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Abstract

To accurately model the PV module, it is crucial to include the effects of irradiance and temperature when computing the value of the
model parameters. Considering the importance of this issue, this paper proposes an improved modeling approach using differential evo-
lution (DE) method. Unlike other PV modeling techniques, this approach enables the computation of model parameters at any irradi-
ance and temperature point using only the information provided by the manufacturer’s data sheet. The key to this improvement is the
ability of DE to simultaneously compute all the model parameters at different irradiance and temperature. To validate the accuracy of the
proposed model, three PV modules of different types (multi-crystalline, mono-crystalline and thin-film) are tested. The performance of
the model is evaluated against the popular single diode model with series resistance Rs. It is found that the proposed model gives superior
results for any irradiance and temperature variations. The modeling method is useful for PV simulator developers who require compre-
hensive and accurate model for the PV module.
� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

The modeling of PV module primarily involves the
approximation of the non-linear I–V curves. Over the
years, the circuit based approach has been widely used to
characterize the PV module. The simplest model is the cur-
rent source in parallel to a diode (Yun Tiam et al., 2004;
Kajihara and Harakawa, 2005). It involves the determina-
tion of three model parameters, namely photo-current
(IPV), diode saturation current (Io) and ideality factor (a).
An improved version includes an additional series resis-
tance (Rs) to the circuit (Khouzam et al., 1994; Walker,
2001; Weidong et al., 2004; Chenni et al., 2007; Matagne
et al., 2007). This is known as Rs-model. Although this
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model is more accurate, it exhibits serious deficiencies when
subjected to high temperature variations because it does
not account for the open circuit voltage coefficient, KV

(Walker, 2001). Furthermore, it suites well for crystalline
module (i.e. mono and multi crystalline), but exhibits con-
siderable inaccuracy when applied to the thin-film technol-
ogy (Ishaque et al., 2011). A further modification which
includes a resistance, Rp in parallel to the diode was sug-
gested by various authors (Chegaar et al., 2001; Shengyi
and Dougal, 2002; Sera et al., 2007; Villalva et al., 2009).
This model known in literature as Rp-model offers a good
compromise between simplicity and accuracy and has been
applied widely (Carrero et al., 2007). With the inclusion of
Rp, however, the number of parameters is increased to five
namely IPV, Io, a, Rs and Rp.

Due to the transcendental nature of the current equation
for PV module, significant computation effort is required to
obtain all the five model parameters. Out of these, only IPV
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Fig. 1. Ideal PV circuit model.
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and Io can be calculated analytically (Villalva et al., 2009).
The remaining parameters, i.e. a, Rs and Rp have to be
determined numerically. These normally involve iterative
process using numerical methods such as Newton Raphson
(Villalva et al., 2009). Consequently, a, Rs and Rp cannot
be computed simultaneously along with IPV and Io for a
particular environmental condition i.e. temperature and
irradiance. For instance, in (Walker, 2001), the value of
Rs can be obtained analytically but the value of a has to
be kept constant while Rp is assumed to be infinity. In
(Matagne et al., 2007; Weidong et al., 2004) an iterative
method is used to estimate the values of a and Rs. How-
ever, the effect of Rp was not considered in the computa-
tion. In (Villalva et al., 2009), the value of Rs and Rp are
iterated simultaneously but a constant value of a has to
be used.

Since the physical behavior of PV module are strongly
influenced by irradiance and temperature, it is imperative
to compute all the model parameters simultaneously. Fail-
ing to do so, as the approaches mentioned above demon-
strated, causes certain degree of degradation in accuracy.
Recently several works have been carried out to resolve this
issue using artificial intelligence (AI) techniques such as
fuzzy logic (FL) (Elshatter et al., 1997) and artificial neural
network (ANN) (Balzani and Reatti, 2005; Karatepe et al.,
2006; Mellit et al., 2007; Almonacid et al., 2009, 2010;
Syafaruddin et al., 2010). Despite the promising results,
these techniques require extensive computation. For exam-
ple, FL has to deal with fuzzification, rule base storage,
inference mechanism and defuzzification operations. For
ANN, large amount of data for training could be a major
source of constraint. These drawbacks would be crucial
when integrating the model parameters algorithms to the
PV simulator.

Evolutionary algorithms (EA) techniques have gained
much attention due to its ability to handle nonlinear
functions without requiring derivatives information. It is
a stochastic optimization method that appears to be very
efficient in optimizing real-valued multi-modal objective
functions. Various EA techniques such as genetic algo-
rithm (GA) (Jervase et al., 2001; Moldovan et al., 2009),
particle swarm optimization (PSO) (Ye et al., 2009) are
employed for computation of PV cell parameters. How-
ever, these methods require extensive I�V data sets as an
input. Moreover, several computational difficulties, namely
premature convergence, low speed and large number of
iterations are observed ( Zwe-Lee, 2004; Ji et al., 2006).
Recently, another type of EA technique known as differen-
tial evolution (DE) was introduced (Storn and Price, 1997).
It has three distinct advantages (1) able to accurately locate
the global optimum point regardless of the initial condition
(2) has rapid convergence (3) utilizes few control param-
eters.

Considering the many advantages of DE, this work pro-
poses a method to simultaneously compute the values of a,
Rs, and Rp, for different environmental condition. Unlike
previous methods, this approach enables the computation
to be done at any irradiance and temperature point (other
than STC) using only the information provided by the
manufacturer’s data sheet. Furthermore, it eliminates the
need for experimental I�V data sets. As a result, the com-
putation of the model parameters becomes simpler and
more flexible. Furthermore, the speed of computation
makes the integration of DE into a PV simulator to be
more efficient.

The remainder of this paper is organized in the follow-
ing way. Section 2 describes the details of the circuit model
for PV module which is the basis for the computation of
the parameters. Section 3 explains the background of DE
theory, while, Section 4 describes how this technique is
used to compute the model parameters. Section 5 shows
the validation of the proposed algorithm to the experimen-
tal I�V data set. The accurateness of the model is verified
by applying the model to three PV modules of different
types (mono-crystalline, multi-crystalline, and thin-film).
The performance of the model is evaluated against a pop-
ular Rs-model. Finally, Section 6 draws the conclusions of
this paper.

2. Circuits models for PV module

2.1. Ideal PV model

An ideal PV cell consists of a single diode connected in
parallel with a light generated current source (IPV) is shown
in Fig. 1. Its output current can be written as

I ¼ IPV � Io exp
V

aV T

� �
� 1

� �
ð1Þ

where IPV is the current generated by the incidence of
light, Io is the reverse saturation current, VT(=Ns kT/q) is
the thermal voltage of the PV module having Ns cells
connected in series, q is the electron charge (1.60217646
� 10�19 C), k is the Boltzmann constant (1.3806503 �
10�23 J/K), T is the temperature of the p–n junction in K,
and a is the diode ideality factor.

2.2. PV model with series resistance,Rs

The Rs-model, depicted in Fig. 1b, is achieved with
inclusion of series resistance Rs. The output current in
Fig. 2 can be derived as
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Fig. 2. PV circuit model with series resistance, Rs.
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Fig. 3. PV circuit model with series and parallel resistance, Rs and Rp.
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I ¼ IPV � I0 exp
V þ IRS

aV T

� �
� 1

� �
ð2Þ
2.3. PV model with series and parallel resistance,Rs and Rp

Eq. (2) does not adequately represent the behavior of the
cell when subjected to environmental variations, especially
at low voltage. A more practical model can be seen in
Fig. 3, where Rs and Rp represents the equivalent series
and parallel resistances, respectively. An output current
equation using this model can be written as:

I ¼ IPV � I0 exp
V þ IRS

aV T

� �
� 1

� �
� V þ IRS

Rp

� �
ð3Þ

This model yields more accurate result than the Rs-
model, but at the expense of longer computational time.

A modification of this model was proposed by several
authors (Gow and Manning, 1999; Nishioka et al., 2007;
Kassis and Saad, 2010; Ishaque et al., 2011) by adding
an extra diode. This additional diode represents the
recombination effects of the charge carriers. In general,
the two diode model is more accurate but the computa-
tional time is much longer. For simplicity, the single
diode model of Fig. 3 is used in this paper. This model
offers a good compromise between simplicity and accu-
racy (Carrero et al., 2007), and has been utilized by
numerous authors.

In most cases, the datasheets of PV module give the fol-
lowing information: the nominal short-circuit current Isc,n,
the nominal open-circuit voltage Voc,n, voltage at the MPP
Vmp, current at the MPP Imp, temperature coefficient of
open circuit voltage KV, temperature coefficient of short
circuit current KI, and the maximum peak output power
Pmp. This information is always provided with reference
to the nominal conditions or standard test conditions
(STC) of temperature and solar irradiation.
3. Differential evolution (DE)

Differential evolution (DE) was first introduced in
(Storn and Price, 1997). The optimization procedure is sim-
ilar to GA, but unlike GA, which relies on crossover, DE
primarily utilizes mutation operation (i.e. difference vector)
as a search and selection mechanism to direct the search
toward the prospective regions in the search space. Like
other EA family, DE relies on initial random population
generation, which is then improved using selection, muta-
tion, and crossover. The process is repeated through gener-
ations until the stopping condition is reached � usually a
satisfactory good fitness value or a predefined maximum
number of generations Gmax.

Like the other evolutionary algorithms, DE also works
on a population, PG, of candidate solutions. These candi-
date solutions are known as the individuals of the popula-
tion. In particular, DE creates a population of NP D

dimensional real-valued parameter vectors Xi,G as:

P X ;G ¼ ðX i;GÞ i ¼ 1; 2; . . . ;NP ; G ¼ 0; 1; . . . ;Gmax ð4Þ

X i;G ¼ ðX j;i;GÞ j ¼ 1; 2; . . . ;D ð5Þ

The index, G = 0, 1, ..., Gmax, indicates the generation to
which a vector belongs. Additionally, each vector has a
population index, i, from 1 to Np. Parameters within vec-
tors are indexed with j, from 1 to D. The DE process
involves following stages:
3.1. Initialization

In order to begin the optimization process, an initial
population of NP D dimensional real-valued parameter
vectors Xi ,G = [X1,i,G, X2,i,G, . . ., Xj,i,G, . . ., XD,i,G] is cre-
ated. Each vector forms a candidate solution to the multi-
dimensional optimization problem. Initial parameter
values are usually randomly selected uniformly in the inter-
val [XL, XH], where XL = [X1,L, X2,L, . . ., XD,L] and
XH = [X1,H, X2,H, . . ., XD,H] are the lower and upper bound
of the search space, respectively.

X j;i;0 ¼ X L þ rand½0; 1�ðX H � X LÞ ð6Þ

Fig. 4a explains the initialization procedure of DE. For
simplicity, a 2-dimensional parameter space is shown here.
3.2. Mutation

Mutation is a perturbation or change with a random ele-
ment. In literature, a parent vector from the current gener-
ation is known as target vector, a mutant vector achieved
through the differential mutation operation is called a
donor vector and finally an offspring formed by recombin-
ing the donor with the target vector is called trial vector.
For a given parameter vector Xi,G, three vectors (Xr1,G,
Xr2,G, Xr3,G) are randomly selected in the range [1, NP],
such that the indices i, r1, r2 and r3 are distinct. A donor



Fig. 4. (a) Initialization of DE. (b) Mutation process of DE.
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vector Vi,G is created by adding the weighted difference
between the two vectors to the third (base) vector as:

V i;G ¼ X r1;G þ F ðX r2;G � X r3;GÞ ð7Þ

where F is a mutation scaling factor, which is typically cho-
sen from the range [0, 1]. Fig. 4b illustrates the process on a
2-D parameter space (showing constant cost contours of an
arbitrary fitness function).
3.3. Crossover

The donor vector Vi,G+1 and the target vector Xi,G are
mixed to yield the trial vector

Ui;G ¼ ½U 1i;G;U 2i;G; . . . ;Uji;G; . . . ;U Di;G� ð8Þ

In DE algorithm, two kinds of crossover methods are
used i.e. exponential and binomial (or uniform) (Price et
al., 2005). In this work, binomial crossover strategy is
used which can be described as:

U j;i;G ¼
V j;i;G; if ðrand 6 CR or j ¼ jrandÞ
X j;i;G; otherwise

�
ð9Þ

where CR is known as the crossover rate and appears as
another control parameter of DE just like F. jrand e [1, 2,
. . ., D] is a randomly chosen index, which ensures that
Ui,G attains at least one element from Vi,G.

A major problem in the conventional DE (Storn and
Price, 1997) is the nonphysical values of the determined
parameters (Michalewicz and Schoenauer, 1996). To avoid
such situation, a penalty function is used. It ensures
that the parameter values lie within the allowable range
after recombination. Any parameter that violates the limits
is replaced with random values using (Ishaque et al.,
2011):

U i;Gþ1 ¼
U i;Gþ1 � rand½0; 1�ðX iH � X iLÞ if Ui;Gþ1 > X iH

U i;Gþ1 þ rand½0; 1�ðX iH � X iLÞ if Ui;Gþ1 < X iL

�

ð10Þ
3.4. Evaluation and selection

The selection operation at G = G + 1 is described

X i;Gþ1 ¼
U i;G if JðUi;GÞ < JðX i;GÞ
X i;G otherwise

�
ð11Þ

where J(X) is the objective function to be minimized. Thus,
if the new trial vector acquires a lower value of the objec-
tive function, it swaps the corresponding target vector in
the next generation; otherwise the target is preserved in
the population. Hence, the population either gets better
or remains the same in fitness status, but never declines.
Fig. 5 shows the flow chart of DE process. The pseudo
code of the proposed DE method is shown in Fig. 6.

4. Parameter determination of PV module using DE

Eq. (3) requires the computation of five parameters,
namely IPV, Io, a, Rs, and Rp. In majority of the cases,
the model incorporates merely the variations of photo-
current (IPV) and diode saturation current (Io), while the
remaining parameters (a, Rs, and Rp) are kept constant
or adjusted for better curve fitting (Walker, 2001). How-
ever, it is known that parameters of PV module are signif-
icantly affected by irradiance and temperature variations.
Thus, for accurate modeling of a PV module, it is crucial
to simultaneously compute all the five parameters at each
environmental condition. In this work, we propose an opti-
mization method to determine a, Rs, and Rp at operating
points other than STC using differential evolution (DE)
method. In contrast to other approach (Kim and Choi,
2010), which requires experimental I�V data for every
environmental condition, the proposed method only need
STC information which are normally provided by the man-
ufacturer’s data sheet.

Fig. 7 shows a typical I�V and P�V curves. Usually,
three points at STC (0, Isc), (Vmp, Imp) and (Voc, 0) are
available in datasheet. The goal of the modeling is to make
accurate estimation of these points at irradiance and tem-
perature other than STC.
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Eq. (6)
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Fig. 5. Flow chart of DE.

Fig. 6. Pseudo-code for the proposed DE algorithm.
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The photo-current of the PV module as a function of
solar irradiance and temperature variation can be written
as (De Soto et al., 2006):

IPV ¼ ðIPV STC þ KIDT Þ G
GSTC

ð12Þ

where IPV_STC (in Ampere) is the light generated current at
STC, DT = T � TSTC (in Kelvin, TSTC = 25 �C), G is the sur-
face irradiance of the cell and GSTC (1000 W/m2) is the irra-
diance at STC.

For the Rp-model, an improved equation to describe the
saturation current which considers the temperature varia-
tion is given by (Villalva et al., 2009), i.e.

Io ¼
IPV

expðV OC=a=V T Þ � 1
ð13Þ

where

V OC ¼ V OCn þ aV T ln
G

GSTC

� �
þ KV DT ð14Þ

The equation at the MPP can be written as:
V mp ¼ V mpn þ V T ln
G

GSTC

� �
þ KVP DT ð15Þ

Imp ¼ Impn
G

GSTC

� �
f1þ KIPDTg ð16Þ

Eqs. (12)–(16) represent the change in PV module
parameters with respect to temperature and irradiance.
The coefficients of temperature for current and voltage
are usually provided in the manufacturer’s data sheet. So,
the changes in the values of IPV and Io can be obtained if
the precise values of a, Rs, and Rp are known.

Like the other evolutionary algorithms, the optimization
process in DE is based on the minimization/maximization



Fig. 7. I–V and P–V characteristic curve.

Table 1
Specifications for the three modules used in the experiments.

Parameter Mono-crystalline
SM55

Multi-crystalline
S75

Thin film
ST40

Isc 3.45 4.7 2.68
Voc 21.7 21.6 23.3
Imp 3.15 4.26 2.41
Vmp 17.4 17.6 16.6
Kv (m/�C) 76 76 100
Ki (m/�C) 1.4 0.45 0.35
Kvp (m/�C) 76 76 100
Kip (m/�C) 0.14 0.14 0.45
Ns 36 36 42
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of an objective function. Therefore, a suitable objective
function must be defined to begin the optimization process.
Fig. 8a and b shows the typical I�V and P�V curves of a
PV module, for different irradiance (k = 1 is equivalent to
1000 W/m2) and temperature levels, respectively.

It can be seen from Fig. 8, at MPP, the derivative of the
power with respect to voltage is zero (i.e. dP

dV ¼ 0). Accord-
ing to the basic power equation:

P ¼ VI ð17Þ
Taking the derivative of Eq. (16), it gives:

dP
dV
¼ V

dI
dV
þ I ð18Þ

Eq. (17) can serve as an objective function for the opti-
mization problem, which in this case minimization of Eq.
(17). Hence,

J ¼ dI
dV

����
����
ðV mp ;ImpÞ

þ Imp

V mp

���� ð19Þ

where dI
dV can be obtained from Eq. (2) as:

dI
dV
ðV mp; ImpÞj ¼ � IoC expfCðV mp þ ImpRsÞg � Gp

1þ IoCRs expfCðV mp þ ImpRsÞg þ GpRs

ð20Þ
Fig. 8. PV curves (a) for irradiance vari
and

C ¼ 1

aV T
and Gp ¼

1

Rp
ð21Þ

Using Eq. (19) as the objective function, a search and
optimization problem for determination of optimal values
of a, Rs, and Rp can be defined. The PV module parameters
can therefore be determined by the following process: given
a set of data (from datasheet) of a particular PV module,
the DE method is applied to update the parameters by min-
imizing of Eq. (19).

5. Results and discussion

The accuracy of modeling method described in this
paper is validated by measured parameters of selected PV
modules. The experimental (I, V) data is extracted from
the manufacturer’s datasheet (Shell, xxxx). Three modules
of different technologies are utilized for verification; these
include the multi- and mono-crystalline as well as thin-film
types. The specifications of the modules are summarized in
Table 1. The values for the temperature coefficients for
power (KIP, and KVP) are taken from the Sandia National
Laboratory (SNL) documents, which provide a list of these
coefficients for the varieties of PV modules (King, 2000).

For the DE implementation, population size (NP) is
chosen to be 30. This is a reasonable choice; typical values
of NP ranged between 5D and 10D. The maximum gener-
ation number (Gmax) is set to 100. The mutation scaling
ation (b) for temperature variation.



Fig. 9. I�V curves for different irradiation levels (a) SM55 (mono-
crystalline), (b) S75 (multi-crystalline) and (c) ST40 (thin film). Note: k = 1
is equivalent to 1000 W/m2.

Fig. 10. The I�V curves for different temperature levels (a) SM55 (mono-
crystalline), (b) S75 (multi-crystalline) and (c) ST40 (thin film).
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factor (F) is set at 0.4. The crossover rate (CR) is chosen to
be 0.4. These values are adopted according to Priyanka
et al. (2007). In PV module, usually, series resistance Rs
is found to be very low, and most of the cases, less than
1X (Villalva et al., 2009). However, parallel resistance Rp

value is very high. The value of ideality factor a is typically
between 1 6 a 6 2 (Villalva et al., 2009). In view of these
data, the search ranges were set as follows: Rs e [0.1, 1],



Table 2
Parameters for the proposed model.

Parameter Mono-crystalline SM55 Multi-crystalline S75 Thin film ST40

Proposed model Rs-model Proposed model Rs-model Proposed model Rs-model

G = 1000 W/m2

a 1.37 1.3 1.33 1.3 1.97 1.2
Rs (X) 0.3 0.25 0.2 0.34 0.71 0.092
Rp (KX) 2.34 1 1.79 1 1.62 1

G = 800 W/m2

a 1.34 1.3 1.28 1.3 2 1.2
Rs (X) 0.37 0.25 0.28 0.34 0.77 0.092
Rp (KX) 1.1 1 0.798 1 2.29 1

G = 600 W/m2

a 1.1 1.3 1.44 1.3 1.83 1.2
Rs (X) 0.74 0.25 0.11 0.34 0.84 0.092
Rp (KX) 1.14 1 1.27 1 0.702 1

G = 400 W/m2

a 1.43 1.3 1.28 1.3 1.81 1.2
Rs (X) 0.42 0.25 0.33 0.34 0.99 0.092
Rp (KX) 2.76 1 1.4 1 1.25 1

G = 200 W/m2

a 1.34 1.3 1.24 1.3 1.73 1.2
Rs (X) 0.63 0.25 0.17 0.34 0.91 0.092
Rp (KX) 1.79 1 1.45 1 2.34 1

Table 3
Parameters for the proposed model.

Parameter Mono-crystalline SM55 Multi-crystalline S75 Thin film ST40

Proposed model Rs-model Proposed model Rs-model Proposed model Rs-model

T = 20 �C
a 1.47 1.2 1.54 1.2 1.96 1.2
Rs (X) 0.24 0.25 0.22 0.34 0.76 0.092
Rp (KX) 2.16 1 0.887 1 2.5 1

T = 40 �C
a 1.36 1.2 1.48 1.2 1.89 1.2
Rs (X) 0.3 0.25 0.17 0.34 0.8 0.092
Rp (KX) 2 1 2.4 1 1.64 1

T = 60 �C
a 1.35 1.2 1.39 1.2 1.7 1.2
Rs (X) 0.31 0.25 0.14 0.34 0.98 0.092
Rp (KX) 2.2 1 640 1 2.7 1
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Rp e [100, 3000], a e [1, 2]. The DE/best/1/bin strategy is
used in the proposed work. In this nomenclature, the word
“best” defines the best vector from the current population,
“1” specifies number of difference vector and “bin”

describes the binomial crossover technique. Due to sto-
chastic nature of the DE, the model is executed for 10 times
and the resulting average values are taken as the model
parameters.

Fig. 9a–c shows the I–V curves for SM55, S75 and ST40
respectively, for different levels of irradiance. It can be seen
that the I�V curve obtained by proposed model strongly
agrees to the experimental data for all types of modules.
In particular, the proposed model is very accurate at low
irradiance levels (Ishaque et al., 2011).
The I�V curves for the Rs-model (depicted in Fig. 2) are
not shown for brevity. However a detailed comparison (in
the form of errors) between the proposed and Rs-model will
be undertaken in the next subsection.

The performance of the proposed model when subjected
to temperature variation is shown in Fig. 10a–c. The accu-
racy of the model was tested at 20�, 40� and 60 �C. All mea-
surements are performed at STC irradiance of 1000 W/m2.
It can be observed that the I�V curve of the proposed
model matches accurately to the experimental data for all
three temperature conditions.

To quantify the accuracy of the proposed method,
results are compared to the Rs-model. Table 2 lists the
model parameters values computed using the proposed



Fig. 11. Absolute errors for different irradiation levels (a) SM55 (mono-
crystalline), (b) S75 (multi-crystalline) and (c) ST40 (thin film).

Fig. 12. Absolute errors for different temperature levels (a) SM55 (mono-
crystalline), (b) S75 (multi-crystalline) and (c) ST40 (thin film).
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and Rs-model for irradiance variations. It can be seen,
using Rs-model, the same values of a, Rs and Rp are
obtained regardless of the irradiance. This is to be expected
because the model does not consider the environmental
variations in the formulation of its equations. However
for the proposed method, the parameters values do vary
for different irradiance levels. Logically this can be consid-
ered more accurate because it takes it to account the slope
variation at Voc of the I�V curves. These observations are
also consistent with (Priyanka et al., 2007; Singh et al.,
2008; Khan et al., 2010).
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For the thin-film module, marked differences are noticed
between the proposed and Rs -model. The value of series
resistance is constant and approximately one order of mag-
nitude less for the former for all irradiance levels. Such
small value is not appropriate for thin film module (Deb
and Ghosh, 1984; Stutenbaeumer and Mesfin, 1999). The
value of series resistance computed using the proposed
model is more realistic and is in close agreement with
results published elsewhere (Guimard et al., 2002). Further-
more, small value of a is obtained using the Rs-model. This
value is not accurate, because for thin film, the small fill
factor should result in large values of a (Sites and Mauk,
1989; Kassis and Saad, 2003).

The computed parameters using the proposed model
and Rs-model for temperature variations are listed in
Table 3. For the case of Rs-model i.e. same values of a,
Rs and Rp are obtained which is not accurate if tempera-
ture variations is considered. For the proposed model, the
ideality factor, a, decreases with temperature, which
agrees with the work reported in (Sites and Mauk,
1989; Sharma et al., 1990). Similar results are obtained
for the thin-film module. For the series resistance using
Rs-model, one order of magnitude difference is observed
for all values of temperature. Likewise, a noticeably large
values of a is obtained using the proposed model which is
again in close agreement to the one calculated by Sandia
model (King, 2000).

For a comprehensive comparison, the errors between
the proposed and Rs-model are computed. The absolute
error is defined as the absolute difference between the
experimental and computed current values of the I�V

curves for a given voltage point. These are carried out
for various irradiance and temperature levels as shown in
Fig. 11a–c to Fig. 12a–c, respectively.

In general, the proposed model exhibits lower errors for
all environmental conditions. In most cases, the maximum
errors occur near the vicinity of MPP. This is to be
expected because the value of the series resistance plays a
dominant role in determining the curvature of the I�V

curve. The curvature is the region where the MPP lies.
For the Rs-model, the value of series resistance is constant
for all environmental conditions as shown in Table 2 and 3.
When the irradiance or temperature varies, this fixed value
of Rs will result in inaccurate I�V curve at this region. On
the other hand, for the proposed model, the series resis-
tance value changes with the environmental conditions.
This means that for every irradiance and temperature
value, the Rs is appropriately computed. That explains
why the error is reduced.

In the particular case of thin film module, the error for
Rs-model is exceptionally high. This can be attributed to
the fact that Rs is very low � as explained earlier by Tables
2 and 3. Although the value of Rs can be increased by
increasing the ideality factor a, the result is counterproduc-
tive. It was found that if large a is used (for example
a > 1.5) negative value of Rs is obtained. This is a non-
physical value and must be omitted.
6. Conclusion

In this paper, a differential evolution (DE) based model-
ing method for PV module is described. Unlike the previ-
ous models suggested by other researchers, the proposed
work computes the PV module parameters at any irradi-
ance and temperature point, using only the datasheet infor-
mation for a PV module. The accuracy of the proposed
model is evaluated using experimental data from the
manufacturers of three PV modules of different types. Its
performance is compared to the popular single diode
Rs-model. It was found that in all cases, the proposed
model is superior when subjected to irradiance and temper-
ature variations. It is envisaged that the proposed model
can be a valuable design tool for PV system designers.
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