=
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4.3  BIOT-SAVART LAW

3. State and explain Biot-Savart law for the magnetic
field produced by a current element. Define the SI unit
of magnetic field from this law.

Biot-Savart law. Oersted experiment showed that a
current carrying conductor produces a magnetic field
around it. It is convenient to assume that this field is
made of contributions from different segments of the
conductor, called current elements. A current element is

denoted by dl, which has the same direction as that of

current I. From a series of experiments on current
carrying conductors of simple shapes, two French
Physicists Jean-Baptiste Biot and Felix Savart, in 1820,
deduced an expression for the magnetic field of a
current element which is known as Biot-Savart law.

Statement. As shown in Fig. 4.3, consider a current

element d/ of a conductor XY carrying current [. Let P
be the point where the magnetic field dB due to the
current element d/ is to be calculated. Let the position

vector of poiﬁt P relative to element df be 7. Let 0 be

the angle between dl and 7,

X

Fig. 4.3 Biot-Savart law,



According to Biot-Savart law, the magnitude of

=
the field dBis

1. directly proportional to the current I through the
- conductor,

dBoc [

2. directly proportional to the length dl of the current
element,

dB o dl
3. directly proportional to sin ©,
dB « sin 0

4. inversely proportional to the square of the distarce r
of the point P from the current element,

1

dB oc —
?,2

Combining all these four factors, we get

IB o Idl szmﬁ
: s
or dB:K_EIS_mg

T2

The proportionality constant K depends on the
medium between the observation point P and the
current element and the system of units chosen. For
free space and in SI units,

K=ro

= 1077 TmA™ ! (or Wbm !A™1)
T

Here p, is a constant called permeability of free
space. So the Biot-Savart law in SI units may be

expressed as

deu_{]_ Idlsin®
4 2
We can write the above equation as
L I dlrsin®
41 e

As the direction of dB is perpendicular to the plane

of dl and 7, so from the above equation, we get the
vector form of the Biot-Savart law as

i
dAé :’IJ-[)I Al %1
4n o




4.5 =~ MAGNETIC FIELD DUE TO A LONG
STRAIGHT CURRENT CARRYING

CONDUCTOR

6. Apply Biot-Savart law to derive an expression for
the magnetic field produced at a point due to the current
flowing through a straight wire of infinite length. Also
draw the sketch of the magnetic field. State the rules
used for finding the direction of this magnetic field.

Magnetic field due to a long straight current
carrying conductor. As shown in Fig. 4.7, consider a

- straight conductor XY carrying current I. We wish to

L

find its magnetic field at the point P whose
perpendicular distance from the wire is a i.e.,, PO =a.

e

Fig. 4.7 Magnetic field due to a stralgiit CulmmEmi
carrying conductor.



Consider a small current element ﬂ of the

conductor at O. Its distance from Qis[i.e., Q_Q_il Let7 |
be the position vector of point P relative to the current
element and 6 be the angle between dl and 7.
According to Biot-Savart law, the magnitude of the

field d_ﬁ _due to the current element d_f will be

L, Idlsin® _ :
=0 ‘
4r 2

From right A OQP,
0+¢ =90°

or 0=90°~¢
sin 6 =sin (90° - ¢ )=cos ¢ .

L T o T

Also cos¢=E-

s oy r

or T = =asec ¢

cos ¢

As t c}:a:i

— (]
I=atan ¢
On differentiating, we get
dl = a sec® ¢ do

2
Hence dB=*o I(a sec” ¢ d¢) cos ¢

0
4n a* sec? ¢ -

I
or dB="20" cos §dg,
4ma

According to right hand rule, the direction of the
magnetic field at the P due to all such current elements
will be in the same direction, namely, normally into the

plane of paper. Hence the total field B at the point P i.

due to the entire conductor is obtained by integrating
the above equation within the limits — ¢ and ¢,.

¢ b

B= | d3=:—:£j cos ¢ do e

ol :
or Bz‘._.g__s + 8
41:&[ _111:1:I smdb]

This equation gives magnetic field due to a finite =
wire in terms of the angles subtended at the Fi
observation point by the ends of the wire.

"



Special Cases

IIf the conductor XY is infinitely long and the point P
lies near the middle of the conductor, then c|;1J =¢, =m/2.
Tl
B="0"[6in90° + sin 90°]
47a
Hop I

or = —
2 ta

2. If the conductor XY is infinitely long but the point P
lies near the end Y (or X), then ¢, =90° and 4& =

L,
dma A7
Clearly, the magnetic field due to an infinitely long
straight current carrying conductor at its one end is
just half of that at any point near its middle, provided
the two points are at the same perpendicular distance

from the conductor.

3. If the conductor is of finite length L and the point
P lies on its perpendicular bisector, then ¢ =¢ =dand

e
JP+(L/27  J1P + P

sin ¢ =

Bl i
d7a

el 2L

Wy

dma 42 4 P

L
T 5= Ho .
2 ‘ﬂ:a\/tlaz + P




4.6 @ MAGNETIC FIELD AT THE CENTRE OF
CIRCULAR CURRENT LOOP

7. Apply Biot-Savart law to derive an expression for
the magnetic field at the centre of a current carrying
circular loop.

Magnetic field at the centre of a circular current
loop. As shown in Fig. 4.23, consider a circular loop of
wire of radius r carrying current I. We wish to calculate |

L
its magnetic field at the
centre O. The entire loop
can be divided into a
large number of small dl
current elements.

/§

Consider a current
element dl of the loop.

According to Biot-Savart
law, the magnetic field at

the cent Od to thi S ; -
> P Fig. 4.23 Magnetic field at
element is

the centre of a circular
=l Ef X ? current loop.

4B = :
47 P

The field at point O points normally into the plane
of paper, as shown by encircled cross ®. The direction

SRS S

ofdl is along the tangent, so ai 17, Consequently, the

magnetic field at the centre O due to this current
element is

_ Mol dlsin90°  p,l di
41 72 dr 2
The magnetic field due to all such current elements

will point into the plane of paper at centre O. Hence
the total magnetic field at the centre O is

B:[ﬁ:jﬂﬁfﬂ~%fjm

dB

4n 2 = Amy?
l-lgI ugI
= = 2T
4m'2 4n:r2
I
or Bz;pi.
2r

If instead of a single loop, there is a coil of N turns,
all wound over one another, then
Tl
2a s




4.7 =~ MAGNETIC FIELD ON THE AXIS OF
A CIRCULAR CURRENT LOOP CF

8./Apply Biot-Savart law to find the magnetic field
due to a circular current carrying loop at a point on the
axis of the loop. State the rules used to find the direction
of this magnetic field.

Magnetic field along the axis of a circular current
loop:{Consider a circular loop of wire of radius a and
carrying current I, as shown in Fig. 4.24. Let the plane

of the loop be perpendicular to the plane of paper. We 4
wish to find field B at an axial point P at a distance r
from the centre C.)
Q
o1

dB sin ¢

dB sin ¢

-
dl
L I R R
Fig. 4.24 Magnetic field on the axis of a
circular current loop.

a
& LConsider a current element dl at tl}e top of the loop.

It has an outward coming current.
—»
r\? klf s be the position vector of point P relative to the

element dl . then from Biot-Savart law, the field at

point P due to the current element is
' \
deh'IdlsmB f
4n s?

Since aﬁ 5 ?, i.e., 8 =90°, therefore
g ' ?

AR
B 41 52 )

‘K\The field dB lies in the plane of paper and is

perpendicular to s, as shown b):_PiQ_: Let ¢be the angle
between OP and CP. Then dB can be resolved into two
rectangular components.

1. dBsin ¢ along the axis,

2. dB cos ¢ perpendicular to the axis. )

5 For any two diametrically opposite elements of the
loop, the components perpendicular to the axis of the
loop will be equal and opposite and will cancel out.
Their axial components will be in the same direction,
i.e., along CP and get added up.




w

. Total magnetic field at the pomt T i e st
CP is
B=| dBsin ¢

But sjnqr“ e e
47 ;

-

fﬂf_dlﬂ

< Since p, and I are constant, and s and a are same for
-————‘
all points on the circular loop, we have

Ia Ia In?
Ty B Rl PR
4ms 4rs 25
iz I dl = circumference =27 4]
Ia? =

> Z?_’(r2 i )3’r - _
¥ As the direction of the field is along +ve
X-direction, so we can write

et

- Ia*
b= a az 3/2
2(r* + %)Y
If the coil consists of N turns, then
R

2(r2 - az)?"{2

Special Cases
At the centre of the current loop, =0, therefore

B hoN Ia® =-p0NI
24° 20
N IA
: 2na

where A = na® = area of the circular current loop. The
field is directed perpendicular to the plane of the
current loop. :

- 2. At the axial points lying far away from the coil,
r >> g, so that

poN Ia* ”D NIA
D 2n
This field is directed along the axis of the loop and
falls off as the cube of the distance from the current loop.
3. At an axial point at a distance equal to the
radius of the coil i.e., v =4, we have ~
iy | Nlg® B NL
=9 (@ +a 2yl s,




/ Proof for a straight current carrying conductor.
Consider an infinitely long straight conductor carrying
a current I. From Biot-Savart law, the magnitude of the

magnetic field B due to the current carrying conductor

at a point, distant r from it is given by

o=

2nr

!

Lineo
force

|

|

i

1
L

Fig. 4.45 Ampere’s circuital law.

—
As shown in Fig. 4.45, the field B is directed along
the circumference of the circle of radius r with the wire




o
as centre. The magnitude of the field B is same for all
points on the circle. To evaluate the line integral of the

magnetic field B along the circle, we consider a small

current element dl along the circle. At every point on

the circle, both Band dl are tangential to the circle so

that the angle between them is zero.
- =

B.dl=Bdl cos0°= Bdl

Hence the line integral of the magnetlc field along
the circular path is

§ B.d1=§ Bdl:Bj? .:ﬁ; L

2y
2Ty

i j; _B}cﬁ =pql

This proves Ampere’s law. This law is valid for any
assembly of current and for any arbitrary closed loop.

2T



Application of Ampere’s law to a straight
conductor. Fig. 4.46 shows a_circular loop of radius r
around an infinitely long straight wire carrying current

I. As the field lines are circular, the field § at any point
of the circular loop is directed along the tangent to the

Fig. 4.46

circle at that point. By symmetry, the magnitude of

field B is same at every point of the circular loop.
Jdherefore, |

- B. dl*=§ Bdl cos0°=B§ di = B.2nr

From AnlEere’s circuital law,
s ==

B.2nr=p,l

g Mol
2 mr



.~ Calculation of magnetic field inside a long
. straight solenoid. The magnetic field inside a closely
¢ wound long solenoid is uniform everywhere and zero



\ D R X e e e X XX < ]

T L e e ]

Flg 4 50 The magnetic field of a very long solenoid.

outside it. Fig. 4.50 shows the sectional view of a long
solenoid. At various turns of the solenoid, current
comes out of the plane of paper at points marked @and
enters the plane of paper at points marked ®. To

determine the magnetic field B at any inside point,
consider a rectangular closed path abed as the
Amperean loop. According to_ Ampere’s circuital law,

§ 5.

=p x Total current through the loop abcd

b

Now § B.dl = I
a

+f i+ B.d+f 5.4

c

L}

C

_)
But [ B. dl = [ Badlcos90°=0

ol
E‘:.J,
I

b
a
J‘ B dl cos 90° =0
d

B.dl =0

At Aty =

as B=0 for points outside the solenoid.

§B.a-[ B.d

b b
= j decos0°=Bj dl = BI
- a

where,
I =length of the side ab of the rectangular loop abcd.

Let number of turns per unit length of the
solenoid =n

Then number of turns in length I of the solenoid

=nl

Thus the current I of the solenoid threads the loop
abcd, nl times.

.. _Total current threading the loop abed = nil
Hence Bl=pgnll or B=pgul



- -

Magnetic field due to a toroidal solenoid. A
solenoid bent into the form of a closed ring is called a toroidal
solenoid. Alternatively, it is an anchor ring (torous)
around which a large number of turns of a metallic wire
are wound, as shown in Fig. 4.52. We shall see that the

magnetic field B has a constant magnitude everywhere

inside the toroid while it is zero in the open space
interior (point P) and exterior (point Q) to the toroid.

O 5

I TI
R T A T s

Fig. 4.52 A toroidal solenoid.

Fig. 4.53 shows a sectional view of the toroidal
solenoid. The direction of the magnetic field inside is
clockwise as per the right-hand thumb rule for circular
loops. Three circular Amperean loops are shown by
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Fig. 4.53 A sectional view of the toroidal solenoid.

dashed lines. By symmetry, the magnetic field should
be tangential to them and constant in magnitude for
each of the loops.

?/{: For points in the open space interior to the
roid. Let B, be the magnitude of the magnetic field
along the Amperean loop 1 of radius 7.

Length of the loop 1, L, =271,

As the loop encloses no current, so I =0

Applying Ampere’s circuital law,

Bl =po !

or B x2nn=py,x0
or B =0

Thus the magnetic field at any point P in the open space
interior to the toroid is zero.

< / 2. For points inside the toroid. Let B be the
magnitude of the magnetic field along the Amperean
loop 2 of radius r.

Length of loop 2, L, =2nr

If N is the total number of turns in the toroid and I
the current in the toroid, then total current enclosed by
the loop 2 = NI ;

Applying Ampere’s circuital law,
Bx2mr=p,x NI

_ ko NI

- 2mr

or B

If 7 be the average radius of the toroid and n the
number of turns per unit length, then

N =2nrn
B=p,nl

\/ 3. For points in the open space exterior to the
toroid. Each turn of the toroid passes twice through the
area enclosed by the Amperean loop 3. But for each
turn, the current coming out of the plane of paper is
cancelled by the current going into the plane of paper.
Thus, I =0 and hence B, =0.




4.20 © MOVING COIL GALVANOMETER

23. Describe the principle, construction and working
of a pivoted-type moving coil galvanometer. Define its
figure of merit.

Moving coil galvanometer. A galvanometer is a
device to detect current in a circuit. The commonly used
moving coil galvanometer is named so because it uses
a current-carrying coil that rotates (or moves) in a
magnetic field due to the torque acting on it.

In a D’Arsonval galvanometer, the coil is suspended
on a phosphor-bronze wire. It is highly sensitive and
requires careful handling. In Weston galvanometer, the
coil is pivoted between two jewellel bearings. It is rugged
and portable though less sensitive, and 1s generally
used in laboratories. The basic principle of both types
of galvanometers is same.

Principle. The operating principle of a moving coil
galvanometer is that a current-carrying coil placed in @
magnetic field experiences a torque, the magnitude of wihich
depends on the strength of current. :

Construction. As shown in Fig. 493, a Weston
(pivoted-type) galvanometer consists of a rectangular
coil of fine insulated copper wire wound on a Hgi
non-magnetic metallic (aluminium) frame. The )
ends of the axle of this frame are pivoted beturesm
jewelled bearings. The motion of the coil is oomimmMEE
by a pair of hair springs of phosphor-bronze. T T




ends of the springs are soldered to the two ends of the
ool and the outer ends are connected to the binding
screws. The springs provide the restoring torque and
serve as current leads. A light aluminium pointer
attached to the coil measures its deflection on a
suitable scale.

Scale

Permanent

\
Uniform radial
magnetic field
(a)

Pointer

Concave

: Terminals
pole

Soft-iron
cylinder Jewelled
Hair bearing
spring

(b)

Fig. 4.93 (a) Top view (b) Front view of a
pivoted-type galvanometer.

The coil is symmetrically placed between the
cylindrical pole pieces of a strong permanent horse-
shoe magnet.

A cylindrical soft iron core is mounted symme-

trically between the concave poles of the horse-shoe -

magnet. This makes the lines of force pointing along
the radii of a circle. Such a field is called a radial field.
The plane of a coil rotating in such a field remains
parallel to the field in all positions, as shown in
Fig. 4.93(a). Also, the soft iron cylinder, due to its high
permeability, intensifies the magnetic field and hence
increases the sensitivity of the galvanometer.

Theory and Working. In Fig. 4.94(a), we have
[ = current flowing through the coil PORS
a, b = sides of the rectangular coil PORS
A = ab = area of the coil

N = number of turns in the coil.

(@) (®)

R B R AT

Fig. 4.94
magnetic field. (b) Top view of the loop.

Since the field is radial, the plane of the coil always
remains parallel to the field B. The magnetic forces on

sides PQ and SR are equal, opposite and collinear, so
their resultant is zero. According to Fleming’s left rule,
the side PS experiences a normal inward force equal to
NIbB while the side QR experiences an equal normal
outward force. The two forces on sides PS and QR are
equal and opposite. They form a couple and exert a
torque given by

1 = Force x Perpendicular distance
= NIbBx a sin 90° = NIB(ab) = NIBA
Here 6 =90°, because the normal to the plane of coil
remains perpendicular to the field B in all positions.

The torque t deflects the coil through an angle a. A
restoring torque is set up in the coil due to the elasticity
of the springs such that

T Coh O T = ko

restoring restoring

where k is the torsion constant of the springs ie.,
torque required to produce unit angular twist. In
equilibrium position,

Restoring torque = Deflecting torque

ko = NIBA
. NBA
or a=——.1I
k
or aocl



Thus the deflection produced in the galvanometer
coil is proportional to the current flowing through it.
Consequently, the instrument can be provided with a scale
with equal divisions along a circular scale to indicate

equal steps in current. Such a scaleis called linear scale.

Also, J = =t .o =Go
NBA |
The factor G=k/ NBA is constant for a galvano-
meter and is called galvanometer constant or current

reduction factor of the galvanometer.

Figure of merit of a galvanometer. It is defined as the
current which produces a deflection of one scale division in
e galvanometer and is given by

I k

a NBA
4.21 SENSITIVITY OF A GALVANOMETER

24. When is a galvanometer said to be sensitive ?
Jefine current sensitivity and voltage sensitivity of a
@eivanometer. State the factors on which the sensitivity
@ a moving coil galvanometer depends. How can we
imcrease the sensitivity of a galvanometer ?

Sensitivity of a galvanometer. A galvanometer is
Sl fo be sensitive if it shows large scale deflection even
Wiken a small current is passed through it or a small voltage
s @pplied across it.

Current sensitivity. It is defined as the deflection produced
W fhe galvanometer when a unit current flows through it.

Current sensitivity, [ s =% = %

WVoltage sensitivity. It is defined as the deflection produced
W ke galvanometer when a unit potential difference is

Nimmised across its ends.
. NBA
WVoltage sensitivity, V, = J 2
5 8. =
Current sensitivity
R

Clearly, voltage sensitivity =



4.23 CONVERSION OF A GALVANOMETER
INTO AN AMMETER

26. Explain how can we convert a galvanometer into
an ammeter of given range.

Conversion of a galvanometer into an ammeter.
An ammeter is a device used to measure current through a
circuit element. To measure current through a circuit
element, an ammeter is connected in_series with that
element so that the current which is to be measured
actually passes through it. In order to_ensure that its
insertion in the circuit does not change the current, an
ammeter should have zero resistance. So ammeter is
designed to have very small effective resistance. In
fact, an ideal ammeter should have zero resistance.

An ordinary galvanometer is a gensitive, instru-
ment. It gives full scale deflection with a small current
of few microamperes. To measure large currents with
it, a small resistance is connected in parallel with the
galvanometer coil. The resistance connected in this
way is called a shunt. Only a small part of the total
current passes through the galvanometer and remai-
ning current passes through the shunt. The value of
shunt resistance depends on the range of the current
required to be measured.

Ammeter

(q-1) (-1

AR TR e
Fig. 4.95
Let G =resistance of the galvanometer

I, = the current with which galvanometer
gives full scale deflection

0 — I = the required current range of the ammeter
S = shunt resistance

-1 = current through the shunt.
Ve e :



As galVﬂnUmEter and shunt are _Comumey
parallel, so

P.D. across the galvanometer = P.D. across the shums

[G=(I-1)$

- [

or ' SZI gI <G
g

So by connecting a shunt of resistance S across the
given galvanometer, we get an ammeter of _desired
range. Moreover,

=535
§- G+ S
The deflection in the galvanometer is proportional

to I, and hence to I. So the scale can be graduated to
reacf the value of current I directly.

L

Hence an ammeter is a shunted or low resistance
galvanometer. Its effective resistance is

RA = GS a5
G+ 5
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Conversion of a galvanometer into a voltmeter. A
ooiimeter is a device for measuring potential difference
@cross any fwo points in a circuit. It is connected in

el with the circuit element across which the
potential difference is intended to be measured. As a
result, a small part of the total current passes through
the voltmeter and so the current through the circuit
element - _decreases. This decreases the potential
difference required to be measured. To avoid this, the
voltmeter should be designed to have very high
resistance. In fact, an ideal voltmeter should have infinite
resistance.

l/-—Volh'neter
PRk e
1 R |
A oy : i B
el od . o :
« 4 —

A galvanometer can be converted into a voltmeter
by connecting a high resistance in series with it. The
value of this resistance is so adjusted that only current
I, which produces full scale deflection in the galvano-
meter, passes through the galvanometer.

Let

G = resistance of the galvanometer.

I, = the current with which galvanometer
gives full scale deflection

0 - V = required range of the voltmeter, and
R = the high series resistance which restricts
the current to safe limit I =

.. Total resistance in the circuit= R + G

By Ohm’s law,
o Potential difference &=
8 Total resistance R+G
or R+G= IZ or = -IK -G
g = g

So by connecting a high resistance R in series with
the galvanometer, we get a voltmeter of desired range.
Moreover, the deflection in the galvanometer is
proportional to current [ ¢ and hence to V. The scale can
be_graduated to read the value of potential difference
directly.

Hence a voltmeter is a high resistance galvanometer. Its
effective resistance is
R ———

RV=R+G>>G.

Ui

E>
12,
Hc



419 TORQUE EXPERIENCED BY A CURRENT
~ LOOP IN A UNIFORM MAGNETIC FIELD

22. Derive an expression for the torque acting on a
sarent carrying loop suspended in a uniform magnetic

Torque on a current loop in a uniform magnetic
#ld. As shown in Fig. 4.88(a),{ consider a rectangular
-

.......

B PORS suspended in a uniform magnetic field B,
W its axis perpendicular to the field.f’]-l

& :
E = :
i LBE | /%
2 : 5| /
Pl F/”
\i
\S
(@)

ig. 4.88 (a) A rectangular loop PQRS in a uniform

agnetic field B. (b) Top view of the loop, magnetic
Spole moment m is shown.
Let I = current flowing through the coil PQRS

a, b = sides of the coil PQRS
A = ab = area of the coil

0= angle between the direction of _ﬁ and
normal to the plane of the coil. )

According to Fleming’s left hand rule, the
magnetic forces on sides PS and QR are equal,



opposite and collinear (along the axis of the loop), s
their resultant is zero}

4 (Fhe side PQ experiences a normal inward force
equal to IbB while the side RS experiences an equal
normal outward force. These two forces form a couple
which exerts a torque given by

1 = Force x perpendicular distance
= [bBx asin 6 =IBAsin 6

?' ( If the rectangular loop has N turns, the torque
increases N times i.e.,

1= NIBA sin 6
But NIA = m, the magnetic moment of the loop, so
T=mBsin 0

£ _} e =
In vector notation, the torque t is given by

A (\The direction of the torque 7 is such that it mtates
the loop clockwise about the axis of suspension. _~



21. Derive an expression for the force per unit length
between two infinitely long straight parallel current
carrying wires. Hence define one ampere. Also define

coulomb in terms of ampere.
// Expression for the force between two parallel

current-carrying wires. As shown in Fig. 4.81(.{1},(;011-
sider two_long parallel wires AB and CD carrying
currents [, and I,. Let r be the separation between
them. )

(;i_'r The magnetk field produced by current I, at any
point on wire CD is

B1 H[} I’L

— e
——

2T




e

Fig. 4.81 (a) Parallel currents attract,
(b) Antiparallel currents repel.

S

This field acts perpendicular to the wire CD and

points into the plane of paper. It exerts a force on
current carrying wire CDjil'he force acting on length /
of the wire CD will be

=]

* noly mpolil
E =I1IB sin90°=1]. 20 1- ~0°1°2
—2—'281 2 ony 2nr

Force per unit length,

f:.fgzﬂo LL
e 2nr

(i QAccording to Fleming's left hand rule, this force
acts at right angles to CD, towards AB in the plane of
the paper. Similarly, an equal force js exerted on the
wire AB by the field of wire CD."Thus when the
currents in the two wires are in the same direction, the
forces between them are attractive. It can be easily seen
that

= ]
Fzz‘f;

As shown in Fig. 4.81(b)§¥rhen the currents in the
two parallel wires flow in opposite directions (anti-
parallel), the forces between the two wires are repulsive.
Thus,

Parallel currents attract and antiparallel currents
repel. )

- A e o~



jorce < w
Expression for the force on a current carrying
conductor in a magnetic field. As shown in Fig. 4.70,

consider a conductor PQ of length [, area of cross-
section A, carrying current I along +ve Y-direction. The

field B acts along +ve Z-direction. The electrons drift

—>
towards left with velocity v,. Each electron expe-

riences a magnetic Lorentz force along +ve X-axis,
which is given by

=y

f=-e(;xB)

Zi
Eﬁ
Q Area= A
2 T
S s e o
Fig. 4.70 Force on a current in a magnetic field.

If n is the number of free electrons per unit
volume, then total number of electrons in the con-

ductor is
N = 1 x volume = nAl

Total force on the conductor 18

- =—=> - =
F =N/f=nAl[-e(v;x B)]

o3 ey
—enAl-lv; x B ]

di

t

M

O S N
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..%-
If I1 represents a current element vector in the

> —
direction of current, then vectors | and v, will have

opposite directions and we can take
— -
—ly, =0, 1
- - -
F =enAv, (I % B)
But enAv, = current;, I
-5 =
Hence ?-:I(IHB)

Magnitude of force. The magnitude of the force on
the current carrying conductor is given by

F=1IIBsin b

where 0 is the angle between the direction
magnetic field and the direction of flow of current.

of the



416 v CYCLOTRON

17. What is a cyclotron ? Discuss the principle, con-
struction, theory and working of a cyclotron. What is the
maximum kinetic energy acquired by the accelerated
charged particles ? Give the limitations and uses of a
cyclotron.

Cyclotron. It is a device used to accelerate charged
particles like protons, deutrons, a-particles, etc., to very high
energies. It was invented by E.O. Lawrence and M.S.
Livingston in 1934 at Berkeley, California University.

Principle. A charged particle can be accelerated to very
high energies by making it pass through a moderate electric
field a number of times. This can be done with the help of a
perpendicular magnetic field which throws the charged particle
into a circular motion, the frequency of which does not depend
on the speed of the particle and the radius of the circular orbit.

Construction. As shown in Fig. 4.68, a cyclotron
consists of the following main parts :

1. It consists of two small, hollow, metallic
half-cylinders D, and D,, called dees as they are
in the shape of D.

2. They are mounted inside a vacuum chamber
between the poles of a powerful electromagnet.

3. The dees are connected to the source of high
frequency alternating voltage of few hundred
kilovolts.

4. The beam of charged particles to be accelerated
is injected into the dees near their centre, in a
plane perpendicular to the magnetic field.

5. The charged particles are pulled out of the dees
by a deflecting plate (which is negatively charged)
through a window W.

6. The whole device is in high vacuum (pressure
~10 ~® mm of Hg) so that the air molecules may
not collide with the charged particles.

Theory. Let a particle of charge 4 and mass m enter

a region of magnetic field B with a velocity v, normal

to the field B. The particle follows a circular path, the
necessary centripetal force being provided by the
magnetic field. Therefore,
Magnetic force on charge q
= Centripetal force on charge g

2 : muo
r=—
qB

Period of revolution of the charged particle is
given by

or qv Bsin90°=

or

27 ﬂ=2nm

= v qb B
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Fig. 4.68 Cyclotron (a) Front view
(b) Section diagram.

Hence frequency of revolution of the particle will be
1 ¢B

= T 2mm

Clearly, this frequency is independent of both the
velocity of the particle and the radius of the orbitand is
called cyclotron frequency or magnetic resonance
frequency. This is the key fact which is made use of in
the operation of a cyclotron.

Working. Suppose a positive ion, say a proton,
enters the gap between the two dees and finds dee D,
to be negative. It gets accelerated towards dee D;. Asit



enters the dee D,, it does not experience any electric
field due to shielding effect of the metallic dee. The
perpendicular magnetic field throws it into a circular
path. At the instant the proton comes out of dee D, 1t
finds dee D, positive and dee D, negative. [t now gets
accelerated towards dee D,. It moves faster through D,
describing a larger semicircle than before. Thus if the
frequency of the applied voltage 1s kept exactly the
same as the frequency of revolution of the proton, then
every time the proton reaches the gap between the two
dees, the electric field is reversed and proton receives a
push and finally it acquires very high energy. This is
called the cyclotron’s resonance condition. The proton
follows a spiral path. The accelerated proton is ejected
through a window by a deflecting voltage and hits the
target.

Maximum K.E. of the accelerated ions. The ions
will attain maximum velocity near the periphery of the
dees. If v, is the maximum velocity acquired by the
ions and 1 1S the radius of the dees, then

oS qBr

0 —gu By iorss Wys—=

o

The maximum kinetic energy of the ions will be

2
R b ‘?B?E]]
=L =
%o ior i) (

m
2522
q

ot KO: 21?10'




4.13° WORK DONE BY A MAGNETIC FORCE
ON A CHARGED PARTICLE IS ZERO

14. Show that the work done by a magnetic field on a

moving charged particle is always zero.

Work done by a magnetic force on a charged particle.

. — -5 =
The magnetic force F =q(v x B) always acts perpen-

dicular to the velocity v or the direction of motion of

charge g. Therefore,

or

or

or

or

or

According to Newton’'s second law,

—¥

f.t?:q(;x

_—},
= => duv
=Mma —Mm—
dt
o
1*1*'1———dU 7 =0
dt
> =
dv —»> - dwv
——. v +v.—|=0
t
e
2 dt
—Li—(lm'c!2]=0
dt \ 2
a0

—

K = constant

B). v =0

Thus a magnetic force does not change the kinetic energy
of the charged particle. This indicates that the speed of the
particle does not change. According to the work-energy
theorem, the change in kinetic energy is equal to the work
done on the particle by the net force. Hence the work
done on the charged particle by the magnetic force is zero.

L]
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2. When the initial velocity is perpendicular to the
magnetic field. Here 6 =90°, so F = quBsin 90° =quB=a
maximum force. As the magnetic force acts on a particle
perpendicular to its velocity, it does not do any work
on the particle. It does not change the kinetic energy or
speed of the particle.

Fig. 4.62 shows a magnetic field B directed

normally into the plane of paper, as shown by small
crosses. A charge + g is projected with a speed v in the
plane of the paper. The velocity is perpendicular to the

X X A X X X

X
X
X
X
X
X
X
X
X
X

SR R o S
o 1 Sl S i G -
==

P s e e S
Fig. 4.62 A positively charged particle moving in a
magnetic field directed into the plane of paper.

magnetic field. A force F= quB acts on the particle

perpendicular to both o and B. This force conti-

nuously deflects the particle sideways without changing
its speed and the particle will move along a circle
perpendicular to the field. Thus the magnetic force
provides the centripetal force. Let rbe the radius of the
circular path. Now
mo* |
Centripetal force, T Magnetic force, quB

v
or e
gB

Thus the radius of the circular orbit is inversely
proportional to the specific charge (charge to mass
ratio g/ m) and to the magnetic field.

Circumference
Speed

Period of revolution =

or T=——r— . — =

o v qB 4B



Clearly, the time period is independent of v and r. If
the particle moves faster, the radius is larger, it has to
move along a larger circle so that the time taken is the
same.

The frequency of revolution is
oo
Je= T 2mm

This frequency is called cyclotron frequency.



16. Electric and magnetic fields are applied mutually
perpendicular to each other. Show that a charged
particle will follow a straight line path perpendicular to
both of these fields, if its velocity is E / B in magnitude.

Velocity selector. Suppose a beam of charged
particles, say electrons, possessing a range of speeds
passes through a slit S, and then enters a region in
which crossed (perpendicular) electric and magnetic

fields exist. As shown in Fig. 4.65, the electric field E

acts in the downward direction and deflects the

electrons in the upward direction. The magnetic field
B acts normally into the plane of paper and deflects

the electrons in the downward direction.
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Fig. 4.65 Motion of an electron in a region of
crossed magnetic and electric fields.

Only those electrons will pass undeflected through
the slit S, on which the electric and magnetic forces are
equal and opposite. The velocity v of the undeflected
electrons is given by :

¢eE=evB or = -E
B

Such an arrangement can be used to select charged
particles of a particular velocity out of a beam In which
the particles are moving with different speeds. This
arrangement is called velocity selector or velocity
filter. This method was used by J.J. Thomson to

determine the charge to mass ratio (e/ m)of an electron.
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