Lecture 27

Balls and Bins
October 20 2016

1 Preliminaries

1. For any positive integer k
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2. For any events Ay,A5,A3,.....,Ap,
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Above inequality is also called probability union bound

3. Claim : For positive integers m and n,
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Since [%(n) > 0,
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4. For positive integers m and n,
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Since,

Therfore,

2 Maximum number of balls in bin

Consider a situation in which there are n balls and n bins. Each ball is thrown
uniformly at random into one of the bin. Our aim is to find what is the proba-
bility that any bin will receive large number of balls. We start our analysis by
finding the probability P that first bin receives at least m balls. There are total
of (™) ways in which m balls can be chosen out of n balls, basically our aim is
to give at least m balls to first bins, hence we choose m balls which will for sure
go into first bin and for rest of balls we just don’t care, since our aim is at least

m balls. Since there are (:1) combinations possible we name each combination



Ay, Ag, Az, ,A(:L) Let E; be event that all the balls of A; go into our first
bin. Hence,
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Therefore from equation 2,
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From equation 5 and 6,

From equation 4 and 7,
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From equation 1 and 8, o
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From equation 3 and 9 if we take m > 135%?
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But this is probability for first bin only, for all n bins we need to multiply it by n.
Hence our analysis reveals that with very small probability maximum number

of balls in any bin is greater then 1§gl(1)§gnn’ for say n = 10'°, with probability

less than 10% maximum number of balls in any bin is greater then 30.



