� + 12w�2��0�2w

�2��0� + w
�4��0�

= n�6w�2��0�3 + w�4��0��,

. . . , �B5�

hich represents a system for determination of w�0� ,

w
�1��0� ,w

�2��0� ,w
�3��0� , . . .. Inserting the result for w

�1��0� into
he successive equations in Eq. (B5), then inserting the

ig. 5. Relationship between the sagitta w�y� of a wavefront
nd its OPD given by the function w�ȳ�.
esult for w
�2��0�, and so on, yields the result [omitting the

rgument (0)]

w = 0,

w
�1� = 0,

w
�2� = nw�2�,

w
�3� = nw�3�,

w
�4� = n�w�4� − 6w�2�3

�,

w
�5� = n�w�5� − 40w�2�2

w�3��,

. . . . �B6�

quation (B6) shows that up to order k=3 the OPD mea-
ure of aberrations is, apart from the prefactor n, equal to
he sagitta measure, but for orders k	4, there occur more
nd more transformation terms.
In the 3D case the procedure is analogous, and the re-

ult reads

w = 0,

�w
�1,0�

w
�0,2�	 = �0

0	 ,

�w
�2,0�

w
�1,1�

w
�0,2�
� = n�

w�2,0�

w�1,1�

w�0,2�� ,

�
w

�3,0�

w
�2,1�

w
�1,2�

w
�0,3�
� = n�

w�3,0�

w�2,1�

w�1,2�

w�0,3�
� ,

�
w

�4,0�

w
�3,1�

w
�2,2�

w
�1,3�

w
�0,4�
� = n��

w�4,0�

w�3,1�

w�2,2�

w�1,3�

w�0,4�
�

−�
6w�2,0��w�1,1�2

+ w�2,0�2
�

3w�1,1��w�1,1�2
+ w�2,0��w�0,2� + 2w�2,0���

�w�0,2� + w�2,0���5w�1,1�2
+ w�0,2�w�2,0��

3w�1,1��w�1,1�2
+ w�0,2��2w�0,2� + w�2,0���

6w�0,2��w�1,1�2
+ w�0,2�2

�
�� ,

. . . . �B7�
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PPENDIX C

he vector r3 is given by
r3 =�
0

−
sin ��n cos �S�xx�n2S�xx − n�2S� + n� cos ���n�S2 − n2�S�2

xx + SS�yy − S�xxS�yy���

nn�2�n� cos �� − n cos ��

0

−
3 cos � cos �� sin ��n� cos �S − n cos ��S�yy��n�2S − n2S�yy�

2

� . �C1�
nn� �n� cos �� − n cos ��

1

2

2

2

2

2

2

2

2

2

2
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3

3
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