
Journal of Digital Forensics, Journal of Digital Forensics, 

Security and Law Security and Law 

Volume 14 Number 3 Article 1 

9-1-2019 

Fast Forensic Triage Using Centralised Thumbnail Caches on Fast Forensic Triage Using Centralised Thumbnail Caches on 

Windows Operating Systems Windows Operating Systems 

Sean McKeown 
Napier University, s.mckeown@napier.ac.uk 

Gordon Russell 
g.russell@napier.ac.uk 

Petra Leimich 
Napier University, p.leimich@napier.ac.uk 

Follow this and additional works at: https://commons.erau.edu/jdfsl 

 Part of the Computer Law Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
McKeown, Sean; Russell, Gordon; and Leimich, Petra (2019) "Fast Forensic Triage Using Centralised 
Thumbnail Caches on Windows Operating Systems," Journal of Digital Forensics, Security and Law: Vol. 
14 : No. 3 , Article 1. 
DOI: https://doi.org/10.15394/jdfsl.2019.1591 
Available at: https://commons.erau.edu/jdfsl/vol14/iss3/1 

This Article is brought to you for free and open access by 
the Journals at Scholarly Commons. It has been 
accepted for inclusion in Journal of Digital Forensics, 
Security and Law by an authorized administrator of 
Scholarly Commons. For more information, please 
contact commons@erau.edu. 

(c)ADFSL 

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol14
https://commons.erau.edu/jdfsl/vol14/iss3
https://commons.erau.edu/jdfsl/vol14/iss3/1
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2019.1591
https://commons.erau.edu/jdfsl/vol14/iss3/1?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


Fast Forensic Triage Using Centralised Thumbnail Caches on Windows Operating Fast Forensic Triage Using Centralised Thumbnail Caches on Windows Operating 
Systems Systems 

Cover Page Footnote Cover Page Footnote 
This research was supported by a scholarship provided by Peter KK Lee. 

This article is available in Journal of Digital Forensics, Security and Law: https://commons.erau.edu/jdfsl/vol14/iss3/
1 

https://commons.erau.edu/jdfsl/vol14/iss3/1
https://commons.erau.edu/jdfsl/vol14/iss3/1


FAST FORENSIC TRIAGE USING CENTRALISED

THUMBNAIL CACHES ON WINDOWS

OPERATING SYSTEMS
Sean McKeown, Gordon Russell, Petra Leimich

School of Computing
Edinburgh Napier University, Scotland

{S.McKeown, G.Russell, P.Leimich}@napier.ac.uk

ABSTRACT

A common investigative task is to identify known contraband images on a device, which typically
involves calculating cryptographic hashes for all the files on a disk and checking these against a
database of known contraband. However, modern drives are now so large that it can take several hours
just to read this data from the disk, and can contribute to the large investigative backlogs suffered
by many law enforcement bodies. Digital forensic triage techniques may thus be used to prioritise
evidence and effect faster investigation turnarounds. This paper proposes a new forensic triage
method for investigating disk evidence relating to picture files, making use of centralised thumbnail
caches that are present in the Windows operating system. Such centralised caches serve as a catalogue
of images on the device, allowing for fast triage. This work includes a comprehensive analysis of the
thumbnail variants across a range of windows operating systems, which causes difficulties when
detecting contraband using cryptographic hash databases. A novel method for large-scale hash
database generation is described which allows precalculated cryptographic hash databases to be built
from arbitrary image sets for use in thumbnail contraband detection. This approach allows for
cryptographic hashes to be generated for multiple Windows versions from the original source image,
facilitating wider detection. Finally, a more flexible approach is also proposed which makes novel
use of perceptual hashing techniques, mitigating issues caused by the differences between thumbnails
across Windows versions. A key contribution of this work demonstrates that by using new techniques,
thumbnail caches can be used to robustly and effectively detect contraband in seconds, with processing
times being largely independent of disk capacity.

Keywords: digital forensics, triage, image comparison, image processing, known file analysis, image
thumbnails, cryptographic hashing, perceptual hashing

1. INTRODUCTION

The field of digital forensics plays an important
role in the modern justice system due to the
prevalence of digital devices and digital infor-
mation in everyday life. However, an increas-
ingly heterogeneous digital environment with in-
creasing volumes of data has seen an end to the
Golden Age of digital forensics (Garfinkel, 2010).
This trend has resulted in multi-year backlogs
for law enforcement agencies across the world, in

the worst cases reaching up to four years before
evidence is processed (Lillis et al., 2016). Such
backlogs may damage the course of justice, with
offenders being frequently awarded reduced sen-
tences due to time waited, and suicides being
committed in some cases (Roussev et al., 2013).
It is therefore vital that the discipline of digital
forensics adapts to the changing times and allows
for digital forensics to be performed much faster,
while still retaining acceptable accuracy levels.



In order to address the problem of data vol-
ume, new tools and procedures must be devel-
oped which place an emphasis on performance,
rather than simply correctness (Roussev et al.,
2013), though the latter property remains impor-
tant. A number of solutions have been suggested,
such as random sampling, parallelisation, or ap-
plying techniques from fields, such as Data Min-
ing, Information Retrieval, and Machine Learn-
ing (Beebe, 2009). However, a review of such
solutions in Quick and Choo (2014) found that
there are still several areas of weakness, necessi-
tating further work in the areas of data reduc-
tion and triage. A more recent survey of interna-
tional practitioners dealing with indecent images
of children (Franqueira et al., 2018) indicated
that any subsequent advances have not had a
significant impact on forensic turnarounds, with
reports that processing times are still very long
and in some cases analysis of the evidence can
take up to 2 months.

This paper uses the centralised thumbnail
caches found in Windows operating systems
since Vista to perform fast contraband detection.
Windows generates image previews by downscal-
ing an image to create a smaller version of the im-
age, a thumbnail, which is then stored in a cache
for later use. These thumbnails are typically dis-
played when utilising a file system browser, such
as Windows Explorer. Thumbnail caches are rel-
atively small, irrespective of the storage capac-
ity of the device. Using this approach, only a
few hundred megabytes of data may need to be
inspected to perform triage on a device, poten-
tially allowing contraband to be detected within
large storage devices within a matter of seconds.

The contributions of this paper are:

• The first analysis of the pixel and binary
differences between thumbnails produced by
various Windows versions, showing that a
single cryptographic hash for a thumbnail is
insufficient, which has not been previously
discussed in the literature.

• An approach for automatically replicating
the exact thumbnail binaries used by Win-
dows, the benefits of which are two-fold:

i) Thumbnails and cryptographic hashes
can be deterministically generated for dif-
ferent versions of Windows from a single
source image, allowing for wider detection
of contraband. This is particularly impor-
tant as images produce different thumb-
nails between Windows versions. ii) Future
experimental work on Windows thumbnail
caches can be automatically scaled to large
datasets.

• The creation and evaluation of a rapid
triage approach which utilises cryptographic
thumbnail hashes for fast contraband detec-
tion.

• A novel analysis of the potential to use per-
ceptual hashing algorithms to detect con-
traband in thumbnail caches across differ-
ent Windows releases, so as to tolerate im-
age compression and thumbnail variations
between platforms.

Experiments are carried out primarily on the
Windows 10 operating system using the Flickr
1 Million image dataset (Huiskes et al., 2010).
Results show that thumbnail caches comprising
tens of thousands of images can be acquired and
analysed in seconds, allowing investigators to
perform rapid forensic triage.

2. RELATED WORK

2.1 Digital Forensic Triage

Roussev and Quates (2012) suggest that the so-
lution to the problem of digital forensics scala-
bility lies in more sophisticated processing tech-
niques, with inexpensive initial assessments be-
ing used to gain an understanding of the data
prior to committing to more intensive analyses.
The authors present a case study of the effec-
tiveness of a bytewise similarity hashing tool, sd-
hash, to correlate evidence across heterogeneous
devices. Two data streams are generated from
each storage device, the first to generate a foren-
sically sound copy of the disk, with the second
being used to generate similarity hashes, allow-
ing for data to be processed as it is acquired.
File system overheads are avoided by reading



raw data directly from the disk. While effective,
this method requires the use of powerful, multi-
processor, workstations in a lab environment.

Roussev et al. (2013) develop a parallel pro-
cessing model in an attempt to process data as
fast as it is read from disk. Different analyses are
handled by a variety of worker nodes, calculating
traditional cryptographic and similarity hashes,
parsing windows registry and metadata informa-
tion, indexing text, and decompressing files. The
authors note that only traditional cryptographic
hashing was computationally inexpensive enough
to be performed at disk speed. However, ap-
proaches which use small amounts of data, such
as registry analysis, are fast enough in practice.
It was determined that a typical 8-core worksta-
tion is insufficient to do this processing in real-
time, necessitating either drastically more com-
putational power, or data reduction techniques.

The bulk extractor tool, described by
Garfinkel (2013), uses a heavily parallelised
processing model to extract key pieces of
information from a disk data stream. This is
achieved by implementing multiple scanners,
which process images, documents, and other
textual data to extract artefacts such as email
addresses, telephone numbers, and credit card
numbers. Generated histograms provide a visual
overview of potentially important information,
such as the most frequently occurring email
addresses.

While the above methods focus on processing
an entire disk, Young et al. (2012) propose re-
ducing the amount of data to read from a disk
by means of random sampling. A sample of disk
sectors is chosen randomly, with each sector be-
ing cryptographically hashed and compared to
a database of known sectors for contraband de-
tection. This approach was later expanded by
Penrose et al. (2015) to use Bloom filters to re-
duce memory overheads and allow execution on
legacy equipment. Their experiments show that
the processing time depends on sample size and
computer specifications, ranging from seconds
on modern machines with Solid State Drives
(SSDs), to less than an hour in most cases with
traditional hard disks. By selecting an appropri-
ate number of samples, as little as 4MiB of data

can be detected with very high probability on a
large disk in a short time.

Grier and Richard (2015) take a different sam-
pling approach which makes use of investigation-
type specific filters for acquiring evidence from a
digital device. By processing file system meta-
data, key areas of the evidence can be identified
and selectively acquired, with analysis taking
place on this evidential subset. This approach
was shown to reliably capture a large portion of
the relevant evidence while greatly reducing the
amount of data needing to be captured from a
device.

2.2 Centralised Thumbnail Caches In
Windows

In addition to adapting to the increasing volumes
of data, digital forensics research must also inves-
tigate changes in the structure of the data, par-
ticularly as new Operating Systems are released.

Morris and Chivers (2011a) note that a
paradigm shift for storing thumbnails occurred
between Windows XP and Windows Vista, with
a centralised thumbcache structure for each user
replacing the thumbs.db files in each directory.
This means that instead of thumbnails being
found in the same directory as their source files,
they are now located in a per-user store at the
path: [Drive]:/Users/[Username]/AppData/

Local/Microsoft/Windows/Explorer. Sepa-
rate database files store thumbnails of vari-
ous sizes, named thumbcache xxx.db, where
xxx specifies the maximum thumbnail dimen-
sion for each side. For Windows Vista and
Windows 7, these are 32×32, 96×96, 256×256,
and 1024×1024, though thumbnails need not be
square. Each cache entry contains some meta-
data and the thumbnail image itself, which is
stored in JPEG, BMP, or PNG format. Cache
entry IDs are mapped back to their source file
via the thumbcache idx.db file. Images viewed
with the Windows Explorer preview pane gen-
erate 1024 pixel thumbnails unless the images
are small enough to fit a smaller thumbnail size.
256-pixel thumbnails correspond to extra-large
icons, with smaller sizes being used for smaller
previews. Thumbnail generation is not limited
to images, with documents such as PDFs and file



system directories also having thumbnail preview
options. Directory previews look like an open
folder with multiple pages, each corresponding
to an item in the directory. Viewing a direc-
tory icon may trigger thumbnail creation for files
within the directory without the user previewing
them directly. Additionally, entries are created
for files on removable media in the centralised
thumbnail cache. Thumbnails may be removed
from the system using the Disk Clean-up utility
built-in to Windows, and thumbnail generation
can be disabled using group policies.

Windows 8 expands on the thumbnail di-
mensions included in previous versions, adding
16×16, 48×48, and WIDE thumbnails to sup-
port additional start menu functionality (Quick
et al., 2014). Additionally, iconcache x.db
files were added, with corresponding dimensions
matching all thumbcache files.

Parsonage (2012) explores the behaviour
of thumbnail generation on Windows Vista
and Windows 7 further, finding that legacy
thumbs.db files are still being generated when ac-
cessing files using the Universal Naming Conven-
tion (UNC), which specifies a hostname, share
name, and optional file path. Additionally, they
note that thumbnails may be created in a va-
riety of circumstances which do not involve the
original source image being opened or viewed in
thumbnail mode. This includes thumbnails be-
ing automatically generated based on the two
most recently modified files in a directory, for
use by the directory preview. Thumbnails are
also generated as a result of dragging and copy-
ing files, even when such activities are cancelled
by the user.

The existing literature has not described the
changes introduced to the thumbcache in Win-
dows 10, which we present here in Section 3.1.
Additionally, prior work has not discussed the
low level details of how Windows thumbnails are
represented on disk, and how this differs across
Windows versions, both in the binary and pixel
domains, which is discussed in Section 4.2.

2.3 Centralised Thumbnail Caches in
other Operating Systems

Centralised thumbnail caches are not used ex-
clusively in Windows operating systems. Morris
and Chivers (2010) discuss the centralised
thumbnail caches used in versions 9.10 and 10.04
of the Kubuntu and Ubuntu operating systems,
respectively. Thumbnails are stored in the user’s
home directory in ~/.thumbnails1, which is
composed of three sub-directories: fail, large,
and normal. All thumbnails are of the PNG for-
mat and correspond to 128×128 pixels for nor-
mal thumbnails, and 256×256 for large. Thumb-
nails which cannot be generated are tracked us-
ing the ‘fail’ sub-directory. In contrast to Win-
dows, these thumbnail caches have no index; in-
stead, thumbnails are stored directly in these
sub-directories, with MD5 hashes of the source
URI for filenames, allowing for fast thumbnail
lookups. These thumbnails contain the modi-
fied times of the original files, such that updated
originals signal that the thumbnail must be re-
built. Importantly, as the thumbnail cache in
Ubuntu is just a directory, it may be used by
third party programs, thus there is a possibility
that some thumbnails are configured differently
to those generated by the operating system.

Thumbnail generation, storage, and extrac-
tion for the Android operating system is ex-
plored by Leom et al. (2015). The thumb-
nail cache for the built-in Gallery application is
located at /sdcard/Android/data/com.google

.android.gallery3d.cache/imgcache.0, and
is composed of a single file which contains
thumbnails of 200×200 and 640×480 pixels in
the JPEG format. Larger thumbnails are gener-
ated for most pictures when they are created us-
ing the camera application, while smaller thumb-
nails are created when viewing images in the
Gallery application.

Finally, Newcomer and Martin (2014) describe
the per-user thumbnail caches found on Mac
OS X. Thumbnails for the Spotlight and Finder
applications are provided by the QuickLook
technology and are generated for many file types.

1This appears to have moved to ~/.cache/thumbnails

in more recent releases of Ubuntu.



Different thumbnail sizes are used depending
on the finder viewing mode. The directory
containing the cache is located in /private/

var/folders/<2random>/<30random>/C/

com.apple.QuickLook.thumbnailcache for
versions 10.7 and 10.8, with the ‘C’ in the path
being switched for ‘–Caches–’ on the older 10.5
and 10.6 OS. Each user has their own directory
in folders consisting of two random lowercase
characters, potentially including an underscore,
followed by a subdirectory of 30 random char-
acters. It is unclear if this is actually stochastic
or deterministically generated by a hashing
function. An SQLite database, index.sqlite is
used to store information on the location of
each source file, as well as the location of its
thumbnail, which is indexed by referencing
its offset in the corresponding thumbnail.data
binary file containing thumbnail image data.

2.4 Thumbnail Caches in Forensics
Investigations

Using thumbnail caches as part of an investiga-
tion is not a new idea. Quick et al. (2014) both
explore the structure of the Windows thumb-
cache across older Windows versions, but also
evaluate the thumbcache support for a variety of
industry standard forensic tools, such as FTK,
Encase and X-Ways, as well as some thumb-
nail specific tools. The authors note that while
many tools support parsing the Windows thum-
bcache xxx.db files, there was little support for
linking this with the Windows.edb file to match
thumbnails to full sized originals. The authors
propose a method which unifies existing work on
the thumbcache files, Windows.edb, and carving
of edb.

Using hash databases directly for triage is dis-
cussed by Shaw and Browne (2013), where the
thumbnail cache is used as part of a previewing
system for quick device assessment. The authors
also explicitly discuss the use of cryptographic
hash databases for detecting previously encoun-
tered thumbnails bearing illegal content.

The research presented in this paper differs
from prior work in that it acknowledges the
weaknesses of the cryptographic hash approach
for detecting illegal media using thumbnails, par-

Figure 1: A screenshot of thumbcache files
present on Windows 10. Files added in Win-
dows 10 are indicated with boxes. Iconcache and
thumbcaches of dimensions 1024×1024 were re-
moved for Windows 10.

ticularly due to changes in the thumbnailing pro-
cess across Windows versions, which is explored
in Section 4. A method of generating the ex-
act binaries present in the Windows thumbnail
cache is also proposed, which helps alleviate this
issue by automating thumbnail creation in Sec-
tion 3.3. An alternative solution which makes
use of perceptual hashing is also explored in Sec-
tion 5, which does not appear to have been con-
sidered in the literature.

3. AUTOMATICALLY
EXTRACTING THUMBNAILS

Prior work presented in Section 2.2 has fo-
cused on detailing the structure of the Windows
thumbnail cache files, with analysis of the trig-
gering mechanisms for populating the cache, and
the forensic significance of cached thumbnails.
In contrast, this paper seeks to exploit the cen-
tralised nature of Windows thumbnail caches, us-
ing it as a catalogue for images on the device.
This allows contraband to be detected by pro-
cessing a single directory, rather than an entire
disk. Additionally, variations between thumb-
nails produced by different Windows versions are
explored here for the first time.



3.1 Windows 10 Thumbcache

While the Windows 10 thumbnail cache remains
in the same location as its predecessors, sev-
eral changes have been made to the files used
to store the thumbnails. A complete list of
thumbcache files for a Windows 10 user is de-
picted in Figure 1. The 1024×1024 thumb-
nail database was removed, replaced by 768×768
and 1280×1280 pixel thumbnails, with very large
1920×1920 and 2560×2560 thumbnails also be-
ing added. Wide thumbnails also have an extra
file named thumbcache wide alternate.db, while
completely new items are included in the thum-
bcache exif.db, thumbcache custom stream.db,
and respective iconcache files. The thum-
bcache exif.db database appears to contain
thumbnails which are embedded in source
JPEGs, converted to use the quantisation ta-
bles of the other thumbnail databases. Example
thumbcache entries, as displayed by the Thum-
bcache Viewer application (Kutcher, 2016) are
provided in Figure 2.

This paper focuses on the 96×96 and
256×256 thumbnail caches, as they are the
most commonly generated, corresponding to
small/medium/large and extra-large thumbnail
previews. Thumbnails with dimensions of 96 are
stored as bitmaps, while those with 256-pixel di-
mensions are stored as JPEGs. Version 1709 of
Windows 10 (October 2017) enforced a limit of
less than 500MiB on each of these cache files2;
this limitation appears to have been lifted on
later versions (tested on 1803, April 2018). In
place of this file size limitation, the cache is
regularly cleared by the SilentCleanup task in
Windows (Brinkmann, 2019), which runs the
built-in Disk Cleanup utility, resetting the cache
and moving old database files to a ThumbCa-
cheToDelete directory, which is discussed further
in Section 7. Further work is required to test if
old thumbnails which have not been accessed for

2Maximum values of 350MiB for 96-pixel thumb-
nails and 460MiB for 256-pixel thumbnails were
observed, which were verified by users on the com-
munity forum at https://answers.microsoft.com/

en-us/windows/forum/windows 10-files/after

-fall-update-windows-10-puts-a-maximum-size/

6ad0a1e7-38c0-4547-9b8b-f7f3906c3a12).

extended periods of time are removed, but the
current assumption is that they are not.

Even where both the 96-pixel and 256-pixel
thumbcaches are at the size limits imposed by
Windows 10 version 1709, this corresponds to
less than 1GiB of data to process per user, and
approximately 45,000 thumbnails. That is, for
a single user with a 1TB drive, the worst case
for this approach requires that only 0.1% of the
disk is sequentially read. Assuming a sequential
read speed of 100MiB/s3, this would take ap-
proximately 10 seconds to acquire, as opposed
to the three hours required to read the entire
terabyte disk. This value will rise slightly if ad-
ditional thumbnail sizes are processed, or the de-
vice has multiple user accounts.

3.2 Test Dataset and Operating
Systems

The primary focus of this work is Windows
10, however, thumbnails were also examined for
the Windows Vista and Windows 7 operating
systems to facilitate comparison between ver-
sions. The Flickr 1 Million dataset (Huiskes
et al., 2010), composed of 1 million JPEG im-
ages, was used to explore thumbcache forensics
at scale. However, no existing tool allowed for
Windows thumbnails to be generated automat-
ically, nor were there any existing datasets of
Windows thumbnails available. In order to ad-
dress this, a method was developed to create
Windows thumbnails for each Flickr image on
each platform, as described below in Section 3.3.
While this approach allowed for the generation of
96- and 256-pixel thumbnails on Windows 7 and
Windows 10, only 256-pixel thumbnails were au-
tomatically generated on Windows Vista.4 To
compensate for this, a small number of 96-pixel
thumbnails were examined manually for Vista.

3For reference, a modern consumer HDD can sustain
sequential read speeds of approximately 150-200MiB/s,
while consumer SATA3 SSDs peak around 500MiB/s.

4This appears to be caused by the Windows Vista API
not properly supporting the thumbnail dimensions argu-
ment.



Figure 2: A screenshot of the Thumbcache Viewer application on a Windows 10 thumbcache. Data
Checksum is a CRC64 of the entire thumbnail file, while Cache Entry Hash is the ID returned by
the GetThumbnail method, and also serves internally as the file name. The truncated Location is
the file path to the thumbcache file.

3.3 Thumbnail Dataset Generation
for Large Datasets

In order to acquire data to analyse at scale,
the Windows shell API was utilised to gen-
erate thumbnails for images by accessing the
IThumbnailCache interface and calling the
GetThumbnail method.5 This can be used to
force the generation of a new thumbnail or obtain
one which has already been cached for an image.
A parameter allows for the size of the thumbnail
to be controlled, though only one size at a time
may be requested. The API then returns a mem-
ory mapped bitmap, regardless of the format the
thumbnail is stored in (BMP or JPEG). As a re-
sult, without knowing which function Windows
uses to save the memory mapped image to a par-
ticular file type, it is non-trivial to recreate the
exact binary data stored in the thumbcache from
the object the API returns. That is, thumbnails
saved to disk in this fashion will not be iden-
tical with those stored in the cache itself, and
cannot be used directly for cryptographic hash
based contraband detection.

To work around this issue, thumbnails can
be obtained directly by parsing each thumb-
cache xxx.db file after calling GetThumbnail.
This is achieved by keeping track of the IDs re-
turned by each call to GetThumbnail and ex-
tracting items in the cache with matching IDs.
These IDs appear as Cache Entry Hash in Fig-
ure 2, and are derived from a hash function using
the volume GUID, NTFS FILEID, file extension,
and last modified time (Khatri, 2012). For ef-

5https://msdn.microsoft.com/en-us/library/

windows/desktop/bb774628.aspx

ficiency, the thumbcache xxx.db should not be
parsed after each thumbnail is generated. In-
stead, several hundred, or thousand, thumbnails
should be generated at a time, with all of them
being recovered from the thumbcache xxx.db in
a single pass. However, a small enough batch
size should be chosen such that thumbnails are
not overwritten (on older Windows 10 releases)
before they are recovered, with a batch size of
5000 proving effective in this work.

The end result of this processing is a dataset
composed of the exact binaries stored by Win-
dows in the thumbcache files. This dataset can
then be further processed to generate contraband
lookup databases, as described in Section 4 and
Section 5.

4. MATCHING EXACT
THUMBNAIL BINARIES

With a dataset of thumbnails in the format
used by the Windows thumbcache, a lookup
database may be created by calculating crypto-
graphic hash digests, such as SHA256, for each
thumbnail. When examining a Windows com-
puter, each thumbcache xxx.db file may then be
parsed, and each entry in the cache hashed and
checked against this database. This could either
be done in memory while parsing thumbcache
files or after extracting thumbnail images to a
directory.

Section 4.1 discusses the possibility of aug-
menting this approach using CRC64 checksums
which are already present in the thumbcache
files, while Section 4.2 and Section 4.3 discuss
pragmatic concerns for this approach.



4.1 Intermediate Lookups Using
Embedded Checksums

The Windows thumbnail cache stores CRC64
checksums for each thumbnail, depicted as Data
Checksum in Figure 2. This presents the op-
portunity to use these embedded checksums in
a lookup database in the same manner as cryp-
tographic hashes, except that they need only be
parsed as strings from the thumbcache, rather
than calculated from binary data at runtime.

The CRC64 checksum stored in the Windows
thumbnail cache makes use of an unknown poly-
nomial, however the lookup table used to gen-
erate values is stored in the thumbnail.dll file.
Utilising this table, the first 1,024 bytes of the
thumbnail are processed to calculate an initial
CRC64, while the remaining bytes are used to
calculate second CRC64 value. These values are
then combined using the exclusive-OR (XOR)
operator, producing the final checksum which
is stored in the cache. This process was iden-
tified from the source code of the Thumbcache
Viewer (Kutcher, 2016) application and verified
manually by comparing the output and embed-
ded checksums in the thumbcache.

However, these checksums are more likely to
have hash collisions than cryptographic hash-
ing algorithms (Dandass et al., 2008). While
no collisions were observed for Windows 10’s
256-pixel thumbnails, they did occur for the 96-
pixel bitmaps. Three pairs and a triplet of
non-identical 96-pixel thumbnails possessed the
same CRC64 checksum while producing different
SHA256 digests.

As the CRC64 algorithm produces collisions at
the million image scale, CRC64 matches should
be verified using a cryptographic algorithm, such
as SHA256. This is faster than computing
SHA256 hashes for all thumbnails in the thumb-
nail cache, but requires a hash and checksum pair
to be stored for each thumbnail in the lookup
database. In this work CRC64 checksums and
SHA256 hashes were stored separately in two
C++ unordered map structures.

4.2 Thumbnail Differences Between
Windows Operating Systems

Thumbnails from the same version of Windows
were shown to be consistent across two comput-
ers for both Windows 7 and Windows 10, which
also held when using virtual machines. This was
verified by extracting thumnbnails for all images
in the Flickr 1 Million dataset for multiple com-
puters and verifying that SHA256 image hashes
were identical between machines. As such, hard-
ware differences should not cause thumbnails to
be generated differently. However, an examina-
tion of the thumbnails produced by Windows
Vista, Windows 7, and Windows 10, showed that
binary identity cannot be relied upon across dif-
ferent Windows versions, even when produced on
the same computer. Differences can be explained
in terms of the Windows API used to generate
the thumbnails by the operating system, which
can undergo change over time, such as when a
new operating system is released. Based on prior
Windows API version numbering, major changes
to the API occur when a new operating system is
released, and as such, thumbnail cache behaviour
is likely to remain stable within a given version
of Windows.

The following discussion examines thumbnail
differences between Windows versions in some
detail, with findings that could potentially have
implications for everyday investigations.

4.2.1 96-pixel Thumbnail Differences

All 96-pixel thumbnails are stored in the BMP
format in the cache, however, they are not gen-
erated in an identical fashion between Windows
versions. Following the standard 64 byte BMP
file header, Windows Vista and 7 use the 40-byte
BITMAPINFOHEADER for the Bitmap Information
Header, while Windows 10 uses the longer 124
byte BITMAPV5HEADER. Additionally, while Win-
dows Vista and Windows 7 use no compression,
Windows 10 makes use of bitfields compression,
meaning that the raw binary data will not be
directly comparable to prior Windows releases.
Pixel data for thumbnails, after extraction from
the BMP format, was shown to be frequently
identical across Windows versions, however, this



Figure 3: An image diff of the Windows 7 and
10 thumbnails (96-pixel) generated for 2.jpg in
the Flickr 1 Million dataset. Diff produced using
the resemble.js library. Pixel differences in pink
highlight that each Windows version may create
slightly different thumbnail outputs.

was not the case for the entire dataset. Figure 3
depicts an instance where two Windows versions
produce different bitmap data for the same input
image, with differences being highlighted by the
resemble.js library (Cryer, 2017).

A further complication is the portion of the
image used to produce the thumbnail in the
first place. Windows 7 was observed to derive
the 96-pixel thumbnails from embedded EXIF
thumbnails when available, rather than from the
full sized image. This can produce a thumbnail
preview which is cropped differently to the full
sized image, such that the thumbnail may con-
tain elements which are no longer present in the
full sized image. This can occur because the
embedded EXIF thumbnail is not always up-
dated when an image is cropped or otherwise
edited (Kuksov, 2016). An example of this phe-
nomenon is provided in Figure 4, where elements
of the uncropped original are present in the EXIF
and Windows 7 thumbnails but are no longer
present in the full sized version. This behaviour
was present for thumbnails generated by both
the API calls and manual inspection of 96-pixel

thumbnails on Windows 7, but was not repro-
duced in Windows Vista or Windows 10. Curi-
ously, the 256-pixel thumbnails in Windows 7 are
not generated from the embedded EXIF thumb-
nail, meaning that a user would see different im-
age previews when switching between thumbnail
sizes in Windows Explorer.

Figure 4: A comparison of 49530.jpg from the
Flickr dataset with its embedded EXIF thumb-
nail, Windows 7 thumbnail, and Windows 10
thumbnail. Image dimensions provided. Win-
dows 7 uses embedded EXIF thumbnails to gen-
erate the 96-pixel thumbcache entries, which
are not necessarily updated when an image is
cropped or otherwise modified.

4.2.2 256-Pixel Thumbnail Differences

256-pixel thumbnails are stored in the JPEG for-
mat, which allows for varied compression pa-
rameters. Images across all three operating sys-
tems were found to use the default Huffman ta-
bles provided in the JPEG specification, how-
ever there are differences in the quantisation ta-
bles used. Windows Vista and Windows 7 share
the same quantisation tables, while Windows 10
uses a table with finer quantisation on the higher
DCT frequencies, resulting in higher image qual-
ity. This means that binary identity is lost as
the thumbnails effectively have different quality
settings. However, despite using the same quan-
tisation tables, Windows Vista and Windows 7
also produce different binaries, with no images
in the Flickr 1 Million dataset producing the
same SHA256 digest across versions due to pixel
differences. The reason for this difference can-



not be attributed to the header and compression
settings, which are identical on Windows 7 and
Vista. The difference, then, must be the thumb-
nail API, introduced either in the rescaling of
the image, or in the encoding of the JPEG data
stream.

A comparative overview of both thumbnail
types is provided for the three tested Windows
versions in Figure 5.

4.3 Dealing With Differences:
Version Specific Databases

As the thumbnails produced by different ver-
sions of Windows frequently contain different bi-
nary data, it is not possible to create a uni-
versal lookup database from thumbnails gener-
ated on a single Windows release. For tradi-
tional cryptographic hash based lookups, one
or more databases need to be created by gen-
erating thumbnails for each Windows variant.
This would mean either a single unified lookup
database or a set of OS-specific thumbnail
databases, which may also contain CRC64 check-
sums. Additionally, thumbnails of each dimen-
sion must be hashed separately, increasing the
total number of databases and fingerprints.

While this may add to overall maintenance
overheads, its use for triage means that less com-
monly encountered operating systems need not
be accommodated. Instead, the database could
be maintained for the most popular, or most re-
cent, Windows releases, which would make up
the bulk of a typical investigator’s workload.
Figures for 2019 show that Windows 10 makes
up close to 60% of Windows installations and is
still increasing, with Windows 7 being the second
most popular at approximately 30%6. Assum-
ing the distribution of Windows versions in typ-
ical forensic investigations is roughly the same,
this means that maintaining a database for the
top two releases would accommodate 9 out of
10 investigations on Windows machines seized
in 2019. Of course, investigative backlogs mean
that computers being analysed today may have
been seized several years ago. Looking back to
2016 (three years at the time of writing), Win-

6http://gs.statcounter.com/os-version-market

-share/windows/desktop/worldwide

dows 7 and Windows 10 made up approximately
40% each of all Windows computers, meaning
that 8 out of 10 Windows PCs were running the
top two releases7.

5. ROBUST THUMBNAIL
MATCHING

Cryptographic hashes are simple to calculate and
have constant time database lookups. However,
their rigidity in only matching exact binary con-
tent proves troublesome for the thumbnail vari-
ations found across Windows operating system
versions. One method for de-coupling thumbnail
lookup databases from specific Windows versions
is to focus on detecting thumbnails which are vi-
sually identical, rather than checking for identity
in the binary domain. This visual robustness can
be achieved by using perceptual hashing tech-
niques (Hadmi et al., 2012), which aim to gener-
ate robust signatures from visual features, pro-
viding tolerance to content-preserving changes in
the binary data. This would allow a full sized im-
age to be compared directly to its corresponding
thumbnail, regardless of thumbnail dimensions,
compression differences, or source Windows ver-
sion.

Perceptual hashing approaches typically per-
form well even when images have been
rescaled. This means that images in the thum-
bcache xxx.db files may be compared to a
database of perceptual hashes generated from
the original, full sized, contraband images. No
intermediate thumbnails, or databases, need to
be generated, which frees this approach from the
operating system API. Indeed, assuming a ro-
bust perceptual hashing technique, this method
should be completely operating system indepen-
dent, performing equally well on Windows and
non-Windows platforms.

5.1 Choices of Perceptual Hash

While there are many approaches to perceptual
hashing, with their own properties and weak-

7Taking into account that all Windows operating sys-
tems had a combined market share of approximately 85%
in 2016, this means that 7 out of 10 of ALL computers
seized in 2016 would have been either Windows 7 or Win-
dows 10.



Figure 5: A comparison of thumbnail images for Windows Vista, Windows 7, and Windows 10.
Chrominance quantisation tables are omitted for brevity.

nesses (Breitinger et al., 2013), many of the
published approaches do not provide implemen-
tations. As such, a pragmatic approach was
taken where two popular perceptual hashing al-
gorithms with open source implementations were
chosen for this work. A brief description of each
perceptual hashing method is provided below.

Phash: The Phash library (Klinger & Stark-
weather, 2012) is an open source perceptual
hashing library for performing image compar-
isons. However, the original codebase has not
been updated in some time. As a result, a sim-
ilar, more recent, implementation was chosen in
the Python ImageHash library (Buchner, 2017).
This library contains several perceptual hash-
ing approaches, including ahash (average colour
hashing), dhash (gradient tracking), whash (dis-
crete wavelet transform), and a modification of
the original Phash (discrete cosine transform).
Based on initial testing, the modified Phash al-
gorithm was chosen as it had the best perfor-
mance on the thumbnail datasets. Frequency
transformations, such as the DCT used in Phash,
are able to capture essential properties of an im-
age and have proven to be effective in the litera-
ture (Hadmi et al., 2012).

Blockhash: The Blockhash algorithm (Yang
et al., 2006) breaks an image into blocks
and compares the mean colour values between
blocks to create a signature. As the origi-
nal paper does not provide an implementation,
a third party derivative implementation was
used (Commonsmachinery, 2018).

Default hash sizes for both algorithms were
used (64-bit for Phash, 256-bit for Blockhash).
The distance between two hashes was calculated
using the Hamming distance, which is simply the
sum of bit differences between signatures. The
normalised Hamming distance was then calcu-
lated by dividing this sum by the length of the
hash digest. This produces a distance between
0 and 1, where 0 indicates an identical percep-
tual hash, and 1 indicates that all bits are dif-
ferent. Reported distances below refer to this
normalised Hamming distance.

5.2 Determining Distance Thresholds
For Matching Images

Ideally, visually identical images should produce
the same perceptual hash digest, and hashes for
almost identical images should only differ by a
small number of bits. As the thumbnails for a
single source image can differ across Windows



versions, having a matching algorithm which tol-
erates small variations is necessary. One way to
achieve this is to set distance thresholds for what
constitutes an image match, while making sure
that this threshold is small enough to avoid vi-
sually dissimilar images from being considered
a match. For example, setting the threshold to
t = 0.3 would mean that images with a percep-
tual hash bit difference of less than 3-in-10 would
be considered a match, while anything above this
is not a match.

In order to determine an appropriate distance
threshold for image matches it was necessary to
explore typical distances between unrelated im-
ages. Thresholds were evaluated for the full sized
images in the Flickr 1 Million dataset by calcu-
lating pairwise distances from each image to 50
random images in the dataset, with no repeated
pairings. Duplicate binary files as determined
by the SHA256 algorithm were not included, re-
sulting in a sample of slightly less than 50 million
pairwise comparisons, of the potential 500 billion
comparisons.

For both perceptual hashing algorithms, the
mean and median normalised hamming distances
were almost exactly 0.5, and appear to be nor-
mally distributed (see Figures 6 and 7). As im-
ages in the Flickr dataset should be unrelated8,
these comparisons should hold for any heteroge-
neous dataset. This result likely reflects design
choices behind the algorithms, where two unre-
lated images should produce hashes which are
around 50% different on average.

Based on this data, it is possible to derive
false positive rates for various distance thresh-
olds for unrelated Flickr 1 Million images. In
this context, a false positive occurs when two
non-identical images in the dataset register as
matches for a given distance threshold. If this
occurs often, then the distance threshold is too
high, however, setting the threshold too low
may exclude some legitimate matches, generat-
ing false negatives.

False positive rates in this dataset are provided
for various thresholds in Table 1. As there are

8Though there is at least one case where an image has
identical pixel data but a different SHA256 hash digest.

Figure 6: Phash normalised Hamming distance
distribution for the 50 million sample compar-
isons of the original Flickr 1 Million dataset. Dis-
tances values appear to have fewer discrete val-
ues than those for Blockhash, resulting in small
gaps between bars.

Figure 7: Blockhash normalised Hamming dis-
tance distribution for the 50 million sample com-
parisons of the original Flickr 1 Million dataset.

only expected to be tens of thousands of poten-
tial thumbnails on a device, given the Silent-
Cleanup task (Brinkmann, 2019), a relatively
high false positive rate may be acceptable. A
false positive rate of 0.01% would generate ap-
proximately five false positives for every 50,000
thumbnails, which places little burden on a hu-
man examiner during manual verification. De-
spite having a nearly identical mean and stan-
dard deviation, the distance thresholds for each
perceptual hash are quite different. This can
be explained by the lower utilisation of the nor-
malised Hamming space by Phash, partially due
to it using a lower number of bits per hash (64-
bit vs 256-bit). However, this is a result of using



the default hash size for Phash, and, as such, is
not corrected for statistically.

Using a false positive rate of 0.01%, the ef-
fective false negative rates for detecting image
thumbnails were calculated. A false negative oc-
curs when a full sized image and its thumbnail is
not considered to be a match, and is caused by
the distance threshold being set too low. In the
context of an investigation, this would mean that
an item of contraband was not automatically de-
tected, even though it is present in the thumb-
nail cache. False negative rates for Windows 10
are provided in Table 2, with values for Win-
dows Vista and Windows 7 being almost iden-
tical. Both algorithms were found to miss 1-in-
2000–4000 thumbnails. This can be attributed
to both weaknesses in the algorithms and char-
acteristics of the thumbnailing process. Phash
was found to be particularly poor when detect-
ing thumbnails with fractals or repeated patterns
(Figure 8), while Blockhash was poor when im-
ages possessed large areas with little to no vari-
ation in colour (Figure 9).

The weakness of each algorithm may be mit-
igated by using both algorithms simultaneously,
calculating the distance for each perceptual hash
and only utilising the lower of the distances.
This effectively decreases the false negative rate
to approximately 0.002%, or 1-in-50,000. As
this method is designed for rapid triage, and al-
ready makes assumptions about images being in
the thumbnail cache, this level of performance
should be acceptable in most cases. However this
may be unacceptable in scenarios where there
may be only a single image present in the cache
and no manual verification is performed.

Unfortunately, the false negative rate cannot
be reduced by simply increasing the distance
threshold, as some thumbnails were observed to
have a hamming distance greater than 0.5 to the
full sized version, which is larger than the mean
distance to a completely unrelated image. It is
conceivable that there exists a perceptual hash-
ing algorithm which performs better in this use
case and would provide a higher degree of con-
fidence that no thumbnail has been overlooked.
An ideal algorithm should primarily address the
problem of scale invariance, such that the same

fingerprint is generated from an image regard-
less of resizing. Ideally, all thumbnails would fall
within some well defined distance of their full
sized counterparts, such that the false negative
rate is effectively zero. However, a sufficiently
low false negative rate may be tolerable, as long
as it is unlikely to affect any investigative deci-
sions (James & Gladyshev, 2013). One further
consideration is the performance of evaluating
hash lookups in Hamming space, which is not as
fast as the constant time lookups of traditional
hashing mechanisms. However, this problem has
solutions in the literature, such as multi-hash in-
dexes (Norouzi et al., 2012).

6. BENCHMARKS

To be effective, thumbnail based triage must be
very fast. As such, timed benchmarks were ex-
ecuted to assess the lookup performance of the
cryptographic hash based approach. Perceptual
hashes were omitted as the two algorithms tested
were considered to be insufficiently accurate.

The first 10 images (0.jpg to 9.jpg) from the
Flickr 1 Million collection were chosen to serve
as known lookup items and were converted to
96 and 256-pixel thumbnails. These thumbnails
were then processed to produce SHA256 and
CRC64 fingerprints for automatic detection. The
database was loaded into memory and populated
with five million randomly generated CRC64 and
SHA256 values to provide appropriate scale.

Two thumbnail cache files were then populated
using the GetThumbnail method (as discussed
in Section 3.3), with the first 10,000 images in
the Flickr 1 Million dataset being cached for
thumbcache 96.db and the first 25,000 for thum-
bcache 256.db. These numbers were chosen as
they are near the maximum observed capacities
of these files on older versions of Windows 10,
and as such would avoid thumbnails being over-
written or deleted. This resulted in cache files
of 257MiB and 362MiB, respectively, which were
then copied to avoid further manipulation.

Two machines were selected to perform the
comparison. A workstation (Core-i5 4690k,
16GiB DDR3, 525GB Crucial MX300 SSD, 4TB
Western Digital Red HDD) and netbook (Atom



Figure 8: Sample images where Phash performs poorly when comparing original image to 256-pixel
thumbnails. Distance is normalised Hamming distance.

Figure 9: Sample images where Blockhash performs poorly when comparing original image to 256-
pixel thumbnails. Distance is normalised Hamming distance.

96px Thumbnails 256px Thumbnails

CRC+ SHA CRC+ SHA

Workstation HDD 2.22s 2.20s 3.03s 3.02s
Workstation SSD 0.60s 0.81s 0.85s 1.28s

Netbook HDD 4.80s 6.66s 5.07s 11.16s

Table 3: Benchmarks for the parsing and lookup times for thumbcache 96.db and thumbcache 256.db,
containing 10k and 25k images, respectively. CRC+ verifies initial CRC64 hits with SHA256 lookups.
Reported values are the median across 30 iterations of the experiment.



False Positive Rate 0.00001% 0.0001% 0.001% 0.01%

Phash Distance 0.1250 0.1875 0.2188 0.2500
Blockhash Distance 0.0469 0.0781 0.1172 0.1641

Table 1: False positive match rates and their corresponding Phash and Blockhash distance thresholds
for pair-wise comparisons in the full sized Flickr 1 Million dataset.

False Negative Rate
(Distance: 0.2500 Phash, 0.1641 Blockhash)

Phash Blockhash

Win10 96-pixel 0.0494 0.0467
Win10 256-pixel 0.0227 0.0404

Table 2: False negative rates for each perceptual hash algorithm when comparing full sized Flickr 1
Million images to their Windows 10 thumbnails. Distance thresholds are set for a 0.01% false positive
rate.

N450, 1GiB DDR2, 160GB Western Digital
HDD (OS)) were used, which allowed for the ex-
ploration of the performance using a relatively
high specification machine and a slower, legacy
system. These machines were then used to parse
each thumbcache xxx.db using a single threaded
approach, with each item being looked up in the
corresponding hashset.

Benchmarks were performed on the worksta-
tion using both the HDD and SSD, while the
netbook used only its internal hard drive. Two
lookup modes were tested for each thumbnail
size: i) initial CRC64 lookups, with positive
hits being verified with SHA256 (CRC+), and
ii) SHA256 only (SHA), as described above in
Section 3. The overall execution time does not
include the time taken to read lookup databases
into memory, as it is assumed that they would be
contained in the forensic application’s executable
in practice. Each run was repeated 30 times,
with the memory cache being cleared each time
using the EmptyStandbyList utility (Liu, 2016).

The median benchmark times9, shown in Ta-
ble 3, indicate that this approach is very fast,

9Median rather than mean, to account for small vari-
ance due to background processes in Windows, particu-
larly on the netbook.

regardless of the storage media used, taking ap-
proximately three seconds in the worst case on
the workstation, and 11 seconds on the netbook.
Initial CRC lookups offered no benefit when us-
ing the Workstation’s hard drive, but reduced
times by approximately 25% on the SSD, and
30–50% on the netbook. As parsing the SHA-
only approach is sufficiently fast, it is likely not
worth the extra memory overhead, or database
upkeep, to perform CRC lookups.

While there is no guarantee that contraband
on a device will have a thumbnail in one of
the corresponding thumbcache xxx.db files, this
technique is fast enough to be used as an ini-
tial check in a forensics investigation. Addition-
ally, this extraction and processing time does not
change with the size, or number, of disks present
in a device, as the time taken is related only to
the number of entries present in the individual
thumbcache xxx.db files, and number of users on
each device.

All thumbnail cache extraction and parsing
code used in this work are available online at
https://github.com/smck1/shellthumbs.



7. DISCUSSION

The thumbnail cache on Windows operating sys-
tems can be used as a centralised catalogue of
images on a device. However, it should be noted
that there is no guarantee that an image which
resides on a computer will be present in the
thumbnail cache. The literature discusses var-
ious triggering mechanisms for caching, in some
cases showing that images need not even be
viewed to be present in the cache. Despite this,
the Windows thumbnail cache is a user specific
image preview store which does not appear to
pro-actively cache all images on the device. How-
ever, it does represent the most recently viewed
items in Windows Explorer.

Morris and Chivers (2011a) previously investi-
gated deletion behaviour of thumbnails on Win-
dows 7, finding that when the original image
is deleted, the cache entry is not necessarily
purged. When the thumbnail cache is cleared
using the Disk Cleanup utility (Cleanmgr.exe)
built-in to Windows, all thumbcache xxx.db files
are temporarily moved to a subdirectory named
‘ThumbCacheToDelete’, with fresh databases
taking their place (Morris & Chivers, 2011a).
This behaviour was also present in our experi-
ments on Windows 10, including purges initiated
by SilentCleanup (Brinkmann, 2019), and indi-
cates that entire cache databases may be found
in unallocated disk space, even after an attempt
to purge them. As such, during triage it would be
wise to check the thumbnail cache directory for
deleted versions of ThumbCacheToDelete with
a forensic preview tool or to parse the NTFS
Master File Table (MFT) for deleted cache
databases.

When using traditional cryptographic hashing
it is necessary to store multiple hashes for each
source image, for both different thumbnail di-
mensions and operating system versions. This
will likely mean that the hash database is too
large to store in main memory, however, Bloom
filters have been shown to be an effective mit-
igation tactic in the literature (Penrose et al.,
2015). Bloom filters can also be used for percep-
tual hash databases, which may include hashes
for more than one perceptual hashing algorithm

to provide robustness.

While this paper discusses centralised thumb-
nail caches for the Windows operating system,
the literature indicates counterpart centralised
caches on Ubuntu, Android, and MacOS, which
could be similarly exploited. When perceptual
hashes are employed, fingerprints should be rep-
resentative of the thumbnail regardless of oper-
ating system, and can be compared directly to
the thumbnails present in the cache. However,
further work is required to explore the false pos-
itive and negative rates for thumbnails on non-
Windows devices, as the thumbnail generation
process may impact detection performance. It
is also recommended to create perceptual hashes
for embedded EXIF thumbnails, as these may be
used to create thumbnails, as with the 96-pixel
thumbnails on Windows 7. When utilising tradi-
tional cryptographic hashing, the corresponding
thumbnail generation APIs for each operating
system must be utilised to generate the thumb-
nails for hashing. Further work would also need
to verify if changes occur between operating sys-
tem versions, though there is the possibility of
applying the same hashes to a large number of
Linux distributions. However, as the traditional
hashing approach entails a lot of maintenance
and is heavily reliant on operating system APIs,
the perceptual hashing method is recommended
for operating system interoperability.

The process for conducting thumbcache based
triage on Windows is as follows: After mount-
ing the device read-only, User directories on
the device are enumerated, and the thumb-
cache xxx.db files for each user are parsed in
turn. Each thumbnail binary in the database
file is then hashed and compared to the contra-
band hash set. After parsing allocated thumb-
cache files, the existence of allocated or deleted
ThumbCacheToDelete directories should be ex-
plored in order to recover previous versions of
the cache. If records in the database files match
hashes for known contraband, the investigator
can then attempt to locate the original file by
cross referencing the thumbnail in the Windows
search index stored in Windows.edb (Morris &
Chivers, 2011b), though there may not be an en-
try. This process is summarised in Algorithm 1.



Algorithm 1: Thumbnail Triage - Pseu-
docode to count number of thumbnail
database hits on a Windows machine and
check for the full file path

Input: Evidence Drive
Output: Hit Count
hit count = 0;
media = openReadOnly(disk);
for user in media/Users/ do

thumbcache dir =
media/Users/user/Appdata/Local

/Microsoft/Windows/Explorer/;
for thumbcache in thumbcache dir do

/ / thumcache dir should also
include ThumbCacheToDelete

for record in thumbcache do
thumbhash =
hash(record.image);

if thumbhash in contraband db
then

hit count++;
thumbID = record.ID;
path = lookupID(thumbID,
Windows.edb);

if path then
print(path);

end

end

end

end

end
return hit count

8. CONCLUSIONS AND
FUTURE WORK

This paper has shown that centralised thumb-
nail caches offer an opportunity to perform rapid
forensic triage and contraband detection, poten-
tially saving a huge number of investigator hours
during the on-site portion of an investigation.
This can help focus the investigation and quickly
identify devices of interest. Cryptographic hash
analysis of the Windows 10 thumbcache can be
performed in a matter of seconds, even on low
end legacy equipment. The cache itself serves
as a sample of recent images on the device, re-

ducing processing of entire disks to a few hun-
dred megabytes. The automatic thumbnail gen-
eration approach using Windows APIs allows
for thumbnails to be generated and hashed for
multiple Windows versions, facilitating detection
across a wider range of Windows versions with-
out having come across each thumbnail directly
in an investigation. Similarly, the use of per-
ceptual hashing allows for detection to be gener-
alised across all Windows version without need-
ing to generate intermediate thumbnail images.

While this paper focuses on Windows 10, fur-
ther research would allow the technique to be
expanded to other operating system and mobile
devices. This can be achieved by further refining
the application of perceptual hashing techniques
to detect target thumbnails of any dimensions
and compression ratio. Flexible thumbnail fin-
gerprint matching will allow for a single finger-
print database to be maintained, which may be
used to detect contraband swiftly across any de-
vice using centralised thumbnail stores.

Future work includes empirically evaluating
thumbnail evidence in historical cases in order
to determine a base rate of detection, and like-
lihood of key evidence being found in the cache.
It would also be useful to conduct an empiri-
cal analysis of the operating system distribution
of seized machines relative to the market share
of all operating systems at the time of seizure.
This would enable law enforcement to make in-
formed decisions about which databases to main-
tain. Additional work is also required to ex-
plore the fine grained behaviour of the thumbnail
cache, such as cache sizes which trigger a cache
reset, and whether or not old items are ever re-
moved from the cache. Thumbnail analysis is
fast and may be a key mechanism in reducing
the large forensics backlogs suffered by modern
law enforcement agencies across the world.

9. ACKNOWLEDGEMENTS

This research was supported by a scholarship
provided by Peter KK Lee.



REFERENCES

Beebe, N. (2009). Digital forensic research: The
good, the bad and the unaddressed. In
IFIP International Conference on Digital
Forensics (pp. 17–36). Springer.

Breitinger, F., Liu, H., Winter, C., Baier, H., Ry-
balchenko, A., & Steinebach, M. (2013).
Towards a process model for hash func-
tions in digital forensics. In International
Conference on Digital Forensics and Cyber
Crime (pp. 170–186). Springer.

Brinkmann, M. (2019, March). How to
block the automatic cleaning of Win-
dows 10’s Thumbnail Cache - gHacks
Tech News. Retrieved 2019-07-09, from
https://www.ghacks.net/2019/03/04/

how-to-block-the-automatic-cleaning

-of-windows-10s-thumbnail-cache/

Buchner, J. (2017). ImageHash. Retrieved 2018-
08-24, from https://pypi.org/project/

ImageHash/

Commonsmachinery. (2018, July). Con-
tribute to blockhash development by
creating an account on Github. Com-
mons Machinery. Retrieved 2018-
08-24, from https://github.com/

commonsmachinery/blockhash (original-
date: 2014-09-02T17:46:34Z)

Cryer, J. (2017, August). Resemble.js: Image
analysis and comparison. Huddle. Re-
trieved 2017-08-25, from https://github

.com/Huddle/Resemble.js (original-
date: 2013-02-21T14:25:27Z)

Dandass, Y. S., Necaise, N. J., & Thomas, S. R.
(2008, April). An Empirical Analysis of
Disk Sector Hashes for Data Carving. J.
Digit. Forensic Pract., 2 (2), 95–104. doi:
10.1080/15567280802050436

Franqueira, V. N., Bryce, J., Al Mutawa, N.,
& Marrington, A. (2018, December). In-
vestigation of Indecent Images of Children
cases: Challenges and suggestions collected
from the trenches. Digital Investigation.
doi: 10.1016/j.diin.2017.11.002

Garfinkel, S. L. (2010, August). Digital foren-
sics research: The next 10 years. Digital
Investigation, 7 , S64–S73. (DFRWS USA

2010. The Proceedings of the Tenth Digi-
tal Forensics Research Workshop. Philadel-
phia. Aug 2-4, 2010.). doi: 10.1016/j.diin
.2010.05.009

Garfinkel, S. L. (2013, February). Digital
media triage with bulk data analysis and
bulk extractor. Computers & Security , 32 ,
56–72. doi: 10.1016/j.cose.2012.09.011

Grier, J., & Richard, G. G. (2015, August).
Rapid forensic imaging of large disks with
sifting collectors. Digital Investigation, 14 ,
S34–S44. doi: 10.1016/j.diin.2015.05.006

Hadmi, A., Ouahman, A. A., Said, B. A. E.,
& Puech, W. (2012). Perceptual
image hashing. INTECH Open Ac-
cess Publisher. Retrieved 2016-08-23,
from http://cdn.intechopen.com/

pdfs/36921/InTech-Perceptual image

hashing.pdf

Huiskes, M. J., Thomee, B., & Lew, M. S. (2010).
New trends and ideas in visual concept de-
tection: the MIR flickr retrieval evaluation
initiative. In Proceedings of the interna-
tional conference on Multimedia informa-
tion retrieval (pp. 527–536). ACM.

James, J. I., & Gladyshev, P. (2013, Septem-
ber). A survey of digital forensic investi-
gator decision processes and measurement
of decisions based on enhanced preview.
Digital Investigation, 10 (2), 148–157. doi:
10.1016/j.diin.2013.04.005

Khatri, Y. (2012). Windows 7 Thumbcache
hash algorithm. Retrieved 2017-11-09,
from http://www.swiftforensics.com/

2012/06/windows-7-thumbcache-hash

-algorithm.html

Klinger, E., & Starkweather, D. (2012, Octo-
ber). pHash the open source perceptual
hash library. Retrieved 2017-08-24, from
http://www.phash.org/apps/

Kuksov, I. (2016). What EXIF can tell about the
photos you post online. Retrieved 2018-03-
22, from https://www.kaspersky.co.uk/

blog/exif-privacy/7893/

Kutcher, E. (2016, October). Thumb-
cache Viewer - Extract thumbnail im-
ages from the thumbcache *.db and icon-
cache *.db database files. Retrieved 2017-



08-24, from https://thumbcacheviewer

.github.io/

Leom, M. D., DOrazio, C. J., Deegan, G., &
Choo, K.-K. R. (2015, August). Foren-
sic Collection and Analysis of Thumbnails
in Android. In (pp. 1059–1066). IEEE. doi:
10.1109/Trustcom.2015.483

Lillis, D., Becker, B., O’Sullivan, T., & Scanlon,
M. (2016, April). Current Challenges and
Future Research Areas for Digital Foren-
sic Investigation. arXiv:1604.03850 [cs] .
(arXiv: 1604.03850)

Liu, W. J. (2016, January). Empty
Standby List. Retrieved 2017-08-31,
from https://wj32.org/wp/software/

empty-standby-list/

Morris, S., & Chivers, H. (2010). A com-
parative study of the structure and be-
haviour of the operating system thumbnail
caches used in Kubuntu and Ubuntu (9.10
and 10.04). Proc. of the 4th Cybercrime
Forensics Education & Training. Canter-
bury Christ Church University, Canter-
bury, UK .

Morris, S., & Chivers, H. (2011a). An analy-
sis of the structure and behaviour of the
Windows 7 operating system thumbnail
cache. In Proceedings from 1st Cyberforen-
sics Conference.

Morris, S., & Chivers, H. (2011b). Forming a Re-
lationship between Artefacts identified in
thumbnail caches and the remaining data
on a storage device. Cybercrime Forensics
Education and Training .

Newcomer, S., & Martin, L. (2014). Determining
User Actions In Os X Based On Quicklook
Thumbnail Cache Database Entries. Issues
in Information Systems, 15 (2).

Norouzi, M., Punjani, A., & Fleet, D. J. (2012).
Fast search in hamming space with multi-
index hashing. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE
Conference on (pp. 3108–3115). IEEE.

Parsonage, H. (2012). Under My Thumbs Re-
visiting Window s thumbnail databases and
some new revelations about the forensic
implications. Retrieved 2017-06-14, from
http://computerforensics.parsonage

.co.uk/downloads/UnderMyThumbs.pdf

Penrose, P., Buchanan, W. J., & Macfarlane,
R. (2015, March). Fast contraband de-
tection in large capacity disk drives. Dig-
ital Investigation, 12, Supplement 1 , S22–
S29. (DFRWS EU 2015. The Proceedings
of the Tenth Digital Forensics Research
Workshop. Dublin. March 23-26, 2015.).
doi: 10.1016/j.diin.2015.01.007

Quick, D., & Choo, K.-K. R. (2014, December).
Impacts of increasing volume of digital
forensic data: A survey and future research
challenges. Digital Investigation, 11 (4),
273–294. doi: 10.1016/j.diin.2014.09.002

Quick, D., Tassone, C., & Choo, K.-K. R. (2014).
Forensic Analysis of Windows Thumbcache
files. Quick D, Tassone C and Choo KK R.

Roussev, V., & Quates, C. (2012, August). Con-
tent triage with similarity digests: The
M57 case study. Digital Investigation, 9 ,
S60–S68. (DFRWS USA 2012. The Pro-
ceedings of the Tenth Digital Forensics Re-
search Workshop. Washington DC. August
6-8, 2012.). doi: 10.1016/j.diin.2012.05
.012

Roussev, V., Quates, C., & Martell, R. (2013,
September). Real-time digital forensics
and triage. Digital Investigation, 10 (2),
158–167. doi: 10.1016/j.diin.2013.02.001

Shaw, A., & Browne, A. (2013, September).
A practical and robust approach to cop-
ing with large volumes of data submitted
for digital forensic examination. Digital In-
vestigation, 10 (2), 116–128. doi: 10.1016/
j.diin.2013.04.003

Yang, B., Gu, F., & Niu, X. (2006). Block
mean value based image perceptual hash-
ing. In Intelligent Information Hiding and
Multimedia Signal Processing, 2006. IIH-
MSP’06. International Conference on (pp.
167–172). IEEE.

Young, J., Foster, K., Garfinkel, S., & Fairbanks,
K. (2012). Distinct sector hashes for target
file detection. Computer , 45 (12), 28–35.


	Fast Forensic Triage Using Centralised Thumbnail Caches on Windows Operating Systems
	Recommended Citation

	Fast Forensic Triage Using Centralised Thumbnail Caches on Windows Operating Systems
	Cover Page Footnote

	Fast Forensic Triage Using Centralised Thumbnail Caches on Windows Operating Systems

