

A SOLID FOUNDATION

- Dry eyes
- Poor positioning
- History of refractive surgery
- Previous eye surgery
- Busy clinic
- Software update
- Unfamiliar equipment

OPHTHALMIC BIOMETRY REALITIES

- + 50% of a surgeon's post operative surprises are A-Scan errors (Thomas Olsen, MD)
- Errors of 2.00 D or more are almost always biometry related
- 67% of the time errors are A/K based

(Jack Holladay, MD; Journal of Refractive Surgery 2007)

PRESENTATION OVERVIEW

- Biometry
 Measurements: components and troubleshooting • IOL Calculations: evolution of options and selecting the appropriate equation
- Special Cases
- Interactive Examples with Q&A

Thank you to Denice Barsness, CRA, COMT, CDOS, FOPS and Dr. Lori Lombardi for use of their slides

BEFORE YOU BEGIN

- · What is the patient bringing to the table?
- Do you have sufficient information on the patient?
- What is the best "game plan" for that type of patient?
- Know your anatomy as a reference point from which to proof your work

FACTORS AFFECTING MEASUREMENTS & IOL CALCULATIONS

- Keratometry
- Axial Eye Length Measurement
- Axial Length Correction Factor (when using optical coherence biometry (OCB))
- Density of Cataract
- Surgical Technique
 - Site implantation
 - Postoperative change in corneal curvature
 Capsulorrhexis
 - IOL tilt and decentration

THE "NORMAL" EYE AVERAGES• K Readings44.00 mm• Axial24.00 mm• ACD3.25 mm• Lens Thickness4.50 mm• Vifreous15.50 mm• Average IOL Power+21.00 D

WHERE OCB TRUMPS ACOUSTICAL

- In the presence of posterior chamber silicone
- ${\boldsymbol{\cdot}}$ In the extreme myopic, staphylomatous eye
- $\ensuremath{\cdot}$ In the extreme short, nanophthalmic eye
- In pseudophakic with various types of IOL's with differing designs and properties

BIOM	FTRY PROOF SHEFT #1	
Measurement	Criteria	
Axial	Correct Measurement Mode? (phakic, aphakic, pseudo)	
	At least 5 measurements within 0.5 mm	
	OD/OS Axial within .33 mm	
	AL consistent with oldest or pre cataract RX	
	Immersion: Good, perpendicular echospikes	
	OCB: Good waveform (Primary maxima), Double peaks	
Keratometry	Ocular surface- requires artificial tears?	
	K1 and K 2 readings within .25D in each meridian	
	Keratometry astigmatism and refractive cyl 7 axis conform?	
	Astigmatism for each eye < 3.50 D	
	Average K power for both eyes within 1.50 D	
	Average K power < 48.00 D or > 40.00 D	
ACD Measurement	Aphakic and pseudophakic: do not measure	
	OCB: 5 consistent measurements	
	ACD < 4.2 mm > 0.2 mm	
White to White	3 measurements within 0.2mm	
	OD & OS within 0.2mm patient fixating centrally	
	Source: docto	rhill.com

BIOMETRY PROOF SHEET #2

Exception

Axial Length < 22.00 mm or > 30.00 mm Astigmatism >3.50 D

Average K's : > 1.5 D between eyes Average K power >48.00 D or <40.00 D ACD < 2.2 mm or > 4.2 mm White to White < 10.2 or >12.9

Additional Task Immersion A scan/ bring to MD attention Difference in Axial length OD/OS >0.33 mm Justify, remeasure, bring to MD attention Corneal Topography

> Justify, remeasure, bring to MD attention Justify, remeasure, bring to MD attention Justify, remeasure, bring to MD attention Remeasure, bring to MD attention

> > Source: doctorhill.com

REFRACTIVE TARGET

EVOLUTION OF EQUATIONS

- Theoretical vs regression analysis vs combination
- SRK: Power = A 0.9K– 2.5(axial length)
 SRK II, SRK-T
- Haigis: uses ACD measurement, statistical analysis of post-op results → individualized
- Holladay II: aggregate of 50,000 cases; uses ACD, HWTW, pre-op refraction, lens thickness, age
- Barrett Universal: uses estimates of posterior corneal astigmatism
- Hill-RBF: optimized for Lenstar

CHECKING YOUR BIOS

- Check the patient's name and date
- Check to be sure that you are looking at the surgical eye
- Check AL for absolute number and symmetry
- Check Ks for absolute number and symmetry
- Check target refraction compared to your plan
- Check the equation you are using (Haigis, Holl, etc)
- Check to be sure you are choosing the correct lens
 (SN, SA, MA etc don't just check what you are accustomed to looking at)

AVOID SIMPLE ERRORS!!

- Simple transfer data errors
 Correct patient, correct eye
- Ignorance of post-refractive surgery status
- Measuring patient with CL on
- IOL for wrong patient
- Expecting your standard IOL in one place on the biometry sheet (always top left, photographer may switch your IOLs around)

- K's <40 D or >48 D
- Previous keratorefractive surgery
- Axial length or K's don't correlate with pts refractive error and or topography There is a difference in IOL or K power between eyes of > 1 D

Data of calorator test. U162018 py Data of Heal-presst. U162018	Administrator Facult OK	
I.S. Pravic, VS. Vitrous tody	Lis. Phalas: VS. Viteous body	
AL: 23.94 mm (50 + 5 μm) ACDI: 3.82 mm (50 + 6 μm) LT: 4.20 mm (50 + 11 μm) AL: ACD: LT 23.94 mm 3.87 mm 4.29 nm 23.94 mm 3.87 mm 4.29 nm 23.94 mm 3.87 mm 4.29 nm 23.94 mm 3.82 mm 4.29 nm	AL: 23.81 mm (5D = 6 µm) AOD: 3.60 mm (5D = 6 µm) LT: 4.34 mm (5D = 24 µm) AL: ACD LT 23.81 mm 3.67 mm 4.33 mm 23.81 mm 3.66 mm 4.36 mm 23.81 mm 3.66 mm 4.36 mm	
23.93 mm 23.93 mm 23.93 mm 23.93 mm 3.81 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 4.22 mm 6.22 mm 4.22 mm 4.22 mm 6.22 mm 4.22 mm 6.22 mm 4.22 mm 4.22 mm 6.22 mm 4.22 mm	23.62 mm 3.66 mm 4.34 mm 23.62 mm 3.66 mm 4.34 mm 23.62 mm 3.66 mm 4.35 mm 53.66 mm 4.35 mm 53.65 mm 53.66 mm 5	
NL 42.64 D @ 62.7 (50.7 ± μm) ΔD: +0.64 D @ 62.7 8 7.83 mm ΔD: -0.62 D @ 61.7 84.11 D 34.11 D ΔD: -0.64 D @ 62.7 84.11 D 34.11 D	NL 42.45 D 0 (10) ≠ (3D + 2 µm) ΔD: +0.74 D 0 (10) ≠ ΛD: +0.74 D 0 (10) ≠ ΛD: +0.73 D 0 (10) ≠ ΛD: +0.74 D 0 (10) ≠	
O J all time AD +0.65 O (g) 62 ^a Central corr CCT: 655 µm (50 = 4 µm) 557 µm 555 µm 554 µm 555 µm 554 µm 554 µm	0. -0.250 mm 00.100 adl thickness (50 = 3 µm) COT: 526 µm (50 = 3 µm) 527 µm 526 µm 528 µm	
White-to-white and pupil w WTW: 12.5 mm bit: -0.5 mm P: 6.0 mm Pic: +2.3 mm Image stored Referent	Loss (Chang-Waring Chord) WTW, 123mm lx:0.5mm ly:0.3mm P, 23mm Px:0.3mm Py:0.3mm 6 image Image stored	
Comment IO.Keeler 790 Vesion 170 Report	Alexa 1/1902/19 12 17 Pet, coverida, Administrator Page 2 (2

Pype	ican Lomb	ard Operator Admi	nistrator		
Entra Tra Fra	of salaritor test. 173 of salaritor test. 173 dis	a faite to the second s	Administrator 1.3375	Fmit OK CIG: 12.00 mm	
	OD 8	IOL cal indicates an uncertain measurement indicates that this value the been ed	culation value	OS	
40 ACC 10 10 10 10 10 10	L 23.94 mm (50 = 0. 3.42 mm (50 = 1. 4.23 mm (50 = 6.43.11 D 1. 42.50 D (6.152*	Indicales a measurement failure. 5 µm) WTW: 12.5 mm 8 µm) 11 µm) 3.01 = 0.64 D @ 62* 82: 43.44 D @ 62*	AL: 23.81 mm (50 * 6 µm) AC:0. 3.66 mm (50 * 6 µm) LT: 4.34 mm (50 * 24 µm) SE: 4.34 60 X3: 43.29 D @ 19*	0 W7%: 12.3 mm	
844 Targ (8) (2)(2)	-1.00 D +0.00 0 @ pet ref: -0.25 0 Phalek: VS: Views 2. Unitwalled: UVC mo	0" VA, SAA, -0.00 D (20" stody. SK -	Ref. 0.75 0 -0.25 0 @ 82* Target ref: -0.25 0 LS. Phales: VS. Vileeous box LVC: Unitwalled: LVC mode -	VA	
	Alcon SN90WF 10: A1: K 10: +0.234 +0.2 10: (17) Pert (1) 12:200 4.82 11:30 4.47 12:00 4.12 10:00 4.12 10:0	Alcen Tarls 5NBAT(2-8) 2 17 0 0 0 0 0 0 0 0 0 0 0 0 0	Alcon StabDWF Alc A1 A2 4.700 +0.224 +0.2777 02.000 -8.476 -22.50 -0.71 +27.50 -0.61 +27.50 -0.61 +20.00 -0.01 -20.01 -0.01	Alcon Teris \$N6AT(2-6) 40 A1 A2 500 0213 10206 100 0213 10206 101 0213 10206 101 0213 10206 101 0213 10206 101 0213 10206 101 0215 101 00	
Ac	con AcrySof MA6C	AC Alcon MTA 3U0	Alcon AcrySof MASOAC	Alcon MTA 3U0	
	40: A1: A229 +8011 +823 101, (12) Fet (1) 102, (12) Fet (2) 121,50 +866 121,90 +431 120,50 +839 100,55 Emme	2 40 A1 A2 1.140 +0.400 +0.100 1.140 +0.400 +0.100 1.140 +0.400 +0.100 1.150 Fef(0) +1500 -1.50 +17.00 -0.18 +15.00 +0.19 +15.01 Emme.	Ab At A2 -0.229 -0.011 +0.205 101, (0) Ref (0) -0.51 +21,50 -0.51 +0.55 +20,50 +0.55 +0.55 +20,50 +0.55 +0.50 +19,50 +0.50 +0.50 +20,22 Emme. -0.50	AD A5: A2: -1.140 +0.400 +0.120 VDL (30) Perf (3) +17:00 +17:00 -0.58 +17:00 +17:00 -0.55 +65:50 +15:50 +0.18 +15:50 +15:50 +0.59 +15:50 +15:34 Emme. -10:34	
Cor	mmert	Varian 170 Report	And UNION O 1774 matchs AB		

Pryster Lombard	i Opencor Ada	ministrator				Pryscan Lomberdi	Operator Adm	inistrator		
Loss of solitorison loss. U1622 Loss of heat-sensor EC: Align	SNHONT	Administrator 1.3375	Russ. OK 010: 12.00 mm			Color of recipion test, 1/16/20 Color of researchment, 2/16/20 Col: ANNO TH	aonis 1 20800	Administrator 1.3375	Result OK CVD: 12.00 mm	
	IOL calculation measurement failure.	on (Multiformula) ri value sitied menusity.	OS				IOL calculatio ales an uncertain measurement ales that this value has been ec- ales a measurement failure.	n (Multiformula) Ivalue. Bad manually.	OS	
AL: 22.54 mm (50 = 5) AC0: 3.82 mm (50 = 6) LT: 4.22 mm (50 = 1) SE: 43.510 kt (20 = 1) Ref1.00 D (20 = 1) LE: Ptaget etc0.25 D LE: Ptaget etc0.25 D	an) WW: 12.5 mm an) ΔD: +0.64 0 @ 62 K2: 43.440 @ 62 VR: SRi, +0.00 0 @ 0* tody;	AL: 23.61 mm (30 = 6 µ ACD: 3.66 mm (30 = 4 µ LT: 4.54 mm (30 = 4 µ SE: 43.66 0 x3: 42.90 0 th Pet0.75 0 40.50 0 (40* Sarget et: -0.25 0 0 (40* Sarget et: -0.25 0 0 (40* Sarget et: -0.25 0 (40* S	n) WTW: 123 mm n) AD: +0.74 0 @ 105* X2: 44.03 0 @ 105* VA: SIA: +0.00 0 @ 0* sidy.			AL 22.94 mm (ED = 5 µm ACD 3.82 mm (ED = 5 µm UT 4.23 mm (ED = 5 µm SE 43.11 D R1 42.80 D (ET 27 Ref 5.00 D +0.00 D (ET 27 Target ref 0.25 D US: Phale: VS: VHeous Ib Mittareed UM mode	n) WTNC 12.5 mm 1) 5.0: +3.640 @ 62* 12: 43.440 @ 62* Wk 544: -3.000 @ 0* 24/:	AL: 23.81 mm (10 = 8 µr ACD: 3.06 mm (10 = 4 µ 11: 4.34 mm (10 = 2 µ) 51: 43.66 D K1: 43.29 D @ 19 ⁴ Ref. 0.75 D +0.25 D @ 19 ⁴ Target ref0.25 D L5: Prairie: V5: Viteous b UV: Viteous 11.07	a) WTW: 12.3 mm a) 5.0: +0.74.0 @ 100* 8.2: 44.03.0 @ 100* W4:	
Haigis	Barrett	Haigis	Barrett		Ĩ	Haigis	Barrett	Halgis	Barrett	
A0. A1. A2. -0.799 +0.234 +0.217 161,179 Fef (0) +0.212 +22.00 -0.82 +21.50 +21.00 -0.12 +21.00 +21.00 -0.12 +20.50 +20.00 +0.22 +0.21 +20.00 -0.51 =0.12 +20.00 +0.57 =0.057	UF +1.88 DF: +5.00 +22.80 - 0.52 +21.60 - 0.52 +21.60 - 0.51 +21.60 - 0.21 +25.00 - 0.40 +20.00 - 0.40 +20.71 Emme.	AD: A1: A2 4.709 =0.234 +0.217 101.00 Fiel(3) +21.00 -0.11 +21.00 -0.11 +21.00 -0.11 +20.00 -0.28 +20.00 -0.28 +20.41 Emme	U/: +1.88 DF: +5.00 104.109 +21.50 -20.50 +21.00 -20.50 +25.00			A0: A1: A2: 1.302 +0.210 +0.251 101.(2) Fef(0) +22.50 4.50 +21.60 40.21 +21.00 40.13 +30.50 40.47 -21.13 Emme.	U1: 2204 DF: 46.00 101: (D) Ref (D) *2230 1.155 *2200 0.09 *21.80 4.34 *21.00 *0.00 *25.50 *0.35 *21.01 Exem.	A0 A1: A2 1302 +6216 +0251 10L (0) Fet(0) +22.00 4.85 +21.00 4.55 +21.00 +0.15 +20.00 +0.52 +20.00 +0.52	U7:+2.04 D5::+4.00 104.(2) Ref(0) +22.00 0.33 +21.50 0.57 +21.00 40.22 +20.50 +0.12 +20.00 +0.46 -20.68 Emme.	
Holiaday 1	Holladay 2	Holiaday 1	Holladay 2		[Holladay 1	Holiaday 2	Holladay 1	Holiaday 2	
5F: +1.55 101, (2) Pet (0) +21,00 0.79 +20,00 -0.79 +20,00 -0.99 +15,00 -0.25 +15,00 -0.25 +15,07 Exerce. Comment	ACD:+5.001 101(D) Perf (5) -2230 0.359 -2130 0.359 -2130 0.359 -2530 -0.351 -2530 -0.351 -2542 Eases	5F:+155 (0) 000 -21.00 0.02 -22.00 0.02 -25.00 0.02 -25.00 0.02 -15.00 -0.41 -15.40 Essea	ACD: +5.001 KCL (2) Per(D) +22.00 - 1.50 +21.50 - 0.74 +21.50 - 0.74 +20.50 - 0.25 +20.00 + 0.25 +20.30 Emma.		2	8F:+1.61 KCL.(2) Fiel.(2) +21.50 - 1.65 +21.00 - 0.75 +21.00 - 0.33 +05.00 - 0.33 +55.00 - 0.33 +55.00 Exeme. Comment	ACE: +5.786 ICL (2) Part (0) +22.50 - 1.50 +22.50 - 0.55 +21.50 - 0.33 +21.00 Exema.	3F +1.61 101, (2) Fier (2) +21.00 -0.85 +20.00 -0.53 +20.00 -0.53 +10.00 +0.48 +10.00 +0.48 +10.72 Eneme.	ACD: +5.786 HCL (2) Flef (2) +22.00 -0.81 +21.50 -0.48 +25.00 +0.55 +25.00 +0.55 +26.77 Emme	
10.Master 790	Vasion 170 Rep.	of 64x1 5190918 1217 PK costollip.4	animitator Page 1 of 2			O.Maily 730	Vesion 170 Report	Land U180218 12 17 PK created by A	Page10	2

• http://iolcolc.org/ • Prior MYOPIC vs HYPEROPICknow this (SE) • Prop: -1.00 +3.50 x 92 → SE to/55, patient had hyperopic LASIK

Cochor Name	Patient Name	Falert	D
Eye	IOL Model	Target Ref ()	1
Pre-LASICPRK Data			
Refuctor* Sph(D)	CyARY	Vartex (If empty, 12.5 m	mis used)
Kerstonetry K1(D)	K2(D)		
Post-LASIK/PRK Data:			
Rehaction's Sphj	0,407	Vertex(if empty, 12.5- mm will be used)	
Topography EastEas EM	P Laney ACCP Noss*ACPAPP	Galler TOP2	
Atau Zone value Atau 200 Anne po	2	TMP_Aper_4.0 mm Zone	
das Ring Values On		200	3ne
OCT.(RTVat.or.Actes) X85 Net Corneal Pow	Posterior Correal Power	Central Corneal Thickness	
Optical/Ultrasound Biometric Data			
K1 K100	K200 0	nvice Keratometric 🕷 🔘 🔘	
Al local	4/(Trans)	Index (1) 1.332's 1.332 Other	WTH COMP
Lens	PCC(mm)		
Constants** Promotion (Service)	or (routedy ()		
converted value is used)	D.4 is used)	01 is used)	
"If entering "Sph(2)", you must enter a rulu SMost recent stable refraction prior to deve a Happelan ACP or OPD-Scan III.APP 3-m "Toher any constants available, others will in preferable to use optimized a0, a1, and a	n for YCY(C)", even if it is zero. opment of a cateroct. n manual-value (personal communication Ste be cateulated from those entered. If ultrasoni 2 Hagis constants.	phon D. Klyce, PhD) ; AL is entered, be sure to use your of	transound liens constants
		Falcatete	Result form

	COOL	LAB –	DR	HU	AN	G
	HTTP://C	OOLLAB.N	et/inde	X.PHP	šID=8	352
	OCT-bas	ed IOL power c. laser vi	alculator for sion correct	or eyes w ction	ith prev	ious
• OCT based			(c) 2011-2013 CHOU INF	electual hoperty Al	rights reserved.	
• OCI based	Provide State	and had so had been been been been and had been been been been been been been bee	100 000			
	Develo	jed by Macrong Tang PED, David Hu	ing MDI PhDI.		Updated. June 13, 2	60
	The calculator is No any previous refra	3T intended for patients with the surgery (virgin eyes).	previous RK. It is also	NOT intended fo	ir eyes without	
	Fatient Name			full model*	anter	
	Prior LVC Type	Click for menu		Target MRSE (D)	-0.50	valid
		From IOI Master				
		ACD INNI	enter			
		AL (1011)	enter			
		From RTVue OCT (softw	vare version 6.2.0 o	r later)		
		Test Connect Descent Pro-	3000 #1	3000 #2		Average
		Admin Commit Poten (C)	enter	enter	-	
		Protector Content Power (C)	enter	enter	-	
		Central Comeal Thickness (Jm)	enter	enter	-	
		IOL Power calculation r	esults			
		KX. power (D)	incomplete entry	1		

LONG AXIAL LENGTH

- Wang-Koch modification of axial length to prevent hyperopia
 Wang L, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. JCRS 2011; 37:2018-2027.
- Optimized Optical Biometry AL = (0.8289 x measured AL) + 4.2663
- Barrett Universal formula (no AL adjustment)

SCLERAL BUCKLE

- If AL is greater than 24.0 mm, reduce the IOL power by 0.50 D in the setting of a scleral buckle
- S.B. increases A.L. by 0.75 mm to 1.25 mm with a moderate scleral buckle, but the ACD stays the same.
- Most IOL power calculation formulas assume greater AL means greater ACD (except Holladay 2, which asks if a scleral buckle is present)
- Subtracting 0.50 D from the calculated IOL power will correct for this.

- Ask for B-scan U/S concurrent to A-scan
- Optical Coherence Interferometry (IOL Master)

TOP 10 BEST HABITS FOR BEST BIOMETRY

- Triage appointments BEFORE scheduling to allow sufficient time for "surprises". Categorizing loosely as "Routine" or "Difficult" will provide sufficient time for tharough investigation
 Don't be rushed or distracted. Schedule accordingly
- 3. Good pre op review of data before measuring patient
- Have more than one trained tech on hand for second opinion
 Always compare measurements between eyes
- 6. Use multiple means of measurements where applicable
- 7. Apply "Does it Make Sense" rule to all data WHILE patient is still available for re check where indicated
- OCT of macula as pre op baseline and/or to explain results
 Diagnostic B scan when readings are not reproducible and/or patient is 20/400 or less
- Accurate pre op proofing of date BEFORE patient leaves the exam. Proof in a quiet, non distracting environment

			CA	se stud
Axial Ler	ngth K's	VA	ACD/ LT	Lens Power
OD 26.56	44.00/47.50	20/100	3.04/4.82	+11.13
OS 23.88	44.50/45.75	5 20/20	3.04/4.95	+20.57
	Why a such a low Why 2.68mm diffe Why such steep K	r power IOL erence in a: ''s OD?	. OD? xial length?	

Axial Length K's VA ACD/ IT MRx OD 23.34 unreadable 20/200 4.08/3.61 -1.50 +1.00 x 085 OS 23.39 45.00 x88 45.75 x 178 20/60 3.95/3.82 -1.50 +1.00 x 085					
Axiol Length K's VA ACD/LT Mtx OD 23.34 unreadable 20/200 4.08/3.61 -1.50 +1.00 x 085 OS 23.39 45.00 x88 45.75 x 178 20/60 3.95/3.82 -1.50 +1.00 x 085				CA	ASE STUDY #
OD 23.34 unreadable 20/200 4.08/3.61 -1.50 + 1.00 x 085 OS 23.39 45.00 x88 45.75 x 178 20/60 3.95/3.82 -1.50 + 1.00 x 085	Axial Length	K's	VA	ACD/ LT	MRx
OS 23.39 45.00 x88 20/60 3.95/3.82 -1.50 +1.00 x 085 45.75 x178	23.34	unreadable	20/200	4.08/3.61	-1.50 +1.00 x 085
	23.39	45.00 x88 45.75 x178	20/60	3.95/3.82	-1.50 +1.00 x 085
		Axial Length 23.34 23.39	Axial Length K's 23.34 unreadable 23.39 45.00 x88 45.75 x178	Axial Length K's VA 23.34 unreadable 20/200 23.39 45.00 x88 45.75 x178 20/60	CA Axial Length K's VA ACD/ LT 23.34 Unreadable 20/200 4.08/3.61 23.39 45.00 x88 45.75 x178 20/60 3.95/3.82

	CASE STUDY #2, 0	CONT'D					CA	ASE STUDY	#2
		4-18-18-18-18-18-18-18-18-18-18-18-18-18-		Axial Length	K's	VA	ACD/ LT	MRx	
1.			OD	23.34	unreadable	20/200	4.08/3.61	-1.50 +1.00 x 085	Ī
		* No.	OS	23.39	45.00 x88 45.75 x178	20/60	3.95/3.82	-1.50 +1.00 x 085	
	a contraction				How do y	ou proce	ed?		

1

			С	ASE STUDY #
ient is	a 74 year-old wom	ian with history o	catarc	ict surgery OS
opy w	rith result, wishes to	proceed with OE		
opy w	Axial Length	proceed with OE	VA	MRx
OD	Axial Length 29.97 (optical) 29.98 (immersion)	proceed with OE K's 40.10 x 4/41.90	CF	MRX -1.00 +4.00 × 92

