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From the literature the calculation of power and astigmatism of a local wavefront after refraction at a given
surface is known from the vergence and Coddington equations. For higher-order aberrations (HOAs) equiva-
lent analytical equations do not exist. Since HOAs play an increasingly important role in many fields of optics,
e.g., ophthalmic optics, it is the purpose of this study to extend the “generalized Coddington equation” to the
case of HOA (e.g., coma and spherical aberration). This is done by local power series expansions. In summary,
with the results presented here, it is now possible to calculate analytically the local HOA of an outgoing wave-
front directly from the aberrations of the incoming wavefront and the refractive surface. © 2010 Optical So-

ciety of America
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1. INTRODUCTION

Aberrations play a decisive role in optics. In this work, we
deal with them in the framework of geometric optics in
which the wavelength is neglected (A — 0) with respect to
diffraction effects [1,2]. In this case, also the notions of
both rays and wavefronts still do exist. A wavefront, in
general defined as a surface of constant phase, is in this
limit a surface of constant optical path length. A ray is a
virtual infinitesimally small bundle of light, the direction
of which is defined by the normal of the wavefront.

A. Rays, Wavefronts, and Aberrations

An imagery will be said to be free of aberrations if every
point of an object is imaged perfectly. For a given object
point this will be the case if it is imaged to its paraxially
conjugate image point. In terms of rays, this image point
serves as a reference point that any ray starting from the
object point through the aperture has to hit. In terms of
waves, the image point serves as the center of a reference
sphere, usually through the center of the exit pupil. The
point will be imaged without aberrations if the wavefront
originating from the object point coincides with this refer-
ence sphere.

Aberrations are deviations from this situation. They
can be described in either the ray picture or the wave pic-
ture, leading to ray or wave aberrations, respectively [3].
The two pictures, i.e., ray and wave aberrations, are
equivalent and can be translated into each other.

Throughout this paper, we will refer to wave aberra-
tions. A wavefront-based description of these aberrations
can either refer to the geometrical shape of the real wave-
fronts in space (as we will do) or be expressed by a wave
aberration function which measures the optical path dif-
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ference (OPD) between the real wavefronts and the refer-
ence sphere along the real occurring rays.

B. Classification of Aberrations

The aberration function can be written as a power series
expansion in both the image coordinates and the pupil co-
ordinates or some combinations of these. Depending on
symmetry and conventions, this series expansion may
have different appearances, but in all cases the respective
coefficients are used for classifying the aberrations
present. In the case of wave aberrations of rotationally
symmetric systems, for example, it is customary to con-
sider Seidel (primary) aberrations, Schwarzschild (sec-
ondary) aberrations, etc. Synonymously, those are some-
times also called fourth-order, sixth-order, etc., aberra-
tions. In terms of ray aberrations, different expressions
for the same aberrations would occur, which in that pic-
ture are called third-order, fifth-order, etc., aberrations.
Therefore, the “order” of an aberration is meaningful only
in connection with the underlying aberration scheme.

While the treatment of rotationally symmetric systems
is well established in the literature [2,3], there exist
rather few publications about non-symmetric systems.
Thompson has treated the third-order aberrations [4] and
the fifth-order aberrations [5] (in the picture of rays) of
misaligned or generally non-symmetric optical systems
made of otherwise rotationally symmetric optical sur-
faces. Quite recently, Thompson et al. established a real-
ray-based method for calculating these aberrations [6].

It is a very interesting subtopic to consider the aberra-
tion function for a single surface for a fixed image point
and consequently as a function of the pupil coordinates
only [2], but without any restrictions on the symmetries of
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surfaces or wavefronts. In this case, which is the focus of
the present work, the aberration function is often called a
wavefront aberration. This aberration is often referred to
a plane orthogonal to the chief ray instead of the refer-
ence sphere, which is, e.g., usual in aberrometry [7]. We
will also do so in this work. The above-mentioned series
expansion then reduces to an expansion in terms of the
pupil coordinates x and y only. The terms in this series
give rise to the definition of the order of an aberration as
the highest number of added powers of x and y [7,8], as
will be introduced in detail in Section 2. It is well accepted
that there is no one-to-one correspondence between the
order we use and the more general one described above
[2]. This situation arises because different orders concern-
ing the image coordinates are summarized within one or-
der of pupil coordinates. Throughout the paper, we will
summarize first-order aberrations (tilt) and second-order
aberrations (comprising defocus and astigmatism) as
lower-order aberrations (LOAs) and all aberrations of
third order (coma, trefoil), fourth order (e.g., spherical ab-
erration), and higher will be summarized as higher-order
aberrations (HOAS), as is also done in [7,9].

C. Scope of the Work

The awareness of the role of HOAs has increased in op-
tometry and ophthalmology [7-13]. HOAs are known to
become important for large pupil sizes only and are there-
fore associated with a wavefront description over the en-
tire pupil. Despite this, it is the aim of this work to estab-
lish a description of HOA that is based on local deriva-
tives but that is nevertheless suitable for describing all ef-
fects of a large pupil. In Section 2, we show that this de-
scription is indeed fully equivalent to the usual ap-
proaches that are tailored to describing the entire pupil
(e.g., by means of Zernike polynomials). Our local descrip-
tion has the advantage of permitting the derivation of
analytical formulas for computing HOA, which represents
significant progress in the general understanding and in
reduced numerical effort.

Hitherto for determining HOA, the wavefront in the
pupil was calculated by ray tracing [14], a precise method
when a large number of rays are used but at the same
time a very time-consuming iterative numerical method.
In the field of spectacle optics, the use of local wavefronts
to calculate power and astigmatism is well established
[3,15-20]. Wavefront tracing is a very fast semi-analytical
method [15,16]. Especially in spectacle lens optics, local
features of a wavefront are very important, because the
aperture stop is not stationary as in technical optics. Also,
magnification and anamorphotic distortion previously
have been calculated locally [21-23].

It is known from the literature how to calculate power
and astigmatism of a local wavefront after refraction at a
given surface. In the case of orthogonal incidence this re-
lation is described by the vergence equation [1,2] and in
the case of oblique incidence by the Coddington equation
[1,17,18,24].

The purpose of this study is to extend the generalized
Coddington equation [3,17-20,24,25] to the case of
higher-order aberrations (e.g., coma and spherical aberra-
tion), in order to decrease the computational effort with
the intrinsic accuracy of an analytical method.
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2. METHODS AND THEORETICAL
BACKGROUND

It turns out to be very practical to establish the treatment
of refraction including HOA on the basis of wavefront sag-
ittas in space and not directly with OPD-based aberra-
tions. In the end, we provide a connection between those
two pictures (see Appendix B). Refraction equations are a
set of relations between the incoming wavefront, the out-
going wavefront, and the refractive surface. Regardless of
which two of those three surfaces are given, the relations
can always be rearranged in order to determine the third
surface as a function of the other two.

A. Definitions and Notation

1. Coordinate Systems

In order to describe the incoming wavefront, the refrac-
tive surface, and the outgoing wavefront, three different
local Cartesian coordinate systems (x,y,z), (¥,y,z), and
(x",y',2"), respectively, are used. (see Fig. 1). They are de-
termined by the chief ray corresponding to the fixed im-
age point. The origins of these coordinate systems coin-
cide in the chief ray’s intersection point with the
refractive surface. The systems possess as common axis
x=x"=Xx the normal of the refracting plane, which is the
plane containing the normals of the incoming wavefront,
the refractive surface, and the outgoing wavefront. Con-
sequently, the y—z plane, the y'—z’ plane, and the y—Zz
plane coincide with each other and with the refracting
plane. The z axis points along the incoming chief ray, the
z' axis points along the outgoing chief ray, and the z axis
points along the normal of the refractive surface. The ori-
entations of the y axis, the y’ axis, and the y axis are such
that each system is right-handed.

In this work we use the following notation: scalars are
written in plain letters, such as x, y, w or S for coordi-
nates, wavefront aberrations, or vergences, respectively.
Vectors are written as bold lowercase letters, such as r for
position or n for normal vectors, and matrices are written
as bold uppercase letters, such as R for spatial rotations.
Any object (i.e., quantity, space point, or vector) that is
specified in the (x,y,z) frame is represented by an
unprimed symbol (e.g., x,r,n,...), whereas the represen-
tation of the same object in the primed frame or in the
frame (x,y,z) is given by a prime or a bar on its symbol,
respectively. The above definitions imply that the repre-
sentations of any vector-like quantity v are connected to
each other by the relations

v=R(e)v, v' =R(€')v, (1)

where R stands for spatial rotations about the common x
axis, defined by the three-dimensional rotation matrix

1 0 0
R(e)=[0 cose —sine]. (2)

0 sine cose

In order to avoid confusion between primes for coordinate
systems and derivatives, we shall denote the derivatives
of a function flx) as fVx),/Px),/P(x),... instead of
f(x),f"(x),/"(x),..., respectively. Analogously, we denote
the derivatives of a function f(x,y) as f10(x,y), %V (x,y),
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(b)

Fig. 1. Local coordinate systems of the refractive surface of the
incoming wavefront and the outgoing wavefront. (a) True situa-
tion that the origins of all coordinate systems coincide. (b) Ficti-
tious situation of separated origins for a better understanding of
the nomenclature. The surface normal vectors along the neigh-
boring ray are also drawn, referred to as ny,, ng, ', in their
preferred local coordinate systems (x,y,z) coincide. (¢) Meaning
of the vector sum in Eq. (25).

f29(x,y),... instead of  dloxflx,y), dlayflx,y),
Plax*f(x,y),..., respectively. Consequently, for functions
f' ") or f(x), the symbolism fV(x') or fV(X) refers to
alax'f (x') and 9/ 5&f(X), respectively.

In addition to the coordinate notation, we introduce a
lower index notation for labeling whether a quantity be-
longs to the incoming wavefront, the refractive surface, or
the outgoing wavefront. Regardless of which frame is
used for mathematical description, the index “In” belongs
to the incoming wavefront (e.g., the normal vector is rep-
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resented as np,, n'j,, Ny, in the three frames, respec-
tively), the index “Out” stands for the outgoing wavefront
(Mot N’ gy Moyt respectively), and the index “S” stands
for the refractive surface (ng, n'g, ng, respectively). Al-
though all representations are used, the preferred frame
of each quantity is the one in which the corresponding
normal vector in the origin has the components (0,0,1)7,
where the index T indicates the transpose. Therefore, the
preferred frame is the unprimed one for “In” quantities,
the primed one for “Out” quantities, and the frame (x,y,2)
for “S” quantities; i.e., the preferred representations for
the normal vectors are np,, n'g,,, and ng, and similarly
for all other kinds of vectors.

2. Description of Wavefronts

Since the wavefronts and the refractive surface are like-
wise described by their sagittas, here and in the following
the notion “surface” refers to any of the refractive surface,
the incoming wavefront, or the outgoing wavefront, un-
less those are distinguished explicitly.

Any surface sagitta, provided that it is continuous and
infinitely often differentiable within the pupil, can be ex-
panded with respect to any complete system of functions
spanning the vector space of such functions, which is
mathematically denoted by C*(P), where PCR? is the
subset of the pupil plane inside the pupil.

For circular pupils it is common to use the orthogonal
complete system of Zernike circle polynomials [2,26].
Even for these polynomials there exist different conven-
tions, indexing schemes, and normalizations [1,8]. We use
the OSA standard of Zernike polynomials Z}'(p,9) of Ref.
[8], which describes a surface w(x,y) within a pupil with
radius r( as the expansion

® k
wEy) = >

k=0 m=-k

c;enz;en(p’ 0); (m - k) even, (3)

where p=r/rg, x=rsin 9, y=rcos 9, and the c}' are the
Zernike coefficients. Alternatively, any other complete
system can be used for expansion, e.g., the infinite set of

monomials of the variables, i.e., 1, x, y, x2, xy, y2, etc.,
yielding
w bk N
wlx,y) =, E — amyhm, (4)
700 moo Mk —m)!

which represents the power expansion in a Taylor series
[1,2], and the coefficients are simply given by derivatives
of the surface:

&

A fe-m = k_mw(x,y)

— 1p(m.k=m)
P wmkm(0,0).  (5)

x=0,y=0

As long as the series expansion is infinite, a transforma-
tion between any of the representations in Eqgs. (3) and (4)
is legitimate, well defined, and unique.

In practice, however, an expansion is always truncated
at some finite order, justified by the observation that the
major part of the light information content is already suf-
ficiently accurately described by the truncated series. In-
stead of a series we then deal simply with a polynomial.
This polynomial can then be considered as a projection of
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the aberration function onto the vector subspace of C*(P)
that is spanned by the finite (incomplete) basis system of
functions underlying the truncated series. In general, if
two different complete systems are truncated arbitrarily
to finite basis systems, then the remaining vector sub-
spaces spanned by those two basis systems will not nec-
essarily be identical. If, however, the subspaces happen to
be identical, then the projection of any function onto the
subspace will be unique, regardless of which basis system
has originally been used for representation. For example,
if a function is described by a Zernike expansion up to ra-
dial order £=6 to some accuracy, yielding a sixth-order
polynomial in x and y, then the same polynomial will be
obtained by a Taylor series expansion order up to order
k=6, and it will represent the function to the same accu-
racy, because the Zernike basis up to sixth radial order
and the monomial basis up to sixth order span the same
subspace of C*(P).

By the order of an aberration term we mean the num-
ber &, in either Eq. (3) or Eq. (4). But we draw attention to
the fact that an aberration of a certain order is unique
only in connection with a specified basis set. For example,
in Eq. (3) the Zernike aberration in the term Zg: V’g(6p4
—6p%+1)= \53(6(x2 +y2)2/rg—6(x2 +y2)/r(2)+ 1) due to p=r/ry
with order k=4, usually called spherical aberration, also
contains quadratic and constant terms, whereas any k&
=4 term in Eq. (4) is a monomial with pure value k=4 for
added x and y powers. An explicit transformation between
the Zernike basis and the monomial basis is provided in
Appendix A.

In contrast to the Zernike polynomials, which are tai-
lored to a surface description over a finite pupil size, it
seems at first glance that a description of local derivatives
might be valid only in an infinitesimal neighborhood of
the pupil center. However, the above vector space argu-
ments show that a basis of local derivatives does not suf-
fer for any loss of information over the entire pupil size
either, provided that the order of derivatives chosen is
sufficiently high.

For later application, we introduce

QIn,m,k-m

wIn(xay) E E myk_m,

720 m=o m!(k —m)!

Outmk -m

’ XM rtk—-m
wOut 7y) ];)mzoml(k m)' 5 (6)
and
o kb _
os@9=3 3 Sk emghem (1)
=0 meo m!(k —m)!

to describe the incoming wavefront, the outgoing wave-
front, and the refractive surface, respectively.

The central mathematical idea for the method given in
this work is that the coefficients of the unknown
surface—it having been assumed to be describable by a fi-
nite polynomial function so that once the coefficients are
known the surface is known—may be found by taking de-
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rivatives and evaluating them at (x,y)=(0,0), where it is
known that the value of a derivative of order & equals the
value of coefficient %.

3. Local Properties of Wavefronts and Surface

Considering the infinitesimal area around the optical axis
or rather around the chief ray leads to Gaussian optics (or
paraxial optics). For the aberrations of second order the
refraction of a spherical wavefront with orthogonal inci-

dence onto a spherical surface with the surface power S
(Fig. 2) is described by the vergence equation [1,2]:

S'=8+8, (8)

where

S=n/s is the vergence at the object side;

S’=n/s’ is the vergence at the image side;

S=(n'-n)/r is the surface power;

s is the vertex distance at the object side (axial distance
from the refractive surface to the object point), which is
equivalent to the radius of curvature of the incoming
wavefront;

s’ is the vertex distance at the image side (axial dis-
tance from the refractive surface to the image point),
which is equivalent to the radius of curvature of the out-
going wavefront;

r is the radius of curvature of the refractive surface
(distance from center point of the refractive surface to the
refractive surface);

n is the refractive index of the medium at the object
side;

n’ is the refractive index of the medium at the image
side;

In the literature, the notion of vergences is usually ex-
tended to three-dimensional (3D) space to describe the
sphero-cylindrical power of a surface by the following
steps. First, the curvatures 1/s, 1/s’, and 1/r in Eq. (8)
are identified with the second derivatives of the sagittas
of the incoming wavefront, the outgoing wavefront, and
the surface, respectively. Further, in 3D space the second
derivatives wlio) Pwry/ o2, w(1 D= =dwr,/ dxdy, and w(o 2
= 2w,/ dy?, are summar1zed in terms of 2X2 vergence
matrices [24,27] in the shape

direction of light

e
object \\\ L T e
point point
A .
K3 b N\ S'

Fig. 2. Orthogonal incidence of a spherical wavefront with ver-
gence S=n/s onto a spherical surface with surface power S.
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i (w%?;‘” wﬁ;”)
Wi w)’
and similarly for w’q(x',y’) and wg(x,y), for which the
prefractors are n’ and (n’ —n) instead of n, and the deriva-
tives are taken with respect to x',y’ and ¥,y instead of
x,y, respectively.

In addition to the description in terms of vergence ma-
trices, an equivalent description is common in the 3D vec-
tor space of power vectors [28-30], which we will apply
throughout the paper. For the incoming and the outgoing
wavefront, as well as the refractive surface, we introduce
the power vectors

Se|  [win” S W
s=(Su |=n|wi" |, &' =[Sy |=n|wey" |,
Sl \wi? Sy W
o g
s=| 8, | =" -n)| @5 ©)
gyy wém)

The symbolism S,,, S,, etc., is understood merely as com-
ponent labeling of the vector s. Nevertheless, it will re-
mind the reader of the fact that the value of S,, is propor-
tional to the second derivative wﬁ’o) of the wavefront
sagitta. It is well known that the components of Eq. (9)

are in ophthalmic terms given by

Cyl Cyl
S..=|Sph+— ) - — cos 2a,

2 2
Cyl
xy =~ 7 sin 2a,
Cyl Cyl
Syy= Sph+? +?COS 2a, (10)

where

Sph is the spherical power of the incoming wavefront,

Cyl is the cylindrical power of the incoming wavefront,

«a is the axis of the cylindrical Power of the incoming
wavefront,

and equivalently for s’ and s.

One well-established generalization of Eq. (8) relating
the components of Eq. (9) to one another is the “Codding-
ton equation.” It describes the case of a spherical wave-
front hitting a spherical or astigmatic surface under ob-
lique incidence such that one principal curvature
direction is lying in the refracting plane [1,17,18,24].

The most general case is characterized by an astig-
matic wavefront hitting an astigmatic surface under ob-
lique incidence but such that no special orientation
among the refracting plane, the directions of the principal
power of the incoming wavefront, and the directions of the
principal power of the refractive surface has to be as-
sumed at all. This is the most complex case, described by
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the generalized Coddington equation (3), (17)—(20), (24),
and (25), in compact form written in terms of power vec-
tors,

C's'=Cs + 18, (11)

where we have introduced the matrices

1 0 0 1 0 0
C'=|0 cosé€ 0 , C=|0 cose O
0 0 cos’é 0 0 cos’e
(12)
and the factor
n' cos € —ncose
p=————. (13)

n'-n

Analogously to the definition of the power vectors for ab-
errations of order £=2, we define for aberrations of higher
order k=2 similar vectors ey, e, €, of dimension 2+1 by

(%,0)
Ex...xx Wiy
(k-1,1)
Ex...xy Wiy
ek = . =n : .
0,k
Ey...yy w%n )
’ 1(k,0)
E X...xXx Wout
’ 1(k-1,1)
, E x...xy , Wout
e E= : =n . ,
4 1(0,k)
Ey s Wout
I - (%,0)
Exxx wg
E w(sfe—l,l)
&= Y |=m-n| T. |, (14)
= (0,k)
w
Ey---yy 5

such that in particular e;=s, e'y=s’, and e;=5. We use
the vectors e;, e';, €, merely as a device for a compact no-
tation to be used later. Although they form a vector space
(which follows directly from the linearity of the deriva-
tive), we do not make explicit use of this fact.

Finally, Eq. (12) can also be extended to all £=2 by the
definition

=
(=)
(=)

0 cosé€ :
C,k —_— . : P}
0 .. cost €
1 0 0
0 cose
C.=| . (15)
0 cosk e



Esser et al.

B. Mathematical Approach in the Two-Dimensional
Case

1. Coordinates in the Two-Dimensional Case

To give insight into the method with smallest possible ef-
fort, we first treat in detail a fictitious two-dimensional
(2D) problem in which the third space dimension does not
exist. Later we will transfer the corresponding approach
to the 3D case, the case of interest, but for the moment we
will drop the x degree of freedom and consider the three
coordinate frames (y,z), (y',z’), and (y,Z) spanning one
common plane. Instead of a refractive surface in space
there is now only a curve (y,w(¥))” in that plane, and
similarly the wavefronts are described by curves in that
plane (which, for simplicity, will still be called ‘surface’).
All rays and normal vectors then lie in that plane, too. We
summarize this situation with the term “2D.” If one likes
to, one can imagine the problem to be posed as a 3D one
with the symmetry of translational invariance in the x di-
rection, but this is by no means necessary since it is in-
herent in the mathematics of the two-component system
that any ray deflection in a direction other than that in
the given plane cannot occur.

The 2D version of the rotation matrix takes the form

cos € —sine
(16)

R(e) = (

sin € cos €

2. Description of Wavefronts in the 2D Case

The surfaces themselves are each described by power se-
ries expansions specified in the corresponding preferred
frame. Any point on the incoming wavefront is given by
the vector

Wialy) = (wly@), an

where in the 2D case wy,(y) is the curve defined by

Q1 k

wi(y) = E , (18)
k=0

which corresponds to Eq. (6) in the 3D case. Equivalently,
we represent the outgoing wavefront and the refractive
surface in their preferred frames by the vectors

y' y
Woult) = (w’o t()")>’ s = (ws@))’ (19)
where

!
@ Out,k

, o sk
vk @@ = > —5*. (20)
2

W' ou) =

=

As in Eq. (5), again the normalization factor %! is chosen
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such that the coefficients ay, , are given by the derivatives
of the wavefront at y=0

&
Amp = @wlnm =w{?(0). (21)

y=0

In the 2D case the vector e, in Eq. (14) reduces to a scalar,

Ekznwg?:nalmk; e.g., for second- and third-order aberra-

tions, we have E2=nwﬁ)=na2, E3=nw§ )=nag, etc. A simi-
lar reasoning applies for the vectors e’,, €, and yields the
local aberrations E’'j, E,, connected to the coefficients
@’ out p» @s,; by multiplication by the refractive index n’ for
the outgoing wavefront and by the factor n’ —n for the re-
fractive surface, respectively.

It is important to note that each surface has zero slope
at its coordinate origin because by construction the z axis
points along the normal of its corresponding surface. Fur-
thermore, since all surfaces are evaluated at the intersec-
tion point, each of them has zero offset, too. In terms of
series coefficients, this means that all the prism and off-
set coefficients vanish, i.e., ap,;,=0, @'y, =0, @g,=0 for
k<2.

3. Normal Vectors and Their Derivatives
The normal vector n,(y) of any surface w(y) (i.e., curve in

the 2D case) is given by n,,(y)=(-wM(y), )T/ {1+wV(y)?,
where w®=dw/dy. In principle, we are interested in de-
rivatives of n,(y) with respect to y. Observing, however,
that n,(y) depends on y only via the slope wM(y), it is
very practical to concentrate on this dependence n,,(w®)
first and to deal with the inner dependence w™(y) later.
To do this, we set v=w? and to introduce the function

o <_v> 22
n(v) := V”1+V2 1) (22)

Since at the intersection point all slopes vanish, only the
behavior of that function n(v) for vanishing argument v
=0 is of interest. It is now straightforward to provide the
first few derivatives n®(0)= ¢/wn()|,o, n?(0)

=/ w*n(v)|,-o, etc.:
0
ni0) = (— 1)’

0 -1
n(0) = <1> nY(0) ==< 0 )

n®(0) := (3) n'Y(0) := <g>, etc. (23)

In application to the functions of interest, np,(y)
=n(wi) (), n'ouy")= n(wg;z@ ), fig(¥)=n(@g 7)), this
means that np,(0)=(0,1)7, n’,(0)=(0,1)7, ng(0)=(0,1)7,
where each equation is valid in its local coordinate sys-
tem. Further, the first derivatives are given by
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J -1
—np()| =n(0) =nV0wi(0) = ( 0 )w%i)«)),
9 o

J
w0 = n{1(0) =nD(0)wy2(0)
y'=0
-1
(7 Juizion,

J 1 2 -1 2
—ngy)| =00 =n"0a0)=| |20,
& 0

(24)

and similarly for the higher derivatives.

4. Ansatz for Determining the Refraction Equations

Once the local aberrations of two of the surfaces are
given, their corresponding a, coefficients are directly de-
termined, too, and equivalently the surface derivatives. It
is our aim to calculate the third surface in the sense that
its derivatives and thus its a; coefficients [see Egs.
(18)—(21)] are determined for all orders 2<k =<k, for the
order k( of interest, and to assign values to its correspond-
ing local aberrations.

Our starting point is the following situation. While the
chief ray and the coordinate systems are fixed, a neigh-
boring ray scans the incoming wavefront {wr,} and hits it
at an intercept yr, #0, then hits the refractive surface
{wg}, and finally propagates to the outgoing wavefront
{w’ out}, where the brackets {.} denote the entity of vectors
described by Eqgs. (17) and (19) [see Figs. 1(a) and 1(b)].
Except for the limiting case y1,—0, the three points in
space, Wi, W' g, Wg, in general do not coincide. As
shown in Fig. 1, and consistently with our notation, we
denote as y, the projection of the neighboring ray’s inter-
section with {wy,} onto the y axis. Analogously, the projec-
tion of the intersection with {w’' ,} onto the y’ axis is de-
noted as y'(,, and the projection of the intersection with
{Wg} onto the y axis is called yg.

The mutual position of the points and surfaces is shown
in Fig. 1(a). Although both wavefronts in general pen-
etrate the refractive surface, the definition of the intersec-
tion coordinates as projections will be meaningful if we
formally allow all parts of the rays and wavefronts to be
extended into both half-spaces [indicated as dashed
curves in Fig. 1(a)].

It might appear helpful for the reader to imagine for a
short instant that the incoming wavefront is evaluated at
a distance d >0 before the refraction and that the outgo-
ing wavefront is evaluated at a distance d’ >0 after the
refraction, measured along the chief ray. In this fictitious
situation of separated intersections even along the chief
ray (and therefore also separated origins of the coordinate
frames) it is much easier to identify the various coordi-
nates, as shown in Fig. 1(b). The true situation d=d’'=0,
which is relevant throughout the paper, is shown in Fig.
1(a). While in Figs. 1(a) and 1(b) all quantities are drawn
in their preferred frames, Fig. 1(c) shows the quantities
concerning the incoming wavefront and the refractive sur-
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face in the common frame (y,z). The vector wi,=wi,(¥1n)
[see Eq. (17)] points to the neighboring ray’s intersection
point with the incoming wavefront, and the wavefront’s
OPD referred to the refractive surface along the ray is de-
noted by 7, and correspondingly the vector from the wave-
front to the surface is —7/nny,. Hence, the vector to the
point on the surface itself, wg, must be equal to the vector
sum wg=wp,—7/nnp,. Transforming wg to its preferred
frame by wg=R(e)wg [see Eqs. (1) and (16)] yields the
first of the fundamental equations in Eq. (25).

Analogously we have w'(,,—7/n'n’g,,=w'g for the
outgoing wavefront in the frame (y’,z’), yielding the sec-
ond equation in Eq. (25). A condition for the outgoing
wavefront to be the surface of constant OPD is that r=7'
for all neighboring rays. Inserting this condition, we es-
tablish as starting point of our computations the funda-
mental equations

YIn T ¥s
- n=R — = )
<wlnm,,>> n™ “)(wsw)

¥ out T, NEEE

(w'outcy'oua) ™ ou e )(ws@s)>' )
From Eq. (25), it is now possible to derive the desired re-
lations order by order. For this purpose, it turns out to be
practical to consider formally both wavefronts as given
and to ask for the refractive surface wg(yg) as the un-
known function. Although only the surface is of interest,
in Eq. (25) additionally the four quantities 7, y1,, ¥ gup ¥s
are also unknown. However, they are not independent of
each other: if any one of them is given, the other three can
no longer be chosen independently. We use yg as the inde-
pendent variable and consider the three other unknowns
T, Y ¥ out @S functions of it.

We arrive at the conclusion that Eq. (25) represents a
nonlinear system of four algebraic equations for the four
unknown functions @Ws(¥s), y1.s)s ¥ out¥s), 7¥s). Even if
we are interested in a solution only for the function
wg(yg), we cannot obtain it without simultaneously solv-
ing the equations for all four unknowns order by order. In-
troducing the vector of unknown functions as

Y In(ys)
Yy ,Out@S)
yg) = 26
P(y’s) e (26)
ws(ys)
and observing that the initial condition p(0)=0 has to be
fulfilled, it is now straightforward to compute all the de-
rivatives of Eq. (25) up to some order, which yields rela-
tions between the curvatures, third derivatives, etc., of
the wavefronts and the refractive surface. Rewriting
these relations in terms of series coefficients ary %, @’ gy s
agy and solving them for the desired coefficients agj
yields the desired result.

Before solving Eq. (25), we distinguish whether the in-
dependent variable yg enters into Eq. (25) explicitly, as in
the first component of the vector (yg,ws(¥s))T, or implic-
itly via one of the components of Eq. (26). To this end, we
define the function (R*X R)—R%:(p,yg)—f by
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LI - _—
YIn— ; y(wIn (yln)) - (yS COS € —Wg SIN 5)
PNG) i en i
wIn(.’)’In) - ;nz(wln (yln)) - (yS Sin € + Wg COS 6)
, (27)

f(p,ys) =

T
’ _ (1)
Y out— n y(wOut

T
w/Out(y’Out) - ;n

where (p1,p2,P3,P4)=m.Y out» 7> Ws) are the components
of p. Now setting p=p(¥g), Eq. (27) allows us to rewrite
the fundamental system of Eq. (25) in a more compact
way as

f(p(¥s),ys) =0,

as can be verified explicitly by componentwise comparison
with Eq. (25).

The key ingredient of our method is that the relations
between the derivatives of wavefronts and surfaces can be
obtained by the first, second, etc., total derivative of Eq.
(28) with respect to yg, evaluated in the origin. The ad-
vantage of the form of Eq. (28) using Eq. (27) is that the
various terms can be tracked in a fairly compact manner.

(28)

A(w

"out) — ¥s cos € — g sin €')

(1)

0ut® out)) = (Vs sin € + wg cos €')

The total derivative of f(p(yg),¥s) in Eq. (28) is ob-
tained by applying the principles from the theory of im-
plicit functions. Hence, the total derivative is given by the
partial derivatives of f with respect to the components p;
of p, times the derivatives of p;(¥g), plus the partial de-
rivative of f with respect to the explicit dependence on yg.
This transforms the system of algebraic equations in Eq.
(25) to the system of differential equations

4
of; " of;
— =0,
> — (y)+(9y

(29)
J=1 ‘7p S

i=1,...,4,
where the matrix with elements A;;:=df;/dp; is the Jaco-
bian matrix A of f with respect to its vector argument p,

evaluated for p=p(yg). The Jacobian A reads

fr fr af I 1 D @ 0 1
— - - —ny,w —ny o
Nm N ow 0T dig p oI n
1

W Mo U Ko W _ L @ 0 - _

’ — Wiy nInz In nIn,z X

A Nm W ow IT JdWg n n (30)

dfs  dfs  dfs dfs 0 L T @ 1 ,
- , - - _n’OutywOut —n Out,y o
Nm W ow IT JWg n
N s  ofs fs 1 1 9 ,

, - — 0 wé)(u) - _n,O(ug zw,O(uz —n Outz X,
len ‘;fy Out JT (9LUS n

In Eq. (30), the occurring expressions are understood as

H_ (1 2)_ (2 1
w§n)*w( )(y n), w§n)*w( )(.YIn)a nIn,y*nIn,y(wIn (.)’In))’ n(ln),y
%Ill)y(wIn (¥1n)), etc., and analogously for the “Out” quan-

tities; additionally, y1,,5 oy, 7-Ws are themselves func-
tions of yg.

The derivative vector df;/dyg in Eq. (29) is summarized
as

Q9 x

(31)

of
bi=-—=
s

S =

where for convenience we have introduced o=sine, x
=cos ¢, and similarly for €.

Both A and b are deduced from f(p(ys),ys) and must in
general themselves have the same kind of dependence,
ie., A(p(¥g),ys) and b(p(¥s),ys). However, due to the spe-
cial property of f of being linear in yg, b is constant. Ad-
ditionally, A has no explicit dependence on yg besides the
implicit dependence via p(ys). Hence we write b without
argument and A=A(p(¥s)), and Eq. (29) can be written in
the form

A(p(ys))pV(Fs) =b. (32)

5. Solving Techniques for the Fundamental

Equation

Equation (32) is the derivative of the fundamental equa-
tion in Eq. (28), and therefore it is itself a fundamental
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equation. But, in addition, it allows a stepwise solution
for the derivatives p*)(¥5=0) for increasing order k. For-
mally, Eq. (32) can be solved for pV(7g) by

pYFs) = A(p(g)'b. (33)

Equation (33) holds as a function of yg, but of course for
arbitrary yg both sides of Eq. (33) are unknown. However,
evaluating Eq. (33) for yg=0 exploits that then the right-
hand side (rhs) is known because p(0)=0 is known! In the
same manner, Eq. (33) serves as starting point for a re-
cursion scheme by repeated total derivative and evalua-
tion for yg=0. Remembering that b is constant, we obtain

pY(0)=A",

p?(0) = (A™H) b,

p*(0) = (AH* Vb,

A1=A(p(0) ' =A0), (34)

where

d
AHV= dTA(P@s))_l
Ys 75=0
k-1

d
(ATHED = dyk‘lA(p@S))_l
S

yg=0

are total derivatives of the function A(p(¥s))~!. The rea-
son that Eq. (34) really does provide solutions for p®
x(0),p?(0),...p*)(0) is that in any row of Eq. (34) the
entries on the rhs are all known, assuming that the equa-
tions above are already solved. Although on the rhs there
occur implicit derivatives p™(0),p®(0),..., as well, they
are always of an order less than on the left-hand side
(Ihs). For example, the second row in Eq. (34) reads in ex-
plicit form,

tl
p?0)= > (ﬂ—A(p)‘l)p?)

i=1 i

ys=0

where y5=0 implies p=0 and where on the rhs the high-
est occurring derivative of p is p’(0), which is already
known as a result of the first row in Eq. (34). Generally,
the highest derivative of p occurring in ((d*1/
dy’é‘l)A(p(jS))‘l)bszo is p%~1(0), which is already known
at the stage when p®*)(0) is to be computed by Eq. (34).

Although looking attractive and formally simple, apply-
ing Eq. (34) in practice still requires some algebra. One
part of the effort arises because it is the inverse of A
which has to be differentiated with respect to p. The other
part of the effort is due to the large number of terms,
since the higher derivatives will involve more and more
cross derivatives like 62/ dp;dpj. It is straightforward to ex-
ecute both tasks by a computer algebra package, but they
are nevertheless lengthy and not the best way to gain
more insight.
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While cross-derivatives are inevitable, there exists an
alternative recursion scheme for which it is sufficient to
differentiate the matrix A itself instead of its inverse A1,
which means an enormous reduction of complexity! For
this purpose, we start the recursion scheme from Eq. (32)
instead of Eq. (33). The first (k—1) total derivatives of Eq.
(32) are

Ap?P(0)=b, (a)
AYpM(0)+Ap®(0)=0, (b)
A@pD(0) + 2AVp@(0) + Ap®(0) =0, (c)
kop-1
- k=) ()
> i1 AFDpi0)y=0, k=2 (), (35)
j=1

where

A=A(p(0)) =A(0),

d
AV= —A(pQFs)
cﬁys _

yg=0

dk

A = Wg_jA(P@s)) )

yg=0

are are total derivatives of the function A(p(yg)). For the
last line of Eq. (35) we have applied the formula for the
pth derivative of a product,

p

(f2)? =S (p )f@—ﬂgw
J

=0

Equation (35) represents a recursion scheme where in
each equation containing p™(0),p®(0),...p%*(0), only
p®(0) (in the last term for j=%) is unknown provided that
all previous equations for p(0),p?(0),...,p%* " V(0) are
already solved. A formal solution for p*)(0), expressed in
terms of its predecessors, is

pl0)=A"b, k=1,

k-1
k-1 o
pP(0)=-AT (J, 1 )A(k_f)p(’)(O), k=2. (36)
j=1

Although quite different in appearance at first glance, Eq.
(36) yields exactly the same solutions as Eq. (34).

6. Solutions for the General Refraction Equations

In the result for p(0), the first rows of both Eqs. (34)
and (36) involve A(0)~1. To obtain A(0)~!, we evaluate Eq.
(30) for p=0 and apply Egs. (23), yielding
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10 0 o
A 00 -1/n -y
©=lg1 o o7
00 -1/n" -y
1 -no/p 0 n'agly
0 -ndo'/yp 1 n'dly
A(O)_1= ’ ! !
0 —nn'Y'In 0 nn'x/y
0 nl/n 0 —-n'ly
with n=n'x’ —ny. 37)

The last component of p(0), which is the refractive sur-
face slope, is obtained as w(l)(O)z—(n’a’—na)/n. This is
formally correct since we have not yet made any assump-
tion about the angles €, €. If, however, we claim that
ﬁ;(sl)(O):O, we will obtain the refraction law n'c’-no
=n'sin € —n sin e=0. Exploiting this in all further calcu-
lations, the final result for pY(0) is

X

’

po=| ¥ . (38)

-no
0

For the orders =2 we apply Eqs. (36). The derivatives
A= (d/dyS)A(p@S))bS:O, etc., are directly obtained by
total derivative of Eq. (30) with respect to yg, evaluating
for y5=0 and again applying Eqgs. (23). For the orders &
=2 only the results LTJ(Sk)(O) for the refractive surface are of
interest; therefore we directly provide those results. The
resulting second-order law is [omitting the argument (0)]

7B = X *n'wil - Xnwi?, (39)

which is well known as the Coddington equation and
turns out to be a special case of our results. The resulting
higher-order laws can be written in a similar fashion:

3 3 3
n-w ()_X nw(/)(uz X3nw§n)+R3’

4 (4 4
7w ()—)( nw()(u)—)(4nw§n)+R4,

7w = x n'wiy - nw + Ry, (40)

with the remainder terms R, which are given for orders
k=3,4 explicitly as

3noxy’'
Ry=- . (nwoe - n'wE) (X wim - xwi), (41)

Ry=(aw{2 + BwPwil) + (BwiZ + o' wPwd)
+Y @GR + 8 woe)wiy + dwiwiy)?
+ Yw?)?, (42)

with
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2noy'? 2noyx'?
(n'x' -6ny), B= T(Qn’x’ +3nx),

o=

3nX2 2 2 212
(2n' XX’ n- *(n?)* +4n'?}'?)),

L

sn’ 2,/2) 572
’ ! ! O_!
- 27(nxx)?), (43)
and o', B', ¥/, & are obtained from —«, -8, —7, — 4, respec-

tively, by interchanging n<—n’, y— x', o—0d’, n——n. Re-
sults for even higher orders £=5,6 are provided in[31].

Equation (40) holds likewise for the derivatives and for
the coefficients ar, s, @' gy, @5 due to Egs. (18)~(21). In
terms of local aberrations, Eq. (40) reads (after replacing
X, X' by the cosines)

ke —E,cos® e+ R, (44)

v-E,=E'; cos
where in R, all wavefront derivatives are expressed in
terms of local aberrations.

7. Generalization of the Coddington Equation

Although application of Eq. (34) or Eq. (36) provides a so-
lution for wga)(O) up to arbitrary order £, it is very instruc-
tive to analyze the solutions more closely for one special
case. We observe that the expressions in Eqgs. (41) and
(42) for R3 (or R,) will vanish if we set wgi:O and wb({;)t
=0 for all lower orders j <k (for k=3 or k=4, respectively).
This leads to the assumption that the following statement
is generally true: if aberrations only for one single given
order k are present while for all lower orders j <k we have
wI )=0 and wé)(’)t—O then R, =0, which means for fixed or-
der %k that Eq. (40) will be valid for vanishing remainder
term. This assumption can in fact be shown to hold gen-
erally.

For this purpose, we start from the recursion scheme in
Eq. (36) and show that only the term containing p* can
contribute to the sum if all aberrations vanish for order
less than k. To do so, it is necessary to exploit two basic
properties of the derivatives A" = (d"/dyg)A(PFs))lye-0
of the matrix A for the orders 1<sm=<*k-1. As can be
shown by elementwise differentiation of the matrix A, the
highest wavefront derivatives present in A™(p(ys)) [see
Eq. (30)] occur in the terms proportional to 7, and those
are proportional to either w{™*? or w{™*?. Evaluating
A (p(yg)) at the position ys=0 implies 7=0, such that
A™) cannot contain any higher wavefront derivatives
than w{™*V or wé)(l’l'é”) . It follows that

(i) The highest possible wavefront derivatives present
in A are w("”l) or w&ﬁ”).

(i) If all wavefront derivatives even up to order (m
+1) vanish, then A™) itself will vanish. This is in contrast
to A itself, which contains constants and therefore will be

finite even if all wavefront derivatives vanish.

Analyzing the terms in Eq. (36), we notice that the
occurring  derivatives of the matrix A are
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AG-D AGR-2) - A@ AL for j=1,2,...,(k-1), respec-
tively. It follows from property (i) that the highest occur-
ring wavefront derivatives in these terms are £k,(k
-1),...,3,2, respectively. Now, if all wavefront deriva-
tives up to order (£ —1) vanish, it will follow from property
(i) that all the matrix derivatives A%®-2 ... A® AQD
must vanish, leaving only A%#~V. Therefore all terms in
Eq. (36) vanish, excluding only the contribution for j=1.
We directly conclude that

p® =—AAE-DpD = _ (AIABVAY) . b k=2,
(45)

To evaluate A*®~V we set £—1=:m, and it is straightfor-
ward to show by induction that if all aberrations vanish
for order less than or equal to m, then

Alm)
X"
- my" low{*Y 0 ngf”) 0
X wimD 0 0 0
= rm
0 _ erm—la_rwé)(lrlr?l) _ngrwl) 0
0 X mwi 0o 0

(46)

where y{V, y(\1) and 71 have been replaced by their solu-

tions y, x’, and ns, respectively, wherever they occur [see
Eq. (38)]. Inserting A™(0) for m=k—1 and A(0)~! from
Eq. (37) into Eq. (45) yields directly that

7-59(0) = x"*n'wF(0) — Y¥nw{(0) (47)

for all orders &£ =2.
The resulting refraction equation in the situation of Eq.
(47) in terms of local aberrations reads

v-E,=E', cos* € - Ej, cos e, (48)

which is indeed Eq. (44) for R, =0.

C. Mathematical Approach in the 3D Case

1. Wavefronts and Normal Vectors

Although more lengthy to demonstrate than the 2D case,
conceptually the 3D case can be treated analogously to
the 2D case. Therefore, we will report only the most im-
portant differences. Analogously to Eq. (17), the incoming
wavefront is now represented by the 3D vector

x
wIn('xay) = y ) (49)
wiy(x,y)

where wr,(x,y) is given by Eq. (6), and the relation be-
tween the coefficients and the derivatives is now given by
a relation like Eq. (5). The connection between coefficients
and local aberrations is now given by e2=(Sxx,Sxy,Syy)T
= n(aIn,Q,O »@In, 1,15 aIn,O,Q)T’ e3=(E ’Exxy aExyy ,Eyyy)T
=n(a1n’3’0,aln’z,l,aIn’Lg,aIn,O,;;)T, etc. [see Eq (14) for ek].
The outgoing wavefront and the refractive surface are
treated similarly.
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To treat the normal vectors, we introduce the functions
analogous to Eq. (22) as

1 -u
n(u’v) = ”ﬁ - U b (50)
vi+u“+v 1

such that the normal vector to a surface wi(x,y)
= (x,y,w(x,y))T is given by

(1,0
- w
w10 5 wOD 1

—wOD

|w 0 x w01 B N/l PSREROCINRTE

=n(w®9 wO) = n(Vw).

In the intersection point, we now have ny,(0,0)
=(0,0,1)%, n’(,(0,0)=(0,0,1)7, ng(0,0)=(0,0,1)7, and
the derivatives corresponding to Eq. (23) can directly be
obtained from Eq. (50).

2. Ansatz for Determining the Refraction Equations
The starting point for establishing the relations between
the wavefronts and the refractive surface is now given by
equations analogous to Eq. (25), with the only difference
that x and y components are simultaneously present and
that the original 3D rotation matrix from Eq. (2) has to be
used.

The vector of unknown functions is now given by

*m(%s,¥s)
Ym(®s,¥s)
*’ ou(Xs,¥s)
¥ out®s:¥s)
mXs,¥s)

5(xg,¥s)

p(.’)_Cs,ys) = ’ (51)

and the 3D analog to Eq. (25) now leads to
f(p(xs,¥s),%s,¥s) = 0, (52)

where f is the 3D analog to Eq. (27).

One important difference from the 2D case is that there
are two arguments with respect to which derivatives have
to be taken. This implies that the dimension of the linear
problems to solve grows with increasing order: while
there are only 6 different unknown functions, the first-
order problem possesses already 12 unknown first-order
derivatives, then there are 18 second-order derivatives,
etc.

Another implication of the existence of two indepen-
dent variables is that from the very beginning there are
two different first-order equations,

A(p(g_‘:s’ys))p(l,O)(ES?yS) = bxv

A(p(xs,55))p' "V (xs,7s) = by, (53)

where the different inhomogeneities are given as column
vectors:
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of
b,=——=(1 0 0 1 0 07,
xg
of
by=—T=(0 X O 0 )(’ U')T. (54)
s

The structure of b, arises because there is no respective
tilt in this coordinate direction between the wavefronts
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and the refractive surface.

The Jacobian matrix A(p(xs,ys)) with elements A;;
:=df;/ dp; is the same for both equations and is analogous
to Eq. (30) but now of size 6 X 6. It is practical to provide it
in block structure notation,

In

A Agl, 55
0 A,Out T S) ( )

A(p(xs,ys)) = (

where 0 is a 3 X2 block with entry zero,

r
0,1), (1,1 1,0), (2,0 0,1), (0,2 1,00, (1,1
1- ;(n(ln,x)w(ln ) + n%n,x)wgn )) - _(n( ) ( ) + n’%n,z)w§n ))
A= _ _(n(o Dyl 4 L0 20) _ _(n<o D02 4 L0y | (56)
wﬁ,o) _(n(o ) (1 Dy n(l 0) (3,0)) w(I(r)fl) _(n(O 1) ((n),Z) + nﬁ’g)wﬂ;l))
[
and a Similgr block expression for A’ . The other two 1= A(p(0,0))"'=A(0)"', and
blocks are given as column vectors: 4
NN 0 A= —A(p(Es,ys) ™ ;
’ dis %g=0,75=0
nln,y/n o STV
ky gk
nIn,z/n — -X B d d% o
A=| , . Ag= (57) (AHkh) = — —— A(p(xs,ys) ™ :
n'ogedn ! 0 dxg dxg o
7 xg=0,yg=0
n’out’y/n’ o’
n' oulint -x etc. The fact that there are two starting equations (53) re-

3. Solutions for the General Refraction Equations
The direct solutions analogous to Eq. (34) are now given
by

p0(0,0)=A"b,,
p(O’l)(O, O) = A_lby’

p?9(0,0)= (A~

p1(0,0) = (A™) O, = (A1),

p*2(0,0)= (A7),

p**)(0,0)
(A1) k10 k. #0,k,=0,
(AY kb = (A keky D, -k, # 0k, # 0,
(A—l)(o,ky—l)by’ k,=0,k, #0,
(58)

where

flects itself in the existence of two formally different solu-
tions for the mixed derivatives, e.g., p'*Y. However, since
both starting equations originate from one common func-
tion f in Eq. (52), for each p*=*») the two solutions must
essentially be identical, as can also be verified, e.g., for
ptY directly by some algebra.

In analogy to Eqgs. (37) and (38) for the 2D case, we pro-
vide here the explicit results,

1000 0 0
0100 0 T
0000 —1/n -y
AD=16010 0o o |7
0001 0 o’
0000 —1n' —y
10 0 00 0
01 -no/p 0 0 n'oly
P L A 59
00 -nd/yp 01 oln |’
0 0 —nn'x'/n 0 0 nn'x/y
00 nl/ny 00 -n'ly

and, after application of Eqgs. (54) and (58) the solutions



230 J. Opt. Soc. Am. A/Vol. 27, No. 2/February 2010

o x O

p-9(0,0) = p'*Y(0,0) = (60)

S O O = O =
><\

o 3

The general result for the refraction equation can be writ-
ten in this way:

ib (kx ) = 'k w'(k y) A/*’ynw;ﬁ’”ky) +Ry - (61)

It is interesting to note that only %, but not &, occurs in
the exponents of the cosines. This is a consequence of the
fact that the refraction takes place in the y—z plane,
whereas in the x direction no tilting cosines occur at all.
Summarizing all components of Eq. (61) for a fixed value
of k=k,+k, and applying Egs. (5), (15), and (14) yields the
refraction equation in terms of local aberrations,

v-ék=C’ke’k—Ckek+rk, (62)

where r}, is a vector collecting the remainder terms R, k,
in Eq. (61) analogously to Rj, in Eq. (44). Equation (62) is
the general refraction equation for aberrations of any or-
der in the 3D case.

4. Generalization of the Coddington Equation

Although Eq. (58) represents the full solution, we provide
here a more detailed result for p%+#y)(0,0) in the case of
vanishing wavefront derivatives w%”'y), w&’ﬁjy) for all
lower orders, i.e., for j.+j,<k,+k,. This works analo-
gously to the treatment of Eqs. (35)—(47), with the only
difference that the notation requires more effort.

Analogously to Eq. (36) we obtain the result that

-1
p%0(0,0)= - A™! 2 A(k 0pUn0)

k= 2, k,=0, (63a)
p=*)(0,0)
-1
w3 (e
J=Liy=0 \x T 1/\Jy
jx+jy<kx+ky
(63b)
=—A1 Y (é") (lfy B 1) Aoy, gy
J=04,=1 \x Jy—-1
jx+jy<kx+ky
k,#0, k,#0, (63c)

-1
p®%)(0,0) = - A1 2 ( )A(O ky~iy)p 0y,

ky= o, ky=2, (63d)

where again for p% =y two formally different solutions oc-
cur that are essentially identical. We recognize that Eq.
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(63a) is a special case of Eq. (63b) for £,=0, j,=0, and
similarly Eq. (63d) is a special case of Eq. (63c) for £,=0,
Jx=0. By means of a reasoning similar to that in the 2D
case, it is found that if all lower-order aberrations for j,
+j, <k,+k, vanish, then Eqgs. (63) will reduce to the low-
est term, yielding

p"=0(0,0) = - ATTA® OOk =2, k=0,
(64a)
pleh)(0,0) = = ATIA k1) p 10
= ATTAkA DO 0, R, #0,
(64b)
p4(0,0)= - ATACHVpOY, k=0, k=2
(64¢)

To finally evaluate Eqgs. (63), we need the partial deriva-
tives of the matrix A under the assumption that all lower-
order aberrations for j,+j,<k,+k, vanish, which are
given as

A (my,m.)

In ! 0 (m,,m,) & (m.m,)

A(mx,my) = A oy AS oy
T

1 (my,m.,)
0 AOut !
(65)
with the block
-m me Uw(IrrT +2m -1) _myA/ny ow;rrrll +1m)
A;r:x,my) _ -m me (m +1,m ) y)(my (m m +1)
mew;r:xﬂ,my) mew(m Jm +1)
(66)

and a similar expression for the block Ab(l'l’,';x’my). The other
two blocks are given as column vectors,

A/”ywﬁm’““'my)/n
n

(mx,my+1)
X"wy, /n

0 _
AT= 5 AS=07 (67)

m ’(mx+1»my) ’
X "w " n

m

¥ Mw /(mx,my+1)/n,

Out

0
where x(l 0 xﬁ)l 1), y(1110), yﬁ)l 1) , etc., have been replaced by
their solutlons according to Eq. (60). Inserting Ay
from Eqs. (65)—(67) and A(0)~! from Eq. (59) into Eqs. (64)
yields one common relation for w(k *y) for the various sub-
cases in Eqgs. (64) [omitting the argument (0,0)]:

70 (kx ky) =x""n’ w/(k ky) )fynw(k k) (68)
for all orders k£ =2.

Equation (68) can be summarized similarly to Eq. (61)
to a vector equation in the very appealing form
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Vék=C'ke'k—Ckek, (69)

which is Eq. (62) for r,=0. Equation (69), an interesting
result of the present paper, is the refraction equation for
aberrations of fixed order 2 =2 under the assumption that
all aberrations with order lower than % vanish.

3. RESULTS AND DISCUSSION

One standard situation in optics is that a given wavefront
hits a given refractive surface and that the outgoing
wavefront is the unknown quantity. Therefore, we provide
in the following the derived refraction equations, solved
for the outgoing wavefront’s aberration.

A. 2D Case

Equation (48) describes the special case that for given or-
der % the aberrations of the incoming and the outgoing
wavefront for all orders less than k are zero (E;=0; E ! i
=0 for j<k). For calculation of the aberrations of the out-
going wavefront, Eq. (48) can be transformed to

E', cos* € =E, cos" e+ v-E,,. (70)

We could generally show this statement to hold for all or-
ders £=2 including as a special case for £=2 the well-
known Coddington and vergence equations. Therefore Eq.
(70) represents an interesting result of the present paper.

Also Eq. (44) for the general case can be transformed in
such a way that E’, of the outgoing wavefront is the un-
known quantity to be determined:

E',cos* € =E,cos" e+ v-E,-R,,. (71)

Equation (71) is the general refraction equation for aber-
rations of any order in the 2D case. In R;, only aberrations
E,E’ ; of order j<k occur. These aberrations can be deter-
mined by successively solving of Eq. (71) for lower orders.

For example, assume that the aberrations E’, of the
outgoing wavefront up to order k=3 (E',=S',E’;) are the
unknown quantities and that the aberrations E}, of the in-
coming wavefront and E, of the refractive surface are
given. In a first step the aberrations of order £=2 are cal-
culated using Eq. (71), which is in this case identical to
the well-known Coddington equation:

, ) n'cose —ncose _
S’ cos® € =S cos® e+ —— - S. (72)

n'-n

In a second step the aberrations of order £=3 are calcu-
lated using Eq. (71) and the results of Eq. (72),

n'cose —ncose _

E’;cos? € =Egcos® e+ - -E;-Rg,
n'-n
(73)
with
3nsinecosecose [ n n'
Ry=-——— —8'-—8
n'cose —ncose \n n

cos € coSs €
X S’ - S.

n n
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B. 3D Case

Equivalently to the 2D case, transforming Eq. (69) leads
to C',e’,=Cyey+ 1€, for the case that e;=0;e’;=0 for j
<k, a statement that we could generally show to hold for
all orders £ =2, including the special case of the Codding-
ton equation.

In the general case, Eq. (62) can as well be transformed
in such a way that the unknown aberration vector e’;, of
the outgoing wavefront is determined by the incoming
wavefront and the refractive surface,

C’ke’k=Ckek+ v-ék—rk, (74)

where in rj, only aberrations of order j<k occur. There-
fore, r;, can be determined by successively solving Eq. (74)
for lower orders. Equation (74) is the general refraction
equation for aberrations of any order in the 3D case.

4. EXAMPLES AND APPLICATIONS

A. Aspherical Surface Correction up to Sixth Order
One important application of the derived equations is
that they allow us to determine a refractive surface,

which not only has a defined power S but also generates
an outgoing wavefront that shows no deviation from an
ideal sphere up to the order £=6.

Because of the analytical nature of the equations it is
not necessary to use an iterative numerical method. The
task is to determine a rotationally symmetric aspherical

surface S, which images an axial object point with the dis-
tance s to the refractive surface to an axial image point
with the distance s’ to the refractive surface (Fig. 2).

The object-side vergence and the image-side vergence
are given by S=n/s and S’=n'/s’, respectively, expressed
in terms of the reciprocals of the object and image dis-
tances. Treating the rotationally symmetric problem as a
2D problem in the y—z plane, a sphere with radius r is ex-
actly described by

o) =r(1=\1-y%r?), (75)
whose series expansion up to the order £=6 is

1 1 1
=—y2 4 —ytp ——y0 4 . 76
fy) o 58 t a5 (76)

Applying Eq. (76) once on f(y)=wr,(y), r=s and again on
) =w’'o(y"), r=s' (including in both cases the sign of s
or s') allows us to identify the wavefronts’ coefficients in
the sense of Eqs. (18)—(21):
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1 S’ 5
a’out’6=45875=45 ; . (77)

The solution for the desired refractive surface, described
by the series

s(v) = @ 2 @ 4 Oﬁ 6
s(y) = 2y +24y +720y +... (78)
as in Eq. (20), will be found up to the order 2=6 if we pro-
vide expressions for the three coefficients ag o, ag 4, and
ag e (the odd coefficients for £=3,5,7,... are not present
because of the rotational symmetry of the problem).
Since the local aberrations of higher order have no in-
fluence on the local aberrations of lower order, the coeffi-
cient of second-order ag o can be directly determined by
Eq. (39). In the present case of orthogonal incidence we
exploit that o=0¢"=0, y=x'=1, and »=n'-n such that Eq.
(39) reads as (n'-n)agg=n'a’gy s—nan s lequivalent to
the vergence equation S=S’-S in Eq. (8)], yielding

S-S

ago= (79)

n'-n’
To find a@g 4, we have to apply Egs. (40)—(43). Due to the
orthogonal incidence, Eq. (43) simplifies to

6nn’ 6nn’
a=0, B=0, y=—", d=———, (80)
n'-n n'-n

and consequently Eq. (42) simplifies to

’

nn
Ry=——(wog - wi Pwoi +wi).  (81)

(2)

In>

Inserting Eq. (81) into Eq. (40) and replacing w
the coefficients in Eq. (77) yields

(2)
wé)ut by

= @ 7o01(4) (4) _ ;o
gy =Wg =, (n'woy —nwy, +Ry) = ; (n aQ Out4

6nn’ ) 5
—nampg+ w_n (@' out,2 = @m,2)"(@ oyt 0 + Amm2)

3 ((n’+n)S3 2528’ 288’2

- (n/_n)2 2 - ’

n n n
(n' +n)S"3
| (82)
n
Similarly, we find that
B _® 45 (n' +n)28% 3(n' +n)S*S’
Ase=Ws = 3\~ 1 + 3
’ (n'=n) n n
(n'-3n)S38'2 (n'+n)S'* 3(n'+n)S'S"
- nan + 77,’4 - nr3
(n-3n")S%S’3
| (83)
nn
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spherical

image plane

Fig. 3. Ray-tracing plots for example A generated by ZEMAX.
(a) Spherical surface with radius r=1/ag ,. (b) Parabolic surface
with local curvature ag . (c) Strongly reduced aberrations due to
aspherical surface of sixth order with coefficients ag, @g 4, and
ds . The vertical lines in the middle of the drawings are con-
struction lines of ZEMAX and have no relevance in our context.

Equations (82) and (83) complete the required solution
[31]; i.e., the coefficients @g o, @g 4, and a@g ¢ of the aspheri-
cal refractive surface are determined such that an object
point with the vergence S is imaged to a point with the
vergence S’ without aberrations with order less or equal
to k=6.

The results of Egs. (79), (82), and (83) can be illustrated
by a numerical example in which the refractive index of
the first medium is n=1, that of the second medium is
n'=1.5168, and the object and image distance are given
by s=-50.0 mm and s’ =60.0 mm, respectively. Equations
(79), (82), and (83) then yield g 5=0.0876161 mm™, ag 4
=-0.00006550 mm™3, ag,6=0.00002147 mm~>. By means
of a ray-tracing approach using the optical design pack-
age ZEMAX, we have generated layout plots showing rays
corresponding to these values. As a comparison, we have
first traced rays through a spherical surface with radius
r=1/ag9=11.4134 mm [see Fig. 3(a)]. Paraxially the im-
aging is perfect, but the peripheral rays introduce large
errors. Next, we have considered a parabolic surface with
the same paraxial curvature agy [see Fig. 3(b)], but now
we have chosen a stop with semi-diameter 7y,
=16.0 mm, which is considerably larger than the surface
radius in Fig. 3(a). Again, the peripheral rays introduce
large errors.

Although such a system has a very low f~-number, it is
now possible to reduce these errors dramatically by choos-
ing a sixth-order asphere based on the locally determined
values ag 9, @g 4, and ag¢. Figure 3(c) shows that the er-
rors are reduced to a level that is no longer visible on the
scale of the plot.

B. A Spherical Incoming Wavefront Hits a Spherical
Refractive Surface at Oblique Incidence

In this example we use the derived equations to deter-
mine the aberrations of the outgoing wavefront up to or-
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der £=6 and compare them with the results calculated
with ZEMAX. Given are the spherical incoming wavefront
with a vergence S=10D and a spherical refractive surface

with power S=20D. The refractive index of the first me-
dium is n=1, that of the second medium is n’'=1.5168,
and the angle of incidence is €=40°. Therefore, the ver-
gence vector of the incoming wavefront and the power
vector of the refractive surface have the appearances s’
=(S,0,8) and s7=(S,0,S), respectively.

The aberrations of second order of the outgoing wave-
front are determined by Eq. (11) C's’=Cs+ vs, yielding a
vergence vector of the form s’7= (S’xx,O,S'yy). Numerical
values for S',,,S’, are given in Table 1.

The third-order error vectors e3 and es are 0, because
the incoming wavefront and the refractive surface are
spherical. Then Eq. (74) simplifies to C';e’5=-r;3 (the vec-
tor r5 is shown in Appendix C as a function of the given
vergence S and the quantities S',,,S’,, determined be-
fore). Numerical values for e’y are given in Table 1.

The error vectors of fourth order of the spherical incom-
ing wavefront and refractive surface have the appear-

ances e, =(35%,0,8%,0,3S%) and &,7=(35%,0,5%,0,353),

Table 1. Local Aberrations of the Outgoing
Wavefront in Example B*

wavefront aberration wave aberration (OPD)
order (sagitta)
symbol value x1000 symbol value x1000
S 8.226176 mm™" | §'&" 8.226176 mm ™'
k _ 2 Slxy 0 S'g,PD 0
S 17.221464 mm™" | S'9° 17.221464 mm™
E\, 0| EW 0
E., 0.681892 mm™ | E'%Y 0.681892 mm™
k=3 E 1OPD
xyy 0|E Xy 0
E,, 2.076540 mm™ | E'Sy 2.076540 mm™
E.. 0155799 mm™ | E'O° 0154347 mm™
E sy 0| Em 0
k=4 | E, 0.054537 mm™ | E'oey 0.052970 mm™
E v 0| ESY 0
E,. 0.148661mm™ | E'O> 0.135341 mm™
B e 0| EVS 0
By 0.000713 mm™ | E'0ry, 0.000010 mm™
s [P 0| E% 0
E'y | —0000946 mm™ | E'0 -0.002170 mm™
E'X.V.VY.V 0 E‘g\i’?\’ 0
E,. | —0013123mm™ | E, -0.023830 mm™
E . 0000339 mm™ | E%2 . | —0.000078 mm™
E'XXXXXV 0 E‘(X):;]X)XV 0
E' ey | —0.000294 mm™ | E00 | —0.000563 mm™
k=6 | E 'm.vy.v 0| E ‘Sxigv.v 0
E | —0000663mm™ | E0 | —0.001228 mm™
'ny}’}’)’ 0 EV?}";‘;}’Y 0
E'\ oy | —0004746 mm™ | E'0 | —0.009508 mm™

“Left column, values based on the wavefront sagitta; right column, OPD-based
values.
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respectively. Using Eq. (74) leads to the resulting error
vector of fourth order whose values are again given in
Table 1. The fifth- and sixth-order aberrations for the lo-
cal wavefront aberrations are also numerically provided
in Table 1.

As mentioned at the beginning of this paper, our whole
treatment is based on the description of aberrations by
their wavefront sagitta. For completeness, it is important
also to provide aberration results in the OPD picture. In
Appendix B, we provide relations between sagitta deriva-
tives and OPD derivatives. Analogously to Eq. (14), we de-
fine OPD-based vectors of aberrations for the wavefronts
by

OPD £,0)
Ex. XX T%ﬂ
OPD k-1,1)
OPD Exxy T%n
ek = . = ,
OPD 0,k
Ey---yy T%n :
OPD %,0
Ea/cxx T(,)(ut )
FOPD k-1
eOPP=| V=l " , (84)
1OPD 0k
Ey-uyy TE)(ut )
where T%’flx’ky),T,O(ﬁf'ky) are in this context OPD derivatives
of the incoming and the outgoing wavefront that play the
role of the generically used symbol Tif”ky) in Appendix B.

The values of the aberrations e, F? are listed in Table 1,
too, together with their counterparts e’,. In accordance
with Appendix B, e};op D is equal to e’ » up to the order %
=3. For k=4, the values of e,°f? and e’,, are slightly dif-
ferent, and for 2=5 the deviations between the two pic-
tures are considerable. We remark that this is the reason
that it was necessary to treat the relations between the
different coordinates simultaneously with the wavefront
derivatives from the very beginning [see Eqs. (26) and
(51)]. This confirms that the vector of six unknowns in Eq.
(51) does not introduce additional complexity to the prob-
lem, but it is rather the only consistent way to treat care-
fully the inherent complexity such that numbers like
those in Table 1 are meaningful.

Apart from yielding exact values for the local deriva-
tives, our method will also be suitable for computing
Zernike coefficients over a full pupil size if local aberra-
tions up to sufficiently high order are involved, as argued
in Section 2. In Table 2, we provide the Zernike coeffi-
cients up to order £=6 for our example, assuming a pupil
with semi-diameter r;=3.0 mm. The coefficients have
been computed using Eqs. (A2) and (A3) for the order %
=6.

For comparison, we have also calculated the solution of
the same problem with a ray-tracing approach using ZE-
MAX (see Fig. 4) followed by a Zernike analysis. Those
values are provided in Table 2 as a reference. The agree-
ment between the two results is obvious. We would like to
stress again that our local aberration values are obtained
by an analytical method and therefore by definition are
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Table 2. Zernike Coefficients of the Outgoing

Wavefront in Example B*

Zernike Zernike
coefficients (our coefficients
Symbol method) (ZEMAX)
(0OSA
order standard) value/um value/um
k=2 c3? 0 -2.4x1078
cg 16.672042 16.672048
c -8.251706 -8.251718
k=3 c3? -0.008734 -0.008746
c3t 1.092135 1.092042
cl 0 -2.9%x10°8
c3 0 -5.8%x107°
k=4 et 0 -2.4%x1078
¢’ 0 -1.8x1078
c$ 0.036792 0.036794
c2 0.003041 0.003034
cy -0.003785 -0.003780
k=5 c5’ -0.000060 -0.000052
c5? 0.000723 0.000719
c5t -0.001026 -0.001058
ct 0 1.2%x10°8
cd 0 1.2x10°8
el 0 1.8x 1078
k=6 cg® 0 -1.2x10°8
cgt 0 0.000000
cg? 0 1.2x10°®
el 0.000089 0.000089
c2 0.000085 0.000083
ch 0.000005 0.000004
s —-0.000005 —-0.000005

“Left column, values based on our method; right column,

tracing (ZEMAX).

values based on ray-

exact. The transformation of our local coefficients to
Zernike coefficients, on the other hand, yields only a (how-
ever, very good) approximation for their numerical values
based on the assumption that the truncated subspaces of
order k=6 describe the aberrations sufficiently well. But
still, within this approximation, the results are analyti-
cal, such that a Zernike coefficient obtained as zero is ex-
actly zero, whereas a ray-tracing value is always numeri-
cal in nature, resulting in small deviations from zero
(Table 2).
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0BLIQUE INCIDENCE ONTO SPHERICAL REFRACTIVE SURFACE
WED OCT 28 2009

SPHER_SURF_DBLIQUE _4@DEG . ZMX
CONFIGURATION 1 OF 1

Fig. 4. Ray-tracing plot for example B generated by ZEMAX. A
spherical wavefront is refracted by a spherical surface under ob-
lique incidence, giving rise to coma in the outgoing wavefront.
The box drawn around the refractive object consists of construc-
tion lines of ZEMAX and has no relevance in our context.

5. SUMMARY

In the present work we have developed a general method
for generating refraction equations for local wavefront ab-
errations of any order under arbitrarily oblique incidence
conditions. These results include as a special case the
well-known scalar vergence equation as well as the Cod-
dington equation (order £=2) but extend these refraction
equations to aberrations of any arbitrary higher order %
>2.

The refraction equations are relations between an in-
coming wavefront, a refractive surface, and an outgoing
wavefront. In detail, we have defined local aberrations of
those three surfaces in terms of local power series coeffi-
cients, which describe the surfaces in local coordinate sys-
tems aligned with the chief rays or the surface normal.
The general refraction equations are established as a se-
quence of analytical relations between these series coeffi-
cients. We have been able to show that to each given order
k=2 it is possible to assign one equation taken from that
sequence whose leading-order terms represent a straight-
forward generalization of the Coddington equation to the
order £ and which in general contains some additional
terms whose order is always less than k. A direct conse-
quence is that if aberrations of only one single order & are
present, then the generalization of the Coddington equa-
tion will be exact for that order k; it reads E’, cos® €'

=E,, cos® e+ v-E;, for the 2D problem, and the vector-
valued version of it reads C',e’,=Cpe,+ve, in the 3D
case.

For convenience, we have distinguished between the
2D and the 3D problem in deriving the refraction equa-
tions. While the part representing the generalization of
the Coddington equation can in either dimension be ex-
pressed symbolically as a function of the order %, the ad-
ditional terms of order less than £ must be derived in a
recursive process for increasing orders £=2,3,4,.... We
have provided this procedure generally, and for the orders
k=3,4 we have provided explicit formulas for the result-
ing terms in the 2D case. As an application of the refrac-
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tion equations, it is possible to determine an unknown
surface among the refractive surface and the two wave-
fronts up to an order %k, provided that the two other sur-
faces are given up to the same order k. The standard situ-
ation is that an incoming wavefront and a refractive
surface are given and that the outgoing wavefront is to be
determined, as we have illustrated by an example. How-
ever, the reverse problem can likewise be treated. As we
have shown explicitly in an example, if the incoming and
the outgoing wavefront are both given without deviation
from an ideal sphere up to the order £=6, our equations
directly allow determination of the refractive surface nec-
essary for this imagery.

The main advantage of our approach is that it is based
exclusively on analytical formulas. This saves much com-
putation time compared with numerical iteration routines
that would otherwise be necessary for determining the
higher-order aberrations.

With the method developed in this work, it is now pos-
sible to calculate the local higher-order aberrations of the
outgoing wavefront directly in an analytical way from the
aberrations of the incoming wavefront and the refractive
surface. Although our method is based on local tech-
niques, it yields results that are by no means restricted to
small apertures, as we have shown theoretically as well
as in two examples.

APPENDIX A

The Zernike coefficients corresponding to a wavefront
w(x,y) are given by the integral

100 0 -3 0
020 0 0 0
002 0 0 0
000 0 43 -26
00046 0 0
T-\(3) = .
000 0 43 26
000 0 0 0
000 0 0 0
000 0 0 0
000 0 0 0

APPENDIX B

If a wavefront is given by its sagitta, then the OPD be-
tween the wavefront and a reference plane being tangen-
tial to the wavefront can determined from it, and vice
versa. In particular, there exists a unique relation be-
tween the aberration coefficients in terms of the wave-
front (by our definition the sagitta derivatives) and the
aberration coefficients in terms of the aberration function
(to be defined as the OPD derivatives). For simplicity, we
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1 x y
cr=—7| | Z¢\ - |wl.y)dxdy,
™y ro I'o

pupil

(A1)

where rg is the pupil size. If the wavefront is given as a
series as in Egs. (6) and (7), then the integral in Eq. (A1)
will be itself a series, i.e., a linear combination of coeffi-
cients a,, j_,,. Summarizing up to given order % the coef-
ficients ¢}’ and a,, ;_,, as vectors, a transition matrix T(%)
between the Zernike subspace and the Taylor series sub-
space of order k& can be defined by

0
Co E

Qoo
it rof, ro1o
C% "oEy r'oQo1
C§2 r(2)Exx 7'3(120
s r(2)Exy rai
o |=TR| o =nTk)| » (A2)
Co rOEyy ToQo2
053 rgExxx r?)a30
051 rgExxy r?)a21
C]l: rgEyyu-y ’”gaOk

If representations of such a matrix are given in a form
similar to that in the literature [2,32,33], the prefactors of
the underlying power series in the literature will not be
the same in detail as in our case. Therefore we provide an
explicit expression for T-! here for order k=3, given by

0 0 0 0

0 -42 o0 0

0 0 -42 0

0 0 0 0

0 0 0 0

0 0 0 0 &
-12\2 362 0 0

0 0 122 -12\2
122 1242 0 0

0 0 362 1242

[
establish this relation first in the 2D case. Formally, the
situation can be imagined to be described by Fig. 1(c) for
the special case that the refractive surface is a plane and
the incidence is orthogonal. Applying to any wavefront in
this context, we generically call the wavefront sagitta
w(y) instead of wi,(y1,), the coordinate in the tangential
plane is y; instead of yg, and the wavefront’s OPD is 7,,(¥)
instead of 7(yg) (see Fig. 5). The first equation of Eqgs. (25)
then takes the form
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Fig. 5. Relationship between the sagitta w(y) of a wavefront
and its OPD given by the function 7,,(y).

Y Tw yt
(on) - Zme= (). ®1)

Our question is now posed such that 7,(y;) is the un-
known function of interest while w(y) is given. In this
case it is most practical to use y as the independent
variable, such that the functions ¥%i(y) and conse-
quently 7,(7(y)) enter into Eq. (B1l). Inserting n,(y)
=(—wV), D)T/\V1+wV(y)? [see Eq. (22)], the second row
of Eq. (B1) can be solved for 7,,(¥;(y)), yielding

@) = nw(y)y1+w(y)%. (B2)

Then inserting Eq. (B2) into the first row of Eq. (B1) leads
to

) =y +wy)w(y). (B3)

To obtain a relationship between the derivatives Tgf)@t)
=7,/3" and the derivatives w®(y), we insert Eq. (B3)
into the argument of 7, in Eq. (B2), yielding

7@ +w@wP)) = nwy)\1+w (). (B4)

As is generally the key ingredient in this paper, we now
take the subsequent derivatives of Eq. (B4) and evaluate
at the position y=0. Making use of w(0)=0, wV(0)=0,
this leads to

7,(0) =0,
7,(0)=0,
72(0) = nw®(0),
3w®(0)271(0) + 72(0) = nw®/(0),

10w @(0)w®(0)7,(0) + 12w (0)*72(0) + 74(0)
=n(6w™(0)’ +w'¥(0)),

o (B5)

which represents a system for determination of 7,(0),
7-,(‘})(0) s 7{3)(0) s Tf)(O) ,.... Inserting the result for T,(ﬂl)(O) into
the successive equations in Eq. (B5), then inserting the

Esser et al.

result for Tl(f)(O), and so on, yields the result [omitting the
argument (0)]

T$)=0,

T§3> =nw®?,

43)

3) — nw'®),

= nw® - 6w(2)3) ,

719 = n(w® - 4Ow<2)2w(3)),

(B6)

Equation (B6) shows that up to order £=3 the OPD mea-
sure of aberrations is, apart from the prefactor n, equal to
the sagitta measure, but for orders &2 =4, there occur more
and more transformation terms.

In the 3D case the procedure is analogous, and the re-
sult reads

Twzo,
(%Lj’(”) (0)
0,2 = ’
71w ) 0
7.53.0) w20
1,1
78’1) =n wb ,
0,2
£02) w2
Tf;j"o) w30
vaz,l) w1
=n
1,2) |’
Tg,z) w12
(0,3)
TS]J,S) w
4,0
740 w0
A3 wBD
Tg,z) =n w22
1,3
7_1(01,3) w3
(0,4)
0,4 w
A0

6w 20 (1w LD? 4 1207
3w B (B D? 4 @0 (02 4 952,00y
W2 4+ 1 20) (5 LV? 4 102200y
3wV (LD 4 10224502 4 120

61w 0D (@ LD? 4 (0.2

B7)
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APPENDIX C

The vector r3 is given by

0
sin e(n cos eS’xx(n2S’xx -n'%S)+n’ cos € (n'S?% - n2(S’2xx + SS’yy - S’xxS’yy)))
nn'%(n’ cos € —n cos €)
r3= 0 (C 1)
3 cos ecos € sin e(n’ cos €S —n cos €'S’,,)(n'*S -n*S’,)
- nn'%(n’ cos € —n cos €
REFERENCES illuminance in an optical system,” Appl. Opt. 20, 897-909
. . . . (1981).

1. M. Born and E. Wolf, “Foundations of geometrical optics, 19. 0. Stavroudis, “Surfaces,” in O. Stavroudis, The Optics of
geometrical theory of optical imaging and geometrical Rays, Wavefronts, and Caustics (Academic, 1972), pp.
theory of optical aberrations,” in Principles of Optics 136-160.

(Pergamon, ,19802’ pp. 109-232. ) ) 20. W. Becken, A. Seidemann, H. Altheimer, G. Esser, and D.

2. zglgﬂ;vlﬁ?)ﬁag)?r;rig:;?S;E:n?g;tilo(ﬁé ’(’)Ii)rtllc\?l ﬁgigzﬁ(’g;t?;’g Uttenweiler, “Spect{a;cle genses }iln splorts: olptimizatiorzl 015[ t}:le

, g . . ot . . ts.” 7. 4
Imaging and Aberrations Part I: Ray Geometrical Optics g;iri%pg%{%esl&soo%s; on physiologicat aspects €
3 g{SPSI}}f’ 1998);‘81)' 91;3,61'1 ties” in The Art and Sei 21. E. Acosta and R. Blendowske, “Paraxial optics of astigmatic
5 shannon, Ceometriel o o he A and Sl sy o botween the vavetont o the Ty
. ) » Pp. 20—100. ict ” Optom. Visi i. 72— 7).

4. K. P. Thompson, “Description of the third-order optical 29. g\l]c ]1;2%;3? r(I);c Ifli’heilge(;m(}. l%l(s)ger CIW. 1</Iueller( and )D.
:brf;i:;;n,s, 3)f ge?r-sc(l)zcilif gug;l ggg;illzgitgg(s) 5v;71th0ut Uttenweiler, “Wavefront method for computing the

5. Ig P. Tho};;lps;)n 13‘1\./Iulti.noda.1 ﬁfthzorder optical aberfations magni.ﬁcation”m atrix of op 1§ical systems: near objects in the
of optical systems without rotational symmetry: spherical 23 g\?r%mall{ Caseﬁ Oglz(})lm V1s108 SEI' 85, %311\/5192152008)' dD
aberration,” J. Opt. Soc. Am. A 26, 10901100 (2009). - W pecken, 1L Allheimer, f. usser, W. Mueller, and .

6. K.P. Thompson, T. Schmid, O. Cakmakci, and J. P. Rolland Uttenweiler, “Wavefront method for computing the
“Real-ray—based, method t,"or locating i’ndividual surfacé magnification matrix of optl?al systems: near objects m t.he
aberration field centers in imaging optical systems without %epeggl ;gge (;)(f 451(:121%%%1)3’ oblique incidence,” Optom. Vision
rotational symmetry,” J. Opt. Soc. Am. A 26, 1503-1517 C1. 89, e o . . .
(2009) 24. C. Campbell, “Generalized Coddington equations found via

7. R. Krueger, R. Applegate, and S. MacRae, Wavefront ?2110 (;)g)erator method,” J. Opt. Soc. Am. A 23, 1691-1698

8 guggxéiede%ziiiﬂ?nﬁ?n(S%? Clr{fhz 02?14)'3 nd A. Awwal 25. M. A. Golub, “Analogy between generalized Coddington
Adaptive bpti cs for Vision Science (Wiley, ’2006). ’ equations and thin optical element approximation,” J. Opt.

9. J. Porter, A. Guirao, I. Cox, and D. Williams, Soc. Am. A 26, 1235-1239 (2009). B
“Monochromatic aberrations of the human eye in a large 26. R. D"rS?h’ W. Haimerl, and G E§ser, Accurate
population,” J. Opt. Soc. Am. A 18, 1793-1803 (2001). computation of mean power and astigmatism by means of

10. R. Applegate, “Glenn Fry Award Lecture 2002: Wavefront Zernike polynomials,” J. Opt. Soc. Am. A 15, 1686-1688
sensing, ideal corrections, and visual Performance,” Optom. (1998). . .

o ; _ . E. Acosta and R. Blendowske, “Paraxial propagation o
Vision Sci. 81, 137-177 (2004). 27. E. Acosta and R. Blendowske, “P 1 tion of

11. R. Blendowske, “Wieso funktionieren Gleitsichtgldser? astigmatic wavefronts in optical sy stems by an augmented
Uber Aberrationen in der Progressionszone,” Deutsche stepalong method for vergences,” Optom. Vision Sci. 82,
Optikerzeitung 2, 6064 (2007). 923-932 (2005). , ,

12. R. Blendowske, “Brillengldser und die Korrektion der 28. W. Harris, DloPtrlC power: its nature and 1t§
Abbildungsfehler héherer Ordnung,” Deutsche represent?t_lon in three- and four-dimensional space,
Optikerzeitung 6, 18-25 (2007). Optom. Vision Sci. 74, 349-366 (1997).

13. W. Wesemann, “Korrektion der Aberrationen hdoherer 29. W. Harris, “Power vectors versus power matrices, and the
Ordnung des Auges mit Brillenglasern—Maoglichkeiten und mathematical nature of dioptric power,” Optom. Vision Sci.
Probleme,” Deutsche Optikerzeitung 9, 44—49 (2007). 84, 1060-1063 (2007).

14. Rodenstock, “Spectacle lens with small higher order 30. L. Thibos, W. Wheeler, and D. Horner, “Power vectors: an
aberrations,” U.S. patent 7,063,421 B2, June 20, 2006. application of Fourier analysis to the description and

15. Rodenstock, “Method for computing a progressive spectacle statistical analysis of refractive error,” Optom. Vision Sci.
lens and methods for manufacturing a spectacle lens of this 74, 367-375 (1997).
kind,” U.S. patent 6,832,834 B2, December 21, 2004. 31. G. Esser, Derivation of the Imaging Equations for the

16. Rodenstock, “Method for calculating an individual Calculation of the Higher Order Aberrations of a Local
progressive lens,” U.S. patent application 2007/0132945 A1, Wavefront after Refraction (Hieronymus, 2008).

June 14, 2007. 32. R. K. Tyson, “Conversion of Zernike aberration coefficients

17. J. Landgrave and J. Moya-Cessa, “Generalized Coddington to Seidel and higher-order power-series aberration
equations in ophthalmic lens design,” J. Opt. Soc. Am. A 13, coefficients,” Opt. Lett. 7, 262—-264 (1982).

1637-1644 (1996). 33. K. Dillon, “Bilinear wavefront transformation,” J. Opt. Soc.

18. D. Burkhard and D. Shealy, “Simplified formula for the Am. A 26, 1839-1846 (2009).



