
ONCHAIN REPORT

Onchain Report | CONFIDENTIAL | RAID Square | xx.xx.2022

PROJECT NAME

Antfarm.Finance
SMART CONTRACT AUDIT REPORT

26 JANUARY 2023

1

Audited by: RAID Square
RAID Square Audit Report: #2023-001

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

Table of Contents

1. Introduction
1.1. About RAID Square
1.2. About Antfarm Finance
1.3. Mission
1.4. Methodology
1.5. Disclaimer

2. Findings
2.1. Summary

3. Detailed Results

2

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. INTRODUCTION

As part of a request to improve the security of their protocol, Antfarm
Finance commissioned RAID Square to carry out an audit of the
various smart contracts listed below in the "Mission" section. This
document highlights the results of the audit that was carried out and
highlights the risks and opportunities for improvement from the
current state of the contracts at the time of delivery.

1.1 About RAID Square

RAID Square is a French company specialised in risk mitigation for
Blockchain stakeholders. RAID Square's offerings are structured
around the following four business verticals:

● Legal structuring and coordination of WEB3 legal procedures ;
● Development & cyber cross WEB2 X WEB3 audits ;
● Due diligence & investigations ;
● Lobbying of French and European institutions ;

1.1 About Antfarm Finance

Antfarm is a decentralised exchange (DEX) designed for cash
providers (LPs). It is supported by a decentralised autonomous
organisation (DAO). The main objective of Antfarm is to attract,
remunerate and retain LPs, increasing their profits while reducing their
risks. Antfarm was created to solve the problem that providing
liquidity in most DEX pools is not financially attractive for LPs, who
often receive little compensation and face the risk of impermanent
loss.

3

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

The Antfarm protocol provides for the use of the Antfarm Token (ATF)
in each pool to pay the exchange fee and allows LPs to access their
collected fees at any time without impacting the total locked-in value
of the pool. A portion of the claimed fees is burned, resulting in a
steady increase in ATF scarcity. Antfarm is governed by a
decentralised autonomous organisation (DAO) in which holders of the
Antfarm Governance Token (AGT) can participate in decision-making
processes and benefit from the growth of the platform.

4

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 3 Mission

The RAID Square mission is to carry out audits of the contracts listed
below:

● Smart Contract #1: AntfarmFactory.sol
○ https://github.com/AntfarmFinance/contracts/blob/main/antfarm/An

tfarmFactory.sol

● Smart Contract #2: AntfarmOracle.sol
○ https://github.com/AntfarmFinance/contracts/blob/main/antfarm/An

tfarmOracle.sol

● Smart Contract #3: AntfarmPair.sol
○ https://github.com/AntfarmFinance/contracts/blob/main/antfarm/An

tfarmPair.sol

● Smart Contract #4: AntfarmAtfPair.sol
○ https://github.com/AntfarmFinance/contracts/blob/main/antfarm/An

tfarmAtfPair.sol

● Smart Contract #5: AntfarmPosition.sol
○ https://github.com/AntfarmFinance/contracts/blob/main/antfarm/An

tfarmPosition.sol

5

Item Description

Project name antfarm.finance

Website https://antfarm.finance/

Type Smart Contract

Detail Solidity

Mission start date Wed. 8 Dec. 2022

Mission end date Mon. 10 Jan. 2023

Version 1.1.0

https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmFactory.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmFactory.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmOracle.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmOracle.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmPair.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmPair.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmAtfPair.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmAtfPair.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmPosition.sol
https://github.com/AntfarmFinance/contracts/blob/main/antfarm/AntfarmPosition.sol
https://antfarm.finance/

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 3 Mission

The calculation of the SHA-256 hash of each smart contract as part
of this audit may allow verification of the version of the code that was
audited by the RAID Square team.

6

Smart Contract Hash sha256

AntfarmAtfPair.sol

Hash 1.0:
f874d656b3836f6d708a13917608ac8913fa30e2bf9fedc58
c8510afb99df8d7
Hash 1.1:
02bfa1702b26d0477262b2b0f92d8049343fbecf03c7cdfb
1c9bb365f459aea6

AntfarmPair.sol

Hash 1.0:
581f91ff53394b0a337e4549e141d0dfff85b8d3efdb20107
627e38b5f9ddd1e
Hash 1.1:
c74fbce0e15b504189707200d6a4df45768276ad63162f7
e3e7afba483bb1548

AntfarmOracle.sol

Hash 1.0:
e0a2b7acee9b11e18bfe5843c40877698d7bb03add78da3
b9cc7128036e987c8
Hash 1.1:
105397d5302f32527755ee7f38a9522513c24f7cea9dfd4b
50b05759d91e338c

AntfarmFactory.sol

Hash 1.0:
c5bf921eb91d4f35782de00c66308a3c80cd9787fbd77937
87c2111cea3e167c
Hash 1.1:
6c7902bc14eb1aa5c1e6dd49cb1b09ddad8ebafe730dccf
ace9a082d6058e5fd

AntfarmPosition.sol

Hash 1.0:
d2da444b9cd0c7e5cf29f97bc83707ec242e5aa1b27eac7
44dad37d55ae8b4a0
Hash 1.1:
73b7f05f3c6faf96528bf80fefab5a90907b8d857ad851808
e4fd4d00babc908

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Methodology

A smart contract audit is a process of examining and assessing the
security and quality of a smart contract, with the aim of identifying
vulnerabilities and ensuring that the contract is working as intended.
There are several different methodologies that can be used to
conduct a smart contract audit, each with its own set of best
practices and considerations.

It is important to note that a smart contract audit is not a one-off
process, but rather an ongoing effort to ensure that the contract
remains secure and functions as intended. Regular audits should be
conducted to identify and resolve any issues that may arise over time.

RAID Square has created its audit methodology based on different
existing models and bases its approach on the notion of risk.

Risk = Likelihood * Impact

7

Risk Severity

Impact

High Medium High Critical

Medium Intermediary Medium High

Low Low Intermediary Medium

High Medium Low

Likelihood

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Methodology

The probability estimate and the impact estimate are put together to
calculate an overall severity for each risk. This is done by determining
whether the probability is low, intermediary, medium, high or c and
then doing the same for the impact. The 0 to 10 scale:

In order to determine the probability, we use the following guiding
factors for each vulnerability found:

Skill Level - The level of skill required to carry out the attack:
❏ No technical skills (1 to 3)
❏ Some technical skills (3 to 5)
❏ Advanced computer user (5 to 6)
❏ Networking and programming skills (6 to 9)
❏ Security penetration skills (9 to 10)

8

Likelihood and Impact Levels

0 to <2 Low

2 to <4 Intermediary

4 to <6 Medium

6 to <9 High

10 Critical

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Methodology

Motivation - How motivated is the attacker to find and exploit the
vulnerability?
❏ No reward (1 to 2)
❏ Reward less than the cost of the attack (2 to 4)
❏ Reward at break-even cost of attack (4 to 6)
❏ Reward greater than the cost of the attack (6 to 9)
❏ High or full reward (10)

Opportunity - What resources are required for the attacker to find
and exploit this vulnerability?
❏ Full access or expensive resources required (0 to 2)
❏ Access or special resources required (2 to 7)
❏ Some access or few resources required (7 to 9)
❏ No access or resources required (9 to 10)

Status - What is the status of the attacker?
❏ Developers (2)
❏ System administrators (2 to 4)
❏ Intranet users (4 to 5)
❏ Partners (5 to 6)
❏ Authenticated users (6 to 9)
❏ Anonymous Users (9 to 10)

Discovery difficulty - How easy is it for the attacker to discover this
vulnerability?
❏ Nearly impossible (1 to 2)
❏ Difficult (3 to 7)
❏ Easy (8 to 9)
❏ Automated tools available (10)

9

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Methodology

Exploitation difficulty - How easy is it for the attacker to actually
exploit this vulnerability?
❏ Theoretical (1 to 2)
❏ Difficult (3 to 4)
❏ Easy (5 to 9)
❏ Automated tools available (10)

Awareness - To what extent is this vulnerability known to the
attacker?
❏ Unknown (1 to 3)
❏ Hidden (4 to 5)
❏ Obvious (6 to 9)
❏ Public knowledge (10)

Detection - How likely is this exploit to be detected?
❏ Active detection in the application (1 to 2)
❏ Logged and reviewed (3 to 7)
❏ Logged without review (8 to 9)
❏ Not logged (10)

In order to determine the impact, we use the following guiding factors
for each vulnerability found:

Confidentiality - How much data could be disclosed and how
sensitive is it (if linked to a central database)?
❏ Minimum non-sensitive data disclosed (2 to 5)
❏ Minimum critical data disclosed (6 to 7)
❏ Extended non-sensitive data disclosed (6 to 7)
❏ Extended critical data disclosed (7 to 9)
❏ All data disclosed (10)

10

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Methodology

Integrity - How much data could be corrupted and how badly is it
damaged?
❏ Minimal data slightly corrupted (1 to 2)
❏ Minimal data severely corrupted (3 to 4)
❏ Extensive data slightly corrupted (5 to 6)
❏ Severely corrupted extended data (7 to 9)
❏ All data totally corrupted (10)

Non-compliance - What degree of exposure does non-compliance
cause?
❏ Minor violation (2 to 4)
❏ Open violation (5 to 6)
❏ High-profile violation (7 to 10)

Availability - How much service could be lost and how vital is it?
❏ Minimal secondary services interrupted (1 to 4)
❏ Minimal primary services interrupted (5 to 6)
❏ Extended secondary services interrupted (5 to 6)
❏ Extended primary services interrupted (7 to 9)
❏ All services totally lost (10)

Finance - What will be the financial damage from an exploit?
❏ Less than the cost of fixing the vulnerability (1 to 2)
❏ Minor effect on annual profit (3 to 6)
❏ Major effect on annual profit (7 to 9)
❏ Bankruptcy (10)

11

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

1. 4 Disclaimer

RAID Square is performing a technical audit of the smart contract
code as an independent service provider. We have performed this
audit in a diligent and professional manner, but it is important to
understand that our job is only to verify the quality and security of the
code in its current state.

This security audit is not intended to replace the functional testing
required before any software release. Furthermore, it does not
guarantee the discovery of all possible security issues of the given
smart contract(s) or blockchain software. In other words, the result of
the evaluation does not guarantee the non-existence of any other
security issues.

As an audit-based evaluation cannot be considered complete, we
always recommend several independent audits and a public bug
bounty programme to ensure the security of the smart contract(s).

We are not responsible for any security flaws that may be discovered
later, nor for any damage that may result from them. Similarly, we are
not responsible for any changes made to the code after the audit has
been completed.

It is the responsibility of users and stakeholders to exercise due
diligence when using the audited smart contracts and to regularly
check their security. RAID Square accepts no liability for any loss or
damage arising from the use of or reliance on these smart contracts.

Last but not least, this security audit should not be used as
investment advice.

12

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

2. FINDINGS

2.1 Summary

Here is a summary of our findings after analysing the implementation
of the Antfarm Finance protocol. During the first phase of our audit,
we studied the source code of the smart contracts using our internal
static code analyser. After identifying known coding bugs and
checking them manually, we manually examined the logic of the code
for potential bugs.

13

Severity Number of findings

Low 16

Intermediary 0

Medium 1

High 1

Critical 0

Total 18

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3. DETAILED RESULTS

3.1 AntfarmFactory.sol

3.1.1 Floating Compiler Version — Low —> Fixed

Line: 2
pragma solidity ^0.8.10;

Description: Contracts must be deployed with the same compiler
version and flags as those with which they have been thoroughly
tested. Locking the pragma ensures that contracts are not
accidentally deployed using, for example, an obsolete compiler
version that could introduce bugs that adversely affect the contract
system.

Recommendation: Use fixed solidity compiler version.
Code: pragma solidity =0.8.10;

3.1.2 Outdated code — Low—> Confirmed

Line: 11, 21, 22, 26, 30, 44, 52, 77
override

Description: The version currently used in the smart contract is
0.8.10. Since version 0.8.8, an earlier version, the inheritance of
interface functions does not require the “override” specifier. By
removing them, it is possible to reduce the size of the contract code.

Recommendation: Remove override when it’s to override an
interface.

14

https://blog.soliditylang.org/2021/09/27/solidity-0.8.8-release-announcement/

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.1.3 DoS With Block Gas Limit — Medium—> Fixed

Line: 58-60

function getAllPairs() external view returns
(address[] memory) {

return allPairs;

}

Description: When smart contracts are deployed or functions within
them are called, the execution of these actions always requires a
certain amount of gas, depending on the amount of computation
needed to perform them. The Ethereum network specifies a gas limit
per block and the sum of all transactions included in a block cannot
exceed this threshold. Programming schemes that are harmless in
centralized applications can lead to denial of service conditions in
smart contracts when the cost of executing a function exceeds the
block gas limit. Modifying an array of unknown size, which increases in
size over time, can lead to such a denial-of-service condition.

Recommendation: All users can increase the size of allPairs with
the createPair function. The getAllPairs() function might not
work anymore if allPairs becomes too large because the reading
might consume more gas than the gas block limit. In your case, the
getAllPairs() function is not used in the contracts we audited,
which is why this problem is in the medium state.
It is advised not to return a dynamic array, you can use
allPairsLength() and call with a specific array id on allPairs. If
you want to retrieve several pieces of data in one call, you must return
a fixed amount of data.

15

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.2 AntfarmOracle.sol

3.2.1 Floating Compiler Version — Low—> Fixed

Line: 2
pragma solidity ^0.8.10;

Description: Contracts must be deployed with the same compiler
version and flags as those with which they have been thoroughly
tested. Locking the pragma ensures that contracts are not
accidentally deployed using, for example, an obsolete compiler
version that could introduce bugs that adversely affect the contract
system.

Recommendation: Use fixed solidity compiler version.
Code: pragma solidity =0.8.10;

16

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.3 AntfarmPair.sol

3.3.1 Floating Compiler Version — Low—> Fixed

Line: 2
pragma solidity ^0.8.10;

Description: Contracts must be deployed with the same compiler
version and flags as those with which they have been thoroughly
tested. Locking the pragma ensures that contracts are not
accidentally deployed using, for example, an obsolete compiler
version that could introduce bugs that adversely affect the contract
system.

Recommendation: Use fixed solidity compiler version.
Code: pragma solidity =0.8.10;

3.3.2 Outdated code — Low—> Confirmed

Line: 21, 24, 27, 30, 33, 36, 39, 42, 84, 98, 137,
179, 241, 257, 273, 281, 291, 306, 322, 342, 359
override

Description: The version currently used in the smart contract is
0.8.10. Since version 0.8.8, an earlier version, the inheritance of
interface functions does not require the “override” specifier. By
removing them, it is possible to reduce the size of the contract code.

Recommendation: Remove override when it’s to override an
interface.

17

https://blog.soliditylang.org/2021/09/27/solidity-0.8.8-release-announcement/

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.3.3 Code readability — Low—> Fixed

Line: 42

AntfarmOracle public override antfarmOracleToken;

Description: It is important to keep some readability in the smart
contract code, to interact with an external smart contract, we mainly
use an interface and an address declaration. For example, on line
24: address public override token0;, the IERC20 interface is
used as a type converter
(IERC20(token0).balanceOf(address(this));).
For antfarmOracleToken, it is directly an import of contract code
on IAntfarmPair -> IAntfarmBase -> import
"../AntfarmOracle.sol";

Recommendation: Use interface like other external smart contract
interaction.

3.3.4 Operator efficiency — Low—> Confirmed
3.3.4.1 Operator efficiency — Low—> Confirmed

Line: 22

totalSupply = totalSupply + liquidity;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code: totalSupply += liquidity;

18

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.3.4.2 Operator efficiency — Low—> Confirmed

Line: 164

totalSupply = totalSupply - liquidity;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the -= operator.
Code: totalSupply -= liquidity;

3.3.4.3 Operator efficiency — Low—> Confirmed

Line: 423

totalDividendPoints = totalDividendPoints + ((amount
* POINT_MULTIPLIER) / (totalSupply -
MINIMUM_LIQUIDITY));

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code:
totalDividendPoints += ((amount * POINT_MULTIPLIER)
/ (totalSupply - MINIMUM_LIQUIDITY));

19

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance 20

3.3.4.5 Operator efficiency — Low—> Confirmed

Line: 424

antfarmTokenReserve = antfarmTokenReserve + amount;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code: antfarmTokenReserve += amount;

3.3.5 Code readability — Low—> Confirmed

Line: 367

for (uint256 token; token < 2; ++token) {

Description: If a variable is supposed to be initialized to zero, it must
be explicitly noted as zero to improve the readability of the code. The
uint256 token must be set to 0 to verify the 2 tokens of
address[2] memory tokens
.

Recommendation: Initialize all the variables.
Code:
for (uint256 token = 0; token < 2; ++token) {

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.3.6 Code readability — Low—> Confirmed

Line: 293

uint112 maxReserve;

Description: If a variable is supposed to be initialized to zero, it must
be explicitly set to zero to improve the readability of the code. The
uint112 maxReserve; must be set to 0 for address
bestOracle = scanOracles(maxReserve);.

Recommendation: Initialize all the variables.
Code: uint112 maxReserve = 0;

3.3.7 Oracle Manipulation — High—> Confirmed

Line:

179 - 183: function swap(uint256 amount0Out,uint256
amount1Out,address to) external override nonReentrant
{

...

218: uint256 feeToPay;

...

220: feeToPay = getFees(amount0Out, amount0In,
amount1Out, amount1In);

221: if (feeToPay < MINIMUM_LIQUIDITY) revert
SwapAmountTooLow();

21

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

222 - 226: if
(IERC20(antfarmToken).balanceOf(address(this)) -
antfarmTokenReserve < feeToPay) {

227: revert InsufficientFee();

228: }

...

233: uint256 feeToDisburse = (feeToPay * 8500) /
10000;

234: uint256 feeToBurn = feeToPay - feeToDisburse;

...

236: _disburse(feeToDisburse);

237: IAntfarmToken(antfarmToken).burn(feeToBurn);

Description: If someone manages to manipulate the price through
high liquidity in the pair, feeToPay might not be legitimate. Attackers
could manipulate the price to avoid paying a feeToPay. The swap
system could be locked if feeToPay is too low because feeToPay
must be higher than MINIMUM_LIQUIDITY (if (feeToPay <
MINIMUM_LIQUIDITY) revert SwapAmountTooLow();). An
attacker can use a flash loan, or create a pair and change the oracle
to this one

Recommendation: This problem has no direct solution but the risk
can be limited by reducing the update time in the oracle (uint256
public constant PERIOD = 1 hours;). If someone has
enough money to manipulate the price and pay the fee on
AntfarmAtfPair, the feeToPay will not correlate with the actual
antfarmToken for a short period of time.

22

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.4 AntfarmAtfPair.sol

3.4.1 Floating Compiler Version — Low—> Fixed

Line: 2
pragma solidity ^0.8.10;

Description: Contracts must be deployed with the same compiler
version and flags as those with which they have been thoroughly
tested. Locking the pragma ensures that contracts are not
accidentally deployed using, for example, an obsolete compiler
version that could introduce bugs that adversely affect the contract
system.

Recommendation: Use fixed solidity compiler version.
Code: pragma solidity =0.8.10;

3.4.2 Outdated code — Low—> Confirmed

Line: 20, 23, 26, 29, 32, 35, 38, 41, 88, 98, 143,
187, 248, 262, 280, 293, 303, 319
override

Description: The version currently used in the smart contract is
0.8.10. Since version 0.8.8, an earlier version, the inheritance of
interface functions does not require the “override” specifier. By
removing them, it is possible to reduce the size of the contract code.

Recommendation: Remove override when it’s to override an
interface.

23

https://blog.soliditylang.org/2021/09/27/solidity-0.8.8-release-announcement/

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.4.3 Code readability— Low—> Confirmed

Line: 41

AntfarmOracle public override antfarmOracle;

Description: It is important to keep some readability in the smart
contract code, to interact with an external smart contract, we mainly
use an interface and an address declaration. For example, on line
23: address public override token0;, the IERC20 interface is
used as a type converter
(IERC20(token0).balanceOf(address(this));).
For antfarmOracle, it is directly an import of contract code on
IAntfarmPair -> IAntfarmBase -> import
"../AntfarmOracle.sol";

Recommendation: Use interface like other external smart contract
interaction and remove direct smart contract importing interface file.

3.4.4 Operator efficiency — Low—> Confirmed
3.4.4.1 Operator efficiency — Low—> Confirmed

Line: 124

totalSupply = totalSupply + liquidity;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code: totalSupply += liquidity;

24

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.4.4.2 Operator efficiency — Low—> Confirmed

Line: 166

totalSupply = totalSupply - liquidity;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the -= operator.
Code: totalSupply -= liquidity;

3.4.4.3 Operator efficiency — Low—> Confirmed

Line: 382

totalDividendPoints = totalDividendPoints + ((amount
* POINT_MULTIPLIER) / (totalSupply -
MINIMUM_LIQUIDITY));

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code:
totalDividendPoints += ((amount * POINT_MULTIPLIER)
/ (totalSupply - MINIMUM_LIQUIDITY));

25

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.4.4.4 Operator efficiency — Low—> Confirmed

Line: 166

antfarmTokenReserve = antfarmTokenReserve + amount;

Description: Code logic error. Logical operators can do the same
action but in a clearer way.

Recommendation: Use the += operator.
Code: antfarmTokenReserve += amount;

26

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.5 AntfarmPosition.sol

3.5.1 Floating Compiler Version — Low—> Fixed

Line: 2
pragma solidity ^0.8.10;

Description: Contracts must be deployed with the same compiler
version and flags as those with which they have been thoroughly
tested. Locking the pragma ensures that contracts are not
accidentally deployed using, for example, an obsolete compiler
version that could introduce bugs that adversely affect the contract
system.

Recommendation: Use fixed solidity compiler version.
Code: pragma solidity =0.8.10;

3.5.2 Outdated code — Low—> Fixed

Line: General
override

Description: The version currently used in the smart contract is
0.8.10. Since version 0.8.8, an earlier version, the inheritance of
interface functions does not require the “override” specifier. By
removing them, it is possible to reduce the size of the contract code.

Recommendation: Remove override when it’s to override an
interface.

27

https://blog.soliditylang.org/2021/09/27/solidity-0.8.8-release-announcement/

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.5.3 Code readability — Low—> Confirmed
3.5.3.1 Code readability — Low—> Confirmed

Line: 401

for (uint256 i; i < positionsLength; ++i) {

Description: If a variable is meant to be initialized to zero, explicitly
set it to zero to improve code readability. The uint256 i; must be
set to 0 to uint256 i = 0;

Recommendation: Initialize all variables.
Code:

for (uint256 i = 0; i < positionsLength; ++i) {

3.5.3.2 Code readability — Low—> Confirmed
Line: 421

for (uint256 i; i < positionIds.length; ++i) {

Description: If a variable is meant to be initialized to zero, explicitly
set it to zero to improve code readability. The uint256 i; must be
set to 0 to uint256 i = 0;

Recommendation: Initialize all variables.
Code:
for (uint256 i = 0; i < positionIds.length; ++i) {

28

Smart contract audit report

Smart contract audit report | Antfarm Finance | RAID Square | JANUARY 26, 2023

Antfarm Finance

3.5.3.3 Code readability — Low—> Confirmed

Line: 473

for (uint256 i; i < positionsLength; ++i) {

Description: If a variable is meant to be initialized to zero, explicitly
set it to zero to improve code readability. The uint256 i; must be
set to 0 to uint256 i = 0;

Recommendation: Initialize all variables.
Code:

for (uint256 i = 0; i < positionsLength; ++i) {

29

