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Random generators

Random numbers are required for a variety of applications from
secure communications to Monte-Carlo simulation.

There are many random number generators:

1. pseudo-random generators, software produced
I PCG, Random123, xoroshilro128+

2. hardware generators, devices that generate random numbers
from physical processes

I macroscopic, e.g. coin, dice, roulette wheels, lottery machines,
I microscopic, e.g. thermal noise, photoelectric effect, quantum

effects.

In particular, there are many quantum random generators, from lab
experiments to openly accessible on the internet and commercial
(Quantis).
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Why do we need another quantum random generator?

Because no current quantum random generator (QRNG) is
provably better than the other generators, in particular,
pseudo-random generators.

Is this so? Many advantages promised by QRNGs rely on the belief
that the outcomes of quantum measurements are

intrinsically/irreducibly unpredictable.

This belief underlies:

I the use of QRNGs to produce “quantum random” sequences
that are “truly unpredictable”,

I the generation of cryptographic keys unpredictable to any
adversary.

Is this belief reasonable?
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Unpredictability

Popper (1950), in arguing that unpredictability is indeterminism,
defines prediction in terms of “physical predicting machines”.

Wolpert (2008) formalised this notion much further in developing a
general abstract model of physical inference.

A more modern and technical definition of unpredictability was
given by Eagle (2005) in defining randomness as maximal
unpredictability. But, does maximal unpredictability exist?

The first two models of predictability lack generality by requiring
the predictor to be embedded in its environment; the third is
relative to a particular physical theory.
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Two forms of randomness

I Product randomness modelled as algorithmic randomness
(algorithmic information theory)

I true/perfect randomness does not exist (Ramsey theorem)
I there are degrees of randomness (based on resources)
I unpredictability is a requirement of randomness

I Process randomness
I no mathematical formalisation
I can be accessed/validated only with theory (e.g. quantum

theory) and product randomness

I “. . . randomness is not in the world, it is in the interface
between our theoretical descriptions and ‘reality’ as accessed
by measurement. Randomness is unpredictability with respect
to the intended theory and measurement.” (G. Longo)
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Indeterminism and quantum randomness

I Quantum randomness is
I postulated and
I generally reduced to the indeterminism of quantum

measurements: because the outcome is indeterministic there is
no way to predict it, hence it is random

I However, indeterminism does not imply randomness and
randomness does not imply indeterminism:

I pseudo-randomness
I coin-tossing (chaoticity)
I Omega number
I Schrödinger equation
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Value definiteness

For a given quantum system in a particular state, we say that an
observable is value definite if the measurement of that observable
is predetermined to take a (potentially hidden) value.

If no such predetermined value exists, the observable is value
indefinite.
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Value definiteness (cont.)

In addressing the question of when we should conclude that a
physical quantity is value definite, Einstein, Podolsky and Rosen
(EPR) gave a sufficient criterion of physical reality which we adopt
as:

EPR principle: If, without in any way disturbing a
system, we can predict with certainty the value of a
physical quantity, then there exists a definite value prior
to observation corresponding to this physical quantity.

EPR principle justifies also

Eigenstate principle: If a quantum system is prepared in
a state |ψ〉, then the projection observable Pψ = |ψ〉〈ψ|
is value definite.
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The Kochen-Specker theorem

A context in Cn is a maximal set of n compatible (commuting)
observables. In Hilbert space contexts can be identified with
orthonormal bases.

Value assignment are partial functions v : O → {0, 1}: v(P) is
undefined if P is value indefinite.

Kochen-Specker Theorem. In a Hilbert space of dimension at
least 3 there is a finite set of (projection) observables O such that
no value assignment function v : O → {0, 1} can have the
following three properties:

1. Value definiteness (VD): v is total, i.e. v(P) is defined for all
P ∈ O.

2. Noncontextuality (NC): v is a function of P only.

3. Satisfy quantum mechanical predictions (QM): For every
context C ⊂ O:

∑
P∈C v(P) = 1.
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Possible choices

We may reject:

I QM (but then we depart from quantum theory), or

I NC (definite values depend on measurement context), or

I VD (some observables are value indefinite).

A (rather accepted) option is to assume QM and NC and adopt
value indefiniteness as a model of quantum indeterminism.

In this case Kochen-Specker theorem says that some observables
are value indefinite, hence some quantum measurements are
indeterminate.
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Localised value indefiniteness

Theorem 1. [Abbott, Calude, Conder, Svozil (2012)] Assume
the EPR and Eigenstate principles.
Consider a quantum system prepared in the state |ψ〉 in dimension
n ≥ 3 Hilbert space Cn, and let |φ〉 be any state neither orthogonal
nor parallel to |ψ〉.
Then the projection observable Pφ = |φ〉 〈φ| is value indefinite
under any non-contextual value assignment satisfying QM.

Accepting that definite values exist for certain observables
(Eigenstate principle) and behave non-contextually (EPR principle)
is enough to locate and derive rather than postulate quantum
value indefiniteness. In fact, value definite observables are not the
norm, they are the exception:

Theorem 2. [Abbott, Calude, Svozil (2014) (2015) – 2] The
set of value indefinite observables has constructive measure 1.
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Value indefiniteness, unpredictability and randomness

Under the adopted interpretation:

I Kochen-Specker theorem shows that quantum-mechanics is
indeterministic.

I Theorems 1 and 2
I indicate precisely which observables are value indefinite and
I the extent of this indeterminism.

We are ready to ask the main question:

Are quantum mechanical measurements unpredictable?
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Unpredicatbility revisited

A non-probabilistic model of prediction based on the ability of a
computable operating agent to correctly predict using finite
information extracted from the system of the specified experiment
was developed in Abbott, Calude, Svozil (2015).

Predictions should remain correct in any arbitrarily long
(but finite) set of repetitions of the experiment.
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A non-probabilistic model of prediction

We consider an experiment E producing a single bit x ∈ {0, 1};
with a particular trial of E we associate the parameter λ (the state
of the universe) which fully describes the trial. We can view λ as a
resource that one can extract finite information from in order to
predict the outcome of the experiment E .

An extractor is a physical device selecting a finite amount of
information from λ without altering the experiment E .
Mathematically, the extractor produces a finite string of bits ξ(λ).

A predictor for E is an algorithm PE which halts on every input
and outputs 0 or 1 or prediction withheld.

PE can use as input the information ξ(λ), but must be passive,
that is, it must not disturb or interact with E in any way.
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Unpredictability of individual quantum measurements

Consider an experiment E performed in dimension n ≥ 3 Hilbert
space in which a quantum system is prepared in a state |ψ〉 and a
value indefinite observable Pφ is measured producing a single bit x .

Assume the EPR and Eigenstate principles.

Theorem 3. [Abbott, Calude, Svozil (2015) – 1] If E is an
experiment measuring a quantum value indefinite observable, then
for every predictor PE using any extractor ξ, PE is not correct for ξ.

Theorem 4. [Abbott, Calude, Svozil (2015) – 1] In an infinite
repetition of the experiment E measuring a quantum value
indefinite observable which generates the infinite sequence
x1x2 . . . , no single bit xi can be predicted.
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Unpredictability and quantum randomness

epr principle: If a repetition of measurements of an
observable generates a computable sequence, then this
implies these observables were value definite.

Theorem 5. [Abbott, Calude, Conder, Svozil (2012)] Assume
epr principle. An infinite repetition of the experiment E measuring
a quantum value indefinite observable generates a bi-immune
infinite sequence x1x2 . . . .

Theorem 4 does not imply Theorem 5.
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Spin-1 QRNG

spin-1 source Sz splitter Sx splitter
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Spin-1 particles are prepared in the Sz = 0 state (this operator has
a definite value), and then the Sx operator is measured. Since the
preparation state is an eigenstate of the Sx = 0 projector with
eigenvalue 0, this outcome has a definite value and cannot be
obtained.

Thus, while the setup uses spin-1 particles, the outcomes are
dichotomic and the Sx = ±1 outcomes can be assigned 0 and 1
respectively.

Furthermore, since 〈Sz = 0|Sx = ±1〉 = 1/
√

2, neither of the
Sx = ±1 outcomes can have pre-assigned definite value.

17 / 1



3D QRNG producing bi-immune sequences
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Realisation of a 3D QRNG
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FIG. 2. (a) Simplified diagram of the measurement setup. A transmon type multi-level quantum system is incorporated into
a 3D microwave copper cavity attached to the cold stage of a dilution cryostat. A magnetically tunable Josephson junction
(SQUID) is used to control the transition frequency of the qutrit by a superconducting coil attached to the cavity. Amplitude-
controlled and phase-controlled microwave pulses are applied to the input port of the cavity by a quadrature IF (IQ) mixer
driven by a local oscillator (LO) and sideband modulated by an arbitrary waveform generator (AWG). The measurement signals
transmitted through the cavity are amplified by quantum Josephson parmateric amplifier (JPA), by a high-electron-mobility
transistor (HEMT) amplifier at 4 K and a chain of room temperature (RT) amplifiers. The sample at 20 mK is isolated
from the higher temperature stages by three circulators (C) in series. The amplified transmission signal is down-converted
to an intermediate frequency of 25 MHz in an IQ mixer driven by a dedicated LO, and is digitized by an analog-to-digital
converter (ADC) for data analysis. (b) The energy level diagram of a qutrit coupled to a microwave cavity. The transition
frequencies of the qutrit and cavity are in GHz while the anharmonicity of the qutrit is ⇠ 300MHz. When the coupling g
between the transmon and the cavity is much smaller than their mutual detuning, the system is in the dispersive regime used
for measurement of the qutrit.

with the protocol of Ref. [4].
To distinguish between three di↵erent states with high

fidelity we use a Josephson parametric amplifier similar
to the one described in Ref. [14]. In addition, we set the
readout pulse frequency close to the cavity frequency cor-
responding to the |1i state of the qutrit, which allowed
the three possible qutrit states to be well separated on
I-Q plane (see Fig. 3). The readout frequency was fine-
tuned to maximize the three-level readout fidelity. Us-
ing the outlined procedure for initialization and measure-
ment we generated 10 Gbit of raw data at a rate of 50
kbit/s.

If the qutrit is prepared in the state |�i and we per-
form a quantum measurement described by the projec-
tors | ih | then Ref. [4] provides the condition to certify
the value-indefiniteness of the outcomes of the measure-
ments:

r
5

14
 |h |�i|  3p

14
. (6)

In our protocol we take {S
z

= 0} state as |�i and

{S
x

= ±1} as | ±i (see Fig. 1). If our system were
ideally prepared in the ground state and all the experi-
mental imperfections were generated only by errors in the
microwave control we could estimate |h ±|�i| directly as
the square root of the probability to obtain the outcomes
”0” and ”1”. The resulting probabilities to obtain ”0”
and ”1” were measured as 0.536±0.004 and 0.464±0.004
confirming that the control errors of our setup guarantee
value-indefiniteness with high confidence.

In reality the actual states of the system before and
after the measurement are not described by pure states.
The main contribution to the deviation of the probabil-
ities from the ideal value 1/2 is due to relaxation of the
qutrit during the dispersive measurement. As it leads
to the misinterpretation of the excited state as being
the ground state, we measured greater probability to ob-
tain ”0” rather than ”1”. Another sources of imperfec-
tions are thermal excitation of the qutrit (< 1%), fidelity
of gates (> 99%) and relaxation during the microwave
pulses. The result of these imperfections may lead to a
situation when for some runs the certification condition

Transmon, super-conducting quantum system coupled to a
microwave cavity. Kulikov, M. Jerger, A. Fedorov (2017)
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Experimental evidence of incomputability of the 3D QRNG
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Solovay-Strassen test using Chaitin-Schwartz theorem

A comparative analysis of 10 samples of strings length 229 obtained
with Transmon, π, and four of the best pseudo-random generators.
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