
this print for content only—size & color not accurate spine = 0.82" 352 page count

EMPOWERING PRODUCTIVITY FOR THE JAVA™ DEVELOPER

Pro Apache Tomcat 6
Dear Reader,

The lightweight, open source Apache Tomcat 6 servlet container is the refer-
ence implementation of the latest JSP™ 2.1 and Servlet 2.5 specifications,
which means it’s the first server to provide the new specifications’ features. This
also makes it an incredibly popular choice as a web server—it has reached a
significant level of maturity by being adopted by companies and organizations
from around the world.

Pro Apache Tomcat 6 provides accurate, detailed information on how to
work with Tomcat’s enterprise-class features out of the box for busy system
administrators and others using Tomcat 6. Though you will explore the theory
of Java-based, multi-tiered systems with reference to Tomcat’s place in them,
you won’t waste time revisiting JSP or servlet coding skills. Instead, you’ll learn
how to obtain, install, and administer Tomcat 6. You’ll see how Tomcat 6’s built-in
features allow you to configure clustering, load balancing, and shared hosting
to enhance its reliability and performance. You’ll also learn how to effectively
integrate Tomcat 6 with other popular and necessary systems, including the
Apache web server 1.3 and 2.0, Microsoft’s IIS web server, MySQL databases,
and LDAP and ODBC data sources.

Pro Apache Tomcat 6 is full of invaluable information that will help you get
up to speed on managing Tomcat 6 as quickly as possible.

Yours,

Matthew Moodie and Kunal Mittal

Kunal Mittal, author of

Pro Apache Beehive

BEA WebLogic Server 8.1
Unleashed

US $39.99

Shelve in
Java Programming

User level:
Intermediate–Advanced

M
oodie,

M
ittal,Ed.

Pro Apache Tom
cat 6

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Matthew Moodie
Edited by Kunal Mittal

Pro Apache

Tomcat 6

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN-13: 978-1-59059-785-9
ISBN-10: 1-59059-785-0

9 781590 597859

53999

Companion
eBook Available

Companion eBook

See last page for details
on $10 eBook version

Effectively deploy Tomcat 6 to maximize your JSP™

and servlet-based web applications.

Matthew Moodie,
author of

Pro Apache Tomcat 5/5.5

Pro Apache Ant

www.apress.com
java.apress.com

SOURCE CODE ONLINE

THE APRESS JAVA™ ROADMAP

Pro JSP™ 2,
4th Edition

Pro JSF™ and Ajax: Building
Rich Internet Components

Beginning Java™ EE 5:
From Novice to Professional

Pro Apache Tomcat 6

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Pro Apache Tomcat 6

Matthew Moodie
Edited by Kunal Mittal

785000FM.qxd 2/28/07 11:23 AM Page i

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Pro Apache Tomcat 6

Copyright © 2007 by Matthew Moodie

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-785-9

ISBN-10 (pbk): 1-59059-785-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Editor: Kunal Mittal
Technical Reviewer: Scott Davis
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Paul Sarknas,
Jim Sumser, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole Flores
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Kinetic Publishing Services, LLC
Proofreader: Elizabeth Berry
Indexer: Toma Mulligan
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

785000FM.qxd 2/28/07 11:23 AM Page ii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

To Laura

785000FM.qxd 2/28/07 11:23 AM Page iii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page iv

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Contents at a Glance

About the Author . xv

About the Editor. xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

■CHAPTER 1 Introducing Tomcat . 1

■CHAPTER 2 Installing Tomcat . 11

■CHAPTER 3 Examining Tomcat’s Directories . 29

■CHAPTER 4 Working with Tomcat’s Configuration Files. 35

■CHAPTER 5 Administering Web Applications . 71

■CHAPTER 6 Using Tomcat’s Administration Tools . 91

■CHAPTER 7 Configuring Tomcat . 111

■CHAPTER 8 Understanding Tomcat’s Class Loaders . 133

■CHAPTER 9 Using Tomcat’s Connectors . 143

■CHAPTER 10 Connecting to Databases Using JDBC . 167

■CHAPTER 11 Working with User Authentication . 179

■CHAPTER 12 Securing Tomcat. 209

■CHAPTER 13 Implementing Shared Tomcat Hosting . 253

■CHAPTER 14 Testing Tomcat’s Performance . 273

■APPENDIX Installing MySQL. 293

■INDEX . 301

v

785000FM.qxd 2/28/07 11:23 AM Page v

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page vi

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Contents

About the Author . xv

About the Editor. xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

■CHAPTER 1 Introducing Tomcat . 1

Understanding the Web Today . 1

Looking Beyond CGI . 2

Introducing Java on the Web . 2

Adding to Servlets: JavaServer Pages . 3

Introducing Servlet Containers . 3

Looking at Tomcat . 4

What’s New in Tomcat 6. 4

Understanding Tomcat’s Architecture . 5

Top-Level Components . 5

The Connector Components. 6

The Container Components . 6

The Nested Components . 7

Summary . 9

■CHAPTER 2 Installing Tomcat. 11

Installing Java . 11

Installing Java on Windows . 11

Installing Java on Linux . 13

Installing Tomcat . 14

Installing Tomcat on Windows Using the Installer 15

Installing Tomcat on Windows Using the Zipped File 20

Installing Tomcat on Linux or Mac OS . 20

Viewing the Default Installation . 20

Running Tomcat with the Server Option . 21

Installing Ant. 21

Installing Tomcat from Source. 21

vii

785000FM.qxd 2/28/07 11:23 AM Page vii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Troubleshooting and Tips . 22

The Tomcat Window Disappears . 23

The Port Number Is in Use . 23

Summary . 28

■CHAPTER 3 Examining Tomcat’s Directories . 29

Looking at CATALINA_HOME . 29

The bin Directory . 29

The conf Directory . 30

The logs Directory . 30

The lib Directory. 30

The temp Directory . 30

The webapps Directory. 31

The work Directory . 31

Understanding Web Application Structure. 31

Web Application Context. 31

The WEB-INF Directory . 32

The META-INF Directory . 32

Summary . 33

■CHAPTER 4 Working with Tomcat’s Configuration Files 35

Examining Tomcat’s Configuration Files . 35

Using catalina.policy for Access Control . 36

Using catalina.properties to Configure Tomcat’s Class Loaders 39

Using server.xml to Configure Tomcat . 41

Configuring a Server . 41

Configuring Global Naming Resources. 42

Configuring a Service . 48

Configuring a Connector . 49

Configuring an Engine. 54

Tomcat Logging . 55

Configuring a Realm . 59

Configuring a Host . 61

Configuring a Valve . 63

Configuring a Listener. 63

Configuring an Alias. 63

Understanding Authentication and the tomcat-users. xml File 64

■CONTENTSviii

785000FM.qxd 2/28/07 11:23 AM Page viii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Web Application Defaults with web.xml 64

Default Servlet Definitions . 65

Matching URLs: Servlet Mappings . 66

Configuring Session Timeout . 67

Configuring MIME Mappings . 67

Configuring Welcome Files . 67

Changing Service Options on Windows . 67

Summary . 70

■CHAPTER 5 Administering Web Applications . 71

Configuring Contexts. 71

Configuring Default Contexts . 71

The Context Element . 73

Configuring a Parameter. 76

Configuring a Resource Link . 76

Examining a Web Application . 76

Mapping URLs to Resources . 78

Examining the WEB-INF Folder . 79

Examining the web.xml File. 80

<distributable> . 80

<context-param> . 80

<filter> . 80

<filter-mapping> . 81

<servlet> . 82

<servlet-mapping>. 83

<session-config> . 84

<mime-mapping>. 84

<welcome-file-list> . 84

<error-page> . 85

<resource-env-ref> . 85

<resource-ref> . 86

<security-constraint>. 87

<login-config> . 89

<security-role> . 89

Summary . 90

■CONTENTS ix

785000FM.qxd 2/28/07 11:23 AM Page ix

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

■CHAPTER 6 Using Tomcat’s Administration Tools . 91

Using the Manager Application . 91

Setting Up the Manager Application . 92

Configuring the Manager Application . 93

Using the Manager Application . 96

Troubleshooting . 105

Managing Applications with Ant . 106

Using the Tomcat Administration Tool . 109

Summary . 110

■CHAPTER 7 Configuring Tomcat . 111

Using Valves to Intercept User Requests . 111

Standard Valves . 112

Configuring User Sessions . 121

Configuring a Session Manager . 121

Configuring a Cluster. 126

Summary . 131

■CHAPTER 8 Understanding Tomcat’s Class Loaders 133

Examining the Standard Java SE Class Loaders . 133

The Bootstrap Class Loader . 134

The Extension Class Loader . 134

The System Class Loader . 134

The Delegation Model . 134

The Endorsed Standards Override Mechanism 135

Understanding Class Loader Attributes . 135

Loading Classes on Demand . 135

Class Caching. 135

Separate Namespaces . 136

Creating a Custom Class Loader. 136

Understanding Security and Class Loaders . 136

Class Loader Delegation. 136

Core Class Restriction . 136

Separate Class Loader Namespaces . 137

Security Manager. 137

■CONTENTSx

785000FM.qxd 2/28/07 11:23 AM Page x

32eeceee020b1b6c36f7005aec98cc94

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Understanding Tomcat and Class Loaders . 137

Tomcat and the System Class Loader . 138

Tomcat’s Common Class Loader. 138

Tomcat’s Web Application Class Loader. 140

Revisiting Class Loader Order . 140

Dynamic Class Reloading . 140

Avoiding Class Loader Pitfalls . 141

Packages Split Among Different Class Loaders 141

Singletons . 141

Summary . 141

■CHAPTER 9 Using Tomcat’s Connectors . 143

Using the HTTP Connector . 143

Configuring the HTTP/1.1 Connector . 143

Configuring SSL on Tomcat . 144

Working with Keystores . 144

Running Tomcat Behind a Proxy Server. 145

Using the AJP Connector . 146

The Apache JServ Protocol . 146

Worker Implementations . 147

Integrating Tomcat with Apache 1.3 Using mod_jk 147

Integrating Tomcat with IIS. 153

Configuring Distributed Networks with Tomcat . 158

Understanding Tomcat Load Balancing . 159

Preparing for Load Balancing . 160

The Workers . 161

Configuring Apache 1.3 for Load Balancing 161

Configuring Tomcat for Load Balancing . 163

Testing the Load Balancing Behavior . 165

Summary . 166

■CHAPTER 10 Connecting to Databases Using JDBC . 167

Introducing SQL . 167

Introducing JDBC. 167

Running Basic JDBC Operations . 168

Which JDBC Version? . 169

Examining JDBC Driver Types . 170

Database Connection Pooling . 170

■CONTENTS xi

785000FM.qxd 2/28/07 11:23 AM Page xi

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Tomcat and JDBC . 171

Providing JDBC Data Sources in Tomcat . 171

Configuring JNDI JDBC Resources . 171

Using the Resource and ResourceParams Elements 172

Transactions and Distributed Transactions Support. 172

Testing JNDI Resource Configuration. 173

Creating the MySQL Test Database . 173

Setting Up the Read-Only User . 175

Adding the JDBC JNDI Resource to the Server. 175

Using JNDI to Look Up a Data Source . 176

Summary . 178

■CHAPTER 11 Working with User Authentication . 179

Looking at Realms. 179

Understanding Container-Managed Security . 180

Storing a Digested Password. 182

Configuring Realms. 182

Configuring a File-Based Realm . 182

Configuring a User Database Realm. 185

Protecting a Resource with a Realm . 190

Configuring a JDBC Realm. 192

Configuring JNDI Realms . 200

Summary . 207

■CHAPTER 12 Securing Tomcat . 209

Securing the Windows File System . 209

Controlling Users, Groups, and Owners in Windows 212

Assigning Permissions in Windows. 216

Planning Security Permissions in Windows. 217

Configuring File Permissions in Windows . 219

Securing the Unix File System. 220

Controlling Users, Groups, and Owners in Unix 221

Assigning Permissions in Unix. 222

Planning Security Permissions . 225

Configuring File Permissions in Unix . 225

Examining General Tomcat Security Principles . 226

Retaining Tomcat’s Administration Tools . 226

Read-Only webapps Directory. 227

Securing Your Files . 227

Knowing If Your Security Has Been Violated 227

Read-Only File Systems . 227

■CONTENTSxii

785000FM.qxd 2/28/07 11:23 AM Page xii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Securing Tomcat’s Default Configuration . 228

Securing Tomcat’s Permissions . 228

The Java Security Manager . 228

Using the Security Manager with Tomcat . 232

Tomcat’s Policy File . 232

Recommended Security Manager Practices 236

Using Security Realms . 238

Adding Settings to web.xml . 238

Choosing Form-Based Authentication . 239

Using Custom Login and Error Pages. 240

Using the Secure Sockets Layer . 242

Installing JSSE . 243

Preparing the Certificate Keystore . 243

Installing a Certificate from a Certificate Authority 244

Importing the Certificate. 245

Protecting Resources with SSL . 245

Configuring the SSL Connector . 246

Using SSL with the Apache Web Server. 246

Summary . 251

■CHAPTER 13 Implementing Shared Tomcat Hosting. 253

Examining Virtual Hosting . 253

IP-Based Virtual Hosting . 254

Name-Based Virtual Hosting . 256

Implementing Virtual Hosting with Tomcat . 257

Creating an Example Configuration . 258

Setting Up the Virtual Hosting . 260

Testing the Virtual Hosting . 263

Implementing Virtual Hosting with Apache and Tomcat 264

Setting a JVM for Each Virtual Host . 267

Summary . 271

■CHAPTER 14 Testing Tomcat’s Performance . 273

Preparing for Load Testing . 273

Configuring the Java Heap Size . 273

Configuring Tomcat’s Connectors . 275

Configuring Application Sessions . 275

Altering Tomcat’s Deployment Architecture 276

Working with a Developer’s Code . 276

■CONTENTS xiii

785000FM.qxd 2/28/07 11:23 AM Page xiii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Load Testing with JMeter . 276

Installing and Running JMeter. 277

Making and Understanding Test Plans . 277

Examining JMeter’s Features. 281

Interpreting Test Results. 291

Examining the Mean . 291

Examining the Standard Deviation . 292

Summary . 292

■APPENDIX Installing MySQL . 293

Installing MySQL on Windows . 293

Installing MySQL on Linux and Unix . 293

Creating a User for MySQL. 293

Installing MySQL from the RPM Package . 294

Installing MySQL from Source . 294

Working with MySQL. 296

Resources . 299

■INDEX . 301

■CONTENTSxiv

785000FM.qxd 2/28/07 11:23 AM Page xiv

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

About the Author

■MATTHEW MOODIE is a native of southwest Scotland and is a graduate of the University of
Edinburgh, where he obtained a master’s degree in linguistics and artificial intelligence.

Matthew enjoys a life of fun in Glasgow, Scotland. He’s a keen novice gardener with a houseful
of plants.

xv

785000FM.qxd 2/28/07 11:23 AM Page xv

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page xvi

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

About the Editor

■KUNAL MITTAL serves as the director of technology for the domestic TV
group at Sony Pictures Entertainment and is responsible for the technology
strategy and application development for the group. Kunal is very active
in several enterprise initiatives such as the SOA strategy and roadmap and
the implementation of several ITIL processes within Sony Pictures.

Kunal has authored and edited several books and written more
than 20 articles on J2EE, WebLogic, and SOA. Some of his works include
Pro Apache Beehive (Apress, 2005), BEA WebLogic 8.1 Unleashed (Wrox,

2004), and a three-part series of articles titled “Build Your SOA: Maturity and Methodology”
(SOAInstitute.com, 2006). For a full list of Kunal’s publications, visit his web site at
www.kunalmittal.com/html/publications.shtml.

Kunal holds a master’s degree in software engineering and is a licensed private pilot.

xvii

785000FM.qxd 2/28/07 11:23 AM Page xvii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page xviii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

About the Technical Reviewer

■SCOTT DAVIS is an independent software developer and international
speaker. His books include JBoss at Work (O’Reilly, 2005), Google Maps API
(Pragmatic Bookshelf, 2005), the forthcoming GIS for Web Developers:
Adding Where to Your Application (Pragmatic Bookshelf, 2007), and Groovy
Recipes: Greasing the Wheels of Java (Pragmatic Bookshelf, 2007). He is
the editor in chief of http://aboutGroovy.com. Keep up with him at
http://davisworld.org.

xix

785000FM.qxd 2/28/07 11:23 AM Page xix

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page xx

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Acknowledgments

I would like to thank Laura for her love, friendship, and cakes. Love to Mum, Valla, Alexandra,
Harcus, Angus, Uncle Andrew, Granny, Grandpa, and Howard. A great big thank you to Andrew,
Brian, Katy, Lindsey, Mad, Paul, Sally, and Disco Robot Craig for even more good times. Life
would be pretty grey without you all.

Thanks to Billy, Dave, Pete, Broon, Stuart, and Mark for your friendship over all these years.
It’s been 20 years, give or take, and it’s been great.

Matthew Moodie

I would like to thank the entire Apress team for giving me the opportunity to edit this book. Steve,
Beth, Sofia, Lori, Kelly, Tina, and many others who have worked behind the scenes on this edi-
tion, thanks for putting up with my work and helping getting this book finished! I would also
like to thank my wife, Neeta, and my pooches, Dusty and Snowie, for bearing with me as I worked
weekends and evenings.

Kunal Mittal

xxi

785000FM.qxd 2/28/07 11:23 AM Page xxi

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

785000FM.qxd 2/28/07 11:23 AM Page xxii

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Introducing Tomcat

This, as befits a first chapter in a book on Tomcat, is a short history of dynamic web content
and how Tomcat fits into that history. Once you’ve dealt with that, you’ll learn about Tomcat’s
architecture and its modular approach to configuration.

Understanding the Web Today
The Web isn’t solely made up of static pages that show the same document to every user; many
pages contain content generated independently for each viewer. Although static files still have
their place, many useful and necessary web sites would be unable to function without dynamic
content. For example, Amazon.com is one of the major success stories of the Web and is often
the reason people go online for the first time. Without dynamic content, such as shopping baskets,
personal recommendations, and personalized welcome messages, Amazon.com wouldn’t be
the success it has been, and many people wouldn’t be online.

The Common Gateway Interface (CGI) was the original dynamic content mechanism that
executed programs on a web server and allowed webmasters to customize their pages, which
was extremely popular in the early days of the Web. The CGI model is as follows:

1. The browser sends a request to the server just as it would for a Hypertext Markup
Language (HTML) page.

2. The server maps the requested resource to an external program.

3. The server runs the external program and passes it the original Hypertext Transfer
Protocol (HTTP) request.

4. The external program executes and sends its results to the server.

5. The server passes the program’s output to the browser as an HTTP response.

CGI has been implemented in many programming languages, but Perl was, and still is, the
most popular language for developing CGI applications. However, CGI isn’t very efficient; each
time the server receives a request, it must start a new copy of the external program.

So, if only a small number of users request a CGI program simultaneously, it’s not too big
of a problem. However, it’s a different story if hundreds or thousands of users request the
resource simultaneously. Every copy of the program requires a share of the server’s processing

1

C H A P T E R 1

■ ■ ■

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 1

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

power, which is rapidly used as requests pile up. The situation is made even worse by CGI
programs that are written in interpreted languages such as Perl, which result in the launch of
large runtime interpreters with each request.

Looking Beyond CGI
Many alternative solutions to CGI have been developed since the Web began. The more suc-
cessful of these provide an environment that exists inside an existing server or even functions
as a server on its own.

Many CGI replacements have been built on top of the Apache server (www.apache.org)
because of Apache’s popular modular application programming interface (API). Developers
can use the API to extend Apache’s functionality with persistent programs, thus it’s ideal for
creating programs that create dynamic content. Apache loads modules into its memory when
it starts and passes the appropriate HTTP requests to them as needed. It then passes the HTTP
responses to the browser once the modules have processed the requests. Because the modules
are already in the server’s memory, the cost of loading an interpreter is removed, and scripts
can execute faster.

Although few developers actually create modules themselves (they’re relatively difficult to
develop), many third-party modules provide a basis for applications that are much more effi-
cient than normal CGI. The following are a few examples:

• mod_perl: This maintains the Perl interpreter in memory, thus removing the overhead of
loading a new copy of the Perl interpreter for each request. This is an incredibly popular
module.

• mod_php4: This module speeds up PHP in the same way that mod_perl speeds up Perl.

• mod_fastcgi: This is similar to straight CGI, but it keeps programs in memory rather
than terminating them when each request is finished.

Microsoft provides an interface to its Internet Information Services (IIS) web server, called
the Internet Server Application Programming Interface (ISAPI). Because of its complexity, this
API doesn’t have the following that Apache’s API has, but it’s nevertheless a high-performance
API. However, IIS is widely used, mainly because it comes as part of many versions of Windows.
In Chapter 9, you’ll configure Tomcat to work with IIS, so you can combine the best features of
both.

Microsoft also developed the Active Server Pages (ASP) technology, which lets you embed
scripts, typically VBScript scripts, into standard HTML pages. This model has proved extremely
successful and was the catalyst for Java web technology, which I’ll discuss next.

Introducing Java on the Web
Java was initially released in the mid-1990s as a way to liven up static web pages. It was platform
independent and allowed developers to execute their programs, called applets, in the user’s
browser. An incredible amount of hype surrounded applets: that they would make the Web more
exciting and interactive, that they would change the way people bought computers, and that
they would reduce all the various operating systems into mere platforms for web browsers.

Applets never really caught on; in fact, other technologies, such as Adobe Flash, became
more popular ways of creating interactive web sites. However, Java isn’t just for writing applets:
you can also use it to create stand-alone, platform-independent applications.

CHAPTER 1 ■ INTRODUCING TOMCAT2

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 2

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The main contribution of Java to the web is servlets, which are another alternative technol-
ogy to CGI. Just as CGI and its other alternatives aren’t stand-alone programs (because they
require a web server), servlets require a servlet container to load servlets into memory. The
servlet container then receives HTTP requests from browsers and passes them to servlets that
generate the response. The servlet container can also integrate with other web servers to use
their more efficient static file abilities while continuing to produce the dynamic content. You’ll
find an example of this in Chapter 9, when you integrate Tomcat with Apache and IIS.

Unfortunately, although servlets are an improvement over CGI, especially with respect to
performance and server load, they too have a drawback. They’re primarily suitable for process-
ing logic. For the creation of content (that is, HTML), they’re less usable. First, hard-coding
textual output, including HTML tags, in code makes the application less maintainable. This is
because if text in the HTML must be changed, the servlet must be recompiled.

Second, this approach requires the HTML designer to understand enough about Java to
avoid breaking the servlet. More likely, however, the programmer of the application must take
the HTML from the designer and then embed it into the application: an error-prone task if
ever there was one.

To solve this problem, Sun Microsystems created the JavaServer Pages (JSP) technology.

Adding to Servlets: JavaServer Pages
Although writing servlets requires knowledge of Java, a Java newbie can quickly learn some use-
ful JSP techniques. As such, JSP represents a viable and attractive alternative to Microsoft’s ASP.

Practically speaking, JSP pages are compiled into servlets, which are then kept in memory
or on the file system indefinitely, until either the memory is required or the server is restarted.
This servlet is called for each request, thus making the process far more efficient than ASP,
since ASP requires the server to parse and compile the document every time a user comes to
the site. This means that a developer can write software whose output is easy to verify visually
and with a result that works like a piece of software. In fact, JSP took off mainly as a result of
its suitability for creating dynamic visual content at a time when the Internet was growing in
popularity.

One major practical difference between servlets and JSP pages is that servlets are provided
in compiled form and JSP pages often are not (although precompilation is possible). What this
means for a system administrator is that servlet files are held in the private resources section of
the servlet container, and JSP files are mixed in with static HTML pages, images, and other
resources in the public section of servlet container.

Introducing Servlet Containers
JSP pages and servlets require a servlet container to operate at all. Tomcat, the subject of this
book, is the reference implementation (RI) servlet container, which means that Tomcat’s first
priority is to be fully compliant with the Servlet and JSP specifications published by Sun Microsys-
tems. However, this isn’t to say that Tomcat isn’t worthy of use in production systems. Indeed,
many commercial installations use Tomcat.

An RI has the added benefit of refining the specification, whatever the technology may be.
As developers add code per the specifications, they can uncover problems in implementation
requirements and conflicts within the specification.

CHAPTER 1 ■ INTRODUCING TOMCAT 3

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 3

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

As noted previously, the RI is completely compliant with the specification and is, there-
fore, particularly useful for people who are using advanced features of the specification. The
RI is released with the specification, which means that Tomcat is always the first server to pro-
vide the new features of the specification when it’s finished.

Looking at Tomcat
Tomcat has its origins in the earliest days of the servlet technology. Sun Microsystems created
the first servlet container, the Java Web Server, to demonstrate the technology, but it wasn’t ter-
ribly robust. At the same time, the Apache Software Foundation (ASF) created JServ, a servlet
engine that integrated with the Apache web server.

In 1999, Sun Microsystems donated the Java Web Server code to the ASF, and the two proj-
ects merged to create Tomcat. Version 3.x was the first Tomcat series and was directly descended
from the original code that Sun Microsystems provided to the ASF. It’s still available and is the RI
of the Servlet 2.2 and JSP 1.1 specifications.

In 2001, the ASF released Tomcat 4.0, which was a complete redesign of the Tomcat archi-
tecture and which had a new code base. The Tomcat 4.x series is the RI of the Servlet 2.3 and
JSP 1.2 specifications.

Tomcat 5.x was the next version of Tomcat and is the RI of the Servlet 2.4 and JSP 2.0 spec-
ifications. Note that two branches of Tomcat 5.x exist: Tomcat 5.0.x and Tomcat 5.5.x. Tomcat 5.5.x
branched at Tomcat 5.0.27 and is a refactored version that’s intended to work with the Java 2
Platform Standard Edition 5.0 (you can use it with Java 2 Standard Edition 1.4, but it requires
an additional Compatibility Kit patch).

This book covers the newly released Tomcat 6.x version. This version is the new RI for the
Servlet 2.5 and JSP 2.1 specifications.

What’s New in Tomcat 6
Tomcat 6 is built using several new features, such as generics, introduced in Java 5. The key
new elements from the Tomcat 5 release are support for the latest Java Server Pages (JSP) 2.1
specification (JSR 245) and the Java Servlet 2.5 specification (JSR 154). In addition to JSP 2.1,
Tomcat 6 fully supports the Unified Expression Language (Unified EL) 2.1. As you might know,
Unified EL 2.1 was made into its own stand-alone package in the JSP 2.1 specification. This
means that you should be able to use EL outside of a container such as Tomcat. Tomcat 6 is
also the first container to support the Java Server Faces 1.2 specification.

In my experience with Tomcat 6, I have noticed it is a little faster (during startup and shut-
down) than its predecessor. It also seems to have a slightly smaller memory footprint. Throughout
this book, as we talk about the different aspects of Tomcat 6, you will notice that not a whole lot has
changed from the Tomcat 5.5 release. However, you will notice some small changes to the directory
structures and start scripts. Of course, if you have not used Tomcat 5.5, you will see more drastic
changes in this version, such as a completely new logging mechanism and a lot more ease-of-use
features and flexibility.

CHAPTER 1 ■ INTRODUCING TOMCAT4

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 4

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Understanding Tomcat’s Architecture
The latest version of Tomcat is 6, which supports the Servlet 2.5 and JSP 2.1 specifications. It
consists of a nested hierarchy of components.

• Top-level components exist at the top of the configuration hierarchy in a rigid relation-
ship with one another.

• Connectors connect the servlet container to requests, either from a browser or another
web server that’s handling the static resources.

• Container components contain a collection of other components.

• Nested components can reside in containers but can’t contain other components.

Figure 1-1 illustrates the structure of a Tomcat configuration.

Figure 1-1. An example Tomcat configuration. The components marked with a star can occur
multiple times.

When configuring Tomcat, you can remove some of these objects without affecting the
server. Notably, the engine and host may be unnecessary if you’re using a web server such as
Apache.

You won’t be surprised to hear that Tomcat is configured with an Extensible Markup
Language (XML) file that mirrors the component hierarchy. You’ll learn about this file, called
server.xml, in Chapter 4.

In the next couple of sections, you’ll look into each component in turn.

Top-Level Components
The top-level components are the Tomcat server, as opposed to the other components, which
are only parts of the server.

CHAPTER 1 ■ INTRODUCING TOMCAT 5

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 5

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Server Component
The server component is an instance of the Tomcat server. You can create only one instance of
a server inside a given Java virtual machine (JVM).

You can set up separate servers configured to different ports on a single server to sepa-
rate applications so that you can restart them independently. So, if a given JVM crashes, the
other applications will be safe in another instance of the server. This is sometimes done in
hosting environments where each customer has a separate instance of a JVM so that a badly
written application won’t cause others to crash.

The Service Component
A service component groups an engine component with its connectors. An engine is a request-
processing component that represents the servlet engine. It examines the HTTP headers to
determine to which host or context (that is, which web application) it should pass the request.
Each service is named so that administrators can easily identify log messages sent from each
service.

This component accepts requests, routes them to the appropriate web application, and
returns the result of the request processing.

The Connector Components
Connectors connect web applications to clients. They’re the point where requests are received
from clients, and each has a unique port on the server. Tomcat’s default HTTP port is 8080 to
avoid interference with any web server running on port 80, the standard HTTP port. However,
you can change this as long as the new port doesn’t already have a service associated with it.

The default HTTP connector implements HTTP 1.1. The alternative is the Apache JServ
Protocol (AJP) connector, which is a connector for linking with Apache to use its Secure Sockets
Layer (SSL) and static content-processing capabilities. I’ll discuss each of these in Chapter 9.

The Container Components
The container components receive the requests from the top-level components as appropri-
ate. They then deal with the request process and return the response to the component that
sent it to them.

The Engine Component
The engine component is the top-level container and can’t be contained by another container
component. Only one may be contained in each service component.

The top-level container doesn’t have to be an engine, because it only has to implement
the container interface. This interface ensures the object implementing it is aware of its posi-
tion in the component hierarchy, provides a realm for user authentication and role-based
authorization, and has access to a number of resources including its session manager and
some important internal structures.

The container at this level is usually an engine, so you’ll see it in that role. As mentioned
earlier, the container components are request-processing components, and the engine is no
exception. In this case, it represents the Catalina servlet engine. It examines the HTTP headers
to determine to which virtual host or context to pass the request. In this way, you can see the
progression of the request from the top-level components down the hierarchy of components.

CHAPTER 1 ■ INTRODUCING TOMCAT6

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 6

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

If Tomcat is used as a stand-alone server, the defined engine is the default. However, if
Tomcat is configured to provide servlet support with a web server providing the static pages,
the default engine is overridden, as the web server has normally determined the correct desti-
nation for the request.

The host name of the server is set in the engine component if required. An engine may
contain hosts representing a group of web applications and contexts, each representing
a single web application.

The Host Component
A host component is analogous to the Apache virtual host functionality. It allows multiple
servers to be configured on the same physical machine and be identified by separate Internet
Protocol (IP) addresses or host names. In Tomcat’s case, the virtual hosts are differentiated by
a fully qualified host name. Thus, you can have www.apress.com and www.moodie.com on the
same server. In this case, the servlet container routes requests to the different groups of web
applications.

When you configure a host, you set its name; the majority of clients will usually send both
the IP address of the server and the host name they used to resolve the IP address. The engine
component inspects the HTTP header to determine which host is being requested.

The Context Component
The final container component, and the one at the lowest level, is the context, also known as
the web application. When you configure a context, you inform the servlet container of the
location of the application’s root folder so that the container can route requests effectively. You
can also enable dynamic reloading so that any classes that have changed are reloaded into mem-
ory. This means the latest changes are reflected in the application. However, this is resource
intensive and isn’t recommended for deployment scenarios.

A context component may also include error pages, which will allow you to configure error
messages consistent with the application’s look and feel.

Finally, you can also configure a context with initialization parameters for the application
it represents and for access control (authentication and authorization restrictions). More
information on these two aspects of web application deployment is available in Chapter 5.

The Nested Components
The nested components are nested within container components and provide a number of
administrative services. You can’t nest all of them in every container component, but you can
nest many of them this way. The exception to the container component rule is the global
resources component, which you can nest only within a server component.

The Global Resources Component
As already mentioned, this component may be nested only within a server component. You
use this component to configure global Java Naming and Directory Interface (JNDI) resources
that all the other components in the server can use. Typically these could be data sources for
database access or serverwide constants for use in application code.

CHAPTER 1 ■ INTRODUCING TOMCAT 7

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 7

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Loader Component
The loader component may be nested only within a context component. You use a loader to
specify a web application’s class loader, which will load the application’s classes and resources
into memory. The class loader you specify must follow the Servlet specification, though it’s
unlikely you’ll find it necessary to use this component because the default class loader works
perfectly well.

The Logger Component
With Tomcat 6, you should use a logging implementation such as Log4J, which is covered in
more depth in Chapter 4. The logger component, as it exists in Tomcat 5.0.x and previous
versions, has not been available since the Tomcat 5.5.x release.

The Manager Component
The manager component represents a session manager for working with user sessions in
a web application. As such, it can be included only in a context container. A default manager
component is used if you don’t specify an alternative, and, like the loader component men-
tioned previously, you’ll find that the default is perfectly good.

The Realm Component
The realm for an engine manages user authentication and authorization. As part of the config-
uration of an application, you set the roles that are allowed to access each resource or group of
resources, and the realm is used to enforce this policy.

Realms can authenticate against text files, database tables, Lightweight Directory Access
Protocol (LDAP) servers, and the Windows network identity of the user. You’ll see more of this
in Chapter 11.

A realm applies across the entire container component in which it’s included, so applications
within a container share authentication resources. By default, a user must still authenticate
separately to each web application on the server. (This is called single sign-on.) You’ll see how
you can change this in Chapter 7.

The Resources Component
You can add the resources component to a context component. It represents the static resources
in a web application and allows them to be stored in alternative formats, such as compressed
files. The default is more than sufficient for most needs.

The Valve Component
You can use valve components to intercept a request and process it before it reaches its desti-
nation. Valves are analogous to filters as defined in the Servlet specification and aren’t in the
JSP or Servlet specifications. You may place valve components in any container component.

Valves are commonly used to log requests, client IP addresses, and server usage. This
technique is known as request dumping, and a request dumper valve records the HTTP header
information and any cookies sent with the request. Response dumping logs the response headers
and cookies (if set) to a file.

CHAPTER 1 ■ INTRODUCING TOMCAT8

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 8

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Valves are typically reusable components, so you can add and remove them from the
request path according to your needs; web applications can’t detect their presence, so they
shouldn’t affect the application in any way. (However, performance may suffer if a valve is
added.) If your users have applications that need to intercept requests and responses for pro-
cessing, they should use filters as per the Servlet specification.

You can use other useful facilities, such as listeners, when configuring Tomcat. However,
filters aren’t defined as components. You’ll deal with them in Chapter 7.

Summary
This chapter was a quick introduction to dynamic web content and the Tomcat web server.
You learned about the emergence of CGI, its problems, and the various solutions that have
been developed over the years. You saw that servlets are Java’s answer to the CGI problem and
that Tomcat is the reference implementation of the Servlet specification as outlined by Sun
Microsystems.

The chapter then discussed Tomcat’s architecture and how all its components fit together
in a flexible and highly customizable way. Each component is nested inside another to allow
for easy configuration and extensibility.

Now that you’re familiar with Tomcat, you’ll learn about how to install it on various
platforms.

CHAPTER 1 ■ INTRODUCING TOMCAT 9

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 9

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850ch01FINAL.qxd 2/28/07 10:33 AM Page 10

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Installing Tomcat

In the previous chapter, you saw a brief history of the Internet and the Web that built up to
the development of servlets and the release of Tomcat. Continuing in this abstract manner,
you learned about Tomcat’s modular architecture. However, none of this is useful if you don’t
have the Tomcat server, so in this chapter you’ll do the following:

• You’ll install Java if you haven’t done so already.

• You’ll install Tomcat on your platform of choice.

• You’ll install the Ant build tool.

You’ll also see how to compile Tomcat from the source code provided on the Tomcat web
site. This process is the same on Windows and Linux and requires the Ant build tool, so you’ll
see how to do it once all the other installation techniques have been covered.

Installing Java
Your choice of JVM can significantly affect the performance of your Tomcat server, and it’s worth
evaluating a few to see which gives you the best performance. This is a subject that many people
don’t concern themselves with or have never thought about, so you won’t be alone if you think
that this isn’t an issue. Sun Microsystems’ JVM is all you need, right?

Well, if performance is really an issue and you want to squeeze as much out of your server
setup as possible, you should look into this area. You can find a lot of information on the Internet,
and Sun provides its own guidance at http://java.sun.com/docs/performance/.

IBM (www.ibm.com/developerworks/java/jdk/) and the Blackdown project (www.
blackdown.org), which is a Linux port of source donated by Sun Microsystems, provide the
main alternatives to Sun Microsystems’ Java development kit (JDK).

Installing Java on Windows
Download the latest Java installer from http://java.sun.com/j2se/downloads/. Tomcat 6 is
designed to run on JDK 1.5, so I recommend that you get that. I have not tried running Tomcat
6 with JDK 1.4, but you might be able to do so using the JDK compatibility kit. This book will
not talk any further about this. You can download this compatibility package from the Tomcat
download page at http://tomcat.apache.org/download-55.cgi.

Java 1.5 comes standard on the Mac, with Mac OS X and later, but you can download
alternate versions by following the instructions for Linux later in this chapter.

11

C H A P T E R 2

■ ■ ■

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 11

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Java installer on Windows is a standard installation package with easy-to-follow steps.
Start the installation by double-clicking the downloaded installer, and you’ll shortly have the JDK
installed. Choose the folder where you want to install Java, which is referred to as %JAVA_HOME%.
The %JAVA_HOME%\bin directory is where the installer places all the Java executables, including the
JVM, the compiler, the debugger, and a packaging utility.

You’ll probably have noted that the installation directory was specified as if it were an envi-
ronment variable. This is because you now have to add the installation folder as an environment
variable called %JAVA_HOME% so that Windows can find the Java executables. Java itself doesn’t need
this environment variable, but many third-party packages need to know where Java is, and Tom-
cat is no exception. Finally, add the %JAVA_HOME%\bin directory to the Windows path. This avoids
clashes with other JVMs that may be on the system.

Setting Environment Variables
To set environment variables, select Start ➤ Settings ➤ Control Panel, and choose the System
option. Now choose the Advanced tab, and click the Environment Variables button. You’ll see
a screen like the one shown in Figure 2-1.

Figure 2-1. The Windows Environment Variables dialog box

The top window contains variables for the user you’re logged in as, which are available
only when you’re logged in as this user, and the bottom window contains system environment
variables, which are available to all users. To add %JAVA_HOME% so that every user has access to
it, click the New button below the bottom window; next, enter JAVA_HOME as the variable
name, and enter the directory where Java was installed as the value.

CHAPTER 2 ■ INSTALLING TOMCAT12

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 12

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Next, modify the %Path% variable to include %JAVA_HOME%\bin, making sure it’s the first
entry in the path to avoid any naming clashes. Adding this directory to the path will make the
Java executables available at the command prompt. To test the installation, open an instance
of the command prompt and type the following:

> java -version

You should then see version information as follows:

java version "1.5.0"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-b64)

Java HotSpot(TM) Client VM (build 1.5.0_02-b09, mixed mode)

In this example, JDK 1.5.0_02-b09 is installed as the default Java. If you have the wrong
version information, check that you’ve added the correct Java to the Windows path. Double
check to see whether this matches whatever version of JDK 1.5 you downloaded.

Setting Environment Variables in Windows 9x

In Windows 2000, XP, and Vista, you set the environment variables by editing the c:\autoexec.bat
file. Open the file, and add the following path to your installation:

set JAVA_HOME=c:\java\jdk1.5

For Windows ME, you can use the System Configuration utility to set environment variables.
To run it, choose Start ➤ Programs ➤ Accessories ➤ System Tools ➤ System Information. You’ll
see a Microsoft help and support page, from which you should select the Tools menu and then
the System Configuration utility. From here, select the Environment tab, and set the JAVA_HOME
variable to point to your Java installation directory. Test the installation as mentioned previously.

Installing Java on Linux
Download a suitable distribution from http://java.sun.com/j2se/downloads/. Two types of
download exist: a self-extracting binary file and an RPM package for systems supporting RPMs.
As mentioned earlier, Tomcat 6 works with JDK 1.5.

Installing Java Using the Self-Extracting Binary
Once you’ve obtained the self-extracting binary, you must set its execute permissions. Note that
you don’t need to be a root user to install Java using the self-extracting binary, though you do
need to be a root user if you want to install it in a system directory such as /usr/local; this is
because the binary won’t overwrite any system files otherwise. To change the execute permis-
sions, type the following command from the directory where the binary is located:

chmod +x j2sdk-1_5_0-linux-i586.bin

Now change the directory to the one where you want to install Java, and execute the binary.
You must prefix the binary’s filename with any path information that’s necessary, like so:

./j2sdk-1_5_0-linux-i586.bin

CHAPTER 2 ■ INSTALLING TOMCAT 13

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 13

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

This command will display a license agreement and, once you’ve agreed to the license,
install Java in a j2sdk-1_5_0 directory in the current directory.

You need to add the $JAVA_HOME environment variable to your system to specify the loca-
tion of the JDK. So, if you installed it in /usr/java/j2sdk-1_5_0_02-linux-i386, you should
give $JAVA_HOME this value. To add it permanently, you can add it to your ~/.bashrc file or, if
you want all users to have access to Java, to /etc/profile.

Alternatively, /etc/profile runs any shell scripts in /etc/profile.d, so you can add the
following lines to a file named tomcat.sh:

JAVA_HOME=/usr/java/j2sdk-1_5_0_02-linux-i386/

export JAVA_HOME

PATH=$JAVA_HOME/bin:$PATH

export PATH

You may have to log out and log in again for your system to read /etc/profile or tomcat.sh.
You should also add execute permissions for the $JAVA_HOME/bin folder for all the users who will
be using Java, as appropriate.

To test the installation, type the following:

java -version

If the installation succeeded, you’ll see version information.

Installing Java Using the RPM Installer
To install the JDK using the RPM, you must first download the file. Unlike with the self-extracting
binary, you must be a root user to install the RPM.

Sun Microsystems supplies the RPM as an executable to allow you to agree to the licensing
terms. If you agree to the licensing terms, the RPM installer decompresses an RPM into the current
directory. Before you can run the RPM, you have to set execute permissions for the file, like so:

chmod a+x j2sdk-1_5_0-linux-i586-rpm.bin

./j2sdk-1_5_0-linux-i586-rpm.bin

rpm -iv jdk-1_5_0-linux-i586.rpm

The RPM will install Java as a replacement of the Linux system version. You should now follow
the previous instructions to add execute permissions for the JDK executables and modify the path
to include them. Again, you can test the installation as described previously.

Installing Tomcat
Now that you’ve installed Java, it’s time for you to install the Tomcat server. The Windows
installations are first, followed by instructions for Linux.

The first step for all systems is obtaining the appropriate distribution. This may be a binary
or source distribution, depending on your needs. Whatever your requirements, Tomcat is avail-
able from http://jakarta.apache.org/site/binindex.cgi. Choose the most stable version of
Tomcat 6 provided. At the time of this writing, this was the 6.00-alpha release.

You can select a binary installer if you’re a Windows user and want to use Tomcat as a service,
or you can select a zipped version of the binaries for any system.

CHAPTER 2 ■ INSTALLING TOMCAT14

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 14

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

If you’re interested in the latest version of Tomcat or want to download an older version,
you’ll find both of these options below the binary downloads.

You’ll also require Ant 1.65 or above for various deploy and build tasks later in the book.
Ant is a build tool like make and is another excellent Jakarta project.

Installing Tomcat on Windows Using the Installer
If you choose to install Tomcat with the installer, save it in a convenient location, and double-
click it to begin installation. As always, you must agree with the license agreement before you
can continue with the installation.

Figure 2-2 shows the screen where you choose which components to install.

Figure 2-2. Tomcat’s installation options

Installing Tomcat as a Service
If you select the Service option, as shown in Figure 2-2, you’ll install Tomcat as a service, with all
the functionality that entails. This is a useful option if you want Tomcat to run every time you start
your machine or if you want it to run as a unique user, so you can track its behavior. Remember
that this isn’t available on Windows 98 and its derivatives. However, you’ll see a work-around for
this a bit later in the “Running Tomcat in the Background” section.

Tomcat will run at startup and will run in the background even when no user is logged in.
This is the option you’d use on a deployment server, but it’s probably not the option you’d use
on a development machine.

■Note The installer will install Tomcat as a service whether you check this box or not. The difference is
that the installer will install the service to start automatically by default if you check the box. Otherwise, it’s
set to manual startup. Even if you choose not to install Tomcat as a service right now, you can always install
it as such later.

CHAPTER 2 ■ INSTALLING TOMCAT 15

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 15

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Installing Tomcat’s Start Menu Items
If you want to add shortcuts to Windows’ Start menu, select this option.

Installing Tomcat’s Documentation
You should install the Tomcat documentation; it’s a useful resource and includes the Servlet
and JSP API javadocs. You’ll find these invaluable if you do any web development.

Installing Tomcat’s Examples
If you want to examine Tomcat’s example web applications, select this option. This is unlikely
if you’ll be using Tomcat as a production server, because the applications will simply take up
space and are certainly a security risk. The examples aren’t written with security or perform-
ance in mind, and as well-known applications, they’re vulnerable to denial-of-service attacks
and attempts to gain root access. If your users want to have them in a deployment environ-
ment, by all means let them.

Finishing the Installation
Once you’ve chosen the components you want to install, click Next. The installer will then ask
you for information on installation directories, the location of Java, an administrator’s username
and password, and the port details. Fill in these as appropriate for your installation.

■Note All public web servers run on port 80, which is the default HTTP port. When a browser attempts to
connect to a web site, it uses port 80 behind the scenes; that is, you don’t have to specify it. Tomcat’s HTTP
service runs on port 8080 by default to avoid a clash with other web servers that may already be running.
You’ll see how to change this in Chapter 4.

Setting Environment Variables
The scripts provided with Tomcat will usually be able to guess at your setup so that no further
intervention is strictly necessary. However, it’s prudent to add the following environment variables.

Adding the CATALINA_HOME Environment Variable

%CATALINA_HOME% is the directory where you chose to install Tomcat. Tomcat needs to know this
information to find the resources that are referenced as relative paths to this folder. If you chose
the default directory while installing, this will be c:\Program Files\Apache Software Foundation\
Tomcat 6.0.

To add the environment variable in Windows XP, navigate to Start ➤ Settings ➤ Control
Panel, and choose System. Now choose the Advanced tab, and click the Environment Variables
button. Click the New button in the System Variables section, call the new variable CATALINA_HOME,
and enter the path to your installation.

CHAPTER 2 ■ INSTALLING TOMCAT16

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 16

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

In Windows 98, set the environment variables in c:\autoexec.bat. Open the file, and add
the following path to your installation:

set CATALINA_HOME= c:\Program Files\Apache Software Foundation\Tomcat 6.0

For Windows ME, you can use the System Configuration utility to set environment variables.
To run it, choose Start ➤ Programs ➤ Accessories ➤ System Tools ➤ System Information. You’ll
see a Microsoft help and support page, from which you should select the Tools menu and then
the System Configuration utility. From here, select the Environment tab, and set the CATALINA_HOME
variable to point to your Tomcat installation directory.

CATALINA_HOME in Windows 9x

In Windows 9x, problems with file length and spaces in the path make it safer to install Tomcat
directly onto c:\ rather than under Program Files. You’ll also need to increase the default environ-
ment space to Tomcat by opening a DOS prompt window, right-clicking it, choosing Properties,
selecting the Memory tab, and setting the initial environment to 4096 bytes (4 kilobytes).

Testing the Installation
To test the installation, you must first start the server. You can start the server in two ways:
manually or as a service.

Starting the Server Manually
You can start the server manually by selecting Start ➤ Programs ➤ Apache Tomcat 6.0 and
then selecting the Tomcat 6.0 Program Directory option. Navigate to the bin directory and
double-click startup.bat. A new terminal window will start that shows the server is running.
You can also run it from a command prompt, like so:

> %CATALINA_HOME%\bin\startup.bat

Note that if the window appears and promptly disappears again, you can try the tips in the
“Troubleshooting and Tips” section.

If you want to shut down the server, use the shutdown.bat file in the bin directory.

Starting the Server as a Service
If you want to start the server as a service, you have three choices. First, you could have selected
to start the server at the end of installation.

Second, choose Start ➤ Settings ➤ Control Panel, and select Administrative Tools. Then select
the Services icon, which will contain an entry for Tomcat, as shown in Figure 2-3.

CHAPTER 2 ■ INSTALLING TOMCAT 17

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 17

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 2-3. The Services administrative tool with the Tomcat service highlighted

To start the service, right-click the Tomcat entry, and choose Start. You won’t see a console
window, as described previously, because the server is running as a service. Once you’ve started the
service, you can then restart and stop it by right-clicking the service’s entry in the Services window.

You can also start and stop the service using the Tomcat monitor. To start the monitor, select
Start ➤ Programs ➤ Apache Tomcat 6 ➤ Monitor Tomcat. You’ll see a new icon in your system
tray with a red stop sign on it. You can double-click the icon to display the Apache Tomcat Prop-
erties box, as shown in Figure 2-4.

Figure 2-4. The Apache Tomcat Properties box

You can start, stop, pause, and restart the service here as you could in the Services utility. You
can also start and stop the service by right-clicking the monitor’s icon and selecting the action
you want to perform.

CHAPTER 2 ■ INSTALLING TOMCAT18

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 18

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Running Tomcat in the Background
If you don’t want to run Tomcat as a service or are unable to because you’re running Windows
9x/ME, you can still run Tomcat without a command prompt/DOS prompt window open while
Tomcat is running by modifying the catalina.bat file in %CATALINA_HOME%\bin. Replace the
following text:

%_RUNJAVA%

with this:

%_RUNJAVAW%

This command calls the windowless version of the java executable. Tomcat will now start
with no attached Tomcat window, but one will appear and disappear.

You should now check that the server is indeed running (the absence of a window makes
it hard to check by the usual means) by going to the server’s home page as described in the
next section. If you find a problem, run the startup batch file from the %CATALINA_HOME%\bin
directory, and note the error messages.

Viewing the Default Installation
Tomcat, like most servers, comes with a default home page that you can use to check the
installation. Enter the following address in a browser: http://localhost:8080. You should see
a page similar to the one in Figure 2-5.

Figure 2-5. The Tomcat default home page

CHAPTER 2 ■ INSTALLING TOMCAT 19

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 19

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

As mentioned, Tomcat connects to port 8080 by default. This is to avoid problems with
other servers, such as Apache or IIS, that may be running on the machine.

If you have any problems, refer to the “Troubleshooting and Tips” section later in this chapter.

Installing Tomcat on Windows Using the Zipped File
Installing Tomcat using the zipped file is extremely straightforward. It’s significantly bigger than
the executable installer but has the same contents. All you have to do to install Tomcat from the
zipped file is to uncompress the contents to a convenient directory.

The final step of installation is to add the %CATALINA_HOME% environment variable, as described
previously. To start the server, you need to navigate to %CATALINA_HOME%\bin (there’s no shortcut
this time, though you should create your own).

Now start the server as per the previous manual instructions; that is, double-click
startup.bat. A new terminal window will start that shows the server is running.

You can also run it from a command prompt, like so:

> %CATALINA_HOME%\bin\startup.bat

Installing Tomcat on Linux or Mac OS
You’ll find that installing Tomcat on Linux or on Mac OS is easy. Download either the zipped file
or the gzipped tar file, if you have GNU gzip. Whatever your requirements, Tomcat is available
from http://jakarta.apache.org/site/binindex.cgi.

You should now export the $CATALINA_HOME environment variable, using the following
commands:

CATALINA_HOME=/usr/java/jakarta-tomcat-6.0

export CATALINA_HOME

Alternatively, add these to ~/.bashrc or /etc/profile as you did for the JDK installation
previously, or create a shell file, tomcat.sh, and place it in the /etc/profile.d. /etc/profile
will run it automatically at startup to make the variable available to all users.

You can now start Tomcat by running the following shell command:

$CATALINA_HOME/bin/startup.sh

You can shut down Tomcat using

$CATALINA_HOME/bin/shutdown.sh

Viewing the Default Installation
To check that Tomcat is running, point your browser to http://localhost:8080. You should
see a screen like the one in Figure 2-5.

To check that the dynamic side of Tomcat’s functionality is working, choose the JSP Examples
link from the menu on the left, and select some of the examples. Check that they run without
error messages. Do the same with the Servlet Examples link to test this functionality.

If you have any problems, refer to the “Troubleshooting and Tips” section later in this chapter.

CHAPTER 2 ■ INSTALLING TOMCAT20

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 20

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Running Tomcat with the Server Option
You can run Tomcat with Java’s server option, which will increase efficiency and thus increase
performance. To run Tomcat with the server option, you’ll need to modify a number of files in
the bin directory. For Windows, you need to edit setclasspath.bat. Change the last three lines
as follows:

set _RUNJAVA="%JAVA_HOME%\bin\java" -server

set _RUNJAVAW="%JAVA_HOME%\bin\javaw" -server

set _RUNJDB="%JAVA_HOME%\bin\jdb" -server

Of course, this assumes you’re starting Tomcat manually.
The process is similar in Linux. This time you modify setclasspath.sh, like so:

_RUNJAVA="$JAVA_HOME"/bin/java -server

_RUNJDB="$JAVA_HOME"/bin/jdb -server

Installing Ant
Before you install Tomcat from source, or indeed before you start any serious Java-based project,
you should install Ant. Ant is a Java-based build tool that has become ubiquitous. You use it to
build and deploy applications. It benefits from platform independence and can use a single build
file on multiple platforms. However, the build files must minimize dependency on a specific file
path. (Windows paths, for example, will cause problems on Linux and vice versa.)

You can download the latest binary distribution of Ant from http://ant.apache.org/
bindownload.cgi. Ant is easy to install; simply unpack the distribution to a convenient location.

Because Ant is a program that you’ll use on a number of projects, you should make it avail-
able from any directory. To do this, add it to your path, and add an ANT_HOME environment variable
as you did with CATALINA_HOME. It’s a good idea to set the entry in the path to ANT_HOME\bin to allow
for any updates to Ant that you may make.

To test that you’ve installed Ant, type ant -version in a terminal window. If everything has
gone according to plan, you’ll see Ant’s usage message.

You won’t use Ant for anything but compiling the source code and deploying web applica-
tions in this book, so you won’t see the details of it here. However, you should be aware that it
uses an XML file, called build.xml by default, to carry out its tasks.

Installing Tomcat from Source
If you want to obtain the latest version of Tomcat with the newest bug fixes and upgrades, then
installing it from the source code is a good option. In Linux, it’s far more common for servers to be
built for the system. However, this isn’t strictly necessary for a Java-based server such as Tomcat.

Tomcat is easily built using the Ant build utility. You use Ant for automated project building,
including compilation and deployment. It has all the system-independent benefits that Java
enjoys, because it’s written in Java.

You can also use Ant to carry out a number of administrative actions on Tomcat, each of
which is described in Chapter 6. The deployer application mentioned previously also uses Ant.

CHAPTER 2 ■ INSTALLING TOMCAT 21

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 21

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

It used to be the case that you had to manually download a huge number of libraries from
many different sources to compile Tomcat, but now Ant can do it for you. All the instructions
on how to build from the source are available at http://tomcat.apache.org/tomcat-6.0-doc/
building.html. You will need to download a JDK, ANT, and the source code from the Subversion
repository. In addition, you will need to create a build.properties file in the same directory
with the appropriate lines from Listing 2-1. Those with # marks are commented out and can
be ignored if they don’t apply to your installation. You should ensure that base.path points
to the place you want to download.

Listing 2-1. Ant’s build.properties File

----- Default Base Path for Dependent Packages -----

----- Linux/Unix path -----

base.path=/usr/share/java

----- Windows path -----

#base.path=C://TomcatBuild

----- Proxy setup -----

Uncomment if using a proxy server

#proxy.host=proxy.domain

#proxy.port=8080

#proxy.use=on

Once you’re satisfied with your setup, you can build Tomcat using the following line in the
base directory:

> ant

The build will take a few minutes, and the resultant build is the subdirectory
jakarta-tomcat-5/build. To deploy the new server, move (and rename) it out of the source
folder and into a folder of its own, and set the CATALINA_HOME variable using the instructions
given previously.

If you want to update the source code and recompile it, use the following commands in
the source directory:

> ant checkout

> ant build

The second command will compile only those files that have changed, so you can also use
it to compile the server if you’ve made any changes of your own to the source.

Troubleshooting and Tips
Finally, before I close this chapter, I’ll cover the typical problems that may occur when you install
Tomcat. If you have further problems, you can find more material on the Tomcat web site at
http://jakarta.apache.org/tomcat/ and at http://java.sun.com, as well as on various forums.
You should also read the release notes available with each download.

The following problems are typically encountered when first installing Tomcat.

CHAPTER 2 ■ INSTALLING TOMCAT22

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 22

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Tomcat Window Disappears
This is particularly difficult to diagnose and applies especially to Windows. Since the problem
usually has one of two causes, you can start by diagnosing it and then move on to the known
solutions.

If Tomcat doesn’t start, it can be run in the current shell or command prompt, so you can
see what the problem is. Type the following on Linux:

$CATALINA_HOME/bin/catalina.sh run

Or type the following on Windows:

> %CATALINA_HOME%/bin/catalina run

This will produce the normal startup messages, and any errors will be displayed. These errors
also appear in the log file in the CATALINA_HOME/logs directory. (You may have to set up logging for
Tomcat 6.0; see Chapter 4.)

The Port Number Is in Use
Tomcat uses port 8080 by default, as mentioned previously. You can check if another program is
using this port by using netstat. Typing netstat (netstat -ln on Linux) into your shell/com-
mand prompt will list open ports on your system and should show the process that’s
interfering with Tomcat. You have two options: shut the process down or change Tomcat’s
port as described earlier.

A common problem is trying to start a new Tomcat instance when one is still running. This
is especially true if it’s running as a daemon thread. If you suspect this is the case, you can check
it by using telnet to connect to the socket, as follows, and see if you’re given a connection:

$ telnet localhost 8080

If you’re awarded a connection, the screen goes blank rather than giving an error.
When you’re connected, type GET / and press Return or Enter. (Echo is turned off by default

on Windows, so it looks a little strange, because typing doesn’t appear to achieve anything.) On
Windows, this results in the following output:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Apache Tomcat</title>

<style type="text/css">

/*<![CDATA[*/

body {

color: #000000;

background-color: #FFFFFF;

font-family: Arial, "Times New Roman", Times, serif;

margin: 10px 0px;

}

CHAPTER 2 ■ INSTALLING TOMCAT 23

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 23

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

img {

border: none;

}

a:link, a:visited {

color: blue

}

th {

font-family: Verdana, "Times New Roman", Times, serif;

font-size: 110%;

font-weight: normal;

font-style: italic;

background: #D2A41C;

text-align: left;

}

td {

color: #000000;

font-family: Arial, Helvetica, sans-serif;

}

td.menu {

background: #FFDC75;

}

.center {

text-align: center;

}

.code {

color: #000000;

font-family: "Courier New", Courier, monospace;

font-size: 110%;

margin-left: 2.5em;

}

#banner {

margin-bottom: 12px;

}

p#congrats {

margin-top: 0;

font-weight: bold;

text-align: center;

}

CHAPTER 2 ■ INSTALLING TOMCAT24

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 24

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

p#footer {

text-align: right;

font-size: 80%;

}

/*]]>*/

</style>

</head>

<body>

<!-- Header -->

<table id="banner" width="100%">

<tr>

<td align="left" style="width:130px">

</td>

<td align="left" valign="top">Apache Tomcat</td>

<td align="right">

<img src="asf-logo-wide.gif" height="51" width="537" alt="The Apache ➥

Software Foundation"/>

</td>

</tr>

</table>

<table>

<tr>

<!-- Table of Contents -->

<td valign="top">

<table width="100%" border="1" cellspacing="0" cellpadding="3">

<tr>

<th>Administration</th>

</tr>

<tr>

<td class="menu">

Status

Tomcat Administration

Tomcat Manager

</td>

</tr>

</table>

CHAPTER 2 ■ INSTALLING TOMCAT 25

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 25

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<table width="100%" border="1" cellspacing="0" cellpadding="3">

<tr>

<th>Documentation</th>

</tr>

<tr>

<td class="menu">

Release Notes

Change Log

Tomcat Documentation

</td>

</tr>

</table>

<table width="100%" border="1" cellspacing="0" cellpadding="3">

<tr>

<th>Tomcat Online</th>

</tr>

<tr>

<td class="menu">

Home Page

FAQ

 ➥

Bug Database

<a href="http://issues.apache.org/bugzilla/ ➥

buglist.cgi?bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=➥

REOPENED&bug_status=RESOLVED&resolution=LATER&resolution=REMIND&resolution=---➥

&bugidtype=include&product=Tomcat+6&cmdtype=doit&order

=Importance">Open Bugs

<a href="http://mail-archives.apache.org/mod_mbox/ ➥

tomcat-users/">Users Mailing List

<a href="http://mail-archives.apache.org/mod_mbox/ ➥

tomcat-dev/">Developers Mailing List

IRC

</td>

</tr>

</table>

<table width="100%" border="1" cellspacing="0" cellpadding="3">

<tr>

<th>Miscellaneous</th>

</tr>

CHAPTER 2 ■ INSTALLING TOMCAT26

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 26

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<tr>

<td class="menu">

Examples

Sun's ➥

Java Server Pages Site

Sun's ➥

Servlet Site

</td>

</tr>

</table>

</td>

<td style="width:20px"> </td>

<!-- Body -->

<td align="left" valign="top">

<p id="congrats">If you're seeing this page via a web browser, ➥

it means you've setup Tomcat successfully. Congratulations!</p>

<p>As you may have guessed by now, this is the default Tomcat home ➥

page. It can be found on the local filesystem at:</p>

<p class="code">$CATALINA_HOME/webapps/ROOT/index.html</p>

<p>where "$CATALINA_HOME" is the root of the Tomcat installation ➥

directory. If you're seeing this page, and you don't think you should be, then ➥

either you're either a user who has arrived at new installation of Tomcat, or ➥

you're an administrator who hasn't got his/her setup quite right. Providing the ➥

latter is the case, please refer to the Tomcat ➥

Documentation for more detailed setup and administration information than is ➥

found in the INSTALL file.</p>

<p>NOTE: For security reasons, using the administration webapp

is restricted to users with role "admin". The manager webapp

is restricted to users with role "manager".

Users are defined in <code>$CATALINA_HOME/conf/ ➥

tomcat-users.xml</code>.</p>

<p>Included with this release are a host of sample Servlets and JSPs

(with associated source code), extensive documentation (including the ➥

Servlet 2.4 and JSP 2.0 API JavaDoc), and an introductory guide to

developing web applications.</p>

<p>Tomcat mailing lists are available at the Tomcat project ➥

web site:</p>

CHAPTER 2 ■ INSTALLING TOMCAT 27

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 27

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

 ➥

users@tomcat.apache.org for general questions related to configuring ➥

and using Tomcat

 ➥

dev@tomcat.apache.org for developers working on Tomcat

<p>Thanks for using Tomcat!</p>

<p id="footer"><img src="tomcat-power.gif" width="77" height="80" ➥

alt="Powered by Tomcat"/>

Copyright © 1999-2005 Apache Software Foundation

All Rights Reserved

</p>

</td>

</tr>

</table>

</body>

</html>

Connection to host lost.

C:\Documents and Settings\kmittal>

If you see a different message, you might have another web server running on this port.
Even if you’re refused a connection, this indicates that a process is sitting on that port. If

the connection fails, then try one of the other possibilities.

Summary
I’ve gone through a great deal of information in this chapter to explain how to select and install
a JDK, Ant, and Tomcat in a variety of ways. In the majority of cases, the installation of the server
is a straightforward process because binary versions are available for the common platforms.

If you have any problems, http://jakarta.apache.org has a number of lists that can be
helpful to the beginner. The user list is also archived, and you’ll find that most questions have
been asked, and answered, before.

CHAPTER 2 ■ INSTALLING TOMCAT28

7850ch02FINAL.qxd 2/28/07 10:36 AM Page 28

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Examining Tomcat’s Directories

In the previous chapter, you saw how to install Tomcat on various platforms using the bina-
ries or the source as the fancy takes you. Now it’s time to look at the directories that make up
the Tomcat installation. You’ll be introduced to the main configuration files and the structure
of a web application. However, I’ll leave the details on configuration until Chapter 4.

In this chapter you’ll do the following:

• You’ll examine the default Tomcat installation.

• You’ll learn about the generic web application structure, both unpacked and packed.

Looking at CATALINA_HOME
The best place to start a discussion of Tomcat’s directory structure is in the default installation
directory, commonly called CATALINA_HOME. If you’ve installed Tomcat, then you’ll have an
environment variable pointing to this directory. Let’s start by examining the bin directory and
all the scripts it contains.

The bin Directory
The bin directory contains many scripts (in Windows they’re called batch files, but the term
scripts will do for the sake of brevity) for starting Tomcat in different modes and for stopping
Tomcat, a number of utilities, and some Windows-specific executables. Previous versions of
Tomcat (prior to Tomcat 5.5.x) came with several different scripts to start and stop Tomcat.
With this release, these have been consolidated into the following executables.

The tomcat6 Windows Executable
You can use the tomcat6 executable to run the server if it’s installed as an NT service. You can
install Tomcat as a service when you first install Tomcat, as described in the previous chapter.

Note that the name of this executable must be the same as that of the service you want to
start. So, if you install the service as TomcatServ, you must rename this file TomcatServ.exe if
you want to use its services.

29

C H A P T E R 3

■ ■ ■

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 29

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The tomcat6w Windows Executable
You can use the tomcat6w executable to run the Tomcat Properties box if Tomcat is installed as
a service. Chapter 2 described this utility. You can use it to start and stop the service and set
other options.

Note that the name of this executable must be the same as that of the service you want to
start, with a w appended. So, if you install the service as TomcatServ, you must rename this file
TomcatServw.exe if you want to use its services.

The conf Directory
The conf directory contains the following Tomcat configuration files:

• catalina.policy sets up the necessary permissions for Catalina when it’s run within the
context of a security manager.

• catalina.properties sets the locations of the various class loader directories. The defaults
are the common, server, and shared directories and their subdirectories. The settings in
this file determine which classes are available to all web applications and which classes
are available to Tomcat. In other words, these settings configure the classpath of Tomcat
and all web applications.

• context.xml is a file that sets the defaults for individual contexts.

• logging.properties is a file that manages the default logging levels for the Tomcat
server itself.

• server.xml is the main configuration file for Tomcat and is discussed in detail in
Chapter 4. You use it to configure everything from the shutdown command to logging,
filtering, connections to other web servers, the port and host on which the server is
running, and the location of each web application’s files.

• tomcat-users.xml is the default user database for container-managed authentication.
You can change the name and location of the file in server.xml. You’ll see more on this
mechanism in Chapter 4.

• web.xml is the default deployment descriptor for all web applications. Tomcat processes
it before processing the web.xml files in the server’s web applications.

The logs Directory
The logs directory is the default location for application log files.

You may have to schedule housekeeping tasks to ensure that the size of the logs directory
doesn’t grow out of hand.

The lib Directory
This directory contains all the various JAR files for Tomcat.

The temp Directory
Tomcat uses the temp directory for storing temporary files.

CHAPTER 3 ■ EXAMINING TOMCAT’S DIRECTORIES30

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 30

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The webapps Directory
The webapps directory is the default location of Tomcat’s web applications. You can change this
location, and it’s recommended that you do so, as you can then separate the application files
that change relatively frequently from the server files that don’t tend to change much. As a bonus,
the installation directory for Tomcat can be kept as read/write for the administrator only, thus
maintaining greater security—read/write access for other users need be provided only for the
now separate webapps folder.

You can deploy web applications in webapps by placing them here, in both packaged and
unpackaged formats, and they will be automatically deployed at the next server bootup. This
is an alternative to the conf/[Service_name]/[Host_name] method and the various deployer (such
as Ant and the Tomcat manager application) methods. These are discussed in later chapters.

The work Directory
The work directory is where Tomcat places the JSP code after it has been converted into servlet
code. Once a JSP page has been visited, Tomcat also stores the compiled servlet here.

Understanding Web Application Structure
A web application is a collection of web resources, such as JSP pages, HTML pages, servlets,
and configuration files, organized into a hierarchy as specified in the Servlet specification. You
have two ways in which to organize a web application: packed and unpacked. The packed form
is called a web archive (WAR) file, and the unpacked form is a collection of directories stored
on the file system.

The unpackaged format is convenient for web application developers, as it allows them to
replace individual files while the application is being developed and debugged.

However, in a deployment environment, it’s often more convenient to provide a single file
that can be automatically deployed. This reduces the deployment process to placing the file and
setting up system resources. Tomcat can also automatically expand a web application once
the server has booted. The automatic expansion of WAR files is configured in the server.xml
file as part of the <Host> element that configures hosts.

Web Application Context
Each web application corresponds to a context component, as discussed in Chapter 1, and
you assign a context path to each. The default context is called ROOT and corresponds to the
name of the server with no other context information. For example, the ROOT web application
on your local machine will correspond to http://localhost:8080. If you’ve configured Domain
Name System (DNS) settings for your server, it may also be accessible from a location such as
www.companyname.com.

Users access other web applications by requesting a context relative to the server. For
example, users can access Tomcat’s manager web application with the following URL: http://
localhost:8080/manager.

Applications that you place in the webapps folder are named after the directory they’re in.
So, you can access the web application in the tomcat-docs directory with the following:
http://localhost:8080/tomcat-docs. Each application on the server is known by its name,
and users can access resources according to the remainder of the uniform resource locator
(URL) after the web application’s name.

CHAPTER 3 ■ EXAMINING TOMCAT’S DIRECTORIES 31

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 31

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

This setup has a slight problem, however. If the ROOT web application contains a subdirec-
tory that has the same name as a web application, and that web application and that subfolder
have filenames in common, then the applications won’t work as expected. For example, the
following are two web applications that could cause confusion:

webapps/

ROOT/

tomcatBook/

index.html

tomcatBook/

index.html

In this case, http://localhost:8080/tomcatBook could map to both files and could cause
confusion. Tomcat will display the index.html page from the tomcatBook web application and
will ignore the folder in the ROOT web application. If your users are expecting the ROOT version,
then they will be disappointed.

The WEB-INF Directory
The Servlet specification sets out how you partition web applications into public and private
areas. You store the private resources in a directory called WEB-INF in the root of the web appli-
cation. This is where you store all the web-application–specific configuration files, application
classes, and application-specific utilities. Users may only access these resources indirectly (for
example, through servlet mappings).

WEB-INF has a number of specialized subdirectories where you store specific files, such as
tag files and tag library descriptors (TLDs). These are defined in the appropriate specification,
be it for servlets or JSP pages. You’ll deal with them in detail in Chapter 5 when you configure
a web application, but here’s a quick rundown:

webAppX/

WEB-INF/

classes/

lib/

tags/

The classes and lib directory follow the usual pattern in Tomcat; you place class files in
classes and JAR files in lib. tags is a special directory for tag files, which are a part of the JSP
2.0 specification.

The META-INF Directory
The META-INF directory is placed at the root of a web application when it’s deployed as a WAR
file. This is where you place tag TLDs and tag files, so that they can be found using a unique
uniform resource indicator (URI). If no context XML files for this WAR file exist, then you can
also place one in this directory. You’ll find more details of this directory in Chapter 5.

CHAPTER 3 ■ EXAMINING TOMCAT’S DIRECTORIES32

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 32

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Summary
This chapter outlined the contents of Tomcat’s installation directory, its subdirectories, and
the scripts they contain. This information is all you need to manage Tomcat’s operation, from
startup to shutdown.

The chapter also covered the structure of a web application, without going into the details
of configuration. It has given you a familiarity with Tomcat’s internals and prepared you for
the coming chapters.

CHAPTER 3 ■ EXAMINING TOMCAT’S DIRECTORIES 33

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 33

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850ch03FINAL.qxd 2/28/07 10:39 AM Page 34

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Working with Tomcat’s
Configuration Files

In this chapter, you’ll focus on basic Tomcat configuration by examining the files found in
CATALINA_HOME/conf. The default installation of Tomcat uses these files to configure the server
when it starts up; therefore, it’s of the utmost importance that you understand what the default
configuration will do and how you can modify it.

You’ll see the main configuration file, server.xml, and Tomcat’s other configuration files.
As you saw in Chapter 1, Tomcat uses a component-based, hierarchical architecture. This model
greatly simplifies the configuration of the complex server.

You’ll see the top-level components and the hierarchy of containers below them, as well
as the nested components, all of which should be familiar to you from Chapter 1. By the end
of this chapter, you’ll be comfortable with the default configuration of Tomcat, and you’ll also
be able to modify this configuration for your own needs.

The final part of the chapter will cover Windows service configuration and how you can
modify this option for your own needs.

Examining Tomcat’s Configuration Files
Tomcat’s configuration directory is CATALINA_HOME/conf. It contains the following files:

• catalina.policy

• catalina.properties

• context.xml

• server.xml

• logging.properties

• tomcat-users.xml

• web.xml

35

C H A P T E R 4

■ ■ ■

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 35

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using catalina.policy for Access Control
Because you’ll see more on Tomcat security in Chapter 12, in this chapter you’ll take only a quick
look through catalina.policy to learn how it provides fine-grained access control to a Tomcat
server administrator through the built-in security model of Java.

Any access to system resources that isn’t explicitly allowed is prohibited; therefore, you
must anticipate all the resources that Tomcat will need and explicitly grant permission for it to
do so. By default, Tomcat starts without security. To start it with security, use the -security switch.

> $CATALINA_HOME/bin/startup security

Tomcat only reads, processes, and enforces the catalina.policy file when started in the
security manager in this manner. The general policy entry is in the following form:

grant <security principal> { permission list... };

Here, <security principal> is typically a body of trusted code.
Looking at the catalina.policy file, the first set of permissions grants access to all resources

for code from the Java compiler directories; this is essentially the Java compiler and runtime
system code. (See http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
for details about permissions.)

// These permissions apply to javac

grant codeBase "file:${java.home}/lib/-" {

permission java.security.AllPermission;

};

// These permissions apply to all shared system extensions

grant codeBase "file:${java.home}/jre/lib/ext/-" {

permission java.security.AllPermission;

};

// These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre

grant codeBase "file:${java.home}/../lib/-" {

permission java.security.AllPermission;

};

// These permissions apply to all shared system extensions when

// ${java.home} points at $JAVA_HOME/jre

grant codeBase "file:${java.home}/lib/ext/-" {

permission java.security.AllPermission;

};

As these directories have access to the entire system, it’s vital that you protect them using
your operating system file protection features (see Chapter 12 for details). Without this pre-
caution, malicious code could run unchecked on your system.

The next section of catalina.policy grants the Catalina server and API libraries access to
all resources.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES36

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 36

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

/ These permissions apply to the daemon code

grant codeBase "file:${catalina.home}/bin/commons-daemon.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the logging API

grant codeBase "file:${catalina.home}/bin/tomcat-juli.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the server startup code

grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the servlet API classes

// and those that are shared across all class loaders

// located in the "lib" directory

grant codeBase "file:${catalina.home}/lib/-" {

permission java.security.AllPermission;

};

Again, you must secure the previous directories on the file system, thus avoiding the
possibility of an attacker adding malicious code to them. Any class files you place in these
directories will be granted access to all system resources.

The final set of permissions in catalina.policy contains the default web application
permissions. They’re significantly more restrictive than those shown previously. In other words,
they’re never granted the java.security.AllPermission super permission.

The first section enables access to system properties that enable Java Naming and Direc-
tory Interface (JNDI) and JDBC access.

grant {

// Required for JNDI lookup of named JDBC DataSource's and

// javamail named MimePart DataSource used to send mail

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "java.naming.*", "read";

permission java.util.PropertyPermission "javax.sql.*", "read";

The next section enables read-only access to some operating system description proper-
ties: the type of operating system Tomcat is running under and what this operating system
uses to separate file extensions in a filename.

// OS-specific properties to allow read access

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

permission java.util.PropertyPermission "file.separator", "read";

permission java.util.PropertyPermission "path.separator", "read";

permission java.util.PropertyPermission "line.separator", "read";

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 37

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 37

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The third section enables read-only access to some JVM-specific properties that are often
used in application programming.

// JVM properties to allow read access

permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.vendor", "read";

permission java.util.PropertyPermission "java.vendor.url", "read";

permission java.util.PropertyPermission "java.class.version", "read";

permission java.util.PropertyPermission "java.specification.version", "read";

permission java.util.PropertyPermission "java.specification.vendor", "read";

permission java.util.PropertyPermission "java.specification.name", "read";

permission java.util.PropertyPermission "java.vm.specification.version", "read";

permission java.util.PropertyPermission "java.vm.specification.vendor", "read";

permission java.util.PropertyPermission "java.vm.specification.name", "read";

permission java.util.PropertyPermission "java.vm.version", "read";

permission java.util.PropertyPermission "java.vm.vendor", "read";

permission java.util.PropertyPermission "java.vm.name", "read";

The next two sections provide access for JavaBean getAttribute methods and the XML
parser debugger, frequently required during code development (see the JavaBean and Java API
for XML Processing [JAXP] specifications for more details on these properties).

// Required for OpenJMX

permission java.lang.RuntimePermission "getAttribute";

// Allow read of JAXP-compliant XML parser debug

permission java.util.PropertyPermission "jaxp.debug", "read";

The final section gives permission to the Jasper runtime classes for precompiled JSP
pages. Internal Tomcat classes aren’t available by default, but they can be made available in
the catalina.properties file, which is described next.

// Precompiled JSPs need access to this package.

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.jasper.runtime";

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.jasper.runtime.*";

};

The following permissions are the minimal ones that are granted by default to web
applications. Your secured production configuration may require additional access to a JDBC
server or network access to an external authentication system. You can find examples of these
at the end of catalina.policy.

// The permissions granted to the context root directory apply to JSP pages.

// grant codeBase "file:${catalina.home}/webapps/examples/-" {

// permission java.net.SocketPermission

"dbhost.mycompany.com:5432", "connect";

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES38

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 38

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

// permission java.net.SocketPermission "*.noaa.gov:80", "connect";

// };

//

// The permissions granted to the context WEB-INF/classes directory

// grant codeBase "file:${catalina.home}/webapps/examples/WEB-INF/classes/-" {

// };

//

// The permission granted to your JDBC driver

// grant codeBase "jar:file:${catalina.home}

/webapps/examples/WEB-INF/lib/driver.jar!/-" {

// permission java.net.SocketPermission

"dbhost.mycompany.com:5432", "connect";

// };

// The permission granted to the scrape taglib

// grant codeBase "jar:file:${catalina.home}

/webapps/examples/WEB-INF/lib/scrape.jar!/-" {

// permission java.net.SocketPermission "*.noaa.gov:80", "connect";

// };

Using catalina.properties to Configure Tomcat’s
Class Loaders
You use the catalina.properties file to configure Tomcat’s class loaders. These determine
which classes are available to different parts of the server. In the previous chapter, you saw the
three directories—common, server, and shared—that are set as the path for the class loaders by
default. You can change these directories in catalina.properties.

Another setting you can alter here is the classes that are available to web applications
running on the server. When a class loader tries to load a forbidden class, a java.security.

AccessControlException is thrown. This setting applies only if you start Tomcat in security mode.
The first section lists the forbidden packages. By default, Tomcat won’t allow web applica-

tions to load any of Tomcat’s internal classes.

List of comma-separated packages that start with or equal this string

will cause a security exception to be thrown when

passed to checkPackageAccess unless the

corresponding RuntimePermission ("accessClassInPackage."+package) has

been granted.

package.access=sun.,org.apache.catalina.,org.apache.coyote.,

org.apache.tomcat.,org.apache.jasper.,sun.beans.

If a web application on your server wants to have access to an internal class, say
org.apache.tomcat.util.IntrospectionUtils, and you’re happy to let it, then you would
add the following to catalina.policy:

// Permission for org.apache.tomcat. package

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.tomcat.util";

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 39

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 39

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The next section disallows users from defining classes in certain restricted packages.

List of comma-separated packages that start with or equal this string

will cause a security exception to be thrown when

passed to checkPackageDefinition unless the

corresponding RuntimePermission ("defineClassInPackage."+package) has

been granted.

#

by default, no packages are restricted for definition, and none of

the class loaders supplied with the JDK call checkPackageDefinition.

#

package.definition=sun.,java.,org.apache.catalina.,org.apache.coyote.,

org.apache.tomcat.,org.apache.jasper.

This section is here for completeness only and doesn’t affect Tomcat’s operation.
The next section defines Tomcat’s common class loader, which in this case corresponds to

the common directory and its subdirectories.

List of comma-separated paths defining the contents of the "common"

class loader. Prefixes should be used to define what is the repository type.

Path may be relative to the CATALINA_HOME path or absolute. If left as blank,

the JVM system loader will be used as Catalina's "common" loader.

Examples:

"foo": Add this folder as a class repository

"foo/*.jar": Add all the JARs of the specified folder as class

repositories

"foo/bar.jar": Add bar.jar as a class repository

common.loader=${catalina.home}/lib,${catalina.home}/lib/*.jar

Any classes placed in these directories will be available to Tomcat’s internal classes as well
as all web applications.

The next section defines Tomcat’s server class loader, which in this case corresponds to
the server directory and its subdirectories.

List of comma-separated paths defining the contents of the "server"

class loader. Prefixes should be used to define what is the repository type.

Path may be relative to the CATALINA_HOME path or absolute. If left as blank,

the "common" loader will be used as Catalina's "server" loader.

Examples:

"foo": Add this folder as a class repository

"foo/*.jar": Add all the JARs of the specified folder as class

repositories

"foo/bar.jar": Add bar.jar as a class repository

server.loader=

Any classes placed in these directories will be available to Tomcat’s internal classes only.
The final section of this file defines Tomcat’s shared class loader, which in this case corre-

sponds to the shared directory and its subdirectories. If this definition is left out, the common
class loader will be used.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES40

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 40

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

List of comma-separated paths defining the contents of the "shared"

class loader. Prefixes should be used to define what is the repository type.

Path may be relative to the CATALINA_BASE path or absolute. If left as blank,

the "common" loader will be used as Catalina's "shared" loader.

Examples:

"foo": Add this folder as a class repository

"foo/*.jar": Add all the JARs of the specified folder as class

repositories

"foo/bar.jar": Add bar.jar as a class repository

shared.loader

Any classes placed in these directories will be available to web applications but not
Tomcat’s internal classes.

Using server.xml to Configure Tomcat
Tomcat’s component-based architecture considerably simplifies configuration. Any properties
that are set on the outer components are inherited by the inner components. For example,
a listener that’s configured in an engine will be used by a nested host component.

However, if you need a lower-level component to have its own setup, you can override the
outer configuration by adding components to the inner component. For example, you could
set a realm on a context component to override the realm configured at the engine level. This
means that the web applications running within this context will use the newly defined realm
instead of the outer one.

This component-based model lends itself to XML configuration because of XML’s hierar-
chical nature. Each component is represented by an element in an XML file, which makes it
easy to insert and remove components from a server as appropriate. The name of the file that
does this job in Tomcat is server.xml, which Tomcat reads at startup.

■Note No DTD or schema exists for server.xml because the attributes of certain elements depend on
the class implementing the component that the element represents.

Tomcat comes bundled with a default server.xml file ready to run on your machine. It
defines a Catalina service, a Catalina engine, and a localhost host.

Configuring a Server
Let’s take a closer look at how to configure a server by going through the server.xml file that
comes with Tomcat. As you’ll recall from Chapter 1, a server component is a top-level compo-
nent, and any Tomcat instances can have only one server component. This means that the
<Server> element in server.xml is the root element.

<Server port="8005" shutdown="SHUTDOWN">

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 41

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 41

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The <Server> element represents the JVM and listens to port 8005 for a shutdown com-
mand, which will contain the text SHUTDOWN. This provides a graceful way for an administrator
(or management console software) to shut down this Tomcat server instance.

Table 4-1 lists the possible attributes of the <Server> element.

Table 4-1. The Attributes of the <Server> Element

Attribute Description Required?

className The Java class for the server to use. This class must implement No
the org.apache.catalina.Server interface. The standard
implementation is used by default.

port The TCP/IP port to listen to for the command specified by the Yes
shutdown attribute before shutting down gracefully. This
command must come from the same physical server machine
on which Tomcat is running. This provides a certain level of
security when used in combination with the shutdown attribute.

shutdown The command string that must be sent to the port number Yes
specified by the port attribute.

Table 4-2 lists the subelements of the <Server> element.

Table 4-2. The Subelements of the <Server> Element

Subelement Description Number

<GlobalNamingResources> The global JNDI resources for this server 1

<Service> A grouping of connectors associated with an engine 1 or more

Configuring Global Naming Resources
JNDI is an API used for looking up information via a naming and directory service. It’s a platform-
independent API, much like JDBC, and it’s designed to work with any compatible naming and
directory service—regardless of its native interface API. Some common information you can
store and retrieve through JNDI includes the following:

• Usernames and passwords

• An access control policy, such as the Tomcat user and role mechanism

• Organizational directories

• Servers (databases and so on)

• Printers

• Java objects, such as EJBs

JNDI allows you to avoid the problem of programming for the native interfaces of specific
platforms and thus simplifies the process immeasurably. JNDI acts as a layer on top of the
native interfaces and translates between the Java classes and the naming servers on the server
platform, presenting Tomcat with a uniform view of the naming and directory service no mat-
ter what the underlying system is.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES42

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 42

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Additionally, many Java applications use JNDI to locate resources without the need for an
underlying naming service. This means a Java application can access resources without know-
ing their underlying setup or location. For example, a database reference is looked up using its
JNDI name only, so it doesn’t matter what the underlying database is or what the driver is. This
allows programmers to decouple their applications from hard-coded system resources. Figure 4-1
shows JNDI as a directory service and as a Java lookup mechanism.

Figure 4-1. JNDI

Once the application has the database reference, it can connect to the database directly
using JDBC. A constant stored as a JNDI resource can be used across all the web applications
running on a server, as well as by any other Java applications that require it.

Tomcat and the web applications that run on it use the JNDI resource lookup mechanism
extensively.

You configure the server’s global JNDI resources with the <GlobalNamingResources> ele-
ment.

Table 4-3 shows the subelements of <GlobalNamingResources>.

Table 4-3. The Subelements of the <GlobalNamingResources> Element

Subelement Description Number

<Environment> A global variable 0 or more

<Resource> A global JNDI resource 0 or more

Configuring Environment Entries
The first type of resource is a serverwide variable. This variable must be of one of the primitive
wrapper types that are specified for environment entries in the Servlet specification. You use
an <Environment> entry to specify this kind of resource.

<Environment name="simpleValue" type="java.lang.Integer" value="30"/>

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 43

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 43

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

This environment entry is called simpleValue, is of type java.lang.Integer, and has the
value 30. It’s looked up using the java:comp/env/simpleValue string.

Table 4-4 specifies the attributes that <Environment> can take.

Table 4-4. The Attributes of the <Environment> Element

Attribute Description Required?

description A description of this environment entry. No

name The name of the environment entry, relative to the java: Yes
comp/env context.

override Set this to false if you don’t want a web application deployment No
descriptor to override this value. The default is true.

type The fully qualified Java class type of this entry. It must be one Yes
of the legal values specified in the Servlet specification for web
application deployment descriptor environment entries:
java.lang.Boolean, java.lang.Byte, java.lang.Character,
java.lang.Double, java.lang.Float, java.lang.Integer,
java.lang.Long, java.lang.Short, and java.lang.String.

value The value of this entry. Yes

Configuring a Global Resource
Global resources can include JDBC data sources, Enterprise JavaBean (EJB) references, and
user authentication databases. You define them with a <Resource> element, and you must also
define a set of resource parameters to configure the object factory for this resource type. You’ll
see how this is done next.

<Resource name="UserDatabase" auth="Container"

type="org.apache.catalina.UserDatabase"

description="User database that can be updated and saved">

</Resource>

This is a user database for authenticating users and is set as the default for the Catalina
engine further down in server.xml.

Table 4-5 describes the attributes that a <Resource> element can take.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES44

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 44

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 4-5. The Attributes of the <Resource> Element

Attribute Description Required?

auth Specifies whether the web application signs onto the No
corresponding resource manager programmatically or whether
the container will sign onto the resource manager on behalf of
the application. The value of this attribute must be Application
or Container. This attribute is required if the web application uses
a <resource-ref> element in the web application deployment
descriptor but is optional if the application uses
a <resource-env-ref> instead.

description A description of this resource. No

name The name of the resource to be created. Yes

scope Specifies whether connections obtained through this resource No
manager can be shared. The value of this attribute must be
Shareable or Unshareable. The default is Shareable.

type The fully qualified Java class name of this resource. Yes

Configuring Resource Parameters in Tomcat 6
Tomcat 6 no longer uses the <ResourceParams> element that was used in Tomcat 5 and earlier.
Instead, you provide the information with the <Resource> element’s attributes.

<Resource name="UserDatabase" auth="Container"

type="org.apache.catalina.UserDatabase"

description="User database that can be updated and saved"

factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

pathname="conf/tomcat-users.xml" />

Configuring a JDBC Data Source

Web applications running on your server may use common databases and thus will benefit
from a JDBC data source. In fact, even if an application is the only one that uses a database, it
will benefit from making it into a data source. This makes it easy for you, as the administrator,
to change the underlying database without disturbing web applications.

Another advantage of data sources is that Tomcat can use connection pooling with them,
which means database connections can be recycled once they’ve finished executing. This, in
turn, leads to improved performance. Tomcat uses the Jakarta Commons Database Connection
Pool mechanism, which supports JDBC2.0 and JDBC 3.0. You can find the classes repackaged
as part of the Tomcat distribution, which you can find in CATALINA_HOME/lib/tomcat-dbcp.jar.

The first step to data source configuration is to place the required JDBC driver in CATALINA_
HOME/lib or some other directory in the classpath. This will allow Tomcat to find and access
this driver.

As you saw earlier, you can configure the JNDI resource factory using the <Resource> ele-
ment. Listing 4-1 shows you a MySQL data source defined for the whole server. This instance
of the database will be shared among all the web applications running on the server.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 45

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 45

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 4-1. Configuring a JDBC Data Source

<Resource name="jdbc/TestDB" auth="Container" type="javax.sql.DataSource"

maxActive="100" maxIdle="30" maxWait="10000"

username="javauser"

password="javadude"

driverClassName="com.mysql.jdbc.Driver"

url= "jdbc:mysql://localhost:3306/javatest?autoReconnect=true"

/>

This listing defines a data source called jdbc/CatalogDB and sets its drivers and connection
URL. It illustrates how you could change the underlying database without affecting web appli-
cations. In this case, the parameters shown in Table 4-6 are allowed.

Table 4-6. The Parameters for Use with a JDBC Data Source

Parameter Description Required?

driverClassName Java class name of the JDBC driver. This driver should be Yes
placed in CATALINA_HOME/common/lib.

maxActive The maximum number of active connections in this pool. No

maxIdle The maximum number of idle connections in this pool. No

maxWait The time in milliseconds that the driver should wait for a No
connection before throwing an exception.

username The user ID used to log onto the database. No

password The password used to log onto the database. No

url The URL of the database server to be used. Yes

validationQuery A SQL query used to validate a connection. The factory will No
perform this query and ensure that rows are returned before
considering the connection valid.

In addition to the previous configuration, the developer must declare the use of the resource
in the application’s web.xml file using a <resource-ref> element, as shown in Listing 4-2.

Listing 4-2. Configuring a Reference to a JDBC Data Source in web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<!-- Describe a DataSource -->

<resource-ref>

<description>

Resource reference to a factory for java.sql.Connection

instances that may be used for talking to a particular

database that is configured in the tomcatBook.xml file.

</description>

<res-ref-name>

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES46

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 46

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

jdbc/CatalogDB

</res-ref-name>

<res-type>

javax.sql.DataSource

</res-type>

<res-auth>

SERVLET

</res-auth>

</resource-ref>

<!-- Define a Security Constraint on this Application -->

<security-constraint>

<web-resource-collection>

<web-resource-name>Tomcat Book Application</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>tomcat</role-name>

</auth-constraint>

<user-data-constraint>

<description>

Constrain the user data transport for the whole application

</description>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- Define the Login Configuration for this Application -->

<login-config>

<auth-method>FORM</auth-method>

<realm-name>Tomcat Book Application</realm-name>

<form-login-config>

<form-login-page>/ch12/login.jsp</form-login-page>

<form-error-page>/ch12/error.jsp</form-error-page>

</form-login-config>

</login-config>

<!-- Security roles referenced by this web application -->

<security-role>

<description>

The role that is required to log in to the Tomcat Book Application

</description>

<role-name>tomcat</role-name>

</security-role>

</web-app>

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 47

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 47

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Mail Sessions

JavaMail is a standard programming API that can be used to create and send e-mails. Tomcat
supports JavaMail by allowing you to configure a JavaMail session as a JNDI resource. Web
applications can then use JNDI to look up and use this session.

You can configure JavaMail sessions that web applications can use much in the same way
as you can configure JDBC data sources. The theory and practice in both configurations are
similar. In the case of JavaMail sessions, the web application obtains a reference to the mail
session without needing to know about the underlying implementation. Again, this allows you
to change the underlying mail server without compromising any web applications.

As already mentioned, the process of setting up a JavaMail session is analogous to setting
up a JDBC data source. First, you must place the JavaMail API in CATALINA_HOME/ /lib so that
Tomcat and web applications can use its classes. It’s available from http://java.sun.com/
products/javamail/downloads/index.html.

Second, configure the mail session in server.xml as shown in Listing 4-3.

Listing 4-3. Configuring a Mail Session

<Resource name="mail/Session" auth="Container"

type="javax.mail.Session"

mail.smtp.host="localhost"/>

By convention, you configure mail sessions to resolve to the mail subcontext. The snippet
in Listing 4-3 configures the mail/Session context, which refers to an SMTP server running on
localhost. You can modify the SMTP port (if it isn’t at the standard port 25) by setting the
mail.smtp.port parameter.

Finally, set the JNDI resource in web.xml. Listing 4-4 shows the mail/Session reference.

Listing 4-4. Configuring a Reference to a JavaMail Session in web.xml

<resource-ref>

<res-ref-name>mail/Session</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

</resource-ref>

Configuring a Service
A service component groups together all the connectors that may be used with an engine.

<Service name="Catalina">

This service is called Catalina. This name will be visible in logs and error messages, clearly
identifying the component. Service management software can also use it to identify the service
instance.

Table 4-7 describes the attributes of the <Service> element.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES48

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 48

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 4-7. The Attributes of the <Service> Element

Attribute Description Required?

className The Java class name for the service class to use. The default is No
org.apache.catalina.core.StandardService.

name The service name, used in logging and management. If more than Yes
one <Service> element appears inside the <Server> element, you
must make sure their name attributes are different.

Table 4-8 describes the subelements that a <Service> element can have.

Table 4-8. The Subelements of the <Service> Element

Subelement Description Number

Connector Connects Tomcat, either from users or from another web server. 1 or more

Engine This is Tomcat’s request-processing machinery. 1

Configuring a Connector
The following are the two connection points where a request enters Tomcat:

• From a front-end web server, which could be Apache, IIS, or any other web server

• From a web browser

One way to handle these connection requirements is to create a customized version of
Tomcat for each situation. This is inefficient and hard to maintain. This is where connectors
come in: a connector adapts an engine to the outside world by passing requests into the
engine and passing responses out to the user. The connector handles the protocol, connection
conventions, and so on, so that the engine doesn’t have to handle them.

You can associate more than one connector with a single engine. For example, you may
want to provide an HTTP service and an HTTPS service to your users from the same server. In
this case, you configure an HTTP connector and an SSL connector in the same engine. You’ll
see more on this in Chapter 9. In the meantime, let’s look through server.xml and see the
default settings.

A number of different options are available to you when you configure a connector.
server.xml shows four of the most common.

• An HTTP connector

• An SSL connector

• An AJP 1.3 connector for connecting to another web server

• A proxy connector

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 49

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 49

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The default connector for the Catalina engine is an HTTP/1.1 connector.

<!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->

<Connector port="8080"

maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

enableLookups="false" redirectPort="8443" acceptCount="100"

debug="0" connectionTimeout="20000"

disableUploadTimeout="true" />

This sets a connector to listen on port 8080 for HTTP requests. Table 4-9 describes the
attributes that are common to all connectors, and Table 4-10 describes the HTTP connector’s
attributes after the descriptions of the other <Connector> elements in server.xml.

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->

<!--

<Connector port="8443"

maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

enableLookups="false" disableUploadTimeout="true"

acceptCount="100" debug="0" scheme="https" secure="true"

clientAuth="false" sslProtocol="TLS" />

-->

This sets a secure SSL connector to listen on port 8443 for HTTPS requests. It shares all
the attributes of an ordinary HTTP connector but has some unique SSL attributes all its own.
Table 4-11 describes these.

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->

<Connector port="8009"

enableLookups="false" redirectPort="8443" debug="0"

protocol="AJP/1.3" />

This sets up an AJP 1.3 connector listening on port 8009. This type of connector allows
Tomcat to connect to an Apache web server to provide JSP pages and servlets while Apache
provides HTML pages and important user-management functionality. Table 4-12 describes
the AJP connector’s attributes.

<!-- Define a Proxied HTTP/1.1 Connector on port 8082 -->

<!-- See proxy documentation for more information about using this. -->

<!--

<Connector port="8082"

maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

enableLookups="false"

acceptCount="100" debug="0" connectionTimeout="20000"

proxyPort="80" disableUploadTimeout="true" />

-->

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES50

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 50

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The final connector setup in server.xml configures a connector to work with a proxy server.
This allows the proxy to provide a firewall.

All these connectors are configured to automatically send errors and logging information
to the logger associated with their engine.

As promised, Table 4-9 describes the common attributes that are shared by all the connectors
described previously.

Table 4-9. The Common Attributes of the <Connector> Element

Attribute Description Required?

address For servers with more than one IP address, this attribute No
specifies which address will be used for listening on the
specified port. By default, this port will be used on all IP
addresses associated with the server.

allowTrace A Boolean value that enables or disables the TRACE HTTP No
method (which prompts the server to return a copy of
the request back to the client for inspection). The default
is false.

enableLookups Sets whether the DNS host name of the client can be No
looked up. false skips the DNS lookup and returns the
IP address as a string (thereby improving performance).
The default is true.

maxPostSize The maximum size in bytes of a POST request. You can No
disable this by setting this attribute to a value less than
or equal to zero. The default is 2097152 (2 megabytes).

redirectPort If this connector supports non-SSL requests and a No
request is received that requires SSL transport, Tomcat
will automatically redirect the request to the port
number specified here.

scheme The name of the protocol you want to use for this No
connector. For example, you’d set this attribute to https
for an SSL connector. The default is http.

secure If you want to have calls to request.isSecure() return No
true (which is the case for an SSL connector), set this to
true. The default is false.

URIEncoding The character encoding to use to decode the URI bytes. No
The default is ISO-8859-1.

useBodyEncodingForURI This specifies if the encoding specified in contentType No
should be used for URI query parameters, instead of
using the URIEncoding. This setting is for compatibility
with Tomcat 4.1.x, where the encoding specified in
contentType was also used for the parameters from the
URL. The default is false.

The default HTTP connector has the attributes described in Table 4-10.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 51

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 51

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 4-10. The Attributes of the HTTP <Connector> Element

Attribute Description Required?

acceptCount The maximum queue length for incoming No
connection requests when all possible request-
processing threads are in use. Any requests received
when the queue is full will be refused. The default is 10.

bufferSize The size (in bytes) of the buffer to be provided for No
input streams created by this connector. The default
is 2048.

compressableMimeTypes The value is a comma-separated list of MIME types No
for which HTTP compression may be used. The
default is text/html, text/xml, text/plain.

compression The connector may use HTTP/1.1 GZIP compression No
in an attempt to save server bandwidth. The
acceptable values for the parameter are off (disables
compression), on (allows compression, which causes
text data to be compressed), force (forces
compression in all cases), or an integer (which is
equivalent to on but specifies the minimum amount
of data before the output is compressed). If the
content length isn’t known and compression is set
to on (or a more aggressive setting), the output will
also be compressed. The default is off.

connectionLinger The number of milliseconds during which the No
sockets used by this connector will linger when they
are closed. The default is -1 (socket linger is disabled).

connectionTimeout The number of milliseconds this connector will wait No
after accepting a connection for the request URI line
to be presented. The default is 60000 (that is, 60 seconds).

disableUploadTimeout Used to set a connection timeout while a servlet is No
being executed. This gives the servlet longer to
complete its execution or allows a longer timeout
during data upload. The default is false.

maxHttpHeaderSize The maximum size of the request and response No
HTTP header, specified in bytes. The default is 4096.

maxKeepAliveRequests The maximum number of HTTP requests that can be No
maintained until Tomcat closes the connection.
A setting of 1 will disable HTTP/1.0 and HTTP/1.1
keep-alive and pipelining. A setting of -1 will allow
an unlimited amount of pipelined or keep-alive
HTTP requests. The default is 100.

maxSpareThreads The maximum number of unused request-processing No
threads that will be allowed to exist until the thread
pool stops the unnecessary threads. The default is 50.

maxThreads The maximum number of request-processing threads No
to be created, which therefore determines the
maximum number of simultaneous requests that can
be handled. The default is 200.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES52

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 52

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Attribute Description Required?

minSpareThreads The number of request-processing threads created No
when this connector starts. The connector will also
make sure it has the specified number of idle
processing threads available. This attribute should be
set to a value smaller than maxThreads. The default is 4.

noCompressionUserAgents A comma-separated list of regular expressions No
matching HTTP user-agents for which compression
should not be used. The default is an empty string.

port The port on which this connector will create a server Yes
socket and await incoming connections. Only one
application may listen to a particular port number on
a particular IP address.

protocol Must be HTTP/1.1 to use the HTTP handler, which is No
the default.

proxyName If this connector is being used in a proxy No
configuration, configure this attribute to specify the
server name to be returned for calls to
request.getServerName().

proxyPort If this connector is being used in a proxy configuration, No
configure this attribute to specify the server port to be
returned for calls to request.getServerPort().

restrictedUserAgents A comma-separated list of regular expressions No
matching HTTP user-agents for which HTTP/1.1 or
HTTP/1.0 keep-alive should not be used, even if they
advertise support for these features. The default is an
empty string.

server The Server header for the HTTP response No
(Tomcat 5.5 only).

strategy The thread-pooling strategy to be used (Tomcat 5.5 No
only). The default strategy doesn’t use a master thread.
However, you can use a more conventional strategy
with a master listener thread by setting this attribute’s
value to ms. The master strategy will work significantly
better if you also use the threadPriority attribute,
which will apply only to the thread that listens on the
server socket. The default is lf.

socketBuffer The size (in bytes) of the buffer to be provided for No
socket output buffering. A setting of -1 disables the
use of a buffer. The default is 9000.

tcpNoDelay If set to true, the TCP_NO_DELAY option will be set on No
the server socket, which improves performance under
most circumstances. The default is true.

threadPriority The priority of the request-processing threads within No
the JVM. The default is java.lang.Thread#NORM_
PRIORITY. See the documentation for the
java.lang.Thread class for more details on what
this priority means.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 53

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 53

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

An SSL connector has a number of unique attributes, as described in Table 4-11.

Table 4-11. The Attributes of an SSL-Enabled <Connector> Element

Attribute Description Required?

algorithm The certificate algorithm to be used. The default is SunX509. No

clientAuth Set to true if you require a valid certificate chain from the No
client before accepting a connection. false won’t require a
certificate chain unless the client requests a resource
protected by a security constraint that uses CLIENT-CERT
authentication. The default is false.

keystoreFile The path to the keystore file where you have stored the No
server certificate to be loaded. The default is .keystore in
the home directory of the user that’s running Tomcat.

keystorePass The password used to access the server certificate from the No
specified keystore file. The default is changeit.

keystoreType The type of keystore file to be used for the server certificate. No
The default is JKS.

sslProtocol The version of the SSL protocol to use. The default is TLS. No

ciphers A comma-separated list of the encryption ciphers that may No
be used. Any available cipher may be used by default.

The final set of attributes belongs to the AJP connector and is described in Table 4-12.
Remember that this connector also has the common attributes described in Table 4-9.

Table 4-12. The Attributes of an AJP1.3 <Connector> Element

Attribute Description Required?

protocol Must be AJP/1.3 to use the AJP handler Yes

Configuring an Engine
You can have as many connectors as you need in a service to handle the different connection
requirements for a server, but you can have only one engine. An engine executes web applica-
tions when processing incoming requests and generating outgoing responses.

<!-- Define the top level container in our container hierarchy -->

<Engine name="Catalina" defaultHost="localhost" debug="0">

An engine represents a running instance of the servlet processor; in other words, it’s the
servlet engine. The default engine in server.xml is called Catalina. The defaultHost is the host
component to which this engine will direct a request if it’s not for a known host on this server.
The debug attribute here specifies that there will be no debug messages for this engine written
by the logger to the log.

Table 4-13 describes the attributes of the <Engine> element.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES54

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 54

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 4-13. The Attributes of the <Engine> Element

Attribute Description Required?

backgroundProcessorDelay Represents the delay in seconds between the No
invocation of the backgroundProcess() method
on this engine and its child containers, including
all hosts and contexts. Child containers will be
invoked if their delay value is negative (which would
mean they’re using their own processing thread).
Setting this to a positive value will cause a thread to
be spawned. After waiting the specified amount of
time, the thread will invoke the backgroundProcess()
method on this engine and all its child containers.
The default is 10.

className Class name of the implementation to use. No
The default is org.apache.catalina.core.
StandardEngine.

defaultHost The default hostname. This host will process Yes
requests directed to host names on this server that
aren’t configured in server.xml. This name must
match the name of one of the host elements nested
in this engine.

jvmRoute The identifier that must be used in load balancing No
to enable session affinity. This value must be unique
across all Tomcat 5 servers that participate in the
cluster. It will be appended to the generated session
identifier, therefore allowing the front-end proxy to
forward a particular session to the same Tomcat 5
instance.

name Name of this engine, used in log and error messages. Yes

The <Engine> element has the subelements described in Table 4-14.

Table 4-14. The Subelements of the <Engine> Element

Subelement Description Number

Realm The user-authentication realm used by Tomcat’s declarative 0 or 1
security support.

Host Each <Host> element is a virtual host handled by this engine. 1 or more
Tomcat can handle multiple virtual hosts per engine instance.

Listener Life cycle listeners monitor the starting and stopping of the 0 or more
engine. You’ll see one use for listeners in Chapter 9.

Valve Valves add processing logic into the request- and response- 0 or more
handling pipeline at the engine level. Standard valves are used
to perform access logging, request filtering, implementing single
sign-on, and so on.

Tomcat Logging
Tomcat doesn’t include the logger component and relies instead on the Jakarta Commons log-
ging mechanism. This mechanism is a thin bridge between logging libraries and allows you to
use any logging toolkit you want. The two most common are the Java 1.4 (and onward) built-in

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 55

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 55

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

logging feature and the Apache Log4J toolkit. It’s the latter that’s most often used with Tomcat,
so it’s the one described in this section.

The first step is to download the Log4J classes from http://logging.apache.org/log4j/.
Tomcat uses the Commons logging mechanism during bootup, so if you want to use Log4J to
harness the Commons logging messages, you must also include it at bootup. To do this, add
the log4j.jar binary to the boot classpath in the catalina.bat/catalina.sh script.

rem catalina.bat

set CLASSPATH=%CLASSPATH%;

%CATALINA_HOME%\bin\bootstrap.jar;

%CATALINA_HOME%\bin\log4j.jar

catalina.sh

CLASSPATH="$CLASSPATH":

"$CATALINA_HOME"/bin/bootstrap.jar:

"$CATALINA_HOME"/bin/commons-logging-api.jar:

"$CATALINA_HOME"/bin/log4j.jar

Change the Path to Your Log4J Binary
The version of the Commons logging that Tomcat uses when booting up is a stripped-down
version for simple logging to the console (CATALINA_HOME/lib). Log4J, on the other hand, uses
the full functionality of the logging mechanism. This means you must download the full distri-
bution from http://jakarta.apache.org/commons/logging/. Copy the commons-logging.jar file
to CATALINA_HOME/lib, where Tomcat, user applications, and Log4J can see it.

You can’t replace the stripped-down version of the logging API in the bin directory directly.
The steps described previously will carry out this task during bootup.

The final step of configuration is to add a Log4J configuration file as shown in Listing 4-5.
Call this file log4j.properties, and place it in CATALINA_HOME/conf. This places it in the same
scope as the rest of the logging mechanism.

Listing 4-5. CATALINA_HOME/conflog4j.properties

handlers = 1catalina.org.apache.juli.FileHandler,

2localhost.org.apache.juli.FileHandler,

3manager.org.apache.juli.FileHandler,

4admin.org.apache.juli.FileHandler, 5host-

manager.org.apache.juli.FileHandler,

java.util.logging.ConsoleHandler

.handlers = 1catalina.org.apache.juli.FileHandler,

java.util.logging.ConsoleHandler

##

Handler specific properties.

Describes specific configuration info for Handlers.

##

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES56

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 56

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

1catalina.org.apache.juli.FileHandler.level = FINE

1catalina.org.apache.juli.FileHandler.directory = ${catalina.base}/logs

1catalina.org.apache.juli.FileHandler.prefix = catalina.

2localhost.org.apache.juli.FileHandler.level = FINE

2localhost.org.apache.juli.FileHandler.directory = ${catalina.base}/logs

2localhost.org.apache.juli.FileHandler.prefix = localhost.

3manager.org.apache.juli.FileHandler.level = FINE

3manager.org.apache.juli.FileHandler.directory = ${catalina.base}/logs

3manager.org.apache.juli.FileHandler.prefix = manager.

4admin.org.apache.juli.FileHandler.level = FINE

4admin.org.apache.juli.FileHandler.directory = ${catalina.base}/logs

4admin.org.apache.juli.FileHandler.prefix = admin.

5host-manager.org.apache.juli.FileHandler.level = FINE

5host-manager.org.apache.juli.FileHandler.directory = ${catalina.base}/logs

5host-manager.org.apache.juli.FileHandler.prefix = host-manager.

java.util.logging.ConsoleHandler.level = FINE

java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

##

Facility specific properties.

Provides extra control for each logger.

##

org.apache.catalina.core.ContainerBase.[Catalina].[localhost].level = INFO

org.apache.catalina.core.ContainerBase.[Catalina].[localhost].handlers

= 2localhost.org.apache.juli.FileHandler

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/manager].level = INFO

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/manager].handlers = 3manager.org.apache.juli.FileHandler

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/admin].level = INFO

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/admin].handlers = 4admin.org.apache.juli.FileHandler

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/host-manager].level = INFO

org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/host-manager].handlers

= 5host-manager.org.apache.juli.FileHandler

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 57

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 57

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

For example, set the com.xyz.foo logger to only log SEVERE

messages:

#org.apache.catalina.startup.ContextConfig.level = FINE

#org.apache.catalina.startup.HostConfig.level = FINE

#org.apache.catalina.session.ManagerBase.level = FINE

#org.apache.catalina.core.AprLifecycleListener.level=FINE

This is a simple configuration that sets the level of logging and the log file for Tomcat to
use. The logging levels are, in ascending order of severity, as follows: ALL, DEBUG, INFO, WARN,
ERROR, FATAL, and OFF. Be careful and set logging to only the level you require, because there
can be severe performance penalties if you choose too low a level; at the same time, you may
miss crucial information if you set the level too high.

Start Tomcat, and open the logs directory to see several log files.
You aren’t limited to using the simple text file. For example, the previous listing has no dates

or times. To change this, you can use a pattern layout, which uses pattern characters just as C does.
Table 4-15 describes those characters relevant to Tomcat logging. See http://logging.apache.org/
log4j/docs/api/org/apache/log4j/PatternLayout.html for more details on Log4J’s logging
patterns.

Table 4-15. Pattern Layout Placeholders

Pattern Character Description

c The category of the logging event. In Tomcat terms, this displays the
component that made the log entry.
You can configure the precision of the category name by placing an
integer in brackets after the character. In this case, only the corresponding
number of rightmost components of the category name will be printed.
For example, for the category log4j.logger.org.apache.catalina.
core.ContainerBase, the pattern %c{1} will print ContainerBase.
This is a useful pattern character when you want to find out from where
a certain log message has come.

d The date of this log entry, which may be followed by a date format
enclosed between braces, for example, %d{HH:mm:ss} or %d{dd MMM yyyy
HH:mm:ss}. If no format is given, then ISO8601 format is used.
For better results, you should use the Log4J date formatters. These are
ABSOLUTE, DATE, and ISO8601, for specifying AbsoluteTimeDateFormat,
DateTimeDateFormat, and ISO8601DateFormat, respectively; for example,
%d{ISO8601} or %d{ABSOLUTE}.
ABSOLUTE is HH:mm:ss,SSS.
DATE is dd MM YYYY HH:mm:ss,SSS.
ISO8601 is YYYY-MM-dd HH:mm:ss,SSS.

F The filename where the logging request was issued. This can be slow, so
you should avoid using this option unless execution speed isn’t an issue.

l The location of the caller that generated the logging event. The location
information depends on the JVM implementation but usually consists of
the fully qualified name of the calling method, followed by the filename
and line number between parentheses.
Here’s an example:
org.apache.jk.server.JkMain.start(JkMain.java:355).
The location information can be useful, but obtaining it is extremely slow.

L The line number where the logging request was issued. Obtaining caller
location information is extremely slow.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES58

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 58

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Pattern Character Description

m The application-supplied message associated with the logging event.

M The method name where the logging request was issued. Obtaining
method name information is extremely slow.

n The platform-dependent line separator character or characters.
This conversion character offers practically the same performance as
using nonportable line separator strings such as \n or \r\n. Thus, it’s the
preferred way of specifying a line separator.

p Used to output the priority of the logging event.

r Used to output the number of milliseconds elapsed from the start of the
application until the creation of the logging event.

t Used to output the name of the thread that generated the logging event.

% The sequence %% outputs a single percent sign.

Listing 4-7 shows how to put these characters into action.

Listing 4-7. CATALINA_HOME/common/classes/log4j.properties

Set the root logger for Tomcat

log4j.rootLogger=INFO, Tomcat

Log to a pattern file

log4j.appender.Tomcat=org.apache.log4j.FileAppender

log4j.appender.Tomcat.File=C:/jakarta-tomcat-5.5.3/logs/tomcat.pattern.log

Use a pattern layout

log4j.appender.Tomcat.layout=org.apache.log4j.PatternLayout

log4j.appender.Tomcat.layout.ConversionPattern=%d{ISO8601} : %p : %m %n

Configuring a Realm
The next entry in server.xml is a realm, which is used for user authentication.

<!-- Because this Realm is here, an instance will be shared globally -->

<!-- This Realm uses the UserDatabase configured in the global JNDI

resources under the key "UserDatabase". Any edits

that are performed against this UserDatabase are immediately

available for use by the Realm. -->

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

debug="0" resourceName="UserDatabase"/>

Note that this realm uses the global resource you looked at earlier in the “Configuring
a Global Resource” section. This realm is, therefore, attaching the global resource to the engine
in which it resides.

Tomcat uses realms to perform authentication and implement container-managed secu-
rity. They map usernames to passwords (for authentication) and usernames to user roles (for

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 59

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 59

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

container-managed security). This means that Tomcat can then determine that users are who
they say they are, using authentication, and determine which areas of the server are available
to them, using container-managed security.

The user database is only one implementation of a realm. Others are data source realm,
JDBC realm, JNDI realm, and JAAS realm. Tomcat 5 supports the memory realm for backward
compatibility with Tomcat 4, but it’s inefficient and insecure, so you shouldn’t use it.

The various realms are described briefly next but will be dealt with in more detail in
Chapter 11.

Configuring a User Database Realm
The user database realm is an upgraded version of the memory realm and is backward com-
patible with the memory realm. It comes with the same caveats as the memory realm.

Configuring a Data Source Realm
Data source realms use JDBC data sources stored with JNDI names to authenticate users. This
allows you to change the underlying storage mechanism without having to change the settings
on your realms.

Configuring a JDBC Realm
JDBC realms access relational databases to obtain authentication information. You can use any
source of data that can be accessed with JDBC. This includes ODBC sources, such as Excel or
comma-separated files, accessed with the JDBC-ODBC bridge. server.xml has a number of exam-
ple JDBC realms commented out. The following uses a MySQL database instead of a text file:

<!--

<Realm className="org.apache.catalina.realm.JDBCRealm" debug="99"

driverName="org.gjt.mm.mysql.Driver"

connectionURL="jdbc:mysql://localhost/authority"

connectionName="test" connectionPassword="test"

userTable="users" userNameCol="user_name"

userCredCol="user_pass"

userRoleTable="user_roles" roleNameCol="role_name" />

-->

Configuring a JNDI Realm
You can configure a JNDI LDAP service provider to provide user information from an existing
directory service. This would allow you to use employee information that’s already available.

Configuring a JAAS Realm
You can use the JAAS realm to authenticate users using the Java Authentication and Authoriza-
tion Service (JAAS). This allows you to use any authentication mechanism you choose, but you
have to write your own authentication module to implement it.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES60

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 60

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring a Host
A host component represents a single virtual host running on this server.

<Host name="localhost" debug="0" appBase="webapps"

unpackWARs="true" autoDeploy="true"

xmlValidation="false" xmlNamespaceAware="false">

This virtual host is localhost. The applications running in this host are located in the
CATALINA_HOME/webapps directory.

The unpackWARs attribute tells Tomcat to unpack any packaged WAR files found in the
appBase directory if it’s set to true. A value of false means that Tomcat will execute the web
applications without unpacking them, which saves space but increases response time.

A <Host> element is a container and has the attributes described in Table 4-16. These are
the attributes of all hosts, and custom implementations of hosts are possible.

Table 4-16. The Common Attributes of the <Host> Element

Attribute Description Required

appBase The base directory for this virtual host. This is a Yes
directory that may contain web applications to be
deployed on this virtual host. You may specify an
absolute pathname or a pathname relative to the
CATALINA_HOME directory.

autoDeploy This flag value indicates whether new web No
applications added to the appBase directory while
Tomcat is running should be deployed
automatically. The default is true.

background-ProcessorDelay The delay in seconds between the invocation of the Yes
backgroundProcess() method on this host and its
child containers, including all contexts. Child
containers will be invoked if their delay values are
negative (which would mean they’re using their own
processing threads). A positive value will cause a
thread to be spawned. After waiting the specified
amount of time, the thread will invoke the
backgroundProcess() method on this host and all
its child containers. A host will use background
processing to perform live web application
deployment-related tasks. The default is -1, which
means the host will rely on the background-
processing thread of its parent engine.

className Class name of the implementation to use. No
The default is org.apache.catalina.core.
StandardHost.

deployOnStartup Set to true to automatically deploy web No
applications on startup. The default is true.

name The name of this virtual host, as configured with Yes
DNS. One of the hosts nested within an engine
must have a name that matches the defaultHost
attribute of that engine.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 61

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 61

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

In addition, the standard host has the attributes defined in Table 4-17.

Table 4-17. The Attributes of the Standard <Host> Element

Attribute Description Required

deployXML false disables the ability to deploy applications using No
an XML configuration file. This also prohibits the manager
application from deploying web application directories or
WAR files that aren’t located in CATALINA_HOME/conf/
[Engine_name]/[Host_name].
XML-configured applications are deployed with Tomcat’s
security permissions, so you should set this to false if
untrustworthy users can manage web applications. The
default is true.

errorReportValveClass Class name of the error-reporting valve that will be used No
by this host. You can use this property to customize the
look of the error pages that will be generated by Tomcat.
The class must implement the org.apache.catalina.Valve
interface. The default is org.apache.catalina.valves.
ErrorReportValve.

unpackWARs Set to true if you want to unpack WAR files in the appBase No
directory into a corresponding directory structure. false
tells Tomcat to run such web applications directly from
their WAR file. The default is true.

workDir A scratch directory to be used by applications running in No
this host. Each application will have its own directory with
temporary read/write use. Configuring a working directory
for a context will override this value. This directory is visible
to servlets in the web application as a servlet context attribute
(of type java.io.File) named javax.servlet.context.
tempdir, as described in the Servlet specification. The
default is a suitable directory underneath
CATALINA_HOME/work.

Table 4-18 describes the subelements that can be placed inside a <Host> element.

Table 4-18. The Subelements of the <Host> Element

Subelement Description Number

Context A context defines a web application deployed within this host. 0 or more
When using Tomcat 5, you shouldn’t place any context entries in
server.xml because server.xml isn’t reloaded after changes are
made. Use XML configuration files or deployment tools, such as
the manager application instead.

Realm A realm that can be accessed across all the web applications 0 or 1
running within this host—unless a lower-level component specifies
its own realm.

Valve You can add a valve to monitor access, filter requests, and 0 or more
implement single sign-on.

Listener You can add a listener to monitor life cycle events, such as this host 0 or more
starting or stopping, and to implement user web applications.

Alias Defines an alias for this host if two or more network names need to 0 or more
apply to it.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES62

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 62

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

I’ll cover context configuration in Chapter 5 when you’ll learn how to configure web
applications.

Configuring a Valve
A valve is a Tomcat-specific interception mechanism for catching requests and responses. Any
requests destined for the localhost host would be passed through the valve defined here, if
it were to be uncommented.

<!--

<Valve className="org.apache.catalina.valves.AccessLogValve"

directory="logs" prefix="localhost_access_log."

suffix=".txt"

pattern="common" resolveHosts="false"/>

-->

The org.apache.catalina.valves.AccessLogValve valve creates access log files in the same
format as Apache’s log file. The previous configuration will create log files, in the common for-
mat, in CATALINA_HOME/logs. They will be named in the form localhost_access_log.DATE.txt.

You can also install valves at the engine level. Any valve that’s installed at the engine level
will have access to every request handled by the engine, regardless of which connector the
request comes through. Therefore, you must test the valve thoroughly and make sure it doesn’t
require a lot of processor time to complete its operation. The standard valves that come with
Tomcat have been designed and tested for efficiency.

■Note Valves are specific to Tomcat and not part of the Servlet specification. Application programmers
can use filters as a similar interception mechanism. They are part of the Servlet specification and reside
within a web application.

You’ll see how to configure and use the standard valves in Chapter 7.

Configuring a Listener
If you have an object that needs to know about server life cycle events, then you need to imple-
ment a listener. The basic listener configuration is as follows:

<Listener className="com.acme.listeners.Listener" />

The className attribute is required. You can add other attributes according to the proper-
ties of the class. They’re matched with the standard JavaBean naming mechanism.

Configuring an Alias
If you need to map more than one network name to a single virtual host, then you need to
configure an alias. For example, say you want to map www.company.com and www.company.org to
the same host; you’d do the following:

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 63

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 63

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<Host name="www.company.com" ...>

<Alias>www.company.org</Alias>

</Host>

Understanding Authentication and the
tomcat-users. xml File
Tomcat’s user database realm uses the tomcat-users.xml file by default and reads the entire
file into memory. Once the realm has loaded the file into memory, no modification to the
tomcat-users.xml file will be reflected until the next server restart. Here’s tomcat-users.xml:

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="role1"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

<user username="role1" password="tomcat" roles="role1"/>

</tomcat-users>

Each role that a user can play is defined with a <role> element, and each user has a <user>

entry. Note that a user can have more than one role by adding a comma-separated list to the
roles attribute.

Configuring Web Application Defaults with web.xml
Every Servlet 2.4 web application must contain a web.xml deployment descriptor. This file
must be placed in the WEB-INF directory of the web application.

However, Tomcat comes with a default web.xml in CATALINA_HOME/conf. This file is similar
to a web application’s web.xml file but is used to specify the default properties for all web
applications that are running within this server instance.

To gain an understanding of what you can do with this file, let’s look at it. The file starts
with the standard XML header and a reference to a DTD. Unlike server.xml, web.xml can be
formally validated against a corresponding DTD.

<?xml version="1.0" encoding="ISO-8859-1"?>

<Web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/Web-app_2_4.xsd"

version="2.4">

The most noteworthy thing about this is that the default web application version is 2.4.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES64

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 64

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Default Servlet Definitions
The default servlet that invokes any resources not mapped to any other servlet, either in this
web.xml file or in an application’s web.xml file, is defined in the first <servlet> definition. This
includes all static resources. You’ll see the mappings later.

<web-app>

<servlet>

<servlet-name>default</servlet-name>

<servlet-class>

org.apache.catalina.servlets.DefaultServlet

</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

Next comes the invoker servlet, which loads and executes anonymous servlets directly
using the servlet’s filename. This mechanism is inherently unsafe because any class that exists
in Tomcat’s classpath can be invoked in this way, so the invoker servlet has been commented
out of recent versions of Tomcat.

<!--

<servlet>

<servlet-name>invoker</servlet-name>

<servlet-class>

org.apache.catalina.servlets.InvokerServlet

</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<load-on-startup>2</load-on-startup>

</servlet>

-->

Just as servlets have their default servlet, JSP pages have a servlet that compiles them into
servlets and executes them.

<servlet>

<servlet-name>jsp</servlet-name>

<servlet-class>org.apache.jasper.servlet.JspServlet</servlet-class>

<init-param>

<param-name>fork</param-name>

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 65

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 65

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<param-value>false</param-value>

</init-param>

<init-param>

<param-name>xpoweredBy</param-name>

<param-value>false</param-value>

</init-param>

<load-on-startup>3</load-on-startup>

</servlet>

The next set of servlets is commented out by default. You should uncomment them if you
plan to add Apache-style Server Side Include (SSI) features to the stand-alone Tomcat server
or process CGI. You’ll see more of this in later chapters.

Matching URLs: Servlet Mappings
Servlet mappings specify which servlets are to process incoming requests, as defined by the
request URL.

<!-- The mapping for the default servlet -->

<servlet-mapping>

<servlet-name>default</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

The previous <servlet-mapping> element maps the pattern / to the default servlet defined
earlier in web.xml. So, www.apress.com/tomcat/ will map to the default servlet, which will process
the request.

The second <servlet-mapping> maps all requests that end in /servlet/* to the invoker
servlet defined earlier in web.xml.

<!-- The mapping for the invoker servlet -->

<!--

<servlet-mapping>

<servlet-name>invoker</servlet-name>

<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>

-->

The next <servlet-mapping> specifies that all URLs containing *.jsp and *.jspx should
be passed to the servlet named jsp for processing:

<!-- The mapping for the JSP servlet -->

<servlet-mapping>

<servlet-name>jsp</servlet-name>

<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>jsp</servlet-name>

<url-pattern>*.jspx</url-pattern>

</servlet-mapping>

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES66

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 66

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Session Timeout
The <session-config> element configures how long Tomcat will maintain a session on the
server side on behalf of a client. For example, if the user leaves a service registration transac-
tion in the middle and doesn’t return to the cart for 30 minutes, all of that user’s information
will be lost.

You must be careful to balance the <session-timeout> value with the potential of over-
loading the server with too many stale sessions.

<session-config>

<session-timeout>30</session-timeout>

</session-config>

Configuring MIME Mappings
The <mime-mapping> elements that make up a large chunk of web.xml help Tomcat serve static
files with specific extensions to the client. It will generate an HTTP Content-Type header when
transmitting the file to the client. Most browsers will use a helper application to process the
file being transmitted if it recognizes the Content-Type specified. For example, a browser may
start Adobe Acrobat when it detects the application/pdf content type.

<mime-mapping>

<extension>abs</extension>

<mime-type>audio/x-mpeg</mime-type>

</mime-mapping>

... and so on ...

Configuring Welcome Files
To be compatible with the default behavior of most modern web servers, including Apache,
the default servlet will display a welcome file if the incoming URI is terminated in /—for
example, www.apress.com/.

The default servlet will examine the root directory of the named virtual host and look for
index.html, index.htm, or index.jsp in turn to be displayed. Each web application may override
this list in its own deployment descriptor file.

<welcome-file-list>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

</web-app>

Changing Service Options on Windows
When you install Tomcat as a service, it’s set to start automatically, which means that if you were
to restart the computer, Tomcat would start automatically. From now on, every time Windows
is started, Tomcat will automatically start up at boot time and will be available then.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 67

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 67

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

You can further customize the service by choosing the Properties option from the context
menu. This allows you to change the startup type to manual or entirely disable the service, plus
it allows you to choose to automatically restart the service should it crash. This last option is
especially useful as it also allows you to run a script should the server fail. You also have the
option to reboot the computer. (However, you should consider seriously what you put in this
script because it can offer a security hole if the script does something that may be used as
a denial-of-service attack.)

It also allows you to carry out different actions depending on how many times it has failed
(by choosing the Recovery tab), so you can initially request a reboot of the service and then
request a reboot of the machine. Then, any subsequent failures will cause a script to run that
perhaps alerts you of the failure.

The only possible reason for restarting the machine is if the applications that are running
on Tomcat depend on an ordered bootup and no loss of connections between the applications
and their various resources. This means that, on the whole, writing a script that flashes a warn-
ing or similar is more desirable than rebooting the system.

If you want to set the recovery options, right-click the Tomcat service entry in the list and
choose Properties. In the window that opens, choose Recovery, and you’ll see the options shown
in Figure 4-2.

Figure 4-2. The Tomcat service’s recovery options

The default is for no action to be taken. You’re going to change this behavior and restart the
server a maximum of twice and then run a script on the third and subsequent failures. Select the
First Failure drop-down box, and choose Restart the Service. Do the same for the second box. Set
the time after the crash that the service should be restarted to one minute. This should give any
external resources enough time to notice the failure and respond if necessary.

If this is a stable server that rarely fails, set the reset level high, say, to 20 days, which should
mean that consistent failures are noticed and addressed. It may be that it fails only occasionally—

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES68

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 68

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

you want to know nevertheless. Setting the reset level high maximizes the chance that the third
option will run, thus alerting you to the problem. Remember that the script can easily be responsi-
ble for restarting the server so that users feel a minimal downtime, yet you’re still notified. In fact,
this option may be preferable to having the system automatically restart the server without explicit
notification of problems.

If the server fails often, it may be necessary to turn the reset level down so that failures
can be noticed.

Now choose Run a File from the Subsequent Failures option menu. This will enable the
Run File menu where you can choose the file to run (normally a batch file). The fail count is
passed to the file as a command-line parameter for the script to report.

For the moment, assuming that you haven’t specified any other command-line prompts,
you can discover the failure count using a file such as the following:

@echo off

if NOT %1==/fail goto end

echo Number of failures to date is %2 >> T4.fail

:end

cd "c:\jakarta-tomcat\bin\"

start startup

The previous file is the simplest possible reporting script that merely appends the failure
count to a file named T4.fail each time a failure occurs before restarting the server (but not
as a service, rather as a manual start in a new command prompt window). In the first line, you
turn off echo; the second line checks that the first command-line argument (%1) is equal to
/fail and, if so, prints the following line:

Number of failures to date is %x%

where x is the number of failures. Notice that >> T4.fail makes sure that echo is added to the
T4.fail file and that the output is appended to, rather than replaces, the existing contents of
the file. A single > would replace the file contents.

The result of multiple failures with this file, as set previously to run on the third failure,
would be something along the lines of this:

Number of failures to date is %3%

Number of failures to date is %4%

Number of failures to date is %5%

Number of failures to date is %6%

Alternatively, you can run a Java class that extracts the information and perhaps e-mails
the failure to you. To do this, simply forward the fail count to your program, calling it as follows:

@echo off

if NOT %1==/fail goto end

java ReportTomcatFailure %2

:end

cd "c:\jakarta-tomcat\bin\"

start startup

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES 69

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 69

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The number of failures is now available as ReportTomcatFailure’s first command-line
argument (accessible as args[0]).

In addition to the security risk involved in having the computer automatically reboot itself,
it’s not entirely necessary. Since Tomcat runs within a JVM, unless you’re doing something
unusual, a failure of the Tomcat instance is isolated from the rest of the system and a soft reboot
should suffice for most problems. This puts hardware reboots in the very serious category, and,
as such, they’re something you probably want to control manually.

Summary
In this chapter, you’ve seen all the configuration files in Tomcat’s CATALINA_HOME/conf
directory. server.xml is the main configuration file for Tomcat, and server-minimal.xml is
a blank template from which you can create your own custom server.xml configuration.

The tomcat-users.xml file is used by the default user authentication mechanism in Tomcat.
In a production system, you should use a more robust implementation of a realm, such as
a JDBC realm or a JNDI realm.

The default web.xml file in CATALINA_HOME/conf specifies properties that are used in
every web application running on the server. Many of the default servlets configured here
provide web-server–like features (serving static content, SSI, CGI, and so on) for running web
applications.

Tomcat starts in an unsecured mode, but the catalina.policy file is vitally important in
a secured Tomcat installation. It specifies who can access what, and anything else that isn’t
specified can’t be accessed. Tomcat takes advantage of the sophisticated, built-in security
infrastructure of Java .

The other file in the CATALINA_HOME/conf is catalina.properties. catalina.properties
configures Tomcat’s class loaders as well as what classes can be executed by application code.
By default, Tomcat internals are barred. In the next chapter, you’ll see how to administer a web
application.

CHAPTER 4 ■ WORKING WITH TOMCAT’S CONFIGURATION FILES70

7850ch04FINAL.qxd 2/28/07 10:41 AM Page 70

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Administering Web Applications

It may seem as if it’s not the administrator’s job to look after a developer’s application once it’s
deployed. But, as web applications are run on the server you have responsibility for, it’s impor-
tant to know how they’re structured so that you can administer them effectively. In an ideal
world, the developer will have set up the web application so that it runs smoothly as soon as it
goes live. However, this isn’t always the case.

A lot of code running on the server will have hard-coded paths to resources, which means
that most applications won’t be happy when you move files. The developer may even have to
recompile and redeploy the application. Therefore, knowing about administering web appli-
cations is a useful skill to have.

In this chapter, I’ll cover how to configure a context. (Remember, I didn’t cover this in
Chapter 4 because a context is configured in a separate file to server.xml.) To do all of this,
however, you’ll need to know where the various files are placed within a web application, which
has a well-defined structure.

Configuring Contexts
In the past, you may have configured contexts in server.xml, but this is no longer recommended.
The main reason is that Tomcat reads server.xml only when it starts and doesn’t reload it at
any point of the server’s life. This means that any changes, including new context definitions,
won’t be registered.

The new procedure requires you to use the same context definition as before, but this time
in its own XML file in the CATALINA_HOME/conf/[Engine_name]/[Host_name] directory. For the
default setup, this is CATALINA_HOME/conf/Catalina/localhost.

The XML file may be called whatever you want and has the <Context> element as its root
element. The name of this file is important in Tomcat 6 because it’s used to name the web
application that the context XML file describes.

Configuring Default Contexts
Before you see how to configure a context, I’ll discuss how Tomcat deploys contexts and how
this affects the default settings. Tomcat uses a set sequence when it automatically deploys web
applications at startup (configured with the host’s deployOnStartup attribute). To start with, it
reads any context XML files in the CATALINA_HOME/conf/[Engine_name]/[Host_name] directory
for each host. The docBase attribute of the <Context> element (see Table 5-1 in the next section)

71

C H A P T E R 5

■ ■ ■

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 71

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

points to a WAR or directory where the application files are located. Tomcat then deploys this
web application using the settings in the context XML file.

The next step in the sequence is to expand any WAR files in the application base directory
that don’t have a corresponding directory (assuming the host’s unpackWARs attribute is true).
This means you have to remove any expanded web applications if you add a new WAR file.

The final step in web application deployment is the one that’s most relevant to this section.
Any expanded directories and WARs in the application base directory that don’t have a corre-
sponding context XML file are given a default implicit <Context> element.

Tomcat 6 uses an external default context XML file, which has the <Context> element
as its root element. The default file for the entire server is CATALINA_HOME/conf/context.xml,
and the default file for a host is CATALINA_HOME/conf/[Engine_name]/[Host_name]/context.
xml.default. You may also place a context.xml file in a web application’s META-INF directory,
though this is read-only if there’s no application context file, as described previously. This file
will apply only to that web application.

The settings in context.xml override any in context.xml.default and META-INF/context.xml,
even if you explicitly set the override attribute described in Table 5-1. However, override works
for application context XML files. Figure 5-1 shows this process.

Figure 5-1. The context file hierarchy in Tomcat

These rules also apply to applications that are deployed after startup. That is, they apply
to directories and WAR files that you drop into the web application base directory, assuming
auto-deployment is enabled with the host’s autoDeploy attribute. If auto-deployment is dis-
abled, then you can use tools such as the manager application and Ant to deploy applications,
and the same process occurs.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS72

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 72

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Context Element
Tomcat’s standard <Context> element has the attributes described in Table 5-1.

Table 5-1. The Attributes of the Standard <Context> Element

Attribute Description Required?

allowLinking If true, symlinks pointing to resources outside No
the web application base path are allowed for
this web application.
This flag shouldn’t be set to true on Windows, as it
will disable case-sensitivity checks, allowing JSP
source code disclosure, among other security
problems. The default is false.

backgroundProcessorDelay The delay in seconds between the invocation of the No
backgroundProcess() method on this context and
its child containers, including all wrappers. Child
containers will be invoked if their delay values are
negative (which would mean they’re using their own
processing threads). Setting this to a positive value
will cause a thread to be spawned. After waiting the
specified amount of time, the thread will invoke the
backgroundProcess() method on this host and all
its child containers. A context will use background
processing to perform session expiration and class
monitoring for reloading. The default is -1, which
means the context will rely on the background
processing thread of its parent host.

cacheMaxSize Maximum size of the static resource cache in No
kilobytes. The default is 10240.

cacheTTL Time in milliseconds between cache entries No
revalidation. The default is 5000.

cachingAllowed If true, the cache for static resources will be used. No
The default is true.

caseSensitive If true, all case-sensitivity checks will be disabled. No
This flag shouldn’t be set to true on Windows, as
it will disable case-sensitivity checks, allowing JSP
source code disclosure, among other security
problems. The default value is true.

className Class name of the implementation to use. The No
default is org.apache.catalina.core.
StandardContext.

cookies Set to true if you want cookies to be used to identify No
sessions (if supported by the client). Set to false if
you want to disable the use of cookies for session
identification and rely only on URL rewriting.
The default is true.

crossContext Set to true if you want calls within this application No
to ServletContext.getContext() to successfully
return a request dispatcher for other web applications
running on this virtual host. Set to false in security-
conscious environments. The default is false.

continued

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 73

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 73

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 5-1. (continued)

Attribute Description Required?

docBase The document base (or context root) directory for Yes
this web application or the pathname to its WAR file.
You can specify an absolute pathname for this
directory or WAR file, or you can specify a pathname
that’s relative to the appBase directory of the
owning host.

path The context path of this web application, which is No
matched against the beginning of each request URI.
All the context paths within a particular host must
be unique. If you specify an empty string (""), you’re
defining the default web application for this host,
which will process all requests not assigned to other
contexts.

processTlds Specify whether the context should process TLDs No
on startup. false is intended for special cases where
you know in advance that TLDs aren’t part of the
web application. The default is true.

reloadable Set to true if you want Tomcat to monitor classes No
in /WEB-INF/classes and /WEB-INF/lib for changes
and automatically reload the web application if a
change is detected. This feature is useful during
development, but it requires significant runtime
overhead and isn’t recommended for use on
deployed production applications. Use the
manager application to reload applications if
this is required. The default is false.

swallowOutput If true, the output to System.out and System.err No
will be redirected to the web application logger.
The default is false.

tldNamespaceAware If true, XML validation of TLDs will be namespace No
aware. If you turn this flag on, you should also turn
tldValidation on, though setting it to true will
incur a performance penalty. The default is false.

tldValidation If true, TLDs will be XML validated on context No
startup. Setting it to true will incur a performance
penalty. The default is false.

useNaming Set to true to have Tomcat enable a JNDI No
InitialContext for this web application.
The default is true.

workDir The pathname to a scratch directory to be provided No
by this context for temporary read/write use by
servlets. This directory is visible to servlets through
a servlet context attribute (of type java.io.File)
named javax.servlet.context.tempdir, as
described in the Servlet specification. The default
is a suitable directory underneath CATALINA_HOME/
work.

wrapperClass The Java class name of the org.apache.catalina. No
Wrapper implementation class that will be used for
servlets managed by this context. The default is
org.apache.catalina.core.StandardWrapper.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS74

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 74

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Tomcat 5.5 introduced a number of new attributes to the context element, that are available
with Tomcat 6 (see Table 5-2).

Table 5-2. New Attributes Since Tomcat 5.5’s Standard <Context> Element

Attribute Description Required?

antiJARLocking If true, Tomcat’s class loader will take extra measures to No
avoid JAR file locking when JARs are accessed through URLs.
This will slow application startup times but can prove useful
on platforms or configurations where file locking can occur.
The default is false.

antiResourceLocking If true, Tomcat will prevent file locking. This will significantly No
slow application startup time but allows full hot deploy and
undeploy on platforms or configurations where file locking
can occur. The default is false.

unpackWAR If true, Tomcat will unpack this web application before No
running it, if it’s compressed. If the host’s unpackWARs
attribute is false, this setting has no effect. The default
is true.

A context is a container and can have the nested components described in Table 5-3.

Table 5-3. The Subelements of the <Context> Element

Subelement Description Number

Environment A global variable. See Chapter 4 for details. 0 or more

Listener You can add a listener to monitor life cycle events, such as this 0 or more
host starting or stopping, and to implement user web applications.
See Chapter 4 for details.

Loader Configures the web application class loader. It’s unlikely that you’d 0 or more
want to specify your own class loader. See the Tomcat
documentation if this is a necessity.

Manager A custom session manager to handle session persistence for this 0 or 1
web application. This is a technique used by programmers to
overcome HTTP’s stateless nature. It’s unlikely you’d want to
specify your own session manager. See the Tomcat
documentation if this is a necessity.

Parameter A value that will be available to the web application as a named 0 or more
variable.

Realm An authentication realm to be used within this web application. 0 or 1
This will override any previous realm definitions in the enclosing
<Host> or <Engine> definitions. See Chapter 4 for details.

Resource A JNDI resource. See Chapter 4 for details. 0 or more

ResourceLink A link to a global JNDI resource. 0 or more

Resources A resource manager for accessing static resources (for serving 0 or 1
static web pages, graphics, and so on) within the web application.
It’s unlikely you’d want to specify your own resource manager. See
the Tomcat documentation if this is a necessity.

Valve You can add a valve to monitor access, filter requests, and 0 or more
implement single sign-on. See Chapter 4 for details.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 75

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 75

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring a Parameter
You can add servlet context initialization parameters in your context definition. These will be
available to servlets throughout the application. Table 5-4 describes the attributes of the
<Parameter> element.

Table 5-4. The Attributes of the <Parameter> Element

Attribute Description Required?

description Human-readable description of this context initialization No
parameter.

name The name of the context initialization parameter to be created. Yes

override Sets whether a <context-param> element in the application’s No
web.xml file can override the value specified here. The default
is true.

value The value that will be available to the application. Yes

Configuring a Resource Link
A resource link references a global JNDI variable and makes it available under the new name.
Table 5-5 describes the attributes of a <ResourceLink> element.

Table 5-5. The Attributes of the <ResourceLink> Element

Attribute Description Required?

global The name of the global JNDI resource Yes

name The name of the variable to be created, relative to the Yes
java:comp/env context

type The class name expected by the web application when it Yes
performs a lookup for this resource link

Examining a Web Application
HTML and JSP pages belong to the public resources that a client may request directly. Servlets,
JavaBeans, and other resources within a web application’s WEB-INF directory are private resources.
You may allow the client to access these resources indirectly by mapping a URL to a servlet or
including the page in a JSP page. However, private resources can’t be served to the client with-
out some type of intervention.

The following is a typical makeup of a web application required by the Servlet 2.4
specification:

webapps/

pics/

index.html

gallery/

index.html

images/

pic01.jpg

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS76

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 76

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

pic02.jpg

images/

code.gif

execute.gif

read.gif

return.gif

WEB-INF/(*)

web.xml(*)

classses/(*)

com/

Controller.class

actions/

ViewGalleryAction.class

jsp/

catalog.jsp

lib/(*)

jstl.jar

standard.jar

tags/(*)

simpleTag.tag

tlds/

simple.tld

META-INF/(*)

Not all these files and directories are required. Those marked with (*) are part of the
Servlet specification and can’t be renamed or moved, though some of them may be omitted.
The WEB-INF folder, its subdirectories, and the META-INF folder are private areas that can be
accessed only indirectly through application code or special configuration. A web application
deployed on Tomcat as a WAR file may have a META-INF folder with a default context.xml file
that provides context configuration information. Expanded web applications may also use this
mechanism, though providing a separate context XML file is the preferred method in this case.

This web application is deployed in a folder named after the web application (in this case
it’s called pics), and this folder is required. You’d access this web application using the following
URL: http://servername:8080/pics/. The pics/ section is called the context path, and Tomcat
uses this to resolve any paths contained within the web application.

When a user requests a resource on the server (that is, an HTML document, a servlet, a JSP
page, and so on), he types the path to it on the file system, relative to the context path. For exam-
ple, to request the c:\jakarta-tomcat\webapps\tomcatBook\ch05\login.html file, a user would
type http://servername:8080/tomcatBook/ch05/login.html. In other words, the server directory
structure overlays the file system structure from the contents of the webapps directory down.

■Note The directory structure described in the previous paragraph applies to the default setup but doesn’t
strictly apply to JSP pages. While the path to the resource is the same in the server and on the file system, the
JSP page is processed into a servlet and compiled before it’s returned as a response. Therefore, there isn’t
a one-to-one mapping between the requested resource and the resource that returns content. This distinction
isn’t relevant to your users, as they won’t notice the difference, but it’s a fact worth knowing.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 77

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 77

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

This default behavior is a problem if a web application is running servlets because they reside
in the private WEB-INF area and can’t be accessed directly by users. In times past, the solution
was to use the invoker servlet, but this isn’t recommended. The answer is servlet mappings.

Mapping URLs to Resources
If a web application uses servlets, users need some way to access them. The answer lies in
web.xml, the web application deployment descriptor. You can set a series of URL mappings to
make servlets available to users.

So, for the previous example web application, you need to define a servlet and give it
a name:

<servlet>

<servlet-name>

Controller

</servlet-name>

<servlet-class>

com.Controller

</servlet-class>

</servlet>

The name of the servlet must be unique within the web application and can’t clash with
those in the default web.xml file described in Chapter 4. The <servlet-class> element must
contain the fully qualified class name. The previous servlet has a fully qualified class name
with the package name (com) followed by the class name (Controller). The package name may
be longer (for example, com.apress.servlets).

You have to perform one more step to make this named servlet available to your users.
You must map it to a URL:

<servlet-mapping>

<servlet-name>Controller</servlet-name>

<url-pattern>/Controller</url-pattern>

</servlet-mapping>

This says that the http://servername:8080/pics/Controller URL should be passed to
a servlet named Controller.

The mapping can use wildcards (*) to specify that you want to match any file, and you can
use this with directories as well. This means you can cover whole directories with a mapping.
For example, *.do is a common mapping used by the Apache Struts framework. This means
that all requests ending in .do are routed to the specified servlet.

You can also map requests to JSP (or HTML) pages in the same manner. For example, say
you want to show an index page for any requests that don’t correspond to a resource. This means
users never see a directory listing of the server and won’t see a 404 error. Here’s the resource
definition in web.xml:

<servlet>

<servlet-name>

index

</servlet-name>

<jsp-file>

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS78

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 78

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

/index.html

</jsp-file>

</servlet>

This specifies that the index.html file in the root of the web application is called index for
the purpose of this configuration file. Just as you did for the servlet, you must now map URLs
to this resource:

<servlet-mapping>

<servlet-name>

index

</servlet-name>

<url-pattern>

/*

</url-pattern>

</servlet-mapping>

So, you’ve mapped the resource called index to the wildcard URL /*. This pattern matches
every resource, so all requests, no matter if they point to a file that exists or not, will return the
index.html page. However, the servlet engine will get to this entry only if there are no more-specific
entries. This allows you to have fine-grained control over your resources.

If you have both of the previous settings in your web.xml file, then http://servername:8080/
pics/Controller will display the results of the Controller servlet, and http://servername:8080/
pics/Controller2, http://servername:8080/pics/blah, or any other URL that points to the pics
context will display the index page. This is because the Controller mapping is more specific
than the index mapping.

Examining the WEB-INF Folder
The WEB-INF folder contains at least four subfolders and the web.xml file.

Examining the classes Folder
The classes directory is in the web application’s classpath, as are all of its subdirectories. This
is why it contains servlets and the utility classes for the application, and it may also contain
a number of resource files needed by these classes. It’s also a subdirectory of WEB-INF, making
it a private resource. Users may not access any of the resources here. You saw an example of this
earlier in the “Examining a Web Application” section.

Java classes in the classes directory follow the same package structure as any other classes.
That is, they’re stored in a directory hierarchy within classes just as they would be in a regular
setup. So, com.apress.PackageServlet is stored in the classes/com/apress directory.

Ideally, you don’t need to be concerned with the contents of the classes directory.

Examining the lib Folder
The lib folder is also in the web application’s classpath. This is where you place JAR files that
are required by the web application.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 79

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 79

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Examining the tags Folder
As of JSP 2.0, developers can write tag extensions in JSP syntax without the need to know Java.
Traditionally a tag extension was a Java class that defined the functionality of a custom markup
tag. For example, a developer may write a tag that displayed the date, like so:

<date:today/>

These tag extensions are grouped together in tag libraries, which are a convenient way to
group code that has similar functionality, much like a Java package does.

It’s in the tags folder and its subdirectories that the developers place these JSP-syntax tag
extensions so that the container can find them. Again, you shouldn’t have many dealings with
this folder.

Examining the tlds Folder
The tlds folder contains the configuration files for traditional Java-coded tag libraries. Each
configuration file maps tag names to their implementation class so that the container can rec-
ognize which class to invoke when it comes across the tag. These configuration files are TLDs
and have a .tld extension. The configuration of a tag library is the territory of developers and
designers so you won’t have many dealings with them.

Examining the web.xml File
You shouldn’t have many dealings with a web application’s web.xml file, as it’s the realm of the
application’s developer. However, certain aspects on the server are definitely your concern, so
the following sections will go into the relevant sections in web.xml. They will be illustrated where
possible by examples from Tomcat’s default web.xml file.

<distributable>
The <distributable> element, if present, declares that this web application can be deployed
in a distributed servlet container or servlet container executing across multiple JVMs either
running on the same host or different hosts. This Boolean value is false by default.

<context-param>
The <context-param> element declares a context initialization parameter, much as the previous
<Parameter> element does. It contains the following:

• A <param-name> element containing the parameter’s name

• A <param-value> element containing the parameter’s value

• An optional <description> element

<filter>
The <filter> element declares a filter. A filter is a Java class that preprocesses the request data
received from clients. This preprocessing may include decryption, formatting, or other processes.
This element contains the following:

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS80

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 80

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

• An optional <icon> element

• A <filter-name> element containing the filter’s name

• An optional <display-name> element

• An optional <description> element

• A <filter-class> element containing the filter’s class name

• Zero or more <init-param> elements containing initialization parameters for the filter

Each <init-param> element contains the following:

• A <param-name> element containing the parameter name

• A <param-value> element containing the parameter value

• An optional <description> element

Chapter 7 describes a filter for working with requests. Its <filter> entry would be as
shown in Listing 5-1.

Listing 5-1. An Entry for a Filter

<filter>

<filter-name>requestFilter</filter-name>

<filter-class>com.apress.admin.filters.RequestFilter</filter-class>

<init-param>

<param-name>allow</param-name>

<param-value></param-value>

</init-param>

<init-param>

<param-name>deny</param-name>

<param-value>127.0.0.1</param-value>

</init-param>

<init-param>

<param-name>blockPage</param-name>

<param-value>/blocked.html</param-value>

</init-param>

</filter>

<filter-mapping>
The <filter-mapping> element maps a filter to a servlet or a set of URLs. It contains the following:

• A <filter-name> element containing the name of a filter declared by a <filter> element.

• Either a <url-pattern> element containing a URL pattern to match or a <servlet-name>

element containing the name of a servlet declared by a <servlet> element.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 81

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 81

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

• Zero to four <dispatcher> elements; it can have one of the following values: FORWARD,
REQUEST, INCLUDE, and ERROR. FORWARD applies the filter to RequestDispatcher.forward()
calls; REQUEST applies the filter to ordinary client calls to the path or servlet; INCLUDE
applies the filter to RequestDispatcher.include() calls, and ERROR applies the filter to
the error page mechanism. If the <dispatcher> element is omitted, the default value is
REQUEST.

The previous filter would have the filter mapping shown in Listing 5-2.

Listing 5-2. An Example Filter Mapping

<filter-mapping>

<filter-name>requestFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

This maps all requests in the web application to the filter.

<servlet>
Because you’ve already seen the <servlet> element in action, I won’t discuss it in detail here. It
contains the following:

• An optional <icon> element.

• A <servlet-name> element containing the servlet’s name.

• An optional <display-name> element.

• An optional <description> element.

• Either a <servlet-class> element containing the listener’s class name or a <jsp-file>

element containing the location within the web application of a JSP file.

• <init-param> elements.

• An optional <load-on-startup> element indicating that the servlet should be loaded
when the web application starts up and containing an optional positive integer value
that indicates the order in which servlets should be started. If a <jsp-file> was speci-
fied, then the JSP should be precompiled and loaded.

• <security-role-ref> elements.

• An optional <run-as> element that specifies the identity under which the servlet should run.

Each <init-param> element contains the following:

• A <param-name> element containing the parameter name

• A <param-value> element containing the parameter value

• An optional <description> element

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS82

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 82

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

A <security-role-ref> element maps a role name called from within the servlet and
maps the name of a security role defined for the web application. It contains the following:

• An optional <description> element

• A <role-name> element containing the role name used within the servlet

• An optional <role-link> element containing the name of a role defined in a <security-role>

element

Tomcat’s default web.xml file contains many <servlet> entries. The first is for the default
servlet, as shown in Listing 5-3.

Listing 5-3. The Default Servlet <servlet> Setting

<servlet>

<servlet-name>default</servlet-name>

<servlet-class>

org.apache.catalina.servlets.DefaultServlet

</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-param>

<init-param>

<param-name>listings</param-name>

<param-value>true</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
The <servlet-mapping> element maps a servlet to a URL pattern. It contains the following:

• A <servlet-name> element containing the name of a servlet declared by a <servlet>

element

• A <url-pattern> element containing a URL pattern to match

The previous default servlet has a corresponding <servlet-mapping> entry, as shown in
Listing 5-4.

Listing 5-4. The Default Servlet <servlet-mapping> Setting

<servlet-mapping>

<servlet-name>default</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 83

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 83

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS84

<session-config>
An administrator should be aware of the session settings of a web application because they
can have performance and security implications. A huge number of long-lasting sessions may
cause problems for performance, but a session that never expires means that a user is always
recognized. The latter means that any user who has access to the original user’s machine can
access the web application as that user.

The <session-config> element contains the following:

• An optional <session-timeout> element containing the default session timeout for this
web application, which must be a whole number of minutes. The default behavior of
the container without this attribute is never to time out.

Listing 5-5 shows the default session setting from Tomcat’s default web.xml file.

Listing 5-5. The Default Session Setting for Tomcat

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<mime-mapping>
Browsers use MIME types to recognize the file type returned by the server so that the browser
can handle the response correctly. That is, the browser chooses whether to display the HTML,
plain text, images, and so on in the response; to send it to a plug-in (such as Flash); or to prompt
the user to save it locally.

As you saw in Chapter 4, CATALINA_HOME/conf/web.xml comes with many MIME mappings
set. However, you can configure additional MIME mappings in each web application with the
<mime-mapping> element.

The <mime-mapping> element contains the following:

• An <extension> element containing a filename extension

• A <mime-type> element containing a defined MIME type

Tomcat has many MIME mappings set, one of which is shown in Listing 5-6. This tells
Tomcat to treat *.bmp files as the image/bitmap type.

Listing 5-6. A Default Tomcat MIME Mapping

<mime-mapping>

<extension>bmp</extension>

<mime-type>image/bmp</mime-type>

</mime-mapping>

<welcome-file-list>
The <welcome-file-list> element defines an ordered list of welcome files to display if no
filename is specified. It contains the following:

• One or more <welcome-file> elements containing a filename to use as a welcome file

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 84

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

85

Tomcat has a default setting for welcome files, as shown in Listing 5-7.

Listing 5-7. Tomcat’s Default Welcome Files

<welcome-file-list>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

These files are checked in the order they appear.

<error-page>
Web application developers can configure error pages to provide a user-friendly mechanism
for informing users about any problems and allowing them to continue using the application.
The errors are mapped to the HTTP specification error mappings: a code for a resource that
can’t be found, a malfunctioning server, authentication issues, resource issues, and so on.

In addition, since there are no one-to-one correspondences between HTTP errors and Java
exceptions, the exception class type may be specified; this allows error pages that are generic
and follows good programming practice. Someone without an understanding of the applica-
tion’s internals can configure them.

The <error-page> element contains the following:

• Either an <error-code> element containing an HTTP error code or an <exception-type>
element containing the class name of a Java exception type

• A <location> element containing the location of the error page resource within the web
application

Listing 5-8 shows an example of an error page setting. In this case, any 404 errors generated
by Tomcat will return the myError.jsp page to the client.

Listing 5-8. An Error Page Configuration

<error-page>

<error-code>404</error-code>

<location>/myError.jsp</location>

</error-page>

<resource-env-ref>
The <resource-env-ref> element declares that the web application references an administered
object such as a user database. This is defined in the <GlobalNamingResources> element of the
server component. It contains the following:

• An optional <description> element

• A <resource-env-ref-name> element containing the name of the resource environment

• A <resource-env-ref-type> element containing the type of the resource environment
reference

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 85

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The manager application configures a reference to a global resource, as shown in
Listing 5-9.

Listing 5-9. The Manager Web Application’s <resource-env-ref> Setting

<resource-env-ref>

<description>

Link to the UserDatabase instance from which we request lists of

defined role names. Typically, this will be connected to the global

user database with a ResourceLink element in server.xml or the context

configuration file for the manager web application.

</description>

<resource-env-ref-name>users</resource-env-ref-name>

<resource-env-ref-type>

org.apache.catalina.UserDatabase

</resource-env-ref-type>

</resource-env-ref>

<resource-ref>
The <resource-ref> element declares that the web application references an external resource
such as a data source reference. This is typically configured in a context entry using the <Resource>
element. It contains the following:

• An optional <description> element.

• A <res-ref-name> element containing the name of the resource factory reference.

• A <res-type> element specifying the type of the data source.

• A <res-auth> element indicating whether the application code signs onto the resource
programmatically or whether the container should sign on based on information sup-
plied by the application deployer. Contents must be either Application or Container.

• An optional <res-sharing-scope> element specifying whether connections can be shared.
Contents must be either Shareable (the default) or Unshareable.

Listing 5-10 shows an example.

Listing 5-10. A Reference to a JDBC Data Source

<resource-ref>

<description>

Resource reference to a factory for java.sql.Connection

instances that may be used for talking to a particular

database that is configured in the tomcatBook.xml file.

</description>

<res-ref-name>

jdbc/CatalogDB

</res-ref-name>

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS86

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 86

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<res-type>

javax.sql.DataSource

</res-type>

<res-auth>

SERVLET

</res-auth>

</resource-ref>

<security-constraint>
Web resources may be associated with some security constraints for user authentication and
access control. The constraints limit access to the resource according to user roles, such as
manager, administrator, user, and guest, and by transport guarantee, which can include SSL
secure data transmission, guaranteeing delivery, and noninterference.

The <security-constraint> element contains the following:

• An optional <display-name> element

• One or more <web-resource-collection> elements

• An optional <auth-constraint> element

• An optional <user-data-constraint> element

A <web-resource-collection> element identifies a set of resources within the application;
it can be qualified by specifying particular HTTP method(s) such as GET or POST. (By default,
the security constraint applies to all HTTP methods.) It contains the following:

• A <web-resource-name> element containing the name of the web resource collection

• An optional <description> element

• One or more <url-pattern> elements, each containing a URL pattern to match

• Zero or more <http-method> elements, each containing the name of an HTTP method

An <auth-constraint> element indicates that certain user roles should be permitted to
access these web resources. It contains the following:

• An optional <description> element

• Zero or more <role-name> elements, each containing a role referenced in
a <security-role-ref> element or the special name * that indicates all roles in this
application

A <user-data-constraint> element indicates how data transmitted between the client
and the application should be protected. It contains the following:

• An optional <description> element

• A <transport-guarantee> (can have one of the three values in Table 5-6)

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 87

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 87

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 5-6. <transport-guarantee>Values

Value Description

NONE No transport guarantee is required.

INTEGRAL The data must not be changed in transit.

CONFIDENTIAL Others may not view the data en route.

The manager web application contains a security constraint on all its resources, as shown
in Listing 5-11.

Listing 5-11. The Manager Web Application’s Security Constraint

<security-constraint>

<web-resource-collection>

<web-resource-name>HTMLManager and Manager command</web-resource-name>

<url-pattern>/jmxproxy/*</url-pattern>

<url-pattern>/html/*</url-pattern>

<url-pattern>/list</url-pattern>

<url-pattern>/sessions</url-pattern>

<url-pattern>/start</url-pattern>

<url-pattern>/stop</url-pattern>

<url-pattern>/install</url-pattern>

<url-pattern>/remove</url-pattern>

<url-pattern>/deploy</url-pattern>

<url-pattern>/undeploy</url-pattern>

<url-pattern>/reload</url-pattern>

<url-pattern>/save</url-pattern>

<url-pattern>/serverinfo</url-pattern>

<url-pattern>/status/*</url-pattern>

<url-pattern>/roles</url-pattern>

<url-pattern>/resources</url-pattern>

</web-resource-collection>

<auth-constraint>

<!-- NOTE: This role isn't present in the default users' file -->

<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS88

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 88

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<login-config>
The <login-config> element configures the authentication mechanism for this application. It
contains the following:

• An optional <auth-method> element specifying the authentication mechanism; it must
contain the text BASIC, DIGEST, FORM, or CLIENT-CERT; these are plain text, digested text,
HTML form, and certificate based, respectively.

• An optional <realm-name> element specifying the realm name for HTTP basic authorization.

• An optional <form-login-config> element to configure form-based authentication. It
contains a <form-login-page> element specifying the login page and a <form-error-page>

element specifying the error page used if login is unsuccessful.

The manager application defines a <login-config> to go along with the security constraint
described previously (see Listing 5-12).

Listing 5-12. The Manager Web Application’s Login Configuration

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Tomcat Manager Application</realm-name>

</login-config>

<security-role>
The <security-role> element declares a security role used in the web application’s security
constraints. It contains the following:

• An optional <description> element

• A <role-name> element containing the name of the role

The manager application defines a security role to go along with the security constraint
described previously (see Listing 5-13).

Listing 5-13. The Manager Web Application’s Security Role

<security-role>

<description>

The role that is required to log in to the Manager Application

</description>

<role-name>manager</role-name>

</security-role>

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS 89

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 89

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Summary
In this chapter, you saw the issues relevant to web application configuration. Many of the
configuration issues will depend on access to well-documented and well-designed applica-
tion specifications or, if these aren’t available, working hand-in-hand with a developer. As the
application grows older, there will tend to be an increasing reliance on the experience of the
administrator in the production environment to guide the administration of the application.
Collaboration between the developers and system administration will necessarily increase.

It’s likely that the administration of a web application will mostly concern security config-
uration. This will also increasingly include the use of filters to given URL patterns, session
configuration, error page configuration, the addition of tag libraries, and the administration of
application initialization parameters to adapt to the server.

CHAPTER 5 ■ ADMINISTERING WEB APPLICATIONS90

7850ch05FINAL.qxd 2/28/07 10:42 AM Page 90

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Tomcat’s
Administration Tools

As Tomcat has evolved over the years, its administration tools have become more and more
sophisticated. Tomcat 6’s administration tools have been designed for use in a number of ways,
each of which suits a different style of administration. In this chapter, you’ll see the manager
web application, which you can use to deploy and manage web applications, and the admin
application, which you can use to configure web applications.

Both these applications have web interfaces you can use to administer the Tomcat server,
but you can also use the manager application via HTTP request parameters or with Apache Ant.
I’ll discuss all these options.

Using the Manager Application
The manager application is provided as part of the Tomcat 6 distribution and is stored in the
CATALINA_HOME/webapps/manager directory by default. It’s a special web application that allows
you to manage other web applications while the Tomcat server is running. You can, for exam-
ple, deploy, undeploy, start, and stop web applications on the server using this tool.

The manager application is necessary for a number of reasons. First, without the manager
application, you need write access to Tomcat’s installation directory to deploy a web applica-
tion, because this is where you copy an expanded web application, WAR file, or context XML
file. This requires you to have access to the server’s file system, which isn’t always possible or
desirable in a high-security environment.

Second, you can remove a web application only by deleting the files on the server’s file
system. This has the same drawbacks as previously mentioned. However, Tomcat will still have
the context name configured in memory, which may cause problems in future deployments if
you try to add another application with the same name. Another problem with this approach
is that the web application is removed permanently from the server and not just made unavail-
able, which may be a better option.

Third, if the host’s autoDeploy setting is false, then you can’t deploy any applications on
a running server, even if you have access to the file system.

Fourth, if the host’s deployOnStartup setting is false, then no new web applications will
be deployed when the server starts up after being shut down. Both of these settings combined
will make it more difficult for unauthorized users to deploy web applications on the server, so
they may be part of a secured server’s setup.

91

C H A P T E R 6

■ ■ ■

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 91

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

As it stands, Tomcat seems to be fairly inflexible. You must have access to the file system,
and the server must be configured to allow automatic deployment. This is where the manager
application comes in. You can use it to solve all the problems mentioned and have a choice as
to how to go about it.

You can carry out the following tasks with the manager application:

• You can deploy a new web application.

• You can list the currently deployed web applications, with session information.

• You can reload a web application.

• You can list the operating system and JVM properties.

• You can list the available global JNDI resources.

• You can list the available security roles.

• You can display session statistics.

• You can start a stopped application.

• You can stop an existing application.

• You can undeploy a web application.

Setting Up the Manager Application
The manager application is a powerful addition to Tomcat’s functionality. For this reason, you
can access it only if you’re an authenticated user. The system of authentication is the same for
the manager application as it is for other web applications running on a Tomcat server, as described
in Chapter 11.

The default realm for the manager application, as defined in CATALINA_HOME/conf/Catalina/
localhost/manager.xml, is the user database defined in server.xml. Recall from Chapter 4 that
this is conf/tomcat-users.xml.

By default, access to the manager application is disabled in Tomcat, by virtue of omitting
any valid users or roles from tomcat-users.xml. To set up the manager application, add a user
with the manager role to this file. You can, for example’s sake, add the manager role and then
alter an existing user, such as tomcat, as follows:

<role rolename="manager"/>

<user username="tomcat" password="tomcat" roles="tomcat, manager"/>

■Note If you used the Windows installer, you would have already defined an admin password for Tomcat
and tomcat-users.xml will be configured for you.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS92

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 92

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

If Tomcat is running, restart it to read the updated tomcat-users.xml. Next, check the URL
http://localhost:8080/manager/html. You’ll be asked for a username and password, so enter
the details of the user that you configured. If your details are correct, you’ll see a screen like
the one in Figure 6-1.

Figure 6-1. The Tomcat manager application’s HTML interface

Configuring the Manager Application
As with other web applications, you can change the settings for the security manager to suit
your own preferences. The security manager comes with a context XML file and a deployment
descriptor, both of which you can modify as you would any other configuration file. The
default manager.xml file is in the CATALINA_HOME/webapps/manager directory. Listing 6-1 shows
the default manager.xml file for Tomcat 6.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 93

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 93

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 6-1. The Default manager.xml File

<Context docBase="${catalina.home}/server/webapps/manager"

privileged="true" antiResourceLocking="false" antiJARLocking="false">

<!-- Link to the user database we will get roles from -->

<ResourceLink name="users" global="UserDatabase"

type="org.apache.catalina.UserDatabase"/>

</Context>

This file sets the name of the web application to manager, tells Tomcat that it can find this
web application in CATALINA_HOME/webapps/manager, and allows this web application access to
container servlets. This last setting is important, as the manager application uses the manager
container servlet to perform its duties. The Tomcat 6 settings are the defaults and allow resources
to be locked by clients.

The <ResourceLink> element sets up a source of user information for authentication in
this web application. This can quite easily be changed to match any realm you’ve set up in
server.xml. As it stands, this file allows you to use the manager application, assuming you’ve
set up an authorized user as previously described.

If you want to allow more than one role to access the manager web application, or you
want to change the authentication mechanism to fit in with your server’s setup, then you’ll
have to modify the manager application’s web.xml file. Most of this file is given over to servlet
definitions and servlet mappings, which you should leave as they are, but the end of the file
contains security-related configuration.

Listing 6-2 shows the security-related configuration.

Listing 6-2. Security-Related Configuration from the manager Application’s web.xml File

<!-- Define reference to the user database for looking up roles -->

<resource-env-ref>

<description>

Link to the UserDatabase instance from which we request lists of

defined role names. Typically, this will be connected to the global

user database with a ResourceLink element in server.xml or the context

configuration file for the Manager web application.

</description>

<resource-env-ref-name>users</resource-env-ref-name>

<resource-env-ref-type>

org.apache.catalina.UserDatabase

</resource-env-ref-type>

</resource-env-ref>

<!-- Define a Security Constraint on this Application -->

<security-constraint>

<web-resource-collection>

<web-resource-name>HTMLManger and Manager command</web-resource-name>

<url-pattern>/jmxproxy/*</url-pattern>

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS94

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 94

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<url-pattern>/html/*</url-pattern>

<url-pattern>/list</url-pattern>

<url-pattern>/sessions</url-pattern>

<url-pattern>/start</url-pattern>

<url-pattern>/stop</url-pattern>

<url-pattern>/install</url-pattern>

<url-pattern>/remove</url-pattern>

<url-pattern>/deploy</url-pattern>

<url-pattern>/undeploy</url-pattern>

<url-pattern>/reload</url-pattern>

<url-pattern>/save</url-pattern>

<url-pattern>/serverinfo</url-pattern>

<url-pattern>/status/*</url-pattern>

<url-pattern>/roles</url-pattern>

<url-pattern>/resources</url-pattern>

</web-resource-collection>

<auth-constraint>

<!-- NOTE: This role is not present in the default users file -->

<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

<!-- Define the Login Configuration for this Application -->

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Tomcat Manager Application</realm-name>

</login-config>

<!-- Security roles referenced by this web application -->

<security-role>

<description>

The role that is required to log in to the Manager Application

</description>

<role-name>manager</role-name>

</security-role>

The <resource-env-ref> element defines the user database that Tomcat uses to authenti-
cate users. Recall that the name user is defined in manager.xml, which in turn is a reference to
the global user database. You’ll find details of changing the user database to another type of
authentication scheme in Chapter 11.

The <security-constraint> element defines the resources on the server that are covered
by the security mechanism and sets the roles that are allowed access to them. In this case, all
the servlets defined earlier in web.xml are covered, and only users with the manager role are
allowed to access them. This element works in combination with the <security-role> element,
which defines the roles used in this web application’s authentication scheme.

If you change the <auth-method> element to anything other than BASIC, tools such as Ant
won’t be able to use the manager application because they can’t use any other kind of authen-
tication. Therefore, you must balance the security needs of your server with the way you

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 95

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 95

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

administer using the manager application. Using DIGEST or FORM authentication makes the manager
application more secure but prevents you from using Ant.

■Note You’ll see more mappings in web.xml than manager commands listed in this chapter. This is for
backward compatibility with scripts that were written for older versions of Tomcat. The deprecated commands
(install and remove) aren’t available from the HTML interface, and install now calls undeploy in the
manager servlet.

If you want to allow users with other roles to access the manager application, add <role-name>
elements in the <auth-constraint> element. Once you’ve done this, add a <security-role>

element, with appropriate subelements, for each role you want to add. For example, if you
want to allow users with the admin role to use the manager application, alter web.xml as shown
in Listing 6-3.

Listing 6-3. Allowing a User with the Admin Role to Use the manager Application

<auth-constraint>

<!-- NOTE: This role isn't present in the default users' file -->

<role-name>manager</role-name>

<role-name>admin</role-name>

</auth-constraint>

</security-constraint>

...

<!-- Added as part of Tomcat Chapter 6 -->

<security-role>

<description>

The role that is required to log in to the Manager Application

</description>

<role-name>admin</role-name>

</security-role>

Using the Manager Application
The simplest way of using the manager application is through its web interface. Once you’ve logged
in at http://localhost:8080/manager/html, you’ll see the web interface shown in Figure 6-1.
All the functions of the manager application are available through this interface. Many of the
HTML interface commands listed in this section will prompt you for confirmation. This is
a sure sign that your actions may affect users accessing your server. If you want to continue,
you should click OK.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS96

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 96

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

It’s also possible for you to use request parameters to administer the web application with
scripts. The manager application can provide its responses in plain text so that they can be parsed
easily. Some of these plain text messages appear in the status message section of the web
interface, though the web interface takes a number of the other responses and displays them
in user-friendly HTML tables. An example of this is the list of deployed web applications that
you’ll see in the “Listing Web Applications” section.

The manager application commands that are issued via the web browser have the following
format:

http://{hostname}:{port}/manager/{command}?{parameters}

The various parts of the URL are as follows:

• hostname: The host on which the Tomcat instance is running.

• port: The port on which the Tomcat instance is running.

• command: The manager command you want to run. The allowed values for command are
deploy, list, reload, resources, roles, sessions, start, stop, and undeploy. You’ll look
at these in more detail later in the chapter. The manager application understands two
other commands: install and remove. These are retained for backward compatibility,
though install is now identical to undeploy and is mapped to the undeploy code in the
manager servlet. remove is deprecated; you can still use it if you want, though you’ll
never need it. Therefore, I won’t describe it in this chapter.

• parameters: The parameters passed to the commands listed previously. These are
command specific and are explained in detail, along with their related commands, in
a moment. Many of these parameters contain the context path to the web application
(the path parameter) and the URL to the web application file (the war parameter). The
context path for the ROOT application is an empty string. For all other web applications,
the context path must be preceded by /.

A number of problems could occur while working with the manager application. The
“Troubleshooting” section lists the possible causes of failure.

Listing Web Applications
You can list the applications that are deployed on this server by clicking the List Applications
link. This is the default when you first visit the web interface (see Figure 6-1). You can click
a web application’s name to run it. The HTML Manager Help and Manager Help links take you
to help pages that are part of the manager web application.

The message bar at the top of the page gives you a status message related to the commands
you run. In this case, the listing was successful, so you get the “OK” status message.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 97

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 97

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Checking the Status of the Server
Click the Server Status link to check the server’s status. You’ll see a screen like the one shown
in Figure 6-2.

Figure 6-2. Viewing the server’s status with the manager application

The sections shown in Figure 6-2 are straightforward and show the server version and
other related information. You can find the real server information below these sections (see
Figure 6-3).

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS98

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 98

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 6-3. Extended server information in the manager application

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 99

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 99

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The JVM section gives details of the JVM that Tomcat uses. The other headings, in this
case http-8080 and jk-8009, are the connectors for this host. Their setups and details appear
below each one, and you can use this information when dealing with performance issues, and
so on.

For a web application by web application breakdown, click the Complete Server Status
link at the top of the screen, as shown in Figure 6-2. The new information appears below that,
as shown in Figure 6-3.

No alternative method exists for obtaining this server information.

Starting, Stopping, and Restarting Web Applications
The links under Commands are fairly self-explanatory. Stopping a web application doesn’t
remove it from the server but makes it unavailable. Any user who tries to access it will be given
a 503 (unavailable) error code. The web application is still deployed, and its name is unavailable
for new web applications. Figure 6-4 shows the results of stopping the Tomcat documentation
web application.

Figure 6-4. Stopping a web application with the manager application

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS100

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 100

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The running status of the tomcatBook web application is now false, and the Start link is
activated. Again, note the status message that tells you the action completed successfully.
Another important aspect of Figure 6-4 is the URL that the web interface uses to stop the web
application. This is how you stop the web application using HTTP request parameters to acti-
vate the manager application without the help of the web interface.

The stop command follows; remember to start the web application’s path with /:

http://localhost:8080/manager/stop?path=/webapp

If the command is successful, you’ll get the following message:

OK - Stopped application at context path /webapp

This success message is similar to those you’ll receive for all the other commands.
Starting the web application is just a matter of clicking the Start link, and if any configura-

tion or code changes, you can restart it by clicking the Restart link.
You can also use the following:

http://localhost:8080/manager/start?path=/webapp

http://localhost:8080/manager/reload?path=/webapp

Undeploying Web Applications
If you want to permanently remove a web application, click the Undeploy link. It’s important
to realize that this command will delete any files associated with the web application, as long
as they’re in Tomcat’s directory structure. In other words, the manager application will delete
the expanded web application if it’s in webapps, delete the original WAR file if it’s in webapps, and
delete the context XML file in the subdirectory of conf. If the web application is based elsewhere,
the files aren’t deleted, but the web application is no longer available as a web application and
its name is available for new web applications.

The web application will shut down gracefully and will no longer appear in the web inter-
face of the manager application.

The HTTP request parameter version of this command is as follows:

http://localhost:8080/manager/undeploy?path=/webapp

Checking Session Information
If you want basic information on the sessions that are active on a web application, click the
number of active sessions. You’ll be given the information shown in Figure 6-5.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 101

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 101

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 6-5. Session information using the manager application

In this case, the default session timeout is 30 minutes, and the manager web application
has no sessions listed. A session is listed if it’s inactive for less than the timeout value plus 10
minutes.

The following is the basic command:

http://localhost:8080/manager/sessions?path=/webapp

This will produce the same message as in Figure 6-5, though without any of the HTML
wrapping.

Deploying Web Applications
The section below the web application list allows you to deploy a new web application. You
can deploy a web application using a context XML file, a WAR file, or a web application direc-
tory, each of which must be on the server’s machine. You can also deploy a WAR from a remote
machine.

Figure 6-6 shows the options.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS102

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 102

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 6-6. The web application deployment section of the manager application

Deploying Web Applications from the Local Machine

The context path is optional; if you omit it, the manager application will assign the name of the
directory, WAR file, or XML file to the web application. You have the following two ways to
specify the location of the web application:

• As a file in the host’s application base directory, which is webapps by default

• In the form file:/absolute/path/to/application

If the web application is installed successfully, you’ll receive an “OK—Deployed applica-
tion at context path/path” status message, and the new application will appear in the web
application list.

This is the most complicated command when using request parameters, and it also differs
from the command used by the web interface. The three possible parameters are as follows:

• path: This is the path that will be used to access the web application once it has been
deployed. This must be started with /.

• war: This is the WAR file or directory to use as the basis for this web application.

• config: This is the context XML file to use for this web application.

If you’re using a context XML file this way, you must also use the war parameter and omit
the path parameter. You can use the other two parameters by themselves.

The value of war can be in one of the following formats:

• file:/absolute/path/to/a/directory: This specifies the absolute path to a directory
where a web application is present in an unpackaged form. This entire path is then
added as the context path of the web application in Tomcat’s configuration.

• file:/absolute/path/to/a/webapp.war: This specifies the absolute path to a WAR file.

• directory: This is a web application directory in the host’s web application base directory
(webapps by default).

• webapp.war: This is the name of a web application WAR file in the host’s web application
base directory (webapps by default).

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 103

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 103

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The value of config can be as follows:

• file:/absolute/path/to/a/context.xml: This is the absolute path to a context XML file
that contains the definition of this web application’s context container.

The simplest way to use this command is to deploy a web application from the application
base directory, either using an expanded directory or a WAR file. The first line of the following
deploys the Cat.war file to the /Catalog path, and the second line deploys the Cat directory to
the /Catalog path:

http://localhost:8080/manager/deploy?path=/Catalog&war=Cat.war

http://localhost:8080/manager/deploy?path=/Catalog&war=Cat

If you omit the path parameter, the application is given the name of the directory or WAR
file as its path. For example, the following would deploy the bank.war file to the /bank path:

http://localhost:8080/manager/deploy?war=bank.war

You can use request parameters to deploy a web application from anywhere on the server’s
local machine, just as you could with the web interface. The commands are similar to those
shown previously:

http://localhost:8080/manager/deploy?path=/Catalog&war=file:C:/dev/Cat.war

http://localhost:8080/manager/deploy?path=/Catalog&war=file:C:/dev/Cat

Note the absolute path to the WAR and directory. This creates a new context XML file in
conf/[Engine_name]/[Host_name] for this web application. This file is named after the context
and contains a reference to the file you specified as the war parameter. Again, the path param-
eter is optional.

Using a context XML file is a slightly more complicated process. Tomcat 6 does use the
path parameter with this command, because you’re encouraged not to use the path attribute
of <Context>. config should point to the XML file, and war should point to the application’s
files, whether they’re in a directory or in a WAR file.

Without the path attribute in a context definition in Tomcat 6, you must use the path
parameter to deploy a web application, like so:

http://localhost:8080/manager/deploy?

config=file:C:/catalog.xml&war=file:C:/Catalog&path=/catalogue

http://localhost:8080/manager/deploy?

config=file:C:/catalog.xml&war=file:C:/Catalog.war&path=/catalogue

In both cases, the file will be renamed to the value of the path parameter (in this example,
this would be catalogue.xml).

Deploying Web Applications from a Remote WAR File

The second section of the deploy section allows you to upload a WAR file to the server. This is
particularly useful if you want to administer Tomcat remotely. The manager application will
name the resultant web application after the WAR file and receives the WAR file via the HTTP
PUT method.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS104

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 104

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

This method copies the WAR file to the server’s application base directory and expands it.
This action has a request parameter version, but it can be used only with tools, such as Ant, that
can send PUT data to a server. You’ll see this in the “Managing Applications with Ant” section.

Listing Resources
You can’t list the JNDI resources on the server using the web interface. To do so, use request
parameters as follows:

http://localhost:8080/manager/resources

This will list all the JNDI resources on the server, with the name of the resource followed
by a comma and the fully qualified Java language type. If you want only to see resources of
a certain type, use the type parameter, like so:

http://localhost:8080/manager/resources?type=java.lang.Integer

This will display JNDI resources of type java.lang.Integer only. You can use this command
to list user databases, JNDI data sources, and serverwide constants.

Listing Security Roles
Listing security roles is another request-parameter–only command and lists all the roles
defined on the server:

http://localhost:8080/manager/roles

This lists the security role name and an optional description. There’s one security role
listed per line, and the fields are separated by colons. Note that the roles are those defined in
the user database for the manager application and may not be all the roles available to all web
applications.

Troubleshooting
A number of things could go wrong while working with the manager application. The possible
causes of failure are as follows:

Application already exists at path {context_path}: The context path for each web appli-
cation must be unique, and this error indicates that another application with the same
context path exists on the server. It’s possible that this is the same application, and you’ve
tried to deploy it twice. To fix this, undeploy the previous application, or choose a differ-
ent context path.

Encountered exception: The Tomcat log files have error messages relating to the specific
error. Typical causes of errors are missing classes/JAR files while loading the application,
invalid commands in the application’s web.xml file, and incorrect settings in a context
XML file.

Invalid context path specified: The context path must start with /, except when the ROOT
web application is being deployed, in which case the context path must be a zero-length
string.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 105

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 105

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

No context path specified: You must specify a context path for the command you’re
attempting to run.

Document base does not exist or is not a readable directory: The value specified for the
WAR file path/URL in the war parameter is incorrect. This parameter must point to an
expanded web application or an actual WAR file.

No context exists for path {context_path}: The context path is invalid, meaning there’s no
web application deployed under this context path.

Reload not supported on WAR deployed at path {context_path}: The web application
has been installed from a WAR file instead of from an unpacked directory.

No global JNDI resources: No JNDI global resources are configured for this Tomcat
instance.

Can’t resolve user database reference: There was an error looking up the appropriate
user database.

No user database is available: The <ResourceLink> element hasn’t been configured prop-
erly in the manager.xml configuration file. See the earlier “Configuring the Manager
Application” section for more information.

Managing Applications with Ant
You can also use Ant to run the previous administration commands. This is convenient for
development purposes because an Ant build file could be used to compile, deploy, and even
start a web application. The steps for doing this once Ant is installed are as follows:

1. Copy the CATALINA_HOME/server/lib/catalina-ant.jar file into Ant’s library directory
(ANT_HOME/lib). This JAR file contains the Tomcat management task definitions for Ant.

2. Add ANT_HOME/bin to your path.

3. Add a user with the manager role to Tomcat’s user database if such a user doesn’t exist.

4. Now add <taskdef> elements to your custom build.xml script that call the Tomcat
manager commands.

Listing 6-4 shows a sample build.xml file. You could use it to build and deploy a web
application. As it stands, it simply allows you to use all the previous commands with Ant.
A developer would typically give you the Ant script for building the application.

Listing 6-4. A Sample build.xml File for Using the manager Application

<project name="ManagerApplication" default="list" basedir=".">

<!-- Configure the context path for this application -->

<property name="path" value="/Catalog"/>

<property name="build" value="C:/dev"/>

<property name="file" value="Catalog.war"/>

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS106

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 106

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The <project> tag has attributes for the name of the project and the default target. The
default target in this case is called list. Running Ant with no options will invoke the tasks
associated with this default target. The basedir attribute is the base directory for all path cal-
culations in the Ant build script. This is set to . (the current directory), and therefore, all the
paths are taken to be relative to the directory from which you run Ant. You define properties
for the build (in this case, the path of the web application and the location of your web appli-
cation files).

The properties in Listing 6-5 specify the access URL and username/password for the
manager application. At the end of this section, you’ll see how you can also pass the password
from the command line.

Listing 6-5. Defining the Properties for the manager Application

<!-- Configure properties to access the Manager application -->

<property name="url" value="http://localhost:8080/manager"/>

<property name="username" value="tomcat"/>

<property name="password" value="tomcat"/>

Listing 6-6 specifies the task definitions for the manager application. Ant allows for custom
tasks that extend its functionality. Tomcat implements the custom tasks shown in Listing 6-7 for
executing the manager application commands. For example, org.apache.catalina.ant.DeployTask
executes the deploy command against the manager application.

Listing 6-6. Ant Task Definitions for Using the manager Application

<!-- Configure the custom Ant tasks for the Manager application -->

<taskdef name="deploy"

classname="org.apache.catalina.ant.DeployTask"/>

<taskdef name="list"

classname="org.apache.catalina.ant.ListTask"/>

<taskdef name="reload"

classname="org.apache.catalina.ant.ReloadTask"/>

<taskdef name="resources"

classname="org.apache.catalina.ant.ResourcesTask"/>

<taskdef name="roles"

classname="org.apache.catalina.ant.RolesTask"/>

<taskdef name="start"

classname="org.apache.catalina.ant.StartTask"/>

<taskdef name="stop"

classname="org.apache.catalina.ant.StopTask"/>

<taskdef name="undeploy"

classname="org.apache.catalina.ant.UndeployTask"/>

Next, Listing 6-7 shows the manager tasks for listing all web applications and
deploying/undeploying web applications.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 107

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 107

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 6-7. The Manager Command Tasks

<target name="deploy" description="Deploy web application">

<deploy url="${url}" username="${username}" password="${password}"

path="${path}" war="file:${build}/${file}"/>

</target>

<target name="list" description="List all web applications">

<list url="${url}" username="${username}" password="${password}"/>

</target>

<target name="reload" description="Reload web application">

<reload url="${url}" username="${username}" password="${password}"

path="${path}"/>

</target>

<target name="resources" description="List all JNDI resources">

<resources url="${url}" username="${username}" password="${password}"/>

</target>

<target name="roles" description="List all roles">

<roles url="${url}" username="${username}" password="${password}"/>

</target>

<target name="start" description="Start web application">

<start url="${url}" username="${username}" password="${password}"

path="${path}"/>

</target>

<target name="stop" description="Stop web application">

<stop url="${url}" username="${username}" password="${password}"

path="${path}"/>

</target>

<target name="undeploy" description="Undeploy web application">

<undeploy url="${url}" username="${username}" password="${password}"

path="${path}"/>

</target>

</project>

The password property in the previous Ant script contains the password for the user with
manager privileges. This is useful for development environments where you don’t want to
specify the password each time you build and deploy.

You can override this value from the command line, or even omit it from the build file
altogether and pass it only from the command line. This avoids the security risk of putting the
password in a text file. The following will stop the tomcatBook web application using a username
and password at the command line:

ant -Dpassword=tomcat -Dusername=tomcat -Dpath=/tomcatBook stop

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS108

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 108

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using the Tomcat Administration Tool
Tomcat also has a web-based administration (admin) tool that you can use to administer the
server and individual web applications. In other words, it allows you to edit server.xml and
web application context settings remotely as well as other server configuration files. When
using Tomcat 6, you must download the admin tool separately from the main server. This is an
indirect indication of the status of the admin tool, meaning that, as it stands, the admin tool isn’t
as essential or as useful as it may seem on the surface. The following description, the discussion
of realms in Chapter 11, and the security discussion in Chapter 12 will cover the drawbacks of
the admin tool.

■Note The source distribution of Tomcat 6 includes the admin application, which means you’ll install it if
you build Tomcat 6 from source. At the time of this writing, this admin tool is not available except for in the
source distribution. We are using the tool from the Tomcat 5.5 version for now, but it should not affect any-
thing in the book.

Before you run the admin application, you must add an admin role and assign it to a user in
tomcat-users.xml, or whichever authentication mechanism you’re using. As with the manager
application’s web interface, the admin tool is a web application running on the server. You can
access it via the following URL:

http://localhost:8080/admin

You can configure the admin application in the CATALINA_HOME/conf/[Engine_name]/
[Host_name]/admin.xml file. Listing 6-8 shows the contents.

Listing 6-8. The admin Application’s Context XML File

<Context docBase="${catalina.home}/server/webapps/admin" privileged="true"

antiResourceLocking="false" antiJARLocking="false">

<!-- Uncomment this Valve to limit access to the Admin app to localhost

for obvious security reasons. Allow may be a comma-separated list of

hosts (or even regular expressions).

<Valve className="org.apache.catalina.valves.RemoteAddrValve"

allow="127.0.0.1"/>

-->

</Context>

The other configuration file for the admin application is the deployment descriptor
(CATALINA_HOME/server/webapps/admin/WEB-INF/web.xml). As with the manager application, you
can alter the security constraints and authentication settings for the admin application here. In
this case, the admin application uses form-based authentication to protect the admin pages. If
you’d rather it use something else, change the setting appropriately.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS 109

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 109

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

In the administration tool, each node in the left pane represents a setting you can edit.
The Service node corresponds to the <Service> element in server.xml, and its subnodes are
the <Service> element’s subelements. If you expand this node, you’ll see each subelement,
which you can alter via commands in the right pane. There are a few settings you can’t alter,
and changing the document base of a web application is one of them. If you want to change
the application’s base directory, you’ll have to undeploy it and redeploy it with new settings.

The next set of nodes after the Service node, under Resources, contains global settings for
server.xml. Again, few settings can’t be changed.

The final set of nodes corresponds to the settings in tomcat-users.xml. You can add users,
roles, and groups here.

Each setting screen has a Save button and a Reset button. Clicking Save will commit any
changes to the admin application’s memory but won’t write them to server.xml. Therefore, you
can make all your changes before writing to disk. This is important, because when the admin
application writes the changes to server.xml, it restarts Tomcat to enable the changes to take
effect. The restart will be graceful, but some users may experience problems with the restart,
least of all you because you’ll be logged out of the admin application.

To make the changes permanent, click the Commit Changes button at the top of the admin
application screen. This makes the write to server.xml. However, the admin application creates
a new server.xml file based on the settings it’s holding in memory. It doesn’t delete the old
server.xml, but it renames it as follows:

server.xml.yyyy-MM-dd.hh-mm-ss

The new server.xml file won’t have any comments in it and thus may be significantly
smaller and less comprehensible to someone not familiar with your setup. It may be a good
idea to copy the comments from the old file into the new one.

As you can see, the admin tool has some drawbacks, the least of which are still to be discussed
in the Chapter 9. Careful consideration should go into whether you need the admin tool. Remote
access is its biggest advantage.

Summary
This chapter covered the two tools supplied with Tomcat that allow you to manage the server
remotely: the manager application and the admin application.

The manager application provides you with a user-friendly web interface that you can use
to manage web applications. Through this interface, you can deploy new and undeploy old
applications, as well as start, stop, and list applications. The manager application also comes
with a stripped-down interface that you can use with scripts and Ant.

You can use the admin tool to work with Tomcat’s configuration files, such as server.xml
and tomcat-users.xml. Again, it’s a web interface, and you can access and use it remotely.

CHAPTER 6 ■ USING TOMCAT’S ADMINISTRATION TOOLS110

7850ch06FINAL.qxd 2/28/07 10:43 AM Page 110

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Tomcat

In the preceding chapters, you saw how to install Tomcat and how to carry out basic adminis-
tration tasks. These are the day-to-day tasks that an administrator would carry out, but Tomcat
has other features you may have to work with from time to time. This chapter will show you
these features and how to use them.

You’ll see the following:

• Administrating the access logs

• Request filtering

• Single sign-on

• JNDI resources

• Session managers

The first three of these topics are common administration tasks. The others are built into
Tomcat to allow developers to use their features. These are all part of the Servlet and JSP speci-
fications as defined by Sun Microsystems, and, as the reference implementation, Tomcat must
include them.

Using Valves to Intercept User Requests
A web server wouldn’t be a web server if it didn’t allow you to intercept user requests, examine
them, and log them. As mentioned in Chapter 4, Tomcat provides you with components called
valves that you can place in the request-processing stream to do just that. Recall that valves
can be configured at different levels within the Tomcat hierarchy and can be applied in chains
so that requests go through more than one filter before reaching their destinations. Figure 7-1
shows a set of valves in a Tomcat installation.

111

C H A P T E R 7

■ ■ ■

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 111

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 7-1. Valves intercept requests for certain resources, and you can use them in conjunction
with each other.

As in Figure 7-1, a valve configured at the engine level will intercept all requests to con-
texts on this engine, no matter what host or context they’re bound for. The valve at the host
level intercepts all requests to this virtual host, and the valves in the contexts intercept only
requests that are specifically for them. This means valves can be chained together to work in
conjunction with each other.

Valves offer value-added functionality that includes the following:

• Access logging

• Single sign-on for all web applications running on the server

• Request filtering/blocking by IP address and hostname

• Detailed request dumps for debugging

Standard Valves
Valves are nested components in the Tomcat configuration hierarchy that can be placed inside
<Engine>, <Host>, or <Context> containers (refer to Chapter 4 for details on containers). Tomcat
comes with the Java interface org.apache.catalina.Valve, which Java programmers can use
to create their own valves. However, the functions that have already been mentioned are pro-
vided with Tomcat as standard. Table 7-1 describes these standard valves.

Table 7-1. Standard Valves, as Supplied by Tomcat

Valve Name Description

Access log valve Logs requests.

Single sign-on valve Lets you pass user login information to other web applications on the
server. This means that users need to log in only once, no matter how
many web applications they visit.

Request filter valve Enables selective filtering of incoming requests based on IP addresses
or hostnames.

Request dumper valve Prints the headers and cookies of incoming requests and outgoing
responses to a log.

CHAPTER 7 ■ CONFIGURING TOMCAT112

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 112

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Access Log Valves
Logging access to resources is a common activity for web server administrators. Therefore,
Tomcat comes with a valve for logging access to resources—whether that access is at the engine
level, the host level, or the context level. The location of a log valve is fairly important from
a performance point of view because each log entry requires Tomcat to write data to disk. If
you have a logging valve at the engine level of a busy server as well as logging valves for every
context, the log will be written to many times and will grow very large. However, you may need
to do this to monitor each individual context as well as the whole server. This just illustrates
the need for careful planning when using valves.

An access log valve isn’t a logger, because a logger prints information and errors to a log
file so that you can diagnose errors in web applications. For example, if a component encoun-
ters problems and a user reports the error message to you, you’d look in the logger’s log, because
this is where the error will be reported. However, if you wanted to see how often a client at
a certain IP address requests a certain resource, you’d examine the access log valve’s log file.

The logger’s format also depends on the application in question. If it has been written
properly, all errors will be written to the error log file in a standard way so that they can be
investigated and rectified. If not, you may see nasty Java stack traces with details of the error
buried among them.

The typical format for an access log valve is the common log file format, which you can
find at www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format. You may already
have an analysis tool that can analyze log files in this format. If not, don’t worry—they’re quite
common. AWStats (http://awstats.sourceforge.net) is a great open source option, though
you’ll need Perl to use it. Another option is Webalizer (www.mrunix.net/webalizer/).

Table 7-2 shows the attributes for the standard access log valve that’s supplied with Tomcat.
In this case, the className attribute must be org.apache.catalina.valves.AccessLogValve.

Table 7-2. The Attributes for the Standard Access Log Valve

Attribute Description Required?

className The Java class of the valve. This must be org.apache.catalina. Yes
valves.AccessLogValve.

condition Turns conditional logging on. If set, the access log valve logs No
requests only if ServletRequest.getAttribute() is null. For
example, if this value is set to userId, a particular request will
be logged only if ServletRequest.getAttribute("userId")
== null.

directory The directory where the log files will be placed. This is usually No
relative to the CATALINA_HOME, but you can specify an absolute
path instead. The default is logs.

prefix The prefix added to the name of the log file. No

resolveHosts Determines if the log will contain hostnames via a reverse DNS No
lookup. This can take significant time if enabled. The default
is false.

rotatable Determines if log rotation should occur. If false, this file is No
never rotated, and the fileDateFormat attribute is ignored. Use
this attribute with caution, because the log file could grow very
large indeed. The default is true.

suffix The extension added to the name of the log file. No

continued

CHAPTER 7 ■ CONFIGURING TOMCAT 113

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 113

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 7-2. (continued)

Attribute Description Required?

fileDateFormat Allows a customized date format in the access log filename. The No
date format also decides how often the file is rotated. If you want
to rotate every hour, then set this value to yyyy-MM-dd.HH.

pattern Specifies the format used in the log. You can customize the
format, or you can use common or combined as the format (the
common format, plus the referrer and user agent are logged). To
customize the format, you can use any of the following patterns
interspersed with a literal string:

%a: Inserts remote IP address.

%A: Inserts local IP address (of URL resource).

%b: Inserts a bytes sent count, excluding HTTP headers, and
shows - if zero.

%B: Inserts a bytes sent count, excluding HTTP headers.

%D: Time taken to process the request in milliseconds.

%h: Inserts remote hostname (or IP address if the resolveHosts
attribute is set to false).

%H: Inserts the request protocol (HTTP).

%l: Inserts remote logical user name (always -).

%m: Inserts request method such as GET and POST.

%p: Inserts the local TCP port where this request is received.

%q: Inserts the query string of this request.

%r: Inserts the first line of the request.

%s: Inserts the HTTP status code of the response.

%S: Inserts the user session ID.

%t: Inserts the date and time in common log file format.

%T: Inserts the time taken to process the request, in seconds.

%u: Inserts the remote user that has been authenticated (if there
is none, it’s -).

%U: Inserts the URL path of the request.

%v: Inserts the name of the local virtual host from the request.

%{xxx}i: Use this for incoming headers, where xxx is the header.

%{xxx}c: Use this for a specific cookie, where xxx is the name of
the cookie.

%{xxx}r: Use this for ServletRequest attributes, where xxx is the
attribute.

%{xxx}s: Use this for HttpSession attributes, where xxx is the
attribute.

The default is common, which is %h %l %u %t "%r" %s %b. No

CHAPTER 7 ■ CONFIGURING TOMCAT114

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 114

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Examining an Example Access Log Valve

This section contains an example access log valve to demonstrate the attributes listed in
Table 7-2. By default, the access log valves in server.xml are commented out, which disables
them. This does, however, make it easy to activate them. Open server.xml, and navigate to the
localhost <Host> entry. The access log valve is configured after the large comment section (see
Listing 7-1).

Listing 7-1. The Access Log Valve in server.xml

<Valve className="org.apache.catalina.valves.AccessLogValve"

directory="logs"

prefix="localhost_access_log."

suffix=".txt"

pattern="common"

resolveHosts="false"/>

You may not have this entry if you’ve previously used the admin web interface. As noted in
Chapter 6, the admin application rewrites a new server.xml once you’ve made any configuration
changes. This means that comments are lost, even if they contain useful default components.
The good news is that the old server.xml should have been saved under another name in the
conf directory, so you can copy and paste the valve entry from there into the new server.xml.

Uncomment this entry, start (or restart) Tomcat, and point your browser to http://
localhost:8080. You should see the default Tomcat welcome page. Now examine the CATALINA_
HOME/logs directory, and open the localhost_access_log.DATE.txt file. You’ll see the access
log entry for the web page itself, though you’ll also see the entries for the associated image
files, all in the common log file format, as shown in Listing 7-2.

Listing 7-2. The localhost_access_log.DATE.txt Log File

127.0.0.1 - - [30/Nov/2006:07:39:00 -0800]

"GET / HTTP/1.1" 200 7314

127.0.0.1 - - [30/Nov/2006:07:39:00 -0800]

"GET /asf-logo-wide.gif HTTP/1.1" 200 5866

127.0.0.1 - - [30/Nov/2006:07:39:00 -0800]

"GET /tomcat-power.gif HTTP/1.1" 200 2324

127.0.0.1 - - [30/Nov/2006:07:39:00 -0800]

“GET /tomcat.gif HTTP/1.1” 200 1934

You may want to experiment further with other attributes of the standard access log valve
by modifying the previous <Valve> entry. You should experiment with other access log valve con-
figurations, such as valves at the context level, which you configure in the appropriate context
XML file, and valves at the engine level. This way you can use tools to analyze access at various
levels of the server.

CHAPTER 7 ■ CONFIGURING TOMCAT 115

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 115

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Request Filter Valves
As a server administrator, you’ll often find it useful to restrict access to certain resources. You’ve
already seen password protection for administration resources, but Tomcat also allows you to
use request filter valves to block access so that a user doesn’t even get as far as the password
prompt. You can use this facility to block access to admin resources to users who are not on
the local machine or an admininstration-only machine. Other options can include blocking
denial-of-service (DoS) attacks or denying access to sales data for nonsales personnel, and so on.

Two types of request filter valves exist: the remote address valve and the remote host valve.
The first of these filters requests by the client’s IP address, and the second filters by the client’s
host. Table 7-3 shows the attributes of the remote address valve.

Table 7-3. The Attributes of the Remote Address Request Filter Valve

Attribute Description Required?

allow A comma-separated list of regular expressions used to match the No
client’s IP address. If there’s a match, the request is allowed through to
its destination. If not, it’s blocked. If this attribute isn’t specified, all
requests are allowed except if they match a pattern in the
deny attribute.

className The Java class of the valve. This must be org.apache.catalina. Yes
valves.RemoteAddrValve.

deny A comma-separated list of regular expressions used to match the No
client’s IP address. If there’s a match, the request is blocked. If not,
it’s allowed.

It’s now possible to see how you can allow access to only those users on a local or admininstra-
tion machine. In this example, you’d add the IP address of the local (or administration) machine to
the allow list. Listing 7-3 shows the scenario where both conditions are allowed (assuming the
administration machine has 192.168.0.73 as its IP address).

Listing 7-3. An Example Remote Address Request Filter Valve

<Valve className="org.apache.catalina.valves.RemoteAddrValve"

allow="127.0.0.1,192.168.0.73"/>

Visit a page on the local Tomcat server. You should see the page as usual. Now, remove the
127.0.0.1 portion and restart Tomcat. Visit the same page, and you should be blocked, as shown
in Figure 7-2.

CHAPTER 7 ■ CONFIGURING TOMCAT116

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 116

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 7-2. A blocked URL using the remote address request filter valve

You can also achieve this effect by denying access to the localhost:

<Valve className="org.apache.catalina.valves.RemoteAddrValve"

deny="127.0.0.1"/>

Filtering by client host is just as easy. The only difference is the class that implements the
valve and the values of the regular expressions. In the case of the remote host request filter
valve, the class is org.apache.catalina.valves.RemoteHostValve, and the regular expressions
are hostnames instead of IP addresses.

<Valve className="org.apache.catalina.valves.RemoteHostValve"

allow="*.com"/>

■Note The remote host request filter requires a reverse DNS lookup, so the server must have access to DNS.

Request Dumper Valve
The request dumper valve allows you to debug web applications by dumping the headers and
cookies of requests and responses to a log. The request dumper valve uses whichever logging
mechanism you’ve configured for the component that contains the valve.

You can use it for the following:

• Checking how the scope of a valve affects the requests that are processed

• Debugging other valves and any other request-processing components that are config-
ured on the server

CHAPTER 7 ■ CONFIGURING TOMCAT 117

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 117

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

To configure a request dumper valve, modify server.xml, and add the following line to the
context, virtual host, or engine that you want to examine:

<Valve className="org.apache.catalina.valves.RequestDumperValve"/>

If you add the request dumper valve to the default server.xml file at the engine level, it
will use the logger shown in Listing 7-4.

Listing 7-4. An Engine-Level Logger

<!-- Global logger unless overridden at lower levels -->

<Logger className="org.apache.catalina.logger.FileLogger"

prefix="catalina_log." suffix=".txt"

timestamp="true"/>

For Tomcat 6, you’d use the following logger for logging at the host level; each line of the
log has INFO priority:

log4j.logger.org.apache.catalina.core.ContainerBase.[Catalina].[localhost]

If you wanted logging at the context level, assuming that your context is called tomcatBook,
you’d use the following:

log4j.logger.org.apache.catalina.core.ContainerBase.

[Catalina].[localhost].[/tomcatBook]

This means the request dumper valve inherits the logger from a higher-level component,
which isn’t always desirable if you’re troubleshooting a specific web application’s request- or
response-processing pipeline.

After you’ve set up the valve, visit a web application that will be covered by the valve. Once
your request has been processed, open the appropriate log file. You should see something
similar to Listing 7-5. The version of Tomcat and the settings of your logger may differ, though
the messages will be the same.

Listing 7-5. The Output of the Request Dumper Valve

REQUEST URI=/tomcatBook/

authType=null

characterEncoding=null

contentLength=-1

contentType=null

contextPath=/tomcatBook

cookie=JSESSIONID=7F31F129712D208903FC6F50FD5143EA

header=host=localhost:8080

header=user-agent=Mozilla/5.0

(Windows; U; Windows NT 5.0; rv:1.7.3) Gecko/20040913 Firefox/0.10.1

header=accept=text/xml,application/xml,application/xhtml+xml,

text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

header=accept-language=en-us,en;q=0.5

header=accept-encoding=gzip,deflate

header=accept-charset=ISO-8859-1,utf-8;q=0.7,*;q=0.7

CHAPTER 7 ■ CONFIGURING TOMCAT118

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 118

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

header=keep-alive=300

header=connection=keep-alive

header=cookie=JSESSIONID=7F31F129712D208903FC6F50FD5143EA

locale=en_US

method=GET

pathInfo=null

protocol=HTTP/1.1

queryString=null

remoteAddr=127.0.0.1

remoteHost=127.0.0.1

remoteUser=null

requestedSessionId=7F31F129712D208903FC6F50FD5143EA

scheme=http

serverName=localhost

serverPort=8080

servletPath=/index.jsp

isSecure=false

authType=null

contentLength=-1

contentType=text/html;charset=ISO-8859-1

message=null

remoteUser=null

status=200

===

As you can see, this listing contains a fair amount of information, all of which can be used
to analyze a client’s interaction with your server. A word of warning, though: this valve decodes
any parameters sent with the request using the platform’s default encoding. This may affect web
applications on the server because calls to request.setCharacterEncoding() will have no effect.

Using Single Sign-on Valves
Another standard valve that’s frequently used is the single sign-on valve. Conventionally, when-
ever users of a web application reach a protected page, they will be required to log in, a process
that’s repeated if they browse to another web application on the same server. Using single sign-on,
it’s possible to eliminate this repetition, provided that all the web applications on a host use the
same Tomcat realm.

The single sign-on valve caches users’ credentials on the server and will authenticate users
as they move among web applications on a host. The credentials are cached in the client’s ses-
sion, which means that a single sign-on will be effective throughout a session. The user’s browser
will send a cookie with a value that uniquely identifies this user as a user who has signed in. The
valve then associates the new request with the existing user credentials and allows the user to
visit protected resources. This is one of the main reasons for having a common realm for the host.

Table 7-4 describes the attributes of the single sign-on valve.

CHAPTER 7 ■ CONFIGURING TOMCAT 119

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 119

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 7-4. The Attributes of the Single Sign-on Valve

Attribute Description Required?

className The Java class of the valve. This must be org.apache. Yes
catalina.authenticator.SingleSignOn.

requireReauthentication Determines whether the valve should use the No
authentication realm to authenticate the user every
time authentication is required. If false, the valve
uses the cookie sent by the client and automatically
authenticates the user without rechecking the realm.
The default is false.

Configuring a Single Sign-on Valve

Before seeing what single sign-on does, you should first experience the problem that some-
times makes it necessary to configure single sign-on. You’ll need two separate, protected web
applications. Luckily Tomcat comes with two such web applications: the manager application
and the admin application. If you’re using Tomcat 6, you’ll have to download the admin applica-
tion or protect another application for this example to work (this was covered in Chapter 6).

You should already have a user who has the manager role required for access to the manager
application and a user who has the admin role required for access to the admin application. You
may even have a user who has both. If not, you must create one in tomcat-users.xml now, as
shown in Listing 7-6.

Listing 7-6. A User with Manager and Admin Roles Defined in tomcat-users.xml

<role rolename="manager"/>

<role rolename="admin"/>

<user username="tomcat" password="tomcat" roles="tomcat,manager,admin"/>

Here, the tomcat user has three roles: tomcat, manager, and admin. Now, start (or restart)
Tomcat, and navigate to http://localhost:8080/manager/html/. You’ll be asked for your user
details as usual. Sign in as the user with both roles. Once you’ve done so, you should see the
web interface of the manager application.

The next step is to navigate to http://localhost:8080/admin/. You’ll be presented with
the form for logging into the admin application, which means your login for the manager appli-
cation hasn’t carried over into the admin application despite the details being valid for both.
This is where single sign-on comes in.

Open server.xml, and navigate to the valve as shown in Listing 7-7. It’s the first valve in
the localhost host, after the large commented-out section.

Listing 7-7. The Single Sign-on Valve in server.xml

<!-- Normally, users must authenticate themselves to each web app

individually. Uncomment the following entry if you would like

a user to be authenticated the first time they encounter a

resource protected by a security constraint, and then have that

user identity maintained across *all* web applications contained

in this virtual host. -->

<!--

CHAPTER 7 ■ CONFIGURING TOMCAT120

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 120

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<Valve className="org.apache.catalina.authenticator.SingleSignOn"

debug="0"/>

-->

Uncomment the valve, and restart Tomcat. Make sure you’ve closed your browser windows
to start a new session, and navigate to http://localhost:8080/manager/html/ as before. Log in
as the user with both roles again. Once you’ve logged in successfully, navigate to http://
localhost:8080/admin/. This time, you won’t be asked to log in again, because the valve will
recognize you from the cookie sent by your browser and will authenticate you.

Configuring User Sessions
Sessions can play an important part in a server’s performance and its ability to service client
requests. When you shut down Tomcat, all session information is usually lost, and sessions
that are idle take up valuable working memory until the session timeout—which is typically
a long period, since some users may leave their computers. Therefore, it would be useful to
save session information across restarts so that users don’t experience a loss of service. Equally,
it may be useful to remove idle sessions from memory and store them elsewhere to improve
performance.

To solve these problems, Tomcat comes with session managers, which are works in progress,
with features and configuration that are subject to change.

You can do the following with the session managers:

• You can swap inactive sessions onto disk, thereby releasing the memory consumed by
them and making memory available for active sessions.

• You can save current sessions to disk when you shut down Tomcat; upon restart, the
saved sessions are restored.

• You can save sessions lasting beyond a specified threshold period to disk, enabling the
system to survive an unexpected crash.

The last two features enable you to give a reliable service to users despite minor server
failures or restarts.

Tomcat also allows you to configure clustering so that you can replicate a users’ session
across more than one server, thus minimizing the risk of losing their information when one
server crashes or becomes unavailable.

Configuring a Session Manager
The session manager is a context-level component, and you configure it in server.xml using
the <Manager> element. Tomcat provides two types of session manager: the standard session
manager and the persistent session manager. The standard session manager is the default
session manager that Tomcat uses if you don’t specify one of your own, and it doesn’t allow for
persistent session management, except that it can retain sessions across a restart. You can still
configure a custom standard session manager for a web application. The persistent session
manager allows you to perform all the tasks described previously.

CHAPTER 7 ■ CONFIGURING TOMCAT 121

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 121

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Both types of session manager share two attributes, shown in Table 7-5.

Table 7-5. The Common Session Manager Attributes

Attribute Description Required?

className The class that implements the session manager. The default is No
the standard session manager.

distributable Sets whether the session manager should enforce the restrictions No
described in the Servlet specification for distributable applications.
This means that all session attributes must implement
java.io.Serializable. This setting can also be inherited
from an application’s web.xml file. The default is false.

If you want to configure the standard implementation, you must set the className attribute
to org.apache.catalina.session.StandardManager. Table 7-6 describes its additional attributes.

Table 7-6. The Standard Session Manager Attributes

Attribute Description Required?

algorithm Name of the message digest algorithm used to calculate No
session identifiers produced by this manager. This value must
be supported by the java.security.MessageDigest class.
The default is MD5.

checkInterval The number of seconds between checks for expired sessions No
for this manager. The default is 60.

entropy A String value that’s used when seeding the random No
number generator used to create session identifiers for this
manager. If not specified, a semi-useful value is calculated,
but a long String value should be specified in
security-conscious environments.

maxActiveSessions The maximum number of active sessions that will be created No
by this manager. Use -1 (the default) for no limit.

pathname Absolute or relative (to the work directory for this context, No
CATALINA_HOME/work/[Engine_name]/[Host_name]/
[Webapp_name]) pathname of the file in which session state
will be preserved across application restarts, if possible.
You may disable restart persistence by setting this attribute
to an empty string. The default is SESSIONS.ser.

randomClass Java class name of the java.util.Random implementation No
class to use. The default is java.security.SecureRandom.

To configure a persistent session manager, you need to set the className attribute to
org.apache.catalina.session.PersistentManager. Table 7-7 describes its additional attributes.

CHAPTER 7 ■ CONFIGURING TOMCAT122

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 122

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 7-7. The Persistent Session Manager Attributes

Attribute Description Required?

algorithm Name of the message digest algorithm used to No
calculate session identifiers produced by this manager.
This value must be supported by the java.security.
MessageDigest class. The default is MD5.

checkInterval The number of seconds between checks for expired No
sessions for this manager. The default is 60.

entropy A String value that’s used when seeding the random No
number generator used to create session identifiers for
this manager. If not specified, a semi-useful value is
calculated, but a long String value should be specified
in security-conscious environments.

maxActiveSessions The maximum number of active sessions that will be No
created by this manager. Use -1 (the default) for
no limit.

maxIdleBackup The time in seconds since the last access to a session No
before it’s eligible for being persisted to the session
store. -1 (the default) disables this feature.

maxIdleSwap The time in seconds since the last access to a session No
before it should be persisted to the session store and
taken out of the server’s memory. If this feature is
enabled, the time interval specified should be equal
to or longer than the value specified for
maxIdleBackup. -1 (the default) disables this feature.

minIdleSwap The time in seconds since the last access to a session No
before it will be eligible to be persisted to the session
store and taken out of the server’s memory. If specified,
this value should be less than that specified by
maxIdleSwap. -1 (the default) disables this feature
and allows the swap at any time.

processExpiresFrequency Frequency of the session expiration and related No
manager operations. Manager operations will be done
once for the specified amount of background process
calls. (That is, the lower the amount, the more often the
checks will occur.) The minimum value is 1. The
default is 6.

randomClass Java class name of the java.util.Random No
implementation class to use. The default is
java.security.SecureRandom.

saveOnRestart Specifies whether all sessions should be persisted No
and reloaded when Tomcat is shut down and
restarted or when this application is reloaded. The
default is true.

The differences between the standard session manager and the persistent session man-
ager are illustrated by their attributes. The persistent session manager has options for saving
sessions to permanent storage at any point in their life cycles, as well as when you shut down
the server, using the maxIdleBackup attribute. It also has options to move sessions out of mem-
ory after a certain period using the maxIdleSwap and minIdleSwap methods. You also have
control over whether to save the sessions over a restart using the saveOnRestart attribute.

CHAPTER 7 ■ CONFIGURING TOMCAT 123

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 123

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

One crucial difference between the sets of attributes is the absence of a location for storing
the session in Table 7-7. In the case of the persistent session manager, you configure the ses-
sion store using the <Store> subelement. Tomcat allows you to configure two types of store:
a file store and a JDBC store.

The file store is the same mechanism used by the standard session manager, except you
can use the extra functionality of the persistent session manager. To configure a file store, set
the className attribute to org.apache.catalina.session.FileStore, and use the attributes
from Table 7-8.

Table 7-8. The Persistent File Store Attributes

Attribute Description Required?

checkInterval The interval in seconds between checks for expired sessions No
among those sessions that are currently swapped out. The
default is 60.

className Java class name of the implementation to use. Yes

directory Absolute or relative (to the temporary work directory for this No
web application, CATALINA_HOME/work/[Engine_name]/
[Host_name]/[Webapp_name]) pathname of the directory into
which individual session files are written. The default is the
temporary work directory assigned by the container.

The JDBC store uses JDBC to store the sessions in a permanent data store, usually a database.
To configure a JDBC store, set the className attribute to org.apache.catalina.session.JDBCStore,
and use the attributes from Table 7-9.

Table 7-9. The Persistent JDBC Store Attributes

Attribute Description Required?

checkInterval The interval in seconds between checks for expired No
sessions among those sessions that are currently
swapped out. The default is 60.

className Java class name of the implementation to use. Yes

connectionURL The connection URL that will be handed to the Yes
configured JDBC driver to establish a connection to
the session database.

driverName Java class name of the JDBC driver to be used. Yes

sessionAppCol Name of the database column in the specified session Yes
table that contains the engine, host, and context name
in the format /Engine/Host/Context.

sessionDataCol Name of the database column in the specified session Yes
table that contains the serialized form of all the session
attributes for a swapped-out session. The column type
must accept a binary object (typically called a BLOB).

sessionIdCol Name of the database column in the specified session Yes
table that contains the session identifier of the swapped-
out session. The column type must accept character
string data of at least as many characters as are
contained in session identifiers created by Tomcat
(typically 32).

CHAPTER 7 ■ CONFIGURING TOMCAT124

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 124

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Attribute Description Required?

sessionLastAccessedCol Name of the database column in the specified session Yes
table that contains the lastAccessedTime property of
this session. The column type must accept a Java long
(64 bits).

sessionMaxInactiveCol Name of the database column in the specified session Yes
table that contains the maxInactiveInterval property
of this session. The column type must accept a Java
integer (32 bits).

sessionTable Name of the database table to be used for storing Yes
swapped out sessions. This table must contain (at least)
the database columns that are configured by the other
attributes of this element.

sessionValidCol Name of the database column in the specified session Yes
table that contains a flag indicating whether this
swapped-out session is still valid. The column type must
accept a single character.

To use the JDBC store, you must create a suitable database in which to store sessions.
Listing 7-8 shows an example SQL script for a MySQL database.

Listing 7-8. A SQL Script for MySQL that Creates a JDBC-Store–Compatible Database

CREATE TABLE tomcat_sessions (

session_id VARCHAR(100) NOT NULL PRIMARY KEY,

valid_session CHAR(1) NOT NULL,

max_inactive INT(32) NOT NULL,

last_access INT(64) NOT NULL,

app_name VARCHAR(255),

session_data MEDIUMBLOB,

KEY kapp_name(app_name)

);

Listing 7-9 shows how to configure a JDBC store in server.xml using this table.

Listing 7-9. A Persistent Session Manager Using a JDBC Store in server.xml

<Manager className="org.apache.catalina.session.PersistentManager"

maxIdleBackup="300"

minIdleSwap="0"

maxIdleSwap="360">

<Store className="org.apache.catalina.session.JDBCStore"

connectionURL="jdbc:mysql://localhost:3306/tomcatSession"

driverName="com.mysql.jdbc.Driver"

sessionAppCol="app_name"

sessionDataCol="session_data"

sessionIdCol="session_id"

sessionLastAccessedCol="last_access"

CHAPTER 7 ■ CONFIGURING TOMCAT 125

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 125

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

sessionMaxInactiveCol="max_inactive"

sessionTable="tomcat_sessions"

sessionValidCol="valid_session"/>

</Manager>

Notice how the attributes of the <Store> element correspond to the columns created in
Listing 7-8. The settings in the <Manager> element tell Tomcat that sessions left for five minutes
(300 seconds) are eligible to be backed up to the store, that sessions can be taken out of mem-
ory and placed in the store at any time, and that sessions left for six minutes (360 seconds) should
be taken out of memory and placed in the store.

If you use this setup and check the database periodically, you’ll see that it’s empty until either
the session backup limit is reached or the server is shut down. Once either of these events occurs,
Tomcat will save the session to the database.

Configuring a Cluster
Tomcat also allows you to implement a clustered environment, so you can replicate user sessions
across multiple servers to ensure that they don’t lose any data. For clustering to work, you’ll
have to use some form of load balancing and activate multicasting. Chapter 9 discusses this.

Each Tomcat instance is a node of the cluster and must report in on multicast ping. If a node
fails to report for a certain amount of time, the other nodes don’t attempt to replicate any session
changes to it. Replicating user sessions across nodes is determined by a set of rules, which is
described next. The clustering implementation uses a session manager that overrides any other
session manager in the Tomcat instance.

A cluster is defined at the host level using the <Cluster> element, and Tomcat’s default
server.xml comes with a very serviceable example cluster setup. Table 7-10 shows the attributes
of the <Cluster> element using the standard implementation org.apache.catalina.cluster.
tcp.SimpleTcpCluster.

Table 7-10. The Attributes of the <Cluster> Element

Attribute Description Required?

className The class that implements this cluster. Use Yes
org.apache.catalina.cluster.tcp.
SimpleTcpCluster.

expireSessionsOnShutdown Set to true to remove sessions when this cluster No
node is shut down. The default is true.

managerClassName The name of the manager class that looks after the No
sessions. Use org.apache.catalina.cluster.
session.DeltaManager, which is the default.

clusterName Set the name of the cluster to join; if no cluster with No
this name is present, create one.

notifyListenersOnReplication Set to true to notify attribute/context listeners No
upon replication of a session change. These
listeners are configured on an application-by-
application basis. The default is true.

printToScreen Set to true to write session information to std.out. No
The default is false.

CHAPTER 7 ■ CONFIGURING TOMCAT126

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 126

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Attribute Description Required?

protocol Sets the configurable protocol stack. However, this No
setting has no function at the time of this writing.

useDirtyFlag Set to false to replicate a session only after a call No
to setAttribute() or removeAttribute(). In other
words, replicate only after session information has
changed. Set to true to replicate the session after
each request. The default is false.

Listing 7-10 shows the setting from Tomcat 6’s server.xml.

Listing 7-10. The Default Cluster Setting in Tomcat 6’s server.xml

<Cluster className="org.apache.catalina.cluster.tcp.SimpleTcpCluster"

managerClassName="org.apache.catalina.cluster.session.DeltaManager"

expireSessionsOnShutdown="false"

useDirtyFlag="true"

notifyListenersOnReplication="true">

These cluster settings should be the same for all nodes of the cluster.

Configuring a Node’s Membership
Now you need to configure this node’s membership credentials using a <Membership> element
with the standard org.apache.catalina.cluster.mcast.McastService implementation. This is
a subelement of <Cluster>, and Table 7-11 shows its attributes.

Table 7-11. The Attributes of the <Membership> Element

Attribute Description Required?

className The class that implements this membership setting. Use Yes
org.apache.catalina.cluster.mcast.McastService.

mcastAddr The multicast address that this cluster uses to maintain its Yes
cohesion. Each node will ping this address to inform the rest
of the cluster that it’s still active. This setting has to be the same
for all the nodes.

mcastBindAddr This setting binds the multicast socket to a specific address. The No
default is null.

mcastDropTime The number of milliseconds from the last multicast heartbeat Yes
before a node is considered to be unavailable.

mcastFrequency The number of milliseconds between each multicast heartbeat. Yes

mcastPort The multicast port that this cluster uses to maintain its Yes
cohesion. This setting has to be the same for all the nodes.

mcastSoTimeout The multicast read timeout. The read of the pings by other No
nodes will last as long as this value. The default is -1 (no timeout).

mcastTTL The multicast’s time to live if you want to limit your broadcast. No
The heartbeat ping will last only as long as this value. The
default is -1 (no timeout).

CHAPTER 7 ■ CONFIGURING TOMCAT 127

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 127

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 7-11 shows the setting from Tomcat 5.5’s server.xml.

Listing 7-11. The Default Membership Setting in Tomcat 5.5’s server.xml

<Membership

className="org.apache.catalina.cluster.mcast.McastService"

mcastAddr="228.0.0.4"

mcastPort="45564"

mcastFrequency="500"

mcastDropTime="3000"/>

All these settings should be the same for each node on the cluster.

Configuring a Node’s Receiver
A node in a cluster receives replication information so that it can synchronize its sessions with
the other nodes in the cluster. You achieve this by using a <Receiver> element with the stan-
dard org.apache.catalina.cluster.tcp.ReplicationListener implementation in server.xml.
These settings are unique to a node, and Table 7-12 describes the relevant attributes.

Table 7-12. The Attributes of the <Receiver> Element

Attribute Description Required?

className The class that implements this receiver. Use org.apache. Yes
catalina.cluster.tcp.ReplicationListener.

isSenderSynchronized If set to true, this node will send an acknowledgment to No
the replication sender. The default is false.

tcpListenAddress The TCP address that this node will listen on for session Yes
replication. Setting this to auto means that the address is
determined with a call to InetAddress.getLocalHost().
getHostAddress(). In other words, the local address of
the machine.

tcpListenPort The TCP port that this node will listen on for session No
replication. The default is 0, which lets the system pick
up an ephemeral port.

tcpSelectorTimeout The timeout in milliseconds for the Selector.select() No
method in case the operating system has a bug in java.
nio. Set to 0 for no timeout, which is the default.

tcpThreadCount The number of threads to handle incoming replication No
requests. The optimal setting would be the same amount
of threads as nodes in this cluster. The default is 0.

Listing 7-12 shows the setting from Tomcat 6’s server.xml.

Listing 7-12. The Default Receiver Setting in Tomcat 6’s server.xml

<Receiver

className="org.apache.catalina.cluster.tcp.ReplicationListener"

tcpListenAddress="auto"

tcpListenPort="4001"

CHAPTER 7 ■ CONFIGURING TOMCAT128

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 128

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

tcpSelectorTimeout="100"

tcpThreadCount="6"/>

Configuring a Node’s Sender
Just as a node must receive replication information, it must send replication information when
one of its sessions changes. You achieve this by using a <Sender> element with the standard
org.apache.catalina.cluster.tcp.ReplicationTransmitter implementation in server.xml.
Table 7-13 describes these settings.

Table 7-13. The Attributes of the <Sender> Element

Attribute Description Required?

className The class that implements this sender. Use org.apache. Yes
catalina.cluster.tcp.ReplicationTransmitter.

waitforAck Should the server wait to receive an acknowledgment. No

replicationMode Can be pooled, synchronous, or asynchronous. The default is No
pooled.

The settings for replicationMode are as follows:

• synchronous ensures that the thread that executes the request is also the thread that
replicates the data to the other nodes. It won’t return until all the nodes in the cluster
have received the information. It does this by waiting for an acknowledgment.

• pooled uses several sockets in a synchronous way; that is, the data is replicated, and
then the receiving node sends an acknowledgment. This is the same as synchronous
except that it uses a pool of sockets, meaning it’s multithreaded. This is the fastest and
safest configuration. Ensure that you have enough threads, as advised previously.

• asynchronous states that there’s a specific sender thread for each node, so the request
thread will queue the replication request and then return to the client. A session is
added to the queue, and if the same session already exists in the queue from a previous
request, that session will be replaced in the queue instead of replicating two requests.
This almost never happens, unless there’s a large network delay.

Listing 7-13 shows the setting from Tomcat 6’s server.xml.

Listing 7-13. The Default Sender Setting in Tomcat 6’s server.xml

<Sender

className="org.apache.catalina.cluster.tcp.ReplicationTransmitter"

replicationMode="pooled"

ackTimeout="15000" waitForAck="true" />

CHAPTER 7 ■ CONFIGURING TOMCAT 129

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 129

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring a Node’s Replication Valve
It’s not always necessary to replicate session state after every request. You’ve already seen the
useDirtyFlag attribute of the <Cluster> element. This allows you to replicate session informa-
tion only after a change in the session state.

You have other ways to save on the overhead and network traffic involved in session repli-
cation. One is to not replicate a session after a request for a static resource, such as an HTML
page or an image. This may not apply in all cases, but you can do it if you want to use a <Valve>

element with the org.apache.catalina.cluster.tcp.ReplicationValve implementation.
Table 7-14 describes its attributes.

Table 7-14. The Attributes of the Replication <Valve> Element

Attribute Description Required?

className The class that implements this valve. Use org.apache.catalina. Yes
cluster.tcp.ReplicationValve.

filter A set of regular expressions matching file extensions. The valve will Yes
intercept requests that match these regular exceptions and bypass
the replication mechanism.

Listing 7-14 shows the setting from Tomcat 6’s server.xml.

Listing 7-14. The Default Replication Valve Setting in Tomcat 6’s server.xml.

<Valve className="org.apache.catalina.cluster.tcp.ReplicationValve"

filter=“.*\.gif;.*\.js;.*\.jpg;

.*\.png;.*\.htm;.*\.html;.*\.css;.*\.txt;”/>

Here, you can see that the filter won’t allow replication after requests for images, JavaScript,
HTML, and text files.

If you use this valve, the session replication algorithm is as follows (a session is replicated
only if all the following conditions are met):

• useDirtyFlag is true, or setAttribute has been called, or removeAttribute has been called.

• And a session exists (has been created).

• And the request isn’t trapped by the filter attribute of the replication valve.

Configuring a Node’s Deployer
A node can also deploy and undeploy local web applications across the cluster using WAR files.
This allows you to quickly and easily drop a web application into the cluster for immediate use
and replication. You achieve this by using a <Deployer> element with the standard implemen-
tation org.apache.catalina.cluster.deploy.FarmWarDeployer in server.xml. Table 7-15
describes these settings.

CHAPTER 7 ■ CONFIGURING TOMCAT130

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 130

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 7-15. The Attributes of the <Deployer> Element

Attribute Description Required?

className The class that implements this deployer. Use org.apache. Yes
catalina.cluster.deploy.FarmWarDeployer.

deployDir The directory where this node will deploy the WAR once No
it has been dropped into the watchDir. The default is
CATALINA_HOME/bin.

tempDir The temporary work directory for this node. The default No
is null.

watchEnabled Set to true to watch the watchDir for WAR files and No
changes to WAR files. The default is false.

watchDir The directory where you place new WARs for deployment Only if
across the cluster. watchEnabled is

true

When a WAR is dropped into watchedDir, Tomcat copies it to deployDir and creates a con-
text XML file in CATALINA_HOME/conf/[Engine]/[Host], which is named after the WAR file.
The resultant <Context> element’s docBase attribute will point to the WAR file in deployDir.
Listing 7-15 shows an example.

Listing 7-15. An Example Context XML File After a Node Has Deployed a WAR

<?xml version='1.0' encoding='utf-8'?>

<Context docBase="/C:/JavaStuff/Tomcat/Tomcat29/deployDir/format.war"

path="/format">

</Context>

Listing 7-16 shows the setting from Tomcat 6’s server.xml.

Listing 7-16. The Default Deployer Setting in Tomcat 6’s server.xml

<Deployer className="org.apache.catalina.cluster.deploy.FarmWarDeployer"

tempDir="/tmp/war-temp/"

deployDir="/tmp/war-deploy/"

watchDir="/tmp/war-listen/"

watchEnabled="false"/>

This doesn’t watch for any WAR files, and therefore won’t deploy any applications to the
cluster.

Summary
In this chapter, you saw Tomcat’s proprietary system of valves that you can use to intercept
requests. The various types of valves can block access to a resource, log details of the intercepted
request, and log details of web application access. You can also use valves to implement single
sign-on, so a user can log into every web application running on a server.

CHAPTER 7 ■ CONFIGURING TOMCAT 131

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 131

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

You also saw Tomcat’s session managers, which can ensure that user sessions are persisted
across server restarts and crashes and can give Tomcat the ability to move inert sessions out of
memory, thus boosting performance. You can configure the location of these sessions, with
the choice being between files or JDBC data sources.

You also saw how you extend this mechanism with Tomcat’s clustering mechanism, which
allows you to provide a more robust service to your users.

CHAPTER 7 ■ CONFIGURING TOMCAT132

7850ch07FINAL.qxd 2/28/07 10:51 AM Page 132

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Understanding Tomcat’s
Class Loaders

Tomcat is intrinsically linked with the Java programming language; it’s written in Java, and
Java applications run on it. As such, it’s governed by the rules and attributes of the Java specifi-
cation, two of which are platform independence and suitability for distributed network
architectures.

To realize both of these goals, Java employs many innovative techniques, one of which is
how it loads code libraries. If Java is to be platform independent, it can’t rely on a specific type,
or types, of file system. In addition, Java is designed to load code libraries from sources spread
across a network, so it can’t just load them from a single file system.

The Java architects introduced class loaders to deal with these issues. A class loader abstracts
the process of loading classes, making the process completely independent of any type of
underlying data store, be it a network or a hard drive. Tomcat and its web applications use
class loaders just as any other Java application does. However, as a servlet/JSP container Tomcat
must provide class loaders to its web applications. You’ve already read a quick discussion of
this in Chapter 3, where you saw the locations for Tomcat’s class loaders. This chapter will
expand on that discussion to give you a more complete picture of Tomcat and of class loaders,
starting at the bottom with Java SE class loaders.

Examining the Standard Java SE Class Loaders
Since J2SE 1.2, the JVM has used three distinct class loaders:

• Bootstrap class loader

• Extension class loader

• System class loader

These class loaders sit in a hierarchy with the bootstrap class loader at the top and the system
class loader at the bottom. They have parent-child relationships, so the parent of the system class
loader is the extension class loader. The bootstrap class loader is written in native code and is
included in the JVM, and the other two class loaders, like Tomcat’s class loaders, are written
in Java.

133

C H A P T E R 8

■ ■ ■

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 133

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS134

The Bootstrap Class Loader
The JVM uses the bootstrap class loader to load those Java classes that are necessary for it to
function. This means the bootstrap class loader loads all the core Java classes (such as java.lang.*
and java.io.*).

As noted previously, the bootstrap class loader is written in native code, so it solves the
circular problem of loading Java-based class loaders when the initial class loader itself must be
loaded. The classes it loads are located in different locations depending on the JVM vendor.
They’re always in JAR files, and Sun stores them in JAVA_HOME/jre/lib/.

The Extension Class Loader
With J2SE 1.2 came the standard extension mechanism. Normally, when developers want the
JVM to load class files that aren’t in the bootstrap classpath, they use the CLASSPATH environ-
ment variable. Sun introduced the standard extension mechanism as an alternative method;
you can drop JAR files into a standard extension directory, and the JVM will automatically
find them.

The extension class loader is responsible for loading all the classes in one or more exten-
sion directories. Just as the bootstrap class loader’s path can vary on different JVMs, so can the
standard extension path. On Sun’s JVM, the standard extension directory is JAVA_HOME/jre/
lib/ext/.

One advantage of the standard extension mechanism is that developers don’t have to
struggle with a huge CLASSPATH environment variable as they add more and more libraries
to their systems.

The System Class Loader
The system class loader places its classes in those directories and JAR files specified in the
CLASSPATH environment variable. The system class loader is also used to load an application’s
main class and is the default class loader for loading any other classes not covered by the pre-
vious two class loaders.

The Delegation Model
So, Java SE has three different class loaders, but how does the JVM know which class loader to
use? The answer is in the delegation model. In every version of Java since J2SE 1.2, whenever
a class loader receives a request to load a class, it first asks its parent to fulfill the request. (In
other words, it delegates the request to its parent class loader.) If the parent loads the class
successfully, the resulting class object is returned. The original class loader attempts to load
the class itself only if its parent (and its parent’s parent, and so on) fails to load the class.

Thus, when a developer references a class in a Java program, the JVM will automatically
route a request to the system class loader to load the class. The system class loader will then
request that the extension class loader load the specified class, which in turn will request that
the bootstrap class loader load the class. The process stops with the bootstrap class loader,
which will check the core Java libraries for the requested class.

If the class doesn’t exist in the core libraries, the extension class loader will check the stan-
dard extensions for the class. If it’s still not found, then the system class loader will check the
locations specified by the CLASSPATH variable for the class. If the class still cannot be located,
then a ClassNotFoundException exception will be thrown.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 134

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS 135

The Endorsed Standards Override Mechanism
Following the previous discussion, when a developer uses a class in a Java application, the request
to load it is passed up the class loader hierarchy. This means that if the bootstrap class loader
can load a class, it will load it even if the class is present in the scope of another class loader. For
example, J2SE 1.4 and 1.5 include a Java API for XML Processing (JAXP) XML parser as standard,
which, as a consequence, is loaded by the bootstrap class loader. In this case, developers can’t
place their preferred XML parser in an application’s CLASSPATH because the system class loader
always defers to the bootstrap class loader.

The Endorsed Standards Override Mechanism solves this problem. If a developer places
JAR files that replace the standard XML parser in some specific location, the bootstrap class
loader will load the classes from those JAR files instead. In J2SE 1.4 and 1.5, this location is
JAVA_HOME/lib/endorsed/. Users can change the path for this mechanism by setting the
java.endorsed.dirs property.

Before you start thinking about replacing any of the core libraries, Java allows you to override
only certain packages. You can find the complete list of packages in the J2SE 5 documentation
(http://java.sun.com/j2se/1.5.0/docs/guide/standards/). In summary, you can override
only the CORBA classes and the XML parser classes with this mechanism.

Understanding Class Loader Attributes
Now that you’ve seen the standard Java class loaders and the delegation model that governs
how these class loaders interact, let’s talk more about how class loaders work.

Loading Classes on Demand
The three class loaders don’t preload all the classes in their scopes. Instead, they load the
classes on demand. This is called lazy loading because the class loader doesn’t load the data
until it’s requested. Although laziness in human beings is generally regarded as negative, it’s
actually quite a good thing for class loaders. The reasons are as follows:

• Faster performance: If each class loader had to load every class, it would take much
longer to initialize the JVM.

• Efficiency: Loading in the classes would consume more memory than necessary if
loaded early.

• Flexibility: JAR files and classes can be added to the search paths of all the class loaders
even after the class loaders have been initialized.

Note that when a class is loaded, all its parent classes must also be loaded. Thus, if ClassB
extends ClassA, and ClassB is loaded, then ClassA is also loaded.

Class Caching
The standard Java SE class loaders look up classes on demand, but once a class is loaded into
a class loader, it will stay loaded (cached) for as long as the JVM is running.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 135

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS136

Separate Namespaces
Each class loader has its own unique namespace. In other words, if the bootstrap class
loader loads a class named sun.misc.ClassA, and the system class loader loads a class named
sun.misc.ClassB, the two classes will be considered to be in distinct packages, and each class
won’t have access to the other class’s package-private members.

Creating a Custom Class Loader
A developer can even create custom class loaders, though it may seem like a pointless exercise.
However, creating custom class loaders is fairly easy and doing so can, in fact, give an applica-
tion an incredible amount of flexibility. While creating custom class loaders is beyond the scope
of this book, it’s worth noting that Tomcat extensively uses them.

Understanding Security and Class Loaders
Class loading is at the center of the Java security model. After all, if a rogue third party were to
get an application to load a custom version of java.lang.String that had the nasty side effect
of deleting the hard drive whenever it was instantiated, it would be problematic for users and
for Sun. Understanding the security features of the class loader architecture will help you
understand how Tomcat’s class loader system works.

The Java class loader architecture tackles the security problem with the following strategies:

• Class loader delegation

• Core class restriction

• Separate class loader namespace creation

• Security management

Class Loader Delegation
The delegation model is often described as a security feature. After all, it seems like it should
be: anyone trying to load false versions of the core Java classes will fail because the bootstrap
class loader has priority and will always find the genuine copies of the core Java classes.

However, the delegation model is flawed as a security mechanism because class loaders
aren’t required to implement it. In other words, if you want to create a class loader that doesn’t
follow the delegation model, you’re free to do so.

So, if a custom class loader doesn’t have to delegate requests to the system class loader,
what’s to stop a custom class loader from loading its own copy of java.lang.String?

Core Class Restriction
Fortunately, it’s not possible for any class loader written in Java to instantiate a core Java class.
The ClassLoader abstract class, from which all class loaders must descend, blocks the creation
of any class whose fully qualified name begins with java. Thus, no false java.* classes are allowed.
As the bootstrap class loader isn’t written in Java and doesn’t descend from ClassLoader, it’s not
subject to this restriction.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 136

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS 137

By implication, this restriction indicates that all class loaders must at least delegate to the
bootstrap class loader; otherwise, when the class is loaded, the class loader has no way to load
java.lang.Object, from which all objects must descend.

Thus, the delegation model by itself doesn’t provide security. It’s the core class restriction
mechanism that prevents rogue class loaders from tampering with the core Java libraries (at
least at run time).

Separate Class Loader Namespaces
As you saw earlier, each class loader has its own namespace, so you can load two different
classes with the same fully qualified name. Having separate namespaces is an important secu-
rity feature because it prevents custom class loaders from stepping over each other or the system
class loader. No matter how hard a renegade class loader may try, it can’t replace a class loaded
by a different class loader; furthermore, it can’t access the package-private members in classes
of a package with the same name that was loaded from a different location.

Security Manager
If developers really want to make sure no one can damage their programs with custom
class loaders, they can simply disallow the use of custom class loaders altogether with the
SecurityManager class. This is Java’s general mechanism for applying security restrictions in
applications.

With a security manager, and its associated policy files, you can disallow (or allow) a large
number of tasks. For example, you can prevent a program from opening any socket to some
network host or prevent it from opening any file on the local file system. More important, you
can also prevent an application from loading a class loader. In fact, you have the following
options for preventing class-loader–related operations:

• You can prevent the loading of any class loader.

• You can prevent a reference to any class loader being obtained (including the system
class loader).

• You can prevent the context class loader of any thread being changed.

You have to perform only two steps:

1. Configure a policy file with the permissions you want for a given application.

2. Turn on the application’s security manager.

There’s a lot more to the security manager than this, so Chapter 12 is devoted to the subject.

Understanding Tomcat and Class Loaders
Tomcat builds on the standard Java class loaders by adding its own class loaders to the
hierarchy, as shown in Figure 8-1. They’re the common class loader, the server class loader,
the shared class loader, and the web application class loader. These are the class loaders you
saw in Chapter 3.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 137

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS138

Figure 8-1. Tomcat’s class loaders in the class loader hierarchy

As you can see, it’s not the same model of direct delegation. The common class loader
delegates to the server class loader. This means the web application class loaders don’t have
access to internal server classes, but the common class loader does.

Tomcat and the System Class Loader
Tomcat uses the default system class loader but clears the CLASSPATH environment variable in
its startup file. In its place, Tomcat sets CLASSPATH to the following:

• CATALINA_HOME/bin/bootstrap.jar

• CATALINA_HOME/bin/tomcat-juli.jar

• JAVA_HOME/lib/tools.jar

You’ll recall that the system class loader searches the CLASSPATH environment variable, but
since Tomcat sets CLASSPATH to the previously listed files, the system CLASSPATH variable is ignored
for the duration of Tomcat’s life cycle. This is an unending source of problems for web applica-
tions. As long as you remember that Tomcat has its own classpath that’s separate from the system
classpath, and that you can add classes to Tomcat’s classpath by using the directories listed in
the “Tomcat’s Common Class Loader” section, you won’t have any problems.

The bootstrap.jar file contains those classes necessary for Tomcat to start, and the
tools.jar file contains the javac compiler, which is used to compile JSP pages into class files
at run time. tomcat-juli.jar is used in Tomcat’s bootstrap logging.

Tomcat’s Common Class Loader
Next in the hierarchy is Tomcat’s common class loader, which loads those classes available to
Tomcat and all web applications. It loads these class files from the following location:

• CATALINA_HOME/lib/

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 138

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS 139

For JAR files, Tomcat includes a number of JAR files in CATALINA_HOME/lib/, as shown in
Table 8-1.

Table 8-1. The Contents of CATALINA_HOME/common/lib/

JAR File Description

annotations-api.jar Contains the annotation classes used that can be used since JDK 1.5.

catalina.jar The implementation of the core Tomcat 6 server.

catalina-ant.jar The Ant tasks used to run and manage Tomcat.

catalina-ha.jar The high-availability package included with Tomcat.

catalina-tribes.jar The Tomcat communication package.

el-api.jar The Expression Language (EL) API.

jasper.jar The Jasper 2 Compiler and Runtime, which turns the JSP files into
servlets.

jasper-el.jar The Jasper 2 Expression Language implementation.

jasper-jdt.jar The Eclipse JDT 3.2 Java compiler, which allows Tomcat to run with just
a JRE, without requiring the full JDK.

jsp-api.jar The JavaServer Pages (JSP) 2.1 API.

servlet-api.jar The Servlet 2.5 API.

tomcat-coyote.jar A collection of Tomcat connectors and utility classes.

tomcat-dbcp.jar Provides the database connection pooling mechanism and other object
pooling services.

tomcat-i18n-**.jar Available internationalization JARs. If you do not need these, simply
delete them or move them out of the lib directory.

Although developers can reference all these APIs, you shouldn’t allow them to place their
own classes or JARs in CATALINA_HOME/lib. If developers need classes and JAR files to be visible
to all web applications, you should place them where the shared class loader can see them.
Note that this doesn’t apply to well-known third-party libraries such as database drivers because
Tomcat often needs to have access to these classes, especially if you’re providing JDBC data
sources.

Putting custom classes in the common class loader path is to be discouraged for at least
two reasons:

• The custom classes could conceivably cause compatibility problems with Tomcat. For
example, if you placed your own XML parser in this directory and it wasn’t tested with
Tomcat, it could introduce hard-to-fix bugs. The same would be true if you introduced
an older version of the Servlet API into these paths.

• It’s easy to forget which classes/JAR files belong to developers and which belong to
Tomcat. Therefore, maintenance is tricky, especially for others who wouldn’t expect
user classes to be in those locations.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 139

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS140

Tomcat’s Web Application Class Loader
Each web application also has its own class loader, which looks in CATALINA_HOME/webapps/
[webapp]/WEB-INF/lib and /WEB-INF/classes for JARs and class files. Two things make the web
application class loader unique. First, each web application has its own instance of this class
loader, which means that web applications can’t see other people’s class files. Second, the web
application class loader doesn’t use the delegation pattern that class loaders are encouraged
to use. Instead, it tries to load classes first, before delegating the request to the other class
loaders. This behavior makes it easy for web applications to override classes in the shared and
common class loaders on a per-web-application basis.

Note that this doesn’t mean the web application class loader can override Java base classes.
It can’t.

The other exception is that the web application class loader will always delegate the follow-
ing class patterns:

• javax.*

• org.xml.sax.*

• org.w3c.dom.*

• org.apache.xerces.*

• org.apache.xalan.*

If a parent class loader doesn’t load these patterns, the web application class loader will
attempt to load them.

Revisiting Class Loader Order
To review how these various Tomcat class loaders work together, you’ll now see what happens
when an individual application requests a class. The class loaders in the following list look for
a class in the following order:

1. The bootstrap class loader looks in the core Java classes.

2. The system class loader looks in the following places:

• CATALINA_HOME/bin/bootstrap.jar

• CATALINA_HOME/bin/tomcat-juli.jar

• JAVA_HOME/lib/tools.jar

3. The web application class loader looks in CATALINA_HOME/webapp/[webapp]/WEB-INF/

classes and CATALINA_HOME/webapp/[webapp]/WEB-INF/lib.

4. The Common class loader looks in CATALINA_HOME/lib directory and loads all the
classes and JARs in the directory.

Dynamic Class Reloading
As discussed earlier, once a class loader has loaded a class, it caches the class. This means that
future requests for the class always receive the cached copy; thus, if the class on the file system
is changed while the JVM is running, the new class will be ignored.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 140

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS 141

However, because Tomcat uses its own class loader to load each web application, it can
accomplish dynamic class reloading simply by halting the web application and then reloading
it using a new class loader. The web application’s original class loader is thus orphaned,and
garbage is collected at the JVM’s convenience. This eliminates the need to restart the JVM when
new versions of classes are deployed.

You have two mechanisms for instructing Tomcat to reload a web application:

• You can configure Tomcat to scan WEB-INF/classes and WEB-INF/lib for changes.

• You can explicitly reload the web application with the Tomcat manager application.

Tomcat doesn’t direct its class loaders to dump their caches and reload from disk; rather,
when it detects a change or receives an explicit reload instruction, it reloads and restarts the
entire web application.

Avoiding Class Loader Pitfalls
A couple of common problems occur when dealing with Tomcat’s class loaders. The solutions
to these problems come from the information covered previously.

Packages Split Among Different Class Loaders
Each class loader has its own unique namespace, which has a practical application in Tomcat.
If you have multiple classes in the same package, the same class loader must load them all for
them to have access to other class loaders’ private, protected, or package-private members.

Singletons
A singleton is a class designed so that it can be instantiated only one time in any given JVM. Say
a developer wants to share a singleton among multiple web applications and wants to main-
tain the contract that only one instance be created in a single JVM.

Placing this class in the web application class loader path means that each web application
will create a new instance of this class, which isn’t what the developer intends. This is because
each web application has its own class loader and class loaders maintain distinct namespaces.

The solution is to place this class in the shared class loader path, where the singleton will
be shared among all web applications, as they all share the same class loader.

Summary
In this chapter, you learned how class loaders abstract the process of loading class files before
the first instantiation and make them available for use. Java’s class loaders support loading
classes from the local file system to the network and give developers the facility to create their
own custom class loaders. The three basic class loaders are the bootstrap, extension, and sys-
tem class loaders.

Class loaders use the delegation model. Every class loader passes the request to its parent
until the bootstrap class loader is reached and then each class loader looks for the class. If the
class can’t find it, it goes back down the chain. Implementing the delegation model is optional,
but class loaders can’t function if they don’t delegate to the bootstrap class loader at some point.
Also, some advantages exist in having a unique namespace for each class loader.

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 141

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Java security model prevents the misuse of custom class loaders by allowing only the
bootstrap class loader to load classes that start with java.*. Also, by using the security manager,
an application can forbid the use of custom class loaders.

Last, you saw that Tomcat has four class loaders: common, server, shared, and web applica-
tion. To share classes with all web applications, users should use the shared class loader.

CHAPTER 8 ■ UNDERSTANDING TOMCAT’S CLASS LOADERS142

7850ch08FINAL.qxd 2/28/07 10:54 AM Page 142

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Tomcat’s Connectors

When you use Tomcat out of the box to run web applications, it’s able to serve HTML pages
without any additional configuration. This is because it comes with an HTTP connector that
can handle requests from a user’s web browser. Because of this connector, Tomcat can func-
tion as a stand-alone web server and serve static HTML pages in addition to handling servlets
and JSP pages.

Tomcat connectors provide the external interface to Tomcat clients. Two kinds of connectors
exist—those that implement an HTTP stack of their own (called HTTP connectors) and those
that link Tomcat to an external web server such as Apache or IIS (called web server connectors).

In this chapter, you’ll see how to configure both types of Tomcat connectors. As mentioned
earlier, you don’t have to do any additional configuration to get the HTTP connector working.
So why do you need this chapter? This chapter is useful if you need to modify the HTTP con-
nector configuration (for example, to create a secure HTTPS connection) and if you want to
use Tomcat with an external web server. The reasons for doing so will become clear shortly.

Note that this chapter contains a reference to the HTTPS-related configuration, but the
details of SSL setup are in Chapter 12.

Using the HTTP Connector
The HTTP connector is a Java class that implements HTTP. The Tomcat 6 version is org.apache.
catalina.connector.Connector, which is used for all the connectors described next.

Configuring the HTTP/1.1 Connector
Listing 9-1 shows the default HTTP/1.1 connector configuration (from
CATALINA_HOME/conf/server.xml).

Listing 9-1. The Default HTTP/1.1 Connector

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

<Connector port="8080"

maxThreads="150"

connectionTimeout="20000"

redirectPort="8443" />

143

C H A P T E R 9

■ ■ ■

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 143

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS144

As with many components in Tomcat’s configuration, some of these attributes are common
to all connectors, and some are unique to the HTTP connector. Chapter 4 shows how to deal
with all these attributes. However, in this case, the attributes specify that this service should lis-
ten to port 8080 for HTTP requests and set thread-handling information, among other things.

Configuring SSL on Tomcat
The connector for the service that supports HTTPS connections must have its secure attribute
set to true and its scheme attribute set to https.

Listing 9-2 shows the SSL connector from server.xml. Note that it’s commented out by
default. Uncomment it, and make changes if required. If you change the SSL port (8443) to
something else, you need to change the redirectPort attribute for all the non-SSL connectors
to that port number, too. The non-SSL connectors redirect users to this port if they try to access
pages with a security constraint that specifies that SSL is required.

Listing 9-2. The Default SSL Connector

<!-- Define a SSL HTTP/1.1 Connector on port 8443 -->

<!--

<Connector port="8443"

maxThreads="150"

scheme="https"

secure="true"

clientAuth="false"

sslProtocol="TLS" />

-->

For details of these attributes, see Chapter 4. The two important attributes here are scheme
and secure. As noted previously, they’re used to indicate that this is an SSL-enabled connector.

Working with Keystores
To use an SSL connector with Tomcat, you’ll need to create a keystore. This contains the server’s
digital certificates, which are used by clients to validate the server. Once clients have accepted
a certificate, they can use the public key it contains to encrypt any data it wants to send. The
server, for its part, holds a private key, which is the only way to decrypt the data. Chapter 12 cov-
ers this subject, as well as all aspects of Tomcat security, in more detail. I’ll leave the details until
then, but this chapter will get your SSL connector up and running.

To create the keystore, use the following command (assuming the JAVA_HOME/bin directory
is in your path); keytool is a utility that comes as part of the Java SE distribution:

> keytool -genkey -alias tomcat -keyalg RSA

This creates a public-private key pair (-genkey), for user tomcat, with the RSA algorithm.
The MD5 algorithm is also available, but RSA is recommended for web use because of its com-
patibility with other Internet-aware applications. This method creates what’s called a self-signed
certificate. If you were serious about your security, you’d use a certificate issued by a certificate
authority, a process that’s discussed in Chapter 12. For now, you can test the mechanism with
a self-signed certificate.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 144

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 145

Figure 9-1. A browser warning that the certificate may not be trustworthy

You’ll be asked for a password; make sure you specify something other than the default.
Once you’ve done this, you’ll be asked for some details. The first and last name question is
really asking for the name of your host. If you don’t put the name of your host, then clients will
be warned and the certificate may not be accepted, as shown in Figure 9-1.

Finally, add the password for the keystore to the SSL connector’s entry in server.xml, as
shown in Listing 9-3.

Listing 9-3. Adding a Keystore Password to server.xml

<Connector port="8443"

maxThreads="150" scheme="https" secure="true"

clientAuth="false" sslProtocol="TLS"

keystorePass="tomcat"/>

Now start Tomcat, and visit https://localhost:8443. You’ll be asked to accept the certifi-
cate because it’s likely that your browser doesn’t recognize your organization as a certificate
authority. If you accept the certificate, you can continue to Tomcat’s home page and view it
using an SSL connection.

Running Tomcat Behind a Proxy Server
A common deployment scenario is to run Tomcat behind a proxy server. In this kind of envi-
ronment, the host name and port that the server should return to the client in the HTTP response
should be those the client used in the original request and not the actual host name and port
on which Tomcat is running. This is controlled via the proxyName and proxyPort attributes of
the connector.

Apache is a good candidate as a proxy server because of its robustness and all-around
good grace. If you use Apache, you can use its proxy module (mod_proxy) to pass the servlet
requests to the Tomcat server. Uncomment the following in Apache’s conf/httpd.conf file:

LoadModule proxy_module libexec/mod_proxy.so

LoadModule proxy_http_module modules/mod_proxy_http.so

Next, add the following lines after the module definitions:

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 145

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

ProxyPass / http://localhost:8080/

ProxyPassReverse / http://localhost:8080/

The Apache server will now pass all requests to the Tomcat server.
On the Tomcat side, the configuration in server.xml for the HTTP connector is as shown

in Listing 9-4.

Listing 9-4. Defining a Proxy Name and Proxy Port in server.xml

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

<Connector port="8080"

maxThreads="150" connectionTimeout="20000"

proxyName="localhost" proxyPort="80"/>

If you don’t specify the proxyName and proxyPort, the response will indicate that it came
from http://localhost:8080 instead of http://localhost.

Using the AJP Connector
If you want another web server, such as Apache or IIS, to handle the static content while Tomcat
handles the dynamic content, you need the Apache JServe Protocol (AJP) connector. It works
in conjunction with Apache’s mod_jk or an IIS ISAPI module to deploy web applications with
the combination of Tomcat and another web server. The following sections cover Apache 1.3.x,
Apache 2.0.50, and IIS. A basic knowledge of Apache is assumed; the following URL may be of
use as a quick reference: http://httpd.apache.org/docs/install.html.

The Apache JServ Protocol
The AJP is a packet-oriented, TCP/IP-based protocol. It provides a communication channel
between the Apache web server process and running instances of Tomcat. Various versions of
this protocol are available, including versions 1.2, 1.3, and 1.4. AJP 1.3 is the most commonly
used and well-tested version used by Tomcat, so it’s the only version of the protocol I’ll discuss.

AJP ensures good performance by reusing already open TCP-level connections with the
Tomcat container and thus saves the overhead of opening new socket connections for each
request. This is a concept similar to that of a connection pool and makes things simple by avoid-
ing the cost of more opened connections. In the request-response cycle, when a connection is
assigned to a particular request, it will not be reused until that request-response cycle is
completed.

■Note When integrating with IIS, you also use AJP as your protocol. Don’t be deceived by the Apache in its
name. This simply refers to the provider of the protocol and the module, not to the web server.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS146

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 146

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 147

Worker Implementations
A worker is a Tomcat instance that serves JSP/servlet requests coming from another web server.
In most cases, there’s only a single Tomcat process, but sometimes you’ll need to run multiple
workers to implement load balancing or site partitioning (mainly required for sites with heavy
traffic). You’ll see how to achieve this with both versions of Apache and IIS in the following
sections.

Each worker is identified by a host name/IP and port number combination. Here host
means the machine on which the given Tomcat instance is running, and port refers to the port
on which that instance is listening for any requests.

Multiple Tomcat Workers
You may use a multiple worker setup in a number of situations:

• You may want different contexts to be served by different Tomcat workers. This setup
will provide a development environment where all the developers share the same web
server but own a Tomcat worker of their own.

• You may want different virtual hosts served by different Tomcat processes to provide
a clear separation between sites belonging to different entities.

• You may want to provide load balancing, where you run multiple Tomcat workers each
on a machine of its own (or maybe on the same machine) and distribute the requests
among them.

Integrating Tomcat with Apache 1.3 Using mod_jk
mod_jk isn’t available as a binary for Apache 1.3 if you’re using Linux, though you can build it
from source, as shown next. It’s available as a binary for Apache 2.0 and 2.2. A Windows DLL
(rename it mod_jk.dll) and shared objects exist for other platforms. You can find all these via
the Jakarta binaries download page. After downloading the DLL or shared object (from http://
tomcat.apache.org/connectors-doc/), move it to the modules subdirectory of Apache.

To build the module on Linux (and other Unix-like systems), extract the download to
a convenient location and navigate to the jk/native subdirectory. Here you should run the
following commands (modifying the path to your Apache 1.3 apxs):

> ./configure --with-apxs=/usr/sbin/apxs

> make

> cp ./apache-1.3/mod_jk.so /usr/lib/apache/modules

The first command configures the build so that the resultant module is compatible with
Apache 1.3 (or whichever version of Apache you specify, because this command is equally
applicable to Apache 2.0). The make command builds the module, and the final command copies
the built module to Apache’s modules directory.

Configuring the AJP Connector in server.xml
The AJP connector configuration in server.xml is already present. This makes configuration
easy, as you don’t need to do anything at all.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 147

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Setting the workers.properties File
Each running Tomcat instance is represented as a single worker. You can set up Tomcat workers
for the web server plug-in by using a simple properties file called workers.properties, which
is used only with mod_jk and not mod_jk2 (which is deprecated). This file consists of entries that
will convey information about Tomcat workers to the web server plug-in.

Format of workers.properties File

The format used by workers.properties for defining a list of available workers is as follows:

worker.list = <comma-separated list of worker names>

For example, here you define two workers named worker1 and worker2:

worker.list = worker1, worker2

You can also define a property for a given worker, as follows:

worker.<worker name>.<property> = <property value>

For example, you can assign the value localhost to the host attribute of worker1, like so:

worker.worker1.host = localhost

Types of Workers in mod_jk

Any defined Tomcat worker needs to be assigned a type. You can assign the following types to
various Tomcat workers:

• ajp13: This type of worker uses the AJP 1.3 protocol to forward requests to out-of-
process Tomcat workers.

• lb: This type of worker is used for load balancing. In a load-balancing scenario, this
type of worker doesn’t handle any processing; it just handles the communication
between a web server and other defined Tomcat workers of type ajp13. This kind of
worker supports round-robin load balancing with a certain level of fault tolerance.
You’ll see this in more detail in the “Understanding Tomcat Load Balancing” section.

For example, the following line sets the type of worker1 to ajp13, meaning it will use the AJP
1.3 protocol:

worker.worker1.type=ajp13

Worker Properties

After you’ve set a worker’s type, you can set a number of other properties. You can set the port
on which the worker listens as shown next. However, if your worker is of type ajp13, it will lis-
ten for AJP requests, by default, on port 8009.

worker.worker1.port=8009

Next, you configure the host where the Tomcat worker is listening for requests. For exam-
ple, if worker1 is running on localhost, set the entry as follows:

worker.worker1.host=localhost

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS148

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 148

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 149

When working with a load balancer worker, you need to set the load-balancing factor for
this worker. For example, if worker1 is running with a load balancer, then, depending on the
hardware condition of the machine, you can set the corresponding load factor as follows:

worker.worker1.lbfactor=5

Some web servers (for example, Apache 2.0 and IIS) are multithreaded, and Tomcat can
take advantage of this by keeping a number of connections open as a cache. An appropriately
high value for the cache size based on the average number of concurrent users for Tomcat can
prove beneficial from a performance point of view (the default is 1).

worker.worker1.cachesize=20

Configuring a Tomcat Worker
Create workers.properties in CATALINA_HOME/conf, as shown in Listing 9-5.

Listing 9-5. workers.properties for mod_jk

For Windows:

Setting Tomcat & Java Home

workers.tomcat_home="c:\jakarta-tomcat"

workers.java_home="c:\jdk1.5"

ps=\

worker.list=worker1

Settings for worker1 worker

worker.worker1.port=8009

worker.worker1.host=localhost

worker.worker1.type=ajp13

For Linux/Unix systems:

Setting Tomcat & Java Home

workers.tomcat_home=/usr/java/jakarta-tomcat

workers.java_home=/usr/java/jdk1.5

ps=/

worker.list=worker1

Settings for worker1 worker

worker.worker1.port=8009

worker.worker1.host=localhost

worker.worker1.type=ajp13

The ps=\ line sets the path separator for the operating system on which Tomcat is running.

Configuration Settings for Apache
Tomcat and Apache can communicate once the information about the available Tomcat work-
ers is included in the httpd.conf Apache web server configuration file. You have two ways in
which to do this, both of which are discussed next.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 149

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Automatically Generating Configuration Settings
You can configure Tomcat to automatically generate a configuration file called mod_jk.conf.
You can then include this in the main Apache configuration file.

The mod_jk.conf file is created every time Tomcat starts, so make sure you really can
afford this overhead. Also, this will reset all your deployment settings, as Tomcat overwrites
the file every time.

To generate the settings, you need to add special listeners at the server and host levels.
Just add the code in Listing 9-6 after the <Server port="8005"> declaration.

Listing 9-6. A Listener That Will Automatically Generate mod_jk Settings

<Listener className="org.apache.jk.config.ApacheConfig"

modJk="C:/Program Files/Apache Group/Apache/modules/mod_jk.dll"

workersConfig="C:/jakarta-tomcat/conf/workers.properties"

jkLog="C:/jakarta-tomcat/logs/mod_jk.log"

jkDebug="info"

/>

Here, you provide the necessary information to the listener. It creates appropriate entries,
such as the LoadModule entries for mod_jk, in the automatically generated mod_jk.conf file using
this information. You also provide the location of the workers.properties file, the location of
the mod_jk module, the location of the log file, and the level of logging information you require.

Table 9-1 describes the attributes supported by the ApacheConfig listener.

Table 9-1. The Attributes of the ApacheConfig Listener

Attribute Description Required?

configHome The default parent directory for all the paths provided as No
attribute values. It’s overridden when absolute paths are
provided for any attribute value. The default is CATALINA_HOME.

jkConfig The location of the Apache mod_jk.conf file. The default is No
CATALINA_HOME/conf/auto/mod_jk.conf.

workersConfig The path to the workers.properties file used by mod_jk. The No
default is CATALINA_HOME/conf/jk/workers.properties.

modJk The path to the Apache mod_jk module. If not set, this defaults to No
modules/mod_jk.dll on Windows and modules/mod_jk.so on
Linux/Unix systems.

jkLog The path to the log file that mod_jk uses. No

jkDebug The level of logging to be done by mod_jk. This may be debug, No
info, error, or emerg. If not set, this defaults to emerg.

jkWorker The desired worker. This must be set to one of the workers No
defined in the workers.properties file and defaults to ajp13.

forwardAll If this is set to true (the default), mod_jk will forward all requests No
to Tomcat. This ensures that all the behavior configured in
web.xml functions correctly. If false, Apache will serve static
resources. Note that when set to false, some of Tomcat’s
configuration may not be duplicated in Apache, so check the
generated mod_jk.conf file to see what configuration is actually
being set in Apache.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS150

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 150

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 151

Attribute Description Required?

noRoot If this attribute is set to true, the ROOT context isn’t mapped to No
Tomcat. If false and forwardAll is true, all requests to the ROOT
context are mapped to Tomcat. If false and forwardAll is false,
only JSP page and servlet requests to the ROOT context are mapped
to Tomcat. When false, to correctly serve Tomcat’s ROOT context,
you must also modify the DocumentRoot setting in Apache’s
httpd.conf file to point to Tomcat’s ROOT context directory.
Otherwise, Apache will serve some content, such as index.html,
before mod_jk can get the request and pass it on to Tomcat. The
default is true.

append Append the generated configuration file to the current No
configuration file. The default is false. Therefore, it’s a good
idea to back up the values in another file and reference it
from Apache.

The next step is to create an Apache <VirtualHost> entry in the resultant mod_jk.conf file.
This ensures that all requests to the Tomcat host are mapped to the Apache host correctly. Add
a listener below each <Host> entry that you’re integrating, as shown in Listing 9-7.

Listing 9-7. A Listener That Will Define Virtual Hosts in mod_jk.conf

<Listener className="org.apache.jk.config.ApacheConfig"

append="true"

jkWorker="worker1" />

You can also choose individual Tomcat contexts by adding the listener after the <Context>
in the context XML file. Now start Tomcat, and open the CATALINA_HOME/conf/auto/mod_jk.conf
file. If you had used the previous values, your file should look like the one in Listing 9-8.

Listing 9-8. The Automatically Generated mod_jk.conf File

<IfModule !mod_jk.c>

LoadModule jk_module "C:/Program Files/Apache Group/Apache/modules/mod_jk.dll"

</IfModule>

JkWorkersFile "C:/jakarta-tomcat/conf/workers.properties"

JkLogFile "C:/jakarta-tomcat/logs/mod_jk.log"

JkLogLevel info

<VirtualHost localhost>

ServerName localhost

JkMount /admin worker1

JkMount /admin/* worker1

JkMount /servlets-examples worker1

JkMount /servlets-examples/* worker1

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 151

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

JkMount /webdav worker1

JkMount /webdav/* worker1

JkMount /jsp-examples worker1

JkMount /jsp-examples/* worker1

JkMount /balancer worker1

JkMount /balancer/* worker1

JkMount /tomcatBook worker1

JkMount /tomcatBook/* worker1

JkMount /tomcat-docs worker1

JkMount /tomcat-docs/* worker1

JkMount /manager worker1

JkMount /manager/* worker1

</VirtualHost>

The JkMount directive mounts a Tomcat directory onto the Apache root web context. The
other three JK directives are pretty self-explanatory.

JkWorkersFile "C:/jakarta-tomcat/conf/workers.properties"

JkLogFile "C:/jakarta-tomcat/logs/mod_jk.log"

JkLogLevel info

The log file is where any AJP-specific information is placed. Access logs for resources on
Tomcat and Apache function as normal.

Each time Tomcat is started, it will write the configuration file to CATALINA_HOME/conf/
auto/mod_jk.conf. As a result, your settings will be overwritten. Therefore, you should either
disable the automatic generation option by commenting out the directive in server.xml or
copy the file to another location.

The final step is to include this file in Apache’s httpd.conf file as follows. Place this entry
at the end of the file.

Include "C:/jakarta-tomcat/conf/auto/mod_jk.conf"

Adding Configuration Settings Manually
If you don’t want to use ApacheConfig, you need to append the previous settings to the end of
your httpd.conf or save them as mod_jk.conf in CATALINA_HOME/conf/auto.

Testing the Final Setup
Next, you’ll see how Apache accepts every request. All the requests for any dynamic process-
ing, like JSP pages or servlets, will be handed over to Tomcat. Similarly, any response from
them will be sent to the client through Apache.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS152

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 152

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 153

The first step for testing will be to check the JSP examples web application by pointing
a browser at http://localhost/jsp-examples/. If everything is set up correctly, you should see
the list of examples.

This shows that the integrated combination of Tomcat and Apache is working fine for
serving static content. Now, check whether mod_jk is doing its job equally well for serving
dynamic content by clicking one of the examples.

After testing the deployment from a local machine, test the installation from any other
machine across the network. This will make sure the settings you made are working as
expected.

Integrating Tomcat with IIS
IIS is Microsoft’s web server, and it is optimized for the Windows operating system. Why would
you want to run IIS with Tomcat? You may want to do this in an environment that needs to be
capable of supporting multiple development platforms, such as Microsoft’s ASP and the alter-
native JSP. Also, you get better performance on Windows by using the web serving capability of
IIS and Tomcat as the servlet/JSP container instead of using Tomcat as both a web server and
a servlet container.

IIS is a web server but can also process ASP, which is Microsoft’s answer to server-side
scripting. It doesn’t have a servlet container and can’t, by default, process JSP pages and
servlets. However, you can extend IIS by adding ISAPI filters, which you can then use to con-
figure third-party components such as servlets and JSP pages. ISAPI filters are plug-ins to IIS
that filter incoming requests, perform custom processing, call other applications, and perform
filtering functions on output that’s to be sent to the client. The Apache group has created an
ISAPI filter that can be added to IIS and configured so that IIS handles all requests except for
JSP pages and servlets, which it redirects to Tomcat.

Introducing ISAPI
The ISAPI redirector that enables integration between IIS and Tomcat is available for down-
load as a DLL called isapi_redirect.dll from the usual range of Apache mirrors. ISAPI is
Microsoft’s answer to CGI, and it allows Microsoft to customize and extend the functionality
of IIS. The isapi_redirect.dll file is referred to as a redirector because it filters incoming URL
requests and redirects some of them to Tomcat using AJP.

The filters processed by isapi_redirect.dll are configurable. As this redirector is based
on mod_jk, these are specified in a file called workers.properties, which uses the same settings
as the Apache configuration described previously. This makes it extremely easy to port your
Apache mod_jk settings over to an IIS setup.

You can specify which incoming requests IIS should forward to Tomcat by editing the
contents of this file. The Tomcat process that receives and processes requests from the ISAPI
redirector is called the worker. The Tomcat worker exists out of process, that is, as a distinct
process within the operating system.

The ISAPI redirector communicates with an out-of-process Tomcat worker over TCP/IP
using AJP and must know the specifics of the Tomcat worker. The specific configuration infor-
mation could be an IP port number and machine name, and the administrator configures this
information in the workers.properties file. This file also has a list of the defined workers. Note
that since AJP 1.3 runs over TCP/IP, it lends itself to distributed client-server configurations.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 153

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Installing IIS
Check to verify that IIS is installed on your Windows machine. If not, you’ll need to install IIS
by going to Start ➤ Settings ➤ Control Panel and selecting the Add/Remove Programs applica-
tion. Look under the Add/Remove Windows Components section to install IIS.

Downloading isapi_redirect.dll
Once you have IIS on your system, the next thing to do is download the ISAPI redirector
(isapi_redirect.dll) from an Apache mirror. Place this file in the CATLINA_HOME\bin directory.
Note that you can also build a copy of this DLL from source, but the easiest thing to do is to
download the binary version.

Configuring the AJP Connector in server.xml
The AJP connector configuration in server.xml is already present. This makes configuration
easy, as you don’t need to do anything at all.

Setting the workers.properties File
As mentioned, you set up Tomcat workers for the web server plug-in by using the simple
properties file called workers.properties. This file consists of entries that will convey infor-
mation about Tomcat workers to the web server plug-in. Unlike with Apache, you can place
workers.properties wherever you like, though you must tell IIS where it is. You’ll see how to
do this in the next section.

Creating the Registry Entries
The ISAPI redirector (isapi_redirect.dll) uses certain registry entries to initialize its configu-
ration. These entries need to be created so that Tomcat can locate the configuration files that
tell the redirector where to send incoming requests for servlets and how to log messages.
Create a file called iis_redirect.reg, and edit it as follows:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Apache Software Foundation\Jakarta Isapi

Redirector\1.0]

"serverRoot"="C:\\jakarta-tomcat"

"log_file"=" c:\ jakarta-tomcat \logs\isapi.log"

"log-level"="debug"

"extensionUri"="/ jakarta-tomcat /isapi_redirect.dll"

"worker_mount_file"=" c:\ jakarta-tomcat \conf\uriworkermap.properties"

"workersFile"="C:\\jakarta-tomcat\\conf\\workersIIS.properties"

Don’t use relative path names. Most problems with registering the isapi_redirect.dll
filter in IIS are associated with incorrect path names in the registry.

Let’s take a look at some of these registry entries:

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS154

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 154

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 155

• serverRoot: This is the directory where you’ve installed Tomcat.

• extensionUri: This is the URL to the isapi-redirector extension. Note that jakarta is
a virtual directory within IIS that you’ll create later in the installation procedure.

• workersFile: This is the path to the workers.properties file.

To create the registry entries, double-click the iis_redirect.reg file, and you’ll get a warn-
ing message box. Select Yes to create the registry entries, and the script will create the values in
the registry. At this point, you should open the registry using the regedt32 utility and verify the
registry entry keys that were created for you under HKEY_LOCAL_MACHINE\SOFTWARE\Apache
Software Foundation\Jakarta Isapi Redirector\1.0.

Note that you could also have created these entries manually, but the previous procedure
creates an easy starting point. If you need to uninstall Tomcat at some point, you can remove
these registry entries manually by deleting them using the regedt32 utility.

■Caution You should be cautious while modifying the registry, as mistakes can prevent a Windows appli-
cation from working correctly.

Configuring a Tomcat Worker
Create workersIIS.properties as shown in Listing 9-9. You need to place this file in the direc-
tory you specified in the “Creating the Registry Entries” section. The path in the registry to this
key is HKEY_LOCAL_MACHINE\SOFTWARE\Apache Software Foundation\Jakarta Isapi Redirector\
1.0\workerFile. In your case, the directory is the %CATALINA_HOME%\conf directory.

Listing 9-9. workers2IIS.properties

[channel.socket:localhost:8009]

[ajp13:localhost:8009]

channel=channel.socket:localhost:8009

[status:statusWorker]

styleMode=1

[uri:/jkstatus]

group=status:statusWorker

[uri:/jsp-examples/*]

worker=ajp13:localhost:8009

This defines an ajp13 worker called localhost:8009 and a status worker called statusWorker.
The [uri:] sections assign a URI to a worker. So, /jkstatus is assigned to statusWorker, and
everything under /jsp-examples is assigned to localhost:8009. You set a log file when you
configured the registry entries previously.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 155

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuration Settings for IIS
You need to create a virtual directory within IIS for the ISAPI redirector because the IIS redirector
is an IIS plug-in; that is, it’s a filter and an extension. IIS calls the filter function for incoming
requests. If the incoming URL matches the list of filters maintained in workersIIS.properties,
control is transferred to the extension in the form /jakarta/isapi_redirect.dll—you may
remember this entry from the registry setting for the extensionUri that you set up. To create the
virtual directory, you should do the following:

1. Open IIS Manager (Internet Services Manager).

2. Right-click Default Web Site, and select New ➤ Virtual Directory.

3. The Virtual Directory Creation Wizard will open. Use jakarta as the name of the virtual
directory alias. Note that the name of the virtual directory has to be jakarta because of
the previous registry entry.

4. The wizard will prompt you for a directory. Specify the directory of the installed
isapi_redirect.dll. This is the bin\ directory under the root Tomcat install.

5. The wizard will prompt you for access permissions. The access permissions should be
just read and execute.

Once you’ve created the jakarta virtual directory, it’s a good idea to open it to review the
properties you’ve set for the virtual directory. You can do this by right-clicking the virtual
directory and selecting Properties.

You can now install the ISAPI redirector in IIS. To do this, follow these steps:

1. In IIS Manager, right-click Default Web Site, select Properties from the drop-down
menu, and click it to open the Properties window.

2. In the Properties window, click the ISAPI Filters tab.

3. Click the Add button.

You’ll be prompted for the name of the filter and the location of isapi_redirect.dll. For
the name of the filter, use jakarta. Use the Browse button to select isapi_redirect.dll, which
is in the %CATALINA_HOME%\bin directory.

Close IIS Manager if you have it open, and restart IIS. Make sure you do this using the
Services management console in the Control Panel. Don’t do this using IIS Manager. You’ll
need to restart two services—these are the IIS Admin service and the World Wide Web Publish-
ing service, though the console may do this automatically.

After you’ve restarted IIS, open IIS Manager, and check to see that there’s a green arrow
pointing upward next to the ISAPI redirector that you’ve just installed. If you don’t see the
green arrow, then there’s a problem with the install of the ISAPI redirector. This is a common
error encountered during a first install.

Check your registry entries and the configuration files. Nine times out of ten, problems
with this part of the install occur because the paths set in the registry settings for workersFile
(workersIIS.properties) are wrong. If these files are in the correct locations and the registry
keys are defined properly, that is, if names are spelled correctly, the ISAPI redirector should
load regardless of the content in these files and regardless of the values of the other registry
settings. As an experiment, place a blank workersIIS.properties file in the correct location,

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS156

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 156

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 157

and restart IIS by restarting the IIS Admin service and the World Wide Web Publishing service.
Verify that the path you’ve specified to isapi_redirect.dll when adding the filter is valid.

Testing the Final Setup
In this section, you’ll see how IIS accepts every request. All the requests for any dynamic pro-
cessing, such as JSP pages or servlets, will be handed over to Tomcat. Similarly, any response
from them will be sent to the client through IIS.

The first step for testing will be to check the JSP examples web application by pointing
a browser at http://localhost/jsp-examples/. If everything is set up correctly, you should see
the list of examples.

This shows that the integrated combination of Tomcat and IIS is working fine for serving
static content. Now, check whether the ISAPI redirector is doing its job equally well for serving
dynamic content by clicking one of the examples.

After testing the deployment from a local machine, test the installation from any other
machine across the network. This will make sure that the settings you made are working as
expected.

Finally, visit http://localhost/jkstatus, as shown in Figure 9-2. You can use various
pieces of information to analyze and monitor the Tomcat-Apache bridge.

Figure 9-2. The JKstatus page

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 157

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Troubleshooting the IIS Setup
If you don’t see the screens shown in the previous figures, then one of a number of things
could have gone wrong with your setup. Verify that IIS is running. You can do this in the Services
console. At a minimum, you need to have the IIS Admin service and the World Wide Web
Publishing service running.

Within IIS check that you’ve installed the ISAPI redirector properly. If you’ve installed it
properly, it should have a green arrow next to it.

Verify that you’ve defined the jakarta virtual directory properly. If there’s something wrong
with it, IIS will indicate this by flagging it with a red symbol. Check that the name of this virtual
directory is indeed jakarta.

Look within the IIS log. The IIS log is located by default in c:\WINNT\system32\LogFiles\
W3SVC1; you can also click the Properties button in the web site Properties window to see
where it is. By default, a different log file is generated every day. In the log file, you should see
the following entry:

01:10:33 127.0.0.1 GET /jakarta/isapi_redirect.dll 200

If this entry doesn’t exist in the IIS log, then the ISAPI redirector isn’t called by IIS. The
value 200 is the HTTP status code. If the call to isapi_redirect.dll exists, but you’re getting
a status code such as 400, 404, or 500, then you have an error.

Make sure Tomcat is running and that the connector is listening on the correct port. This
is port 8009 by default and is defined in the server.xml file. You can review this by opening
a DOS prompt and running the command netstat -a from the command line. You should see
a line similar to the following line as one of the entries:

TCP localaddress:8009 foreignaddress:0 LISTENING

You may want to check that you don’t have any additional filters defined besides the ISAPI
redirector, which may be creating a conflict. If you do have additional filters defined in IIS, you
may want to try removing them.

Verify the content of the workers2IIS.properties file. Check that you’ve defined the
worker correctly.

Configuring Distributed Networks with Tomcat
So far, you’ve seen a configuration where you have both the web server, be that IIS or Apache,
and Tomcat running on the same physical server. This is useful for smaller implementations.
However, in a production environment, you may be interested in a more scalable solution
where you’d like to partition your architecture into multiple tiers so that the presentation layer
or static HTML pages are served up by IIS or Apache on one machine and the web applications
are hosted by Tomcat workers each residing on a separate server. This makes the system more
scalable because you have dedicated machines performing dedicated tasks.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS158

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 158

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 159

In addition to scalability, you may also be interested in a distributed configuration to sup-
port multiple development and test environments, virtual hosting, and load-balanced Tomcat
workers. In this section, you’ll build on the previous concepts and look at the configuration
changes required to build scalable distributed configurations of web servers and Tomcat.

Let’s look at the software on each sever. The server that has the static web server running
on it will also host the AJP module and the configuration file (workers.properties). Note that
the JDK and the Tomcat binaries aren’t required on this server.

The server that has the full Tomcat install must have a connector and a Tomcat worker
configured on it, and the Tomcat worker must be running on a known port. Note that if you
had multiple Tomcat workers distributed across multiple servers servicing the same web
application, you’d want to duplicate the web application files across all these servers.

[uri:/jsp-examples/*]

It’s as easy as that, though this example simply uses a single Tomcat worker on a remote
machine. You could have multiple web servers that make up a web server farm, which is load
balanced using a load-balancing switch. The next section describes this scenario, which was
also touched on in Chapter 7.

These configurations are possible with AJP, and the concepts remain the same whether
you’re using Apache or IIS as the web server. The previous sections have covered this exten-
sively, and the configuration file settings are identical for all servers.

Finally, notice that once you begin partitioning your architecture into web server and
application server configurations, you have paved the way for a heterogeneous system, so
even though you use IIS for the web server, your application server can be Linux based. It’s
now time to discuss load balancing.

Understanding Tomcat Load Balancing
On busy sites, whenever a request call is delegated from the Apache server to Tomcat, it’s
a good idea to route these requests to multiple Tomcat servers rather than to a single one,
which you can do with mod_jk. mod_jk manages the task of load balancing with support for
seamless sessions and round-robin scheduling.

Let’s first look at the concept of a seamless session (also known as session affinity or a sticky
session). When a client requests any dynamic resource, such as a JSP page, for the first time,
the load balancer will route this request to any of the available Tomcat instances. Now, any
further request from the same browser session should be routed to the same Tomcat container
instance to keep the user session alive (see Figure 9-3).

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 159

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 9-3. Load balancing with a web server

If the maximum number of connections to that worker has been reached before this call,
then mod_jk waits for the appropriate worker to become free. This is known as a seamless session
because the client sees no break in the application’s function.

Here, the Tomcat instances are listening to different ports (if they’re running on the same
machine) or are running on different machines. You’ll see how to configure Apache 1.3, Apache 2.0,
and IIS before seeing how to configure Tomcat. The Tomcat settings are the same no matter
which server you’re using, with one exception.

Preparing for Load Balancing
The first step in setting up load balancing is to designate a load-balancing (lb) worker. The
load-balancing worker is responsible for managing several actual request-processing workers.
The lb worker does the following:

• Instantiates the workers in the web server.

• Uses the workers’ load-balancing levels and load-balancing factors to perform weighted
round-robin load balancing, where a low level means a worker belongs to a preferred
group and a low lb factor means a more powerful machine that can handle more requests
than others in the group.

• Routes requests belonging to the same session to the same Tomcat worker, thus keeping
session affinity.

• Identifies failed Tomcat workers, suspends requests to them, and falls back to other
workers managed by the lb worker.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS160

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 160

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 161

The overall result is that workers managed by the same lb worker are load balanced (based
on their lb level and factor and current user session) and covered by a fallback mechanism so
that a single Tomcat process death won’t bring down the entire deployment.

The Workers
In this example, you’ll install and run different Tomcat instances on localhost. For this you have
to install two different Tomcat instances on the test machine at CATALINA_HOME1, listening on
port 8009, and CATALINA_HOME2, listening on port 8010. Your web server should also be running
on this machine.

You should keep the following in mind:

• Each Tomcat instance running on the same machine should listen to a unique port.
However, two Tomcat instances running on two different machines (which are partici-
pating in the same load-balancing mechanism as two workers) can listen on the same
port number.

• The AJP connector of each Tomcat instance running on the same machine should listen
to a unique port. However, the AJP connectors of two Tomcat instances running on two
different machines (which are participating in the same load-balancing mechanism as
two workers) can run on the same port.

Configuring Apache 1.3 for Load Balancing
You’ll now need to define a simple workers.properties file for the load balancing. Here, you’ll
define a single worker in the worker.list option as the load-balancing worker. This worker
will be the single access point for any requests delegated by Apache and will handle the other
workers. Call it lb, although you can name it whatever you want.

For each Tomcat worker, define the standard parameters: the host and port on which it
will be running, the load-balancing factor that should be applied, and the number of open
connections accepted in the form of cache (see Listing 9-10).

Listing 9-10. A Sample workers.properties File

Define the path separator appropriate to the platform we are using

For Windows Systems

ps=\

For Linux /Unix Systems

#ps=/

Define the load balancing worker only, and not other workers.

worker.list=lb

--

First Tomcat instance running on local machine (localhost)

--

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 161

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Set the port on which it will listen

worker.tomcat1.port=8009

Set the host on which the Tomcat worker is running

worker.tomcat1.host=localhost

Set the type of worker; here we are using ajp13

worker.tomcat1.type=ajp13

Specify the load-balancing factor, any value greater than 0

worker.tomcat1.lbfactor=10

Specify the size of the open connection cache.

worker.tomcat1.cachesize=5

--

Second Tomcat instance running on local machine (localhost)

--

Set the port on which it will listen

worker.tomcat2.port=8010

Set the host on which the Tomcat worker is running

worker.tomcat2.host=localhost

Set the type of worker; here we are using ajp13

worker.tomcat2.type=ajp13

Specify the load-balancing factor, any value greater than 0

worker.tomcat2.lbfactor=10

Specify the size of the open connection cache.

worker.tomcat2.cachesize=5

Load Balancer worker

worker.lb.type=lb

State the comma-separated name of workers that will form part of this

load balancing mechanism

worker.lb.balanced_workers=tomcat1, tomcat2

The lb worker is of type lb and uses a weighted round-robin algorithm for load balancing
with support for seamless sessions as discussed earlier. If a worker dies, the lb worker will check
its state over small time intervals. Until it’s back online, all work is redirected to the other avail-
able workers.

The previous are the basic steps for integrating Tomcat and Apache, but perhaps the most
important step is to tell Apache about the URL patterns that it should hand over to Tomcat, as
in Listing 9-11.

Listing 9-11. Mounting the JSP Examples

Mappings for the requests to JSP and servlets

JkMount /tomcatBook lb

JkMount /tomcatBook/* lb

mod_jk will forward any requests that match these patterns to the lb worker. Once the
request processing is done, the response is sent to the corresponding client.

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS162

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 162

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 163

You now need to include the settings for mod_jk, the defined Tomcat lb worker, and a few
other settings such as the location of the log file, the log level, and the mappings for the various
resources that mod_jk will ask Tomcat to provide.

Insert the lines in Listing 9-12 at the bottom of Apache’s httpd.conf. Of course, you could
use Tomcat to generate the settings for you. Remember to change the host-level listener’s
jkWorker attribute to lb.

Listing 9-12. The Final Configuration for Apache

<IfModule !mod_jk.c>

LoadModule jk_module "C:/Program Files/Apache Group/Apache/modules/mod_jk.dll"

</IfModule>

JkWorkersFile "C:/jakarta-tomcat-5.0.27/conf/workers.properties"

JkLogFile "C:/jakarta-tomcat-5.0.27/logs/mod_jk.log"

JkLogLevel info

<VirtualHost localhost>

ServerName localhost

JkMount /tomcatBook lb

JkMount /tomcatBook/* lb

</VirtualHost>

Configuring Tomcat for Load Balancing
For load balancing, you need to specify the jvmRoute attribute of the <Engine> directive in
server.xml for each Tomcat worker. This unique ID ensures the seamless session feature is
activated, and it must be unique across all the available Tomcat workers participating in the
load-balancing cluster.

This unique identifier will be appended to the session ID generated for that Tomcat worker.
Using this, the front-end web server will forward any particular session request to the appro-
priate Tomcat worker.

This configuration is the same no matter which web server or version of mod_jk you’re
using. To continue the example, add a unique jvmRoute attribute to each Tomcat worker’s
server.xml file, as detailed in Listing 9-13.

Listing 9-13. Configuring Tomcat Workers for Tomcat 1 and Tomcat 2

<!-- Define the top-level container in our container hierarchy -->

<!-- Tomcat 1's connector -->

<Engine name="Catalina"

defaultHost="localhost"

debug="0"

jvmRoute="tomcat1">

<!-- Define the top-level container in our container hierarchy -->

<!-- Tomcat 2's connector -->

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 163

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS164

<Engine name="Catalina"

defaultHost="localhost"

debug="0"

jvmRoute="tomcat2">

Before you run the Tomcat workers for testing, you’ll need to handle the CATALINA_HOME
environment variable. In most cases, when you run a single Tomcat instance, you set the
CATALINA_HOME as an environment variable so that it’s available once your system boots up.
This can create a problem when you want to run two instances of Tomcat on the same machine
because each of the Tomcat instances will need a unique CATALINA_HOME variable.

You can handle this by resetting CATALINA_HOME. Edit the catalina.sh (or catalina.bat for
Windows) file located in the second Tomcat’s CATALINA_HOME/bin directory, and add the two
lines in Listing 9-14 at the start of it to point to the appropriate directories.

Listing 9-14. Setting CATALINA_HOME for Tomcat Workers

#For Linux/ Unix Systems:

#$JAVA_HOME=/usr/java/jdk1.5

#$CATALINA_HOME=/usr/java/jakarta-tomcat

REM For Windows:

%JAVA_HOME%=c:\jdk1.5

%CATALINA_HOME%=c:\Jakarta-tomcat

If you’re using mod_jk2, edit CATALINA_HOME/conf/jk2.properties, and add the following
line on the second Tomcat instance:

channelSocket.port=8010

Now that you’ve finished configuring your load-balancing setup, you need to make sure
all the Tomcat instances are up and running properly. To do this, create a file named index.jsp,
and put it in the tomcatBook context of Tomcat 1, as shown in Listing 9-15.

Listing 9-15. Tomcat 1’s index.jsp File

<html>

<body>

<h1>Session Served By Tomcat 1</h1>

<table align="centre" border="1">

<tr>

<td>Session ID</td>

<td>${pageContext.session.id}</td>

</tr>

<tr>

<td>Created on</td>

<td>${pageContext.session.creationTime}</td>

</tr>

</table>

</body>

</html>

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 164

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS 165

Copy this file into the tomcatBook context of the other Tomcat worker. To help you see which
Tomcat instance has processed a request, edit index.jsp by changing this line

<h1>Session Served By Tomcat 1</h1>

to the following for Tomcat 2:

<h1>"Session Served By Tomcat 2</h1>

Testing the Load Balancing Behavior
To test load balancing, first verify that your web server is serving the static content properly by
browsing to the URL http://localhost/. You should see the default web server index.html page.
Now, test that Tomcat is serving the index.jsp page by browsing to the URL http://localhost/
tomcatBook/index.jsp. You’ll be served by one of the two Tomcat instances. If Tomcat 1 served
the page, you’ll get the page shown in Figure 9-4.

Similarly, if Tomcat 2 worker serves your request, you’ll get the page with the blue heading
and the “Session Served By Tomcat 2” message followed by its session data.

Note the session ID in the first row of the table. Refresh your browser, and you’ll notice
that no matter how many hits you make, the session ID remains the same. This indicates that
the load balancer is keeping the current session contents intact.

Now, open another window with the same URL. This time the other Tomcat worker will
handle your request, because the web server is using a round-robin algorithm.

To test the failover aspect of load balancing, shut down one of the Tomcat workers. You’ll
then get output only from the remaining worker. If you start the idle worker again, the load
balancer will start using it as soon as it finds that the server is up. It periodically checks the
status of the worker and will start using it as soon as it’s made available.

Now that you know how to configure load balancing, you use the clustering knowledge
you gained in Chapter 7. You can now set up each of the Tomcat workers from this chapter as
a node of the same cluster, as defined in Chapter 7. This means you can deploy web applica-
tions across multiple Tomcat workers by dropping an application’s WAR file into a node’s
watched deployment directory.

Figure 9-4. Tomcat 1 serving index.jsp

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 165

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 9 ■ USING TOMCAT’S CONNECTORS166

Summary
In this chapter, you enhanced your skills for handling web application deployment. You saw the
AJP connector before going on to obtain mod_jk, the Apache redirector module. You looked at
the binary distribution as well as how to build from source on both Windows and Unix systems.

You saw how mod_jk acts as a redirector component to route requests for dynamic content
to Tomcat workers. Also, you’ve acquired skills to exploit the strengths of integrating Tomcat
with Apache. You also saw how to configure IIS to work with Tomcat. You first saw how ISAPI
works as a redirector to forward requests to Tomcat as an out-of-process worker. ISAPI com-
municates with Tomcat over TCP/IP using AJP.

You examined a number of ways of setting up your architecture using application servers,
web server farms, and multiple dedicated Tomcat workers to provide a more scalable architec-
ture. In addition to this, you implemented and tested load balancing for routing traffic between
multiple instances of Tomcat and an external web server.

7850ch09FINAL.qxd 2/28/07 10:58 AM Page 166

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Connecting to Databases
Using JDBC

Many of the web applications running on your server will process data, and most of that
data will be stored in a database. The most popular databases, including MySQL, PostgreSQL,
Oracle, SQL Server, Sybase, Interbase, and DB2, are based on relational concepts. You need to
understand how Tomcat interacts with relational databases to better understand the require-
ments of your users.

In this chapter, you’ll see the many situations that will arise when configuring Tomcat to
work with relational databases. More important, you’ll gain some hands-on experience config-
uring several examples. By the end of this chapter, you’ll be comfortable integrating databases
with Tomcat.

Introducing SQL
The Structured Query Language (SQL) is a text-based query language used to perform opera-
tions with data stored in a relational database. These operations include selecting data for
display, inserting data into the database, deleting data from the database, and manipulating
database structure.

As an administrator, you won’t see much SQL in your Tomcat setup, because the server
uses it behind the scenes to look up usernames and passwords. You will, however, have to be
fairly familiar with simple SQL commands so that you can add and remove users from your
Tomcat user databases. Because these are realm-related commands, they will be dealt with in
Chapter 11.

Introducing JDBC
JDBC is a Java programming interface for accessing databases, which makes it the obvious
choice when using databases with Tomcat. JDBC submits SQL query statements to the remote
SQL processing engine (part of the database that handles multiple, simultaneous connections
via a connection manager), and the SQL processing engine returns the result of the query in
a set of data called a result set. A result set is typically zero or more rows of data. You can think
of result sets as temporary database tables.

167

C H A P T E R 1 0

■ ■ ■

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 167

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC168

Therefore, JDBC operations are designed to do the following:

• Take the JDBC API calls and transform them into a SQL query.

• Submit that query to the SQL processing engine on the database.

• Retrieve the result set that’s returned from the query and transform it into a Java-
accessible data structure.

Not all statements return a result set; you may conduct a search that isn’t successful, so
the returned result set will be empty (called a null result set). In addition, some SQL state-
ments, such as those you use to create tables, update data, and delete rows, don’t return any
result sets.

Running Basic JDBC Operations
In JDBC programming, a developer must follow these typical steps:

1. Obtain a connection to the remote database server.

2. Create and prepare a SQL statement for execution (or call a stored procedure in the
database).

3. Execute the SQL statement.

4. Obtain the returned result set (if any) and work on it.

5. Disconnect from the remote database.

It’s usually the case that you’ll be concerned only with the first step of this process. Once
you’ve connected the web server to a database, you hand the connection over to any web
applications that need it.

Establishing and Terminating Connections to Databases
Other than providing a unified way of accessing, modifying, and manipulating data in data-
bases, JDBC also provides a unified way of connecting to databases from different vendors.
While normal native connections to Oracle will be different from connections to MySQL,
which will be different yet from working with Microsoft’s SQL Server, connecting to any of
these databases can be accomplished using the same JDBC API calls.

As you saw in Chapter 4, JDBC, like JNDI, is simply a layer of abstraction between the
native interfaces and Java . In Figure 10-1, you can see how the underlying database can be
changed without the application having to worry about changing any of its settings. You have
to worry about only one interface with JDBC, and JDBC deals with talking to the database in
its own language.

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 168

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 10-1. JDBC driver structure

JDBC uses JDBC drivers to communicate with the native database drivers, and these vary
from database to database. However, application code doesn’t notice the differences among
drivers, because they all follow the same standard.

Which JDBC Version?
Under the JDBC 1.0 standard, the code to establish a connection to a database, as well as the
code to disconnect from the database, is written by the developer. In fact, even the code to
select and activate a JDBC driver is coded by the developer.

Although simple and straightforward to code, this approach creates a problem. In some
cases where the driver is written by the developer, the database access code works only with
a specific database from the vendor. This makes it difficult to swap to a database from another
vendor and removes many of the advantages of JDBC described in the previous section.

JDBC 2.0 relaxes this restriction and introduces the concept of a data source, which maps
a name to a set of values for obtaining a database connection. A developer can obtain a con-
nection to a data source using its name, allowing the same JDBC code to work with drivers
from any vendor. Meanwhile, you can switch database vendor support by configuring a differ-
ent data source. The name remains the same, but the settings have changed, so the developer
doesn’t need to change the code.

While data sources and connection pooling (covered in the “Database Connection Pooling”
section) open new possibilities for database users, JDBC 2.0 doesn’t specify how these features
should be used. As a result, many architectural issues are left for the JDBC driver writer to solve—
and code can quickly become vendor specific again (this time depending on the JDBC driver
vendor).

JDBC 3.0 is the first specification that clearly spells out the different architectures that
JDBC can operate in, including two-tier and three-tier models. The three-tier model corre-
sponds to the application-server model and the model of operation favored by Java Enterprise
Edition (EE) 1.4 applications.

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC 169

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 169

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The specification also attempts to accommodate JDBC 1.0 and 2.0 drivers and models of
operations, while formalizing JNDI as the preferred way for applications to obtain a data source.
It also formalizes connection pooling as a value-added service of the application server or servlet
container. Tomcat uses the Jakarta Commons Database Connection Pools (DBCP) component
to implement JDBC 3.0, and all data sources configured in server.xml are JDBC 3.0 data sources
(provided you’re using JDK 1.4 or newer—which you will be for Tomcat 6 anyway).

Regardless of the JDBC version, the JDBC driver still has to translate the JDBC commands
into native commands to connect to the different databases. Most JDBC drivers are high-
performance Type IV drivers (explained in the next section). However, some legacy systems
will support only the older Type I to Type III drivers. It’s a good idea to gain some familiarity
with the different types of JDBC driver.

Examining JDBC Driver Types
Four types of JDBC drivers exist; in general, higher driver type numbers represent an improve-
ment on performance:

Type I: These are the most primitive JDBC drivers because they’re just data access adapters.
They adapt another data access mechanism (such as ODBC) to JDBC. These drivers rely
completely on the other data access mechanism and thus have double the administrative
and maintenance problems. These drivers are also typically hardware/operating-system
specific (because of the data access mechanism that they depend on), meaning they aren’t
portable at all.

Type II: These are partially written in Java and partially written in native data-access lan-
guages (typically C or C++). The non-Java portion of these drivers limits the portability of
the final code and platform migration possibilities. The administrative and maintenance
burdens of Type I still exist.

Type III: These are pure Java drivers on the client side, which gives them the portability
benefit of Java. However, they rely on an external middleware engine to operate. The client
code communicates with the middleware engine, and the engine talks to the different types
of database. The administration and maintenance burden is somewhat reduced but is far
from eliminated.

Type IV: These are 100 percent Java client drivers that talk directly to database network
protocols. This results in the highest performance connection and the most portable
application code. Administration and maintenance is greatly simplified (only the driver
needs to be updated).

Fortunately, all the major databases have Type IV JDBC drivers available, either through
the database vendors themselves or via a third-party driver vendor.

Database Connection Pooling
When a web application accesses a remote database, it may do so through a JDBC connection.
Typically, a physical JDBC connection is established between the client application and the
database server via a TCP/IP connection. Establishing such a connection is CPU and time inten-
sive. It involves multiple layers of software and the transmission and receipt of network data.
A typical physical database connection may take seconds to establish.

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC170

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 170

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Some web applications consist of JSP pages and servlets that may need data from a data-
base on every HTTP request. For example, an online library application will undoubtedly allow
users to search the library catalog. On a heavily loaded server, the time it takes to establish,
disconnect, and reestablish physical connections can substantially slow web application
performance.

To create high-performing, scalable web applications, JDBC driver vendors and application
servers are incorporating database connection pooling into their products. Connection pooling
reduces expensive connection establishment time by creating a pool of physical connections
when the system starts. When an application requires a connection, one of these physical con-
nections is provided. Normally, when the application finishes using the connection, it would
be disconnected. However, in the case of connection pooling, it’s merely returned to the pool
where it awaits the next application request.

Using Tomcat and JDBC
Tomcat provides valuable services for hosted web applications that use JDBC connections.
More specifically, Tomcat will enable running web applications to do the following:

• Access JDBC data sources using standard JNDI lookup

• Use a connection pooling service

Providing JDBC Data Sources in Tomcat
You configure JDBC drivers as JNDI resources in Tomcat. These resources are made available
during web application run time via standard JNDI lookups. The steps are as follows:

1. A web application obtains a JNDI initial context from Tomcat; it then performs a lookup
on the JDBC data source by name.

2. Tomcat handles the JNDI lookup by consulting the configuration files (the context
XML file and web.xml) to determine the JDBC driver to use for obtaining a data source.
Tomcat will also pool the physical connections made.

Even though no true JNDI-compatible directory services are involved, the Tomcat con-
tainer emulates the action of a JNDI provider. This enables code that uses JNDI as the JDBC
data source lookup mechanism to work within the Tomcat container.

Configuring JNDI JDBC Resources
Using JNDI resources in Tomcat to configure JDBC data sources is the recommended way to
provide web applications with access to JDBC connections. While other methods are possible—
you’ll see at least one alternative later—this approach will lead to portable code and easily
maintainable Tomcat servers.

You must perform the following steps to configure JNDI resource for a JDBC data source:

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC 171

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 171

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

1. Add <Resource> and <ResourceParams> tags in the <Context> element of the context
XML file or in a <DefaultContext> subelement of the Tomcat 5.0.x <Host> element.

2. Ensure that the application developer has defined a <resource-ref> element, corre-
sponding to the previous <Resource>, in the web.xml file of the web application using
the JDBC resource.

Using the Resource and ResourceParams Elements
The <Resource> element specifies the JNDI resource that represents a JDBC data source, and the
<ResourceParams> element configures the associated data source factory. Listing 10-1 shows
you how to configure a data source.

Listing 10-1. Defining a JDBC Data Source for Tomcat

<Context path="/tomcatBook"

docBase="tomcatBook"

crossContext="false"

debug="0"

reloadable="true" >

<Resource name="jdbc/CatalogDB" auth="SERVLET"

type="javax.sql.DataSource"

driverClassName="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/catalog"

username="kmittal"

password="pas44word"

maxActive="30"

maxIdle="20000"

maxWait="120"/>

</Context>

Both of these settings create a JNDI resource that the web application can access from
the context java:comp/env/jdbc/CatalogDB. The web application can then use this context
to look up the data source. The type of resource that will be returned during this lookup is
a javax.sql.DataSource. It also specifies that the servlet should authenticate against the data-
base on behalf of the web application.

The actual names and values of the parameters depend on the data source connection
factory that’s used. The previous settings assume you’re configuring the default DBCP factory.
The DBCP factory will work with JDBC drivers for any database and return a data source as
appropriate.

Transactions and Distributed Transactions Support
Databases offer varying levels of support for transactions. A transaction is a unit of work composed
of multiple operations; it can be committed only once all its operations complete successfully. If
any of the constituent operations fail, the transaction is rolled back.

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC172

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 172

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

When a transaction involves work that crosses multiple physical databases, it’s called
a distributed transaction. One standard that enables databases from different vendors to par-
ticipate in the same distributed transaction is called XA. In the XA operation model, an external
transaction manager coordinates a two-phase commit protocol between multiple resource
managers (databases in this case). The two-phase commit protocol ensures that the pieces of
work, scattered across multiple physical databases, either are all completed or are all rolled back.

JDBC 3.0 accommodates data sources that support XA operations. Administrators who
work with XA data sources and data source factories should consult the vendor’s documenta-
tion to ensure they work with Tomcat.

Testing JNDI Resource Configuration
Here, you’ll work through an actual example and configure a DBCP data source with a Type IV
JDBC driver. You’ll base your example on MySQL, as it’s easily available and widely used.

■Note Installing and configuring MySQL is beyond the scope of this chapter, but see Appendix B for a
quick-start guide. Alternatively, see Expert MySQL (Apress, 2007) by Dr. Charles Bell.

This chapter will assume that you have MySQL already configured and tested and that
you have an account with privileges to create tables and add records to create the test data-
base. The latest version of MySQL is available for download from www.mysql.com.

The Type IV JDBC driver you’ll use is the Connector/J driver from MySQL. This driver is
open source and is widely used by the MySQL community. You can download the latest version
of the driver from http://dev.mysql.com/downloads/connector/j/5.0.html.

You must unzip the driver JAR from the download and use the binary JAR file. Place this
file under CATALINA_HOME/common/lib so that the common class loader can make it available to
Tomcat and all its web applications.

Creating the MySQL Test Database
First, you’ll need to create the database you’ll use. This is a database of products available to
buy online and will correspond to the database defined in Listing 10-1 previously.

Listing 10-2 shows a SQL script that will create and populate the catalog database. It’s unlikely
you’ll have to create tables such as this normally, but it’s a useful instructional exercise.

Listing 10-2. The createCatalogDB.sql Script

DROP TABLE IF EXISTS product;

CREATE TABLE product (

prodid int not null,

prodname varchar(30),

proddesc varchar(150),

price double(7,2)

);

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC 173

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 173

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

INSERT INTO product VALUES (

1,

'Yo-Yo',

'High-quality wooden yo-yo with your company

name and logo imprinted on both sides.',

3.50

);

INSERT INTO product VALUES (

2,

'Slinky',

'Plastic slinky in the color of your choice with your

company logo imprinted on closed slinky.',

0.75

);

INSERT INTO product VALUES (

3,

'Envelope Cutter',

'Small cutting tool for opening envelopes.

Your company logo is imprinted on handle.',

1.25

);

INSERT INTO product VALUES (

4,

'Padfolio',

'Synthetic leather padfolio with company name

and logo imprinted on cover.',

9.50

);

INSERT INTO product VALUES (

5,

'Fountain Pen',

'Attractive fountain pen sporting your company

name on the cap.',

1.20

);

INSERT INTO product VALUES (

6,

'Keychain',

'Rubber keychain with your company name and

logo imprinted in a variety of colors.',

0.50

);

INSERT INTO product VALUES (

7,

'Ruler',

'Wooden ruler with raised lettering containing

your company name and logo.',

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC174

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 174

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

0.25

);

INSERT INTO product VALUES (

8,

'Flashlight',

'Metal flashlight in a variety of colors. Your

company name and logo is imprinted on the handle.',

5.0

);

Use createCatalogDB.sql to create the database as follows:

> mysql < createCatalogDB.sql

Now that you have the tables, you need to create a user that the developers will use to
access the data in the database. Since your web application functionality requires only read
access to the data, you’ll create a read-only user for developer access. This will ensure that
data can’t be accidentally or maliciously modified or altered.

Setting Up the Read-Only User
If you don’t have privileges as the database system administrator, you’ll need to seek help from
the database administrator. To give a user read-only privilege on the catalog database, use the
following:

mysql> GRANT SELECT ON catalog.*

-> TO 'kmittal'@'localhost'

-> IDENTIFIED BY 'pa44word';

The developer may now use this user to access the data in the table, since in this exam-
ple, they won’t perform any modifications to the underlying data. This is the user you saw in
Listing 10-1.

Adding the JDBC JNDI Resource to the Server
You saw the context XML file for this example in Listing 10-1, so now you have to configure the
web application’s settings. This is usually the developer’s job, but you’re filling both roles for
this example. Remember that DBCP connection pooling is automatically set up. Now edit the
tomcatBook web application’s web.xml file, as shown in Listing 10-3.

Listing 10-3. A <resource-ref> in the tomcatBookWeb Application’s web.xml

<!-- Describe a DataSource -->

<resource-ref>

<description>

Resource reference to a factory for java.sql.Connection

instances that may be used for talking to a particular

database that is configured in the tomcatBook.xml file.

</description>

<res-ref-name>

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC 175

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 175

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

jdbc/CatalogDB

</res-ref-name>

<res-type>

javax.sql.DataSource

</res-type>

<res-auth>

SERVLET

</res-auth>

</resource-ref>

This <resource-ref> makes the jdbc/CatalogDB context available to the web application
via JNDI APIs.

Using JNDI to Look Up a Data Source
Finally, the developer will look up the data source and start querying the database. The JSP
page in Listing 10-4, lookup.jsp, will do exactly that. Put it into the CATALINA_HOME/webapps/
tomcatBook/ch10 directory. Pay special attention to the way JNDI is used to obtain the data
source in the <sql:setDataSource> tag.

Listing 10-4. lookup.jsp Uses a Data Source to Obtain Data

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core_rt" %>

<%@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql_rt" %>

<sql:setDataSource dataSource="jdbc/CatalogDB"/>

<sql:query var="products">

SELECT * FROM product

</sql:query>

<html>

<head>

<title>Online Products</title>

</head>

<body>

<center>

<h1>Products</h1>

</center>

<table border="1" align="center">

<tr>

<th>Name</th><th>Description</th><th>Price</th>

</tr>

<c:forEach items="${products.rows}" var="row">

<tr>

<td><c:out value="${row.prodname}" /></td>

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC176

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 176

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<td><c:out value="${row.proddesc}" /></td>

<td><c:out value="${row.price}" /></td>

</tr>

</c:forEach>

</table>

</body>

</html>

To run this example, you need to add the JSP 1.1 standard tag library (from http://
jakarta.apache.org/taglibs/) to the web application’s classpath, either by placing jstl.jar
and standard.jar in tomcatBook/WEB-INF/lib or in the common or shared class loader path.

The <sql:setDataSource> tag uses the jdbc/CatalogDB context to look up the JNDI resource
and makes it available to the page. Behind the scenes, it’s used to create a connection (actually
pooled through DBCP). The JSP page then performs a SELECT * query on the product table and
creates an HTML table containing all the table rows.

Connect to http://localhost:8080/tomcatBook/ch10/lookup.jsp. This will compile and
execute the JSP code. If everything is configured correctly and working, you should see the
page as shown in Figure 10-2.

Figure 10-2. A JSP page that uses a JDBC data source to obtain data

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC 177

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 177

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Summary
In this chapter, you saw JDBC connectivity in the context of Tomcat. The most obvious interaction
is the need of web applications to connect to relational database sources.

I discussed Java’s support for accessing databases in the form of JDBC. I covered the JDBC
version evolution, and I talked briefly about the different types of JDBC drivers that are available.

Next, you saw the recommended way of providing a JDBC data source to web applications,
which involved the configuration of JNDI resources in the Tomcat configuration file. In addition,
Tomcat also provides a database connection pooling service through the Jakarta Commons
DBCP project.

CHAPTER 10 ■ CONNECTING TO DATABASES USING JDBC178

7850ch10FINAL.qxd 2/28/07 10:59 AM Page 178

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Working with User
Authentication

This chapter and the next deal with Tomcat security, though this chapter deals exclusively
with access to the server’s resources. Chapter 12 covers securing data transfer and securing the
machine on which the server runs. When users attempt to access a restricted resource on the
server, Tomcat challenges them to produce user details to confirm that they are who they say
they are. This is authentication.

Once a user is authenticated, the server must then determine whether this user is author-
ized to view the restricted resource requested. This is authorization. Both of these concepts
make up the security policy of a server.

Tomcat uses realms to implement and enforce specific security policies, some of which
developers specify, but all of which you administer. A realm itself doesn’t enforce security poli-
cies; it’s a repository of user information that allows the server, or sometimes an application,
to enforce a security policy.

Looking at Realms
As mentioned, a realm is a repository of user information that authenticates and authorizes
users. As befits a standard data access mechanism in Java, realms present a standard interface
to Tomcat, no matter what the underlying data store (see Figure 11-1).

As you can see, realms are another layer of abstraction on top of sources of data. In the
case of databases (accessed with JDBC) and JNDI resources, a realm is a layer of abstraction
on top of a layer of abstraction. Thus, Tomcat can authenticate against any JNDI or JDBC data
source on any platform that supports it. This allows you to use existing personnel databases
that may be running on back-end or directory servers.

Realms, as standard abstractions of underlying data, must provide a standard interface to
Tomcat, which in turn means that the underlying data must conform to a standard format. In
other words, each underlying set of data must have the following, though it may contain many
other pieces of information:

• A username

• A password

• The roles assigned to the user

179

C H A P T E R 1 1

■ ■ ■

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 179

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION180

Figure 11-1. A realm is an abstraction of the data store.

Understanding Container-Managed Security
Container-managed security puts the onus for enforcing and implementing security policies
on the web server. This means developers don’t need to write code to use authentication and
authorization (though they can if they want); they can rely on the servlet container to do the
authentication for them.

By delegating authentication and authorization to the server, developers can write
general-purpose code that can apply to many user roles. If they want to restrict access to
this general-purpose code, they ask the administrator to implement container-managed
security and place a security policy between the users and the resources. Therefore, this
code can be protected from unauthorized access without any changes in the application.
Further, the restriction can be altered without changing the application if need dictates it.

Let’s look at an example of what container-managed security provides for web application
developers and administrators. Imagine a web application that enables employees in a company
to view their performance reviews online. The application also enables supervisors to add reviews.
This application must ensure the following:

• An employee is authenticated before seeing the confidential information.

• A supervisor is authenticated before seeing and adding employee records.

In a traditional web application, the web application developer would write the authenti-
cation routines and place them in the application’s logic. Once a user has been authenticated,
they must also be authorized, which means more application-specific code to determine which
sections of the applications a supervisor can access and which sections a worker can access.
But suppose company policy changes and the human resources team now has responsibility
for adding the performance reviews. You have to rewrite code to stop supervisors viewing reviews
and to allow human resources to add reviews.

With container-managed security, the administrator handles this change. All the map-
pings of users to roles and roles to access rights are placed in server configuration files and as
such aren’t hard-coded. When the human resources team is given access to the review-adding

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 180

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

process, the administrator maps the new relationship in the configuration file, and the devel-
opers don’t need to do anything. Figure 11-2 shows this process.

Figure 11-2. (a) The manager can view and add reviews. (b) The human resources team can now
view and add reviews, but the supervisor can’t.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 181

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 181

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

In Figure 11-2 (a), the worker and the human resources team can only view the reviews,
because they’re mapped to the worker role. Managers can view and add reviews, because
they’re mapped to the supervisor role. In Figure 11-2 (b), members of the human resources
team can now view and add reviews because they’re now mapped to the supervisor role. The
supervisor is now mapped to the worker role and can only view the reviews. This shows how
easy it is to reassign users to roles without changing an application’s logic. It would be just as
easy to change any of the other mappings.

Storing a Digested Password
If you’re worried about storing passwords in plain text (and you probably will be), then you can
digest them with the digest utility that’s supplied with Tomcat. Navigate to CATALINA_HOME/bin
at the command line, and run the following:

> digest -a md5 admin

This digests the password called admin using the MD5 algorithm. You’ll see the digested
password as follows:

admin:21232f297a57a5a743894a0e4a801fc3

An alternative is to use the SHA algorithm, which is more secure:

> digest -a sha admin

admin:d033e22ae348aeb5660fc2140aec35850c4da997

You can then copy the section after the colon into the password field of your realm’s pass-
word store.

Configuring Realms
Now that you’re familiar with the concepts of realms and container-managed security, it’s time
to start configuring Tomcat to protect its resources. This section will start with server.xml and
the settings you can use to configure realms. The “Protecting a Resource with a Realm” section
will show you the settings required in each application’s web.xml file. The first stop is the file-
based realm.

Configuring a File-Based Realm
The memory realm is a simple realm implementation that loads the user and role information
into memory at server startup. The server can then use this information for container-
managed security, and developers can use it in their code.

You shouldn’t use the memory realm unless you have an extremely pressing need to do so.
It’s for demonstration purposes only and doesn’t support runtime updates. Tomcat 4.1 introduced
a much-improved version called a user database (more on the user database in the next section).

The memory realm configuration element in server.xml can have attributes specified in
Table 11-1.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION182

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 182

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 11-1. A Memory Realm’s Attributes

Attribute Description Required?

className The class that implements the memory realm. It must Yes
be set to org.apache.catalina.realm.MemoryRealm.

digest The digest algorithm used to store the password. By No
default, passwords are stored in plain text.

pathname The XML file that will be the source of data for the No
memory realm. The default is CATALINA_HOME/conf/
tomcat-users.xml.

A memory realm is configured in the default server.xml, but it’s commented out. This
reflects the concerns mentioned previously. Listing 11-1 shows the relevant section.

Listing 11-1. The Memory Realm in server.xml

<!--

<Realm className="org.apache.catalina.realm.MemoryRealm" />

-->

This specifies a memory realm that uses the CATALINA_HOME/conf/tomcat-users.xml file.
It’s at the engine level, so it will be used in all web applications running in that engine. It will
also use the logger associated with that engine, be that a logger component or a Log4J imple-
mentation. If you want to use or test this implementation, remember to comment out any
other realms in server.xml.

If you need to specify your own set of users, passwords, and roles for a memory realm,
add them to tomcat-users.xml, as shown in Listing 11-2.

Listing 11-2. The tomcat-users.xml File

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="role1"/>

<role rolename="manager"/>

<role rolename="admin"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="admin" password="admin" roles="admin,manager"/>

</tomcat-users>

As has already been noted, this memory realm isn’t configured by default. Instead, a greatly
improved memory realm implementation called a user database has superseded this primitive
memory realm implementation. The old memory realm is retained for backward compatibility
(which is still no excuse to use it).

If you’re using a digested password, you should copy the digested output of the digest script
into the password attribute of the appropriate <user> element in tomcat-users.xml, as shown
in Listing 11-3.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 183

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 183

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 11-3. A Digested Password Is Added for the admin User

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="role1"/>

<role rolename="admin"/>

<user username="admin"

password="d033e22ae348aeb5660fc2140aec35850c4da997"

roles="admin"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

</tomcat-users>

When Tomcat asks for a password and you’ve set it up to use digested passwords, it digests
whatever users enter as their passwords and compares them to the values stored in the realm
(see Figure 11-3).

Figure 11-3. Tomcat using digested passwords

You can see that it’s important to tell Tomcat to digest the password entered so that it can
make a proper comparison. If Tomcat doesn’t know to digest the password, then it won’t
authenticate the user.

You’ll see how to protect a web application in the “Protecting a Resource with a Realm”
section.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION184

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 184

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring a User Database Realm
A user database is a greatly enhanced implementation of a memory realm. Though it may
not seem like much (it still uses tomcat-users.xml, for instance), it does offer three large
improvements:

• You can now change the user information programmatically during the lifetime of the
engine. This allows you to build administrative utilities. Note that this doesn’t mean you
can edit the file manually and expect the changes to be reflected instantly. You’ll have to
restart the server in that case.

• Upon modification and shutdown, the user database can save any changes to the
tomcat-users.xml data file for use in the future.

• You can alter the username, password, and role mapping with the admin web interface
utility as described in the next section.

In the default server.xml, the user database is already configured in place of the legacy
memory realm implementation, which you may have uncommented earlier. The user database
is usually configured in the <GlobalNamingResources> element as a JNDI resource that’s avail-
able to all applications on the server. Unlike the memory realm, which is implicitly used in
configuring each web application, the user database must be configured for each web application.
Listing 11-4 shows the user database global settings as configured in Tomcat 5.0.x’s server.xml.
Tomcat 6 uses attributes of the <Resource> element rather than a <ResourceParams> element.

Listing 11-4. The Global Settings for the Default User Database in server.xml

<!-- Global JNDI resources -->

<GlobalNamingResources> <!-- Test entry for demonstration purposes -->

<Environment name="simpleValue" type="java.lang.Integer" value="30"/>

<!-- Editable user database that can also be used by

UserDatabaseRealm to authenticate users -->

<Resource name="UserDatabase" auth="Container"

type="org.apache.catalina.UserDatabase"

description="User database that can be updated and saved"

factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

pathname="conf/tomcat-users.xml" />

</GlobalNamingResources>

This makes the user database called UserDatabase accessible through JNDI lookup, rela-
tive to the java:comp/env naming context. The factory parameter sets the class that will return
a user database to Tomcat for use in authentication.

This configuration also allows you to reference the user database in a later scope. For example,
you can use the user database as a realm at the engine level as the default server.xml file does.
Listing 11-5 shows this situation.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 185

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 185

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 11-5. Adding a User Database

<!-- This realm uses the UserDatabase configured in the global JNDI

resources under the key "UserDatabase". Any edits

that are performed against this UserDatabase are immediately

available for use by the Realm. -->

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

resourceName="UserDatabase"/>

This realm has all the same attributes as the memory realm, save the addition of the
resourceName attribute. For example, if you wanted to use message digests with this realm,
you’d set it up as in Listing 11-6.

Listing 11-6. A User Database that Uses Digested Passwords

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"

resourceName="UserDatabase"

digest="sha"/>

This will allow you to use the admin user from Listing 11-3. If you didn’t set the digest
attribute in this case, then Tomcat would make a comparison between the plain password
entered by a user and the digested password stored in the realm. Setting the digest attribute
makes Tomcat digest the password before comparing it every time the user enters it.

As noted previously, you can alter this realm while the server is running, which is a vast
improvement over the memory realm. You can, if you like, write an application that manipu-
lates this file to add, remove, and modify users, though Tomcat’s admin application does just
that. You saw the admin application in Chapter 6 but not in any great detail. I’ll now show you
how to use the admin application to work with user databases.

Configuring User Databases with the admin Application
To add a new user database, start Tomcat, and then visit the admin application via the URL
http://localhost:8080/admin/. You may have to set up appropriate users for this application
if you haven’t followed the steps in Chapter 6, which simply tell you to add an admin user to
tomcat-users.xml. When you visit the admin application, you’ll see the screen shown in Figure 11-4.

Figure 11-4. The Tomcat admin application

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION186

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 186

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Log in using the details of a user with the admin role. You’ll see the admin web interface.
Click the User Databases link in the left pane, and you’ll see the screen shown in Figure 11-5.

Figure 11-5. User databases in the Tomcat admin application

This corresponds to the user database entry as defined in Listing 11-4, right down to the
description. Click the user database’s name, and you’ll see a screen like Figure 11-6.

This is the default user database as defined in server.xml. Only one user database factory
for user databases exists, so you can’t edit that setting. The others allow you to change the loca-
tion of the user information from the default tomcat-users.xml file and change the description.

To add a new user database, click the User Database Actions box, and select Create New
User Database. You’ll see a blank version of the screen in Figure 11-6, with the factory already
filled in. Enter the details you require, and click Save. Once you’ve clicked Save, Tomcat holds
the configuration in memory. When you’ve made all the changes you want to make to the server
configuration, click the Commit Changes button at the top of the web interface. Any comments
you had in server.xml will be lost, as Tomcat overwrites the entire file. The good news is that
Tomcat will create a backup of the old server.xml file with the date appended to the filename.

■Note When you click Commit Changes, the admin application will restart the server. This means you’ll
have to log in again once the server has restarted. If you attempt any actions while the restart is in progress,
you’ll receive multiple errors in multiple frames. You don’t have to click Commit Changes to update the user
database, as described next.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 187

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 187

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 11-6. Editing the default user database

You can also delete user databases if you no longer require them. Click the User Database
Actions box, and select Delete User Databases. You’ll see a list of user databases and their
descriptions along with checkboxes, as shown in Figure 11-7.

Tomcat 6 allows you to remove any user database. Select the checkbox of the user database
you want to delete, and click Save. That’s the theory anyway. As things stand, this function of
the admin application is fairly flaky, so you may have to delete your user databases by hand for
the time being.

Figure 11-7. Deleting a user database

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION188

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 188

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Editing the User Database with the admin Application
To edit the user database, click the Users item in the tree view on the left; you’ll see a screen
like Figure 11-8.

Figure 11-8. Viewing users with the admin application

It’s worth noticing that the list of users shown in the table on the right is the same as the
list of users shown in Listing 11-2, where an example tomcat-users.xml file is shown.

To edit a user, click a name. You can change the password, add a full name or description,
and change the roles (see Figure 11-9).

Figure 11-9. Editing a user’s details

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 189

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 189

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Any changes you make will be written to tomcat-users.xml (or whichever realm you’re
using) once you click Save. As with all the actions of the admin application, any changes will
remove comments from the user database file. This is because the admin application writes
a new file every time, so “modifying the user database” is a slight misnomer; you’re really spec-
ifying new values to replace the old user database, which the admin application will overwrite.
You don’t have a backup in this case, though.

To create a new user, click the User Actions box, and select Create New User. You’ll see
a screen like the one shown in Figure 11-10.

Figure 11-10. Creating a new user

Click the Save button. After clicking Save, open tomcat-users.xml, and check that your
new user has been added. You don’t need to click Commit Changes in this case, unless you’ve
made changes elsewhere and want to restart the server and overwrite server.xml. Your user is
now available to Tomcat for authentication. If you gave the user the admin role, log out of the
admin application, and try to log in as the new user. The user’s details should allow you to access
the admin application.

Protecting a Resource with a Realm
It’s usually a web application developer who will specify which resources need to be protected,
though you’ll have your own applications you want to protect, such as the admin and manager
web applications.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION190

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 190

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

You saw the important security-related elements of web.xml in Chapter 5. You use these
elements to specify the web resource to protect and the way in which you want to protect it.

The security-related elements from web.xml are as follows:

• <security-constraint>: Protects a group of web resources and specifies the role that
a user must have before accessing the resource.

• <web-resource-collection>: A subelement of <security-constraint> that specifies the
web resources that this security constraint protects. This can be a URL pattern using
wildcard notation or an HTTP method. In other words, you can protect physical resources
or protect access from certain access methods.

• <auth-constraint>: A subelement of <security-constraint>. This specifies the roles
that are allowed to access resources covered by this security constraint.

• <user-data-constraint>: Specifies the data transport security constraint. This can be
NONE, INTEGRAL, or CONFIDENTIAL. NONE specifies that no transport guarantee is required.
INTEGRAL specifies that the data must not be changed in transit. CONFIDENTIAL specifies
that others may not view the date in transit. The last two mean that HTTPS must be used.

• <login-config>: Specifies the type of authentication Tomcat should perform. The choices
are BASIC, DIGEST, FORM, or SSL client methods for authentication. BASIC uses the browser’s
password request box but transmits the username and password in unencrypted text.
DIGEST uses the browser’s password request box and encryption; this isn’t always well
supported by browsers. FORM allows you to specify a custom login form, like the admin
application. The SSL client methods require digital certificates; you’ll learn more about
them in Chapter 12.

• <security-role>: Specifies the security roles used within this web application.

You’ve seen these used in various incarnations throughout the book so far, but I won’t
discuss them in detail until Chapter 12 because they’re security configuration, not realm
configuration.

However, Listing 11-7 shows how to set up basic protection for the ch11 directory of the
tomcatBook web application.

Listing 11-7. A Simple Security Setup

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<!-- Describe a DataSource -->

<resource-ref>

<description>

Resource reference to a factory for java.sql.Connection

instances that may be used for talking to a particular

database that is configured in the tomcatBook.xml file.

</description>

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 191

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 191

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<res-ref-name>

jdbc/CatalogDB

</res-ref-name>

<res-type>

javax.sql.DataSource

</res-type>

<res-auth>

SERVLET

</res-auth>

</resource-ref>

<!-- Define a Security Constraint on this application -->

<security-constraint>

<web-resource-collection>

<web-resource-name>Tomcat Book Application</web-resource-name>

<url-pattern>/ch11/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>tomcat</role-name>

</auth-constraint>

</security-constraint>

<!-- Define the Login Configuration for this Application -->

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Tomcat Book Application</realm-name>

</login-config>

<!-- Security roles referenced by this web application -->

<security-role>

<description>

The role that is required to log in to the TomcatBook application

</description>

<role-name>tomcat</role-name>

</security-role>

</web-app>

Configuring a JDBC Realm
Now that you’re familiar with realms in general, and file-based realms in particular, it’s time to
introduce JDBC realms. JDBC realms use relational databases as their data storage mechanism
and can be extremely useful if you have an existing user database that contains usernames and
passwords. They’re even better if the database already contains the roles each user has. Even if
this isn’t the case, you can easily add another table to the database.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION192

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 192

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

JDBC realms allow you to seamlessly integrate Tomcat into your existing network infra-
structure. You gain all the advantages of using a common database for all your users, which
include making database maintenance easy, making code maintenance easy, and removing
the need to rewrite any application code. Like the user database, a JDBC realm is up-to-date
and reflects any changes in your common database.

Even if you don’t have a common database, a JDBC realm is a good option for your realm,
especially if you have any database applications running on your server. Using the same data-
base server as Tomcat’s web applications won’t adversely affect performance and brings some
of the advantages outlined previously, namely ease of maintenance. JDBC realms are robust,
and you can easily secure databases against unauthorized entry. It’s certainly more difficult for
casual observers to view user information in a database than it is to view it in a text file residing
in Tomcat’s directory structure.

Creating a JDBC Realm’s Data Store
JDBC realms are designed to be integrated with existing user databases, and thus their config-
uration maps to a common user database setup. Each of the configuration parameters you saw
in tomcat-users.xml has a corresponding parameter in a JDBC realm, so a database should
contain a username column, a user password column, and a user role column associated with
a username. Following good database design, the username and password should be stored in
one table and the username and role should be stored in another table, as shown in Figure 11-11.

Figure 11-11. The JDBC realm table schema

The user table has a username field, which is the primary key, and a password field. This
ensures that all usernames are unique, as should be the case in any existing database. The role
table also has a username field, which is linked to user.username with a foreign key constraint
to enforce relational integrity. There’s no primary key, though you should use a compound pri-
mary key if your database allows it, either of which means there may be more than one role
assigned to a username in the role table. Each combination is given its own row.

These tables and fields don’t have to follow any naming conventions because you can
configure the JDBC realm to use any table and fields you want. This is all part of the graceful
integration that makes JDBC realms so easy to use.

You configure JDBC realm definitions in a realm element at the level of any container
component, just like the file-based realms previously described. Table 11-2 shows the JDBC
realm’s attributes.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 193

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 193

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 11-2. The JDBC Realm Attributes

Attribute Description Required?

className The Java class that implements the JDBC realm. This Yes
must be org.apache.catalina.realm.JDBCRealm.

connectionName The JDBC connection username to be used. Yes

connectionPassword The JDBC connection password to be used. Yes

connectionURL The JDBC connection URL used to access the database
instance. Yes

digest Specifies the digest algorithm for the password (as used No
by the java.security.MessageDigest class). The
default is plain text.

driverName The JDBC driver. Yes

userTable The name of the users table in the database. Yes

userNameCol The username column in the userTable table and the Yes
userRoleTable table.

userCredCol The password column in the userTable table. Yes

userRoleTable The user role table in the database. Yes

roleNameCol The role column in the userRoleTable table. Yes

As you can see, it’s a straightforward task to specify the database server, the user and role
tables, and the username, password, and role columns. server.xml contains three JDBC realms
by default: MySQL, Oracle, and ODBC. Let’s examine how to work with MySQL before looking
at ODBC.

Configuring a MySQL JDBC Realm

Listing 11-8 shows the default MySQL setting in server.xml. You shouldn’t change its className
and driverName attributes, because they’re required when using a MySQL JDBC realm. You should
make sure that the MySQL driver is in Tomcat’s classpath. For details of obtaining and installing
a MySQL driver, see Chapter 10.

You should note, however, that the MySQL driver is no longer called org.gjt.mm.mysql.
Driver, though this class is still supplied in the driver JAR file for backward compatibility. You
should use com.mysql.jdbc.Driver for all other purposes.

Listing 11-8. The Default MySQL JDBC Realm in server.xml

<!--

<Realm className="

org.apache.catalina.realm.JDBCRealm"

driverName="org.gjt.mm.mysql.Driver"

connectionURL="jdbc:mysql://localhost/authority"

connectionName="test" connectionPassword="test"

userTable="users" userNameCol="user_name" userCredCol="user_pass"

userRoleTable="user_roles" roleNameCol="role_name" />

-->

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION194

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 194

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Before you change any of these values, you should ensure you have a database ready. In
this example, you’ll be replicating the tomcat-users.xml file from Listing 11-3, digested admin
password and all. Listing 11-9 shows a SQL script (realmDB.sql) that will create the database,
tables, and columns. It will also insert the user data from Listing 11-3.

Listing 11-9. A SQL Script to Set Up the JDBC Realm in MySQL

CREATE DATABASE realmDB;

USE realmDB;

CREATE TABLE deptusers (

apressusername VARCHAR(15) NOT NULL PRIMARY KEY,

password VARCHAR(40) NOT NULL

) TYPE=InnoDB;

CREATE TABLE deptroles (

apressusername VARCHAR(15) NOT NULL,

apressrole VARCHAR(15) NOT NULL,

PRIMARY KEY (apressusername, apressrole),

FOREIGN KEY (apressusername) REFERENCES deptusers(apressusername)

ON DELETE CASCADE

) TYPE=InnoDB;

INSERT INTO deptusers VALUES ('tomcat', 'tomcat');

INSERT INTO deptusers VALUES ('both', 'tomcat');

INSERT INTO deptusers VALUES ('role1', 'tomcat');

INSERT INTO deptusers VALUES ('admin',

'd033e22ae348aeb5660fc2140aec35850c4da997');

INSERT INTO deptroles VALUES ('tomcat', 'tomcat');

INSERT INTO deptroles VALUES ('both', 'tomcat');

INSERT INTO deptroles VALUES ('both', 'role1');

INSERT INTO deptroles VALUES ('role1', 'role1');

INSERT INTO deptroles VALUES ('admin', 'admin');

MySQL provides MD5() and SHA() functions to digest passwords as they’re placed into the
database. The SHA() function is available only in MySQL 4.0.2 onward, so you still have to use
Tomcat’s digest script to calculate the digest if you have an older version. Change the digested
line to the following as appropriate if you want to use these functions:

Can be used in all versions of MySQL

INSERT INTO deptusers VALUES ('admin', MD5('admin'));

MySQL 4.0.2 onwards

INSERT INTO deptusers VALUES ('admin', SHA('admin'));

Remember to delete this script when you’ve finished, though.
Versions of MySQL older than 3.23.44 don’t support foreign keys, but they will parse the

script, and newer versions of the MySQL must use InnoDB tables as specified in Listing 11-9.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 195

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 195

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

MySQL 5 uses InnoDB tables by default. The absence of foreign key support isn’t too big a prob-
lem; you must just be careful when modifying the database.

To check whether InnoDB tables are enabled on your server, run the following in MySQL:

mysql> SHOW VARIABLES LIKE 'have_%';

If InnoDB tables are enabled, you’ll see the following:

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| have_bdb | YES |

| have_gemini | NO |

| have_innodb | YES |

| have_isam | YES |

| have_raid | NO |

| have_openssl | NO |

+---------------+-------+

6 rows in set (0.00 sec)

If the have_innodb variable is set to DISABLED, then your server has the potential to use InnoDB
tables, and you’ll have to configure them. Add the following line under the [mysqld] section to
your my.ini file (through the MySQL admin interface) on Windows or your MYSQL_HOME/data/
my.cnf file on other platforms:

innodb_data_file_path = ibdata1:30M:autoextend

This creates a 30MB store for InnoDB tables in the MYSQL_HOME/data directory that grows if
required. Restart the server, and check that InnoDB tables are enabled.

To run the realmDB.sql script, log into the MySQL server and run the following, assuming
the script is in MySQL’s bin directory:

mysql> \. ./realmDB.sql

You should create a user in MySQL that will allow Tomcat to read the values in the user data-
base. This follows a similar pattern to the read-only user you created in Chapter 10. You could
even use the same read-only user if you wanted, though you still have to execute a new GRANT
command. The following creates a tomcat read-only user in the MySQL privileges database:

mysql> GRANT SELECT ON realmDB.*

-> TO 'tomcat'@'localhost'

-> IDENTIFIED BY 'meow';

Now that you’ve prepared the database, you should create the realm definition in server.xml.
Listing 11-10 shows the settings for the realmDB database, though you should change the
connectionName and connectionPassword attributes if you have a different username and pass-
word than the ones just shown. Comment out any other realm definitions.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION196

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 196

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 11-10. The Example MySQL JDBC Realm Configuration

<Realm className="org.apache.catalina.realm.JDBCRealm"

driverName="com.mysql.jdbc.Driver"

connectionURL="jdbc:mysql://localhost/realmDB"

connectionName="tomcat" connectionPassword="meow"

userTable="deptusers" userNameCol="apressusername"

userCredCol="password"

userRoleTable="deptroles" roleNameCol="apressrole"

digest="sha"

/>

You should now test the realm by visiting a protected resource, such as the admin applica-
tion. If the setup was successful, you’ll be able to log in using the admin user as before. Open
the Service node, and click the Realm node. You’ll see that Tomcat is using the MySQL JDBC
realm for authentication, as shown in Figure 11-12.

Figure 11-12. The admin application shows that Tomcat is using the new realm.

Configuring an ODBC JDBC Realm

For this example, you’ll use an Access database as the ODBC data source, though SQL server
or Excel spreadsheets are just as easy. Create the two tables as described in the previous sec-
tion, with a relationship as shown in Figure 11-13.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 197

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 197

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 11-13. The relationship between deptroles and deptusers

Now you need to populate the tables. Access allows you to add data to the deptroles table
while you’re adding data to the deptusers table: that’s the beauty of defining a relationship.
Add the data as shown in Figure 11-14 using Tomcat’s digest utility to create the digested pass-
word for the admin user.

Figure 11-14. The data in deptroles and deptusers

Of course, you may already have data you can use. The final step of configuration for Access
is to add a Windows data source. Click Start ➤ Settings ➤ Control Panel ➤ Administrative Tools ➤
Data Sources (ODBC). Choose a System DSN, and click Add.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION198

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 198

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Choose an Access (*.mdb) driver, and fill in the details as shown in Figure 11-15; you can
browse to the database by clicking Select.

Figure 11-15. Configuring an ODBC data source

Click Advanced to set a username and password. In this case, enter the username tomcat
and the password meow.

The JDBC ODBC driver is part of the Java distribution, so you don’t need to add any JAR
files to Tomcat’s classpath. This just leaves the realm configuration in server.xml. Comment
out any other realms, and add the definition as shown in Listing 11-11.

Listing 11-11. A JDBC Realm Using an ODBC Data Source

<Realm className="org.apache.catalina.realm.JDBCRealm"

driverName="sun.jdbc.odbc.JdbcOdbcDriver"

connectionURL="jdbc:odbc:realmDB"

connectionName="tomcat" connectionPassword="meow"

userTable="deptusers" userNameCol="apressusername"

userCredCol="password"

userRoleTable="deptroles" roleNameCol="apressrole"

digest="sha"

/>

You shouldn’t change the className or driverName options, because they’re standard for
ODBC JDBC realms. The connectionURL option is the name of the ODBC data source you con-
figured earlier, and the other settings correspond to the database and user details you added.
The password for the admin Tomcat user is digested with the SHA algorithm, so enter the
digest attribute sha.

Start Tomcat, and attempt to log into the admin application using this setup. If all went well,
you’ll be able to log in successfully. Open the Service node, and click the Realm node. You’ll see
that Tomcat is using the ODBC JDBC realm for authentication, as shown in Figure 11-16.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 199

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 199

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 11-16. The admin application shows that Tomcat is using the new realm.

Configuring JNDI Realms
JNDI realms also allow you to use existing data, this time in the form of directory services. To
use a JNDI realm, you must be able to map the configuration attributes to an existing direc-
tory schema. This is similar to the process of mapping database tables and columns to Tomcat
login details. Table 11-3 shows the attributes for the JNDI realm.

Table 11-3. The JNDI Realm’s Attributes

Attribute Description Required?

className Class name of the JNDI realm implementation; must be Yes
org.apache.catalina.realm.JNDIRealm.

connectionName The username used to log into the directory service; not No
required if simple binding is in use.

connectionPassword The password used to log into the directory service; not No
required if simple binding is in use.

connectionURL The URL of the directory service. Yes

contextFactory The class used to create the context for the JNDI No
connection. The standard JNDI Lightweight Directory
Access Protocol (LDAP) provider is sufficient in
most cases.

digest Specifies the digest algorithm used to digest the user’s No
password. This attribute is ignored if you don’t specify
userPassword.

roleBase The base element for role searches. The default is the No
top-level element.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION200

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 200

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Attribute Description Required?

roleName The name of the directory attribute that contains the No
role name.

roleSearch An LDAP pattern for searching the directory for roles. No
The {0} placeholder inserts the user’s distinguished
name, and {1} inserts the username. Often, these are
the same.

roleSubtree If set to true, a subtree search will be conducted for the No
role. The default is false.

userBase The base element for user searches using the No
userSearch attribute. This isn’t used if you’re using the
userPattern expression. The default is the top-level
element in the directory context.

userPassword The name of the user element’s directory attribute that No
contains the password information.

userPattern An LDAP pattern for searching the directory for a user No
entry. The {0} placeholder inserts the username entered
by the user.

userRoleName The name of an attribute in the user’s directory entry No
containing zero or more roles assigned to the user. If
userRoleName isn’t specified, all the roles for a user derive
from the role search.

userSearch The LDAP filter expression for searching for a user’s No
directory entry. {0} inserts the username as entered by
the user. Use this property (along with the userBase and
userSubtree properties) instead of userPattern to search
the directory for the user’s entry.

userSubtree Set to true if you want to search the entire subtree of the No
element specified by the userBase property for the user’s
entry. The default value of false causes only the top level
to be searched. Not used if you’re using the userPattern
expression.

Let’s see some of these attributes in action, because JNDI realms are slightly more compli-
cated than the other realm types.

Setting Up a Directory Server
If you don’t already have a directory server, then you may want to install OpenLDAP
(www.openldap.org). It’s a free, open source directory server that uses Lightweight Directory
Access Protocol (LDAP), and you can use its services via a JNDI driver, which means you can
also use it as a JNDI realm data repository. Download the server, and install it in a convenient
location (LDAP_HOME for the purposes of this discussion). A Windows binary is available at
http://download.bergmans.us/openldap/.

The main configuration file is LDAP_HOME/slapd.conf. The default file already contains
a number of settings, none of which you should have to change. However, you may need to
add some settings. Listing 11-12 shows the minimum you’ll require (using OpenLDAP 2.2).

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 201

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 201

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 11-12. The Settings in slapd.conf

ucdata-path C:/openldap/ucdata

include C:/openldap/etc/schema/core.schema

include C:/openldap/etc/schema/cosine.schema

include C:/openldap/etc/schema/inetorgperson.schema

pidfile C:/openldap/var/slapd.pid

argsfile C:/openldap/var/slapd.args

database bdb

suffix dc="mycompany,dc=com"

rootdn "cn=Manager,dc=mycompany,dc=com"

rootpw secret

directory C:/openldap/var/openldap-data

You should, of course, change the paths to suit your system. The include directives at the
beginning of the file include object definitions that you’ll use when adding users and roles to
the directory. The suffix attribute specifies the domain in which this directory server is run-
ning, and the rootdn and rootpw attributes set the admin user and password for this directory
server. The directory attribute specifies where the directory files will be stored.

Once you’ve modified slapd.conf, start the directory server.

> slapd -d 1

The directory server will listen on port 339 (the default LDAP port) and will report at
debug level 1. Now that the directory server is running, you can add entries to the directory
using LDAP Data Interchange Format (LDIF). LDIF is a text-based directory description for-
mat that’s processed by client tools so that directory entries can be added.

Again, you’ll replicate the information in tomcat-users.xml in LDIF. Create a file called
realmDB.ldif, and add the entries shown in Listing 11-13.

Listing 11-13. The Users and Roles from tomcat-users.xml in LDIF

Define top-level entry

dn: dc=mycompany,dc=com

objectClass: dcObject

objectClass: organization

dc: mycompany

o: mycompany

Define an entry to contain people

searches for users are based on this entry

dn: ou=people,dc=mycompany,dc=com

objectClass: organizationalUnit

ou: people

Define a user entry for tomcat

dn: uid=tomcat,ou=people,dc=mycompany,dc=com

objectClass: inetOrgPerson

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION202

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 202

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

uid: tomcat

sn: tomcat

cn: tomcat user

userPassword: tomcat

Define a user entry for role1

dn: uid=role1,ou=people,dc=mycompany,dc=com

objectClass: inetOrgPerson

uid: role1

sn: role1

cn: role1 user

userPassword: tomcat

Define a user entry for both

dn: uid=both,ou=people,dc=mycompany,dc=com

objectClass: inetOrgPerson

uid: both

sn: both

cn: both user

userPassword: tomcat

Define a user entry for admin

dn: uid=admin,ou=people,dc=mycompany,dc=com

objectClass: inetOrgPerson

uid: admin

sn: admin

cn: admin user

userPassword: d033e22ae348aeb5660fc2140aec35850c4da997

Define an entry to contain LDAP groups

searches for roles are based on this entry

dn: ou=groups,dc=mycompany,dc=com

objectClass: organizationalUnit

ou: groups

Define an entry for the "tomcat" role

dn: cn=tomcat,ou=groups,dc=mycompany,dc=com

objectClass: groupOfUniqueNames

cn: tomcat

uniqueMember: uid=tomcat,ou=people,dc=mycompany,dc=com

uniqueMember: uid=both,ou=people,dc=mycompany,dc=com

Define an entry for the "role1" role

dn: cn=role1,ou=groups,dc=mycompany,dc=com

objectClass: groupOfUniqueNames

cn: role1

uniqueMember: uid=role1,ou=people,dc=mycompany,dc=com

uniqueMember: uid=both,ou=people,dc=mycompany,dc=com

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 203

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 203

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Define an entry for the "admin" role

dn: cn=admin,ou=groups,dc=mycompany,dc=com

objectClass: groupOfUniqueNames

cn: admin

uniqueMember: uid=admin,ou=people,dc=mycompany,dc=com

Here, you’ve added the users to the people group, which is part of the mycompany.com
domain. Table 11-4 shows what each of the user attributes means.

Table 11-4. Attributes for a User Entry

Attribute Description

cn This user’s common name, which can be used as a description.

dn The user’s distinguished name, which makes it unique within the directory.
This is used when searching for a user.

objectClass The object that models this user. The inetOrgPerson is a standard definition of
a person with common attributes, such as e-mail addresses and telephone
numbers.

sn The user’s surname.

uid The unique username for this person.

userPassword The password of this user.

The roles are added to a group called groups and follow the same pattern as the users.
The uniqueMember attribute specifies a member of that role using the user’s distinguished
name. If you’re interested in seeing how objects and attributes are linked together, examine
the *.schema files in LDAP_HOME/etc/schema.

You have two choices for adding these entries to the directory: online or offline. You should
create the database online using LDAP only when creating small databases (1 to 2,000 entries),
because it uses the directory server to create the database. Clients can also access the database
while an online operation is in progress, meaning that large, slow updates will result in problems.
The offline method creates the database files directly without going through the directory server.

To add the entries to the directory online, use the ldapadd utility that comes with OpenLDAP:

> ldapadd -x -D "cn=Manager,dc=mycompany,dc=com" -w secret -f realmDB.ldif

adding new entry "dc=mycompany,dc=com"

adding new entry "ou=people,dc=mycompany,dc=com"

adding new entry "uid=tomcat,ou=people,dc=mycompany,dc=com"

adding new entry "uid=role1,ou=people,dc=mycompany,dc=com"

adding new entry "uid=both,ou=people,dc=mycompany,dc=com"

adding new entry "uid=admin,ou=people,dc=mycompany,dc=com"

adding new entry "ou=groups,dc=mycompany,dc=com"

adding new entry "cn=tomcat,ou=groups,dc=mycompany,dc=com"

adding new entry "cn=role1,ou=groups,dc=mycompany,dc=com"

adding new entry "cn=admin,ou=groups,dc=mycompany,dc=com"

The -x switch tells the ldapadd client to connect to the directory server using the simple
bind method, as opposed to an encrypted method. In this case, the username and password
are sent in plain text. -D specifies the bind distinguished name, essentially the username for

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION204

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 204

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

the domain you’re configuring, and -w specifies the password. The -f switch specifies the LDIF
file to use for creating the directory entries.

To add the entries offline, use the slapadd utility.

> slapadd -v -l realmDB.ldif -f slapd.conf

added: "dc=mycompany,dc=com" (00000001)

added: "ou=people,dc=mycompany,dc=com" (00000002)

added: "uid=tomcat,ou=people,dc=mycompany,dc=com" (00000003)

added: "uid=role1,ou=people,dc=mycompany,dc=com" (00000004)

added: "uid=both,ou=people,dc=mycompany,dc=com" (00000005)

added: "uid=admin,ou=people,dc=mycompany,dc=com" (00000006)

added: "ou=groups,dc=mycompany,dc=com" (00000007)

added: "cn=tomcat,ou=groups,dc=mycompany,dc=com" (00000008)

added: "cn=role1,ou=groups,dc=mycompany,dc=com" (00000009)

added: "cn=admin,ou=groups,dc=mycompany,dc=com" (0000000a)

-v specifies verbose mode; -l specifies the LDIF file, and -f is the slapd configuration file.
To test that your entries are in the directory, use the ldapsearch tool, as follows, where -b is

the base distinguished name to search:

> ldapsearch -b "dc=mycompany,dc=com"

If the search is successful, you’ll see output that’s similar to realmDB.ldif with the passwords
scrambled.

To delete the entries, use ldapdelete with the -r switch to do a recursive delete.

> ldapdelete -x -D "cn=Manager,dc=mycompany,dc=com"

-w secret -r "dc=mycompany, dc=com"

Adding the JNDI Realm
You now need to configure the realm in Tomcat’s server.xml file. Listing 11-14 shows a realm
definition that will connect to the directory server with an anonymous login and search for
users and roles according to the username entered by the user.

Listing 11-14. A JNDI Realm in server.xml

<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://localhost:389"

userPassword="userPassword"

userPattern="uid={0},ou=people,dc=mycompany,dc=com"

roleBase="ou=groups,dc=mycompany,dc=com"

roleName="cn"

roleSearch="(uniqueMember={0})"

digest="sha"

/>

You shouldn’t change the className or connectionURL attributes, because they’re standard
for JNDI realms. The userPassword attribute specifies which attribute in a user’s directory entry
should be used for password comparison when trying to log into an application.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 205

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 205

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The userPattern attribute tells the driver which pattern should be used when searching
for a user. If you look at the previous realmDB.ldif file, you’ll see that each user is specified
with a distinguished name in the form given in this attribute. When the user types in his or her
username, it will be substituted in this string and the result will be used to search for that user.
If that user is found, then he or she has been authenticated for the purposes of this realm.
However, the user still must be authorized.

The role* attributes combine in the search for a user role. roleBase tells the directory server
where to begin the search, in this case with the groups organizational unit. The roleName attrib-
ute specifies which attribute in a role’s entry should be used to identify its name. Once a role
has been identified with this directory attribute, the attribute specified in roleSearch is used
to confirm that a user is a member of that role.

The digest attribute is used as in other realms.
Start Tomcat, and attempt to log into the admin application using this setup. If all went

well, you’ll be able to log in successfully. Open the Service node, and click the Realm node.
You’ll see that Tomcat is using the JNDI realm for authentication, as shown in Figure 11-17.

Figure 11-17. The admin application shows that Tomcat is using the new realm.

For a further insight into the communication between Tomcat and the directory server,
examine the log for the service component. You should see something similar to Listing 11-15.

Listing 11-15. The Communication Between Tomcat and the Directory Server

JNDIRealm[Catalina]: Connecting to URL ldap://localhost:389

JNDIRealm[Catalina]: lookupUser(admin)

JNDIRealm[Catalina]: dn=uid=admin,ou=people,dc=mycompany,dc=com

JNDIRealm[Catalina]: retrieving attribute userPassword

JNDIRealm[Catalina]: validating credentials

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION206

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 206

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

JNDIRealm[Catalina]: Username admin successfully authenticated

JNDIRealm[Catalina]: getRoles(uid=admin,ou=people,dc=mycompany,dc=com)

JNDIRealm[Catalina]: Searching role base 'ou=groups,dc=mycompany,dc=com' for

attribute 'cn'

JNDIRealm[Catalina]: With filter expression

'(uniqueMember=uid=admin,ou=people,dc=mycompany,dc=com)'

JNDIRealm[Catalina]: retrieving values for attribute cn

JNDIRealm[Catalina]: Returning 1 roles

JNDIRealm[Catalina]: Found role admin

Here, you can see the two steps mentioned previously. The directory server authenticates
the user by looking up the user’s distinguished name, using the string built with the username.
The directory server finds the user and retrieves the password attribute for comparison by
Tomcat. Tomcat validates the user’s credentials and tells the directory server that it can authenti-
cate the user, which it does.

The directory server then tries to find a role that’s associated with this user and returns
the value of the cn attribute. This value is then used by Tomcat to authorize the user’s access
to the resource. Note how all the attribute values in this communication were specified in
server.xml.

Summary
In this chapter, you saw how realms provide a web application with an authentication mecha-
nism as well as container-managed security. Many different types of realm implementations
exist—you saw JDBC realms, JNDI realms, memory realms, and user database realms.

CHAPTER 11 ■ WORKING WITH USER AUTHENTICATION 207

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 207

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850ch11FINAL.qxd 2/28/07 11:06 AM Page 208

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Securing Tomcat

Security is the most important aspect of your job as an administrator; a server that’s compro-
mised can’t serve any content and could possibly lead to loss of commercial secrets, financial
details, or dignity. Securing a server includes many aspects, such as securing the file system,
securing the databases, and securing the Tomcat server.

You can think of security as several layers, each of which is as important as the other. If
your Tomcat server does somehow become compromised, you want to be sure that the file
system and all the information stored on it aren’t compromised along with Tomcat.

This chapter will deal with Windows file system issues to start and then cover Unix file
system issues. Once you’ve learned about these specifics, you’ll learn about general Tomcat
security issues equally applicable to both operating systems.

Securing the Windows File System
In this section, you’ll see how to secure your server’s file system against malicious intruders
who could read and execute sensitive files. You may already know these techniques if you’re
a seasoned administrator, so feel free to move on to the Tomcat-specific sections.

Windows implements a file system security architecture that uses permissions. You can
use file system permissions to control the files users are allowed to view, execute, and manipu-
late. This means that users can’t access the file system in any way without being given explicit
permission to do so.

Windows has several different file system types, as shown in Table 12-1.

Table 12-1. Windows File System Types

File System Type Description

FAT All early versions of Windows are based on the File Allocation Table (FAT)
file system. FAT is capable of associating bytes with files and directories but
not much more. FAT is the reason for good old filenames that couldn’t be
longer than eight characters.

NTFS The NT file system (NTFS) is better than FAT in every way; it was developed
for Microsoft’s enterprise NT systems. The latest incarnation of NTFS (available
on Windows 2000/XP/2003 or Vista) supports permissions and encryption,
long filenames, networking, disk quotas, and so on. NTFS also stores files in
a much more efficient way than FAT and is much more reliable.

continued

209

C H A P T E R 1 2

■ ■ ■

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 209

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 12 ■ SECURING TOMCAT210

Table 12-1. (continued)

File System Type Description

FAT32 FAT can handle only up to 2 GB of information, so it’s unusable with any
decent modern computer. NTFS was intrinsically linked with the Windows
NT family, so it was inappropriate for Windows 9x. As a result, Microsoft
created FAT32, which supports 2 terabytes of space and stores data in a more
efficient way. FAT32 is available on Windows 95, Windows 98, Windows ME,
Windows 2000, and Windows XP.

As you can see, only NTFS is appropriate for this discussion, as no other Windows file sys-
tem supports security features such as encryption or permissions. This also means that if you
run Tomcat on Windows, and you want to implement security properly, you’ll have to use the
NTFS file system and thus Windows 2000 and above. This isn’t to say that you could run a viable
server setup on another operating system, but your file system will be more vulnerable.

■Note Your Windows 2000/XP setup may use the FAT32 file system. It’s fairly straightforward to change
this, however.

Right-click your c: drive (or equivalent), and select Properties. You will see the Properties
page, shown in Figure 12-1.

Figure 12-1. The Properties page showing the file system type

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 210

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

In this case, the drive in question uses the NTFS file system. If your drive uses FAT32, you
can upgrade your file system with the convert command-line conversion utility.

> convert c: /FS:NTFS

Replace c: with your hard drive as appropriate. This utility is designed to be fail-safe and
won’t damage your data; but if you are in any way concerned and have vital data, then you
should back up your drive before you run the command. Also, once you’ve converted a file
system to NTFS, you can’t convert it back to FAT32.

You must have some disk space free if you want to convert your file system, because the
convert utility will need space to work with to build the NTFS structures. The amount of space
depends mainly on the initial size of the drive and the number of files and directories on the
drive. The details are at http://support.microsoft.com/default.aspx?scid=KB;en-us;q156560,
but Table 12-2 shows a summary and the calculation for the drive shown in Figure 12-1.

Table 12-2. Calculating the Space Needed for an NTFS Conversion

Component of Calculation Value for Drive c: in Figure 12-1 (in Bytes)

The size of the volume in bytes 4,194,304
divided by 100. If this value is
less than 1,048,576, use 1,048,576.
If it’s larger than 4,194,304, use 4,194,304.

The size of the volume in bytes divided by 803. 18,704,021

The number of files and directories 184,695,040
on the volume multiplied by 1280.

Add 196,096. 196,096

Total (bytes) 207,789,461

Total (megabytes) 198.16

This calculation shows that you don’t need a huge amount of space on a drive for a suc-
cessful conversion, though this largely depends on the number of files you have. One way to
calculate this is to use the following command:

c:\> dir /S

This will cycle through all the files and directories on c: and display the totals, as shown
in Figure 12-2.

Figure 12-2. The total number of files and directories on c:

Now that you have an NTFS file system, let’s discuss the individual NTFS permissions you
can use. The permissions are divided into two categories: folder permissions and file permis-
sions. Table 12-3 describes folder permissions, and Table 12-4 describes file permissions.

CHAPTER 12 ■ SECURING TOMCAT 211

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 211

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 12-3. Folder Permissions for Windows

Permission Actions Permitted

Read View files and subfolders; view folder ownership, permissions, and file
system attributes (read-only, hidden, and so on).

Write Create files and subfolders; view folder ownership and permissions,
and change folder attributes.

List Folder Contents View names of files and subfolders in a folder.

Read and Execute Move through a folder to get to subfolders and files. This permission
includes permissions from Read and List Folder Contents.

Modify Delete or rename the folder. This permission includes permissions
from Read and Execute and from Write.

Full Control This permission includes all other folder permissions. Delete files and
subfolders; take ownership, and change permissions.

Table 12-4. File Permissions for Windows

Permission Actions Permitted

Read View the file contents; view file ownership, permissions, and file system
attributes.

Write Overwrite the file; view file ownership and permissions, and change file
attributes.

Read and Execute Execute the file; this permission includes permissions from Read.

Modify Modify and delete the file; this permission includes permissions from Read
and Execute and from Write.

Full Control This permission includes all other file permissions. Take ownership, and
change permissions.

Controlling Users, Groups, and Owners in Windows
To use these permissions, you need to consider how to assign them to the various users who
will be accessing your operating system.

Working with Users
Anyone who wants to log onto a Windows system must know an account name and its associ-
ated password. Each user can be assigned one or more of the permissions you saw previously
and thus be granted authority to manipulate objects (files or directories) in the file system.

Working with Groups
Windows allows you to add users to a group. Groups can then receive permissions with all the
users who belong to a group sharing those permissions.

CHAPTER 12 ■ SECURING TOMCAT212

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 212

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Working with Owners
Finally, Windows has the concept of a file/directory owner. An owner is a user who ultimately
has complete control over what permissions other users or groups have for a given resource,
regardless of what permissions the user has been granted.

Working with Superusers
This discussion wouldn’t be complete without including one additional detail. Windows has
superuser accounts, which have complete and unrestricted access to your system, regardless
of any other permission that has been set. On Windows, the default superuser account is
called Administrator.

The password for this account should be well chosen and extremely well guarded. You’re
advised not to use these accounts for your day-to-day operations, as any virus or other mali-
cious program may inadvertently execute when it’s running, and this account has complete
control of your system.

Creating Users and Groups in Windows
You now need to create users and groups to implement the details mentioned earlier. To do
this, select Control Panel ➤ Administrative Tools ➤ Computer Management to open the con-
sole shown in Figure 12-3.

Figure 12-3. The Computer Management tool

Now, click the Local Users and Groups icon. You can add, modify, and delete users and
groups by selecting either of the two folders revealed and right-clicking the list of users or
groups shown on the right.

CHAPTER 12 ■ SECURING TOMCAT 213

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 213

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Command-Line Users and Groups
In addition to the graphical user interface (GUI), Windows also has some command-line utili-
ties for working with users and groups. You won’t see how to use it in detail here because the
GUI is easier, though the command-line tools allow you to automate user and group tasks.

You have two utilities for working with groups at the command line: net group and net
localgroup. Their syntax is identical, except that they operate on domain users and local users,
respectively, though you can induce net localgroup to work with domain users by adding the
/DOMAIN switch to all commands. To list existing groups on the local machine, use the following:

C:\>net localgroup

The equivalent net group command will list groups in the current NT domain.
To add a group to the local machine, run the following, where "Tomcat Group" is the name

of the new group:

C:\>net localgroup "Tomcat Group" /ADD

If you wanted to add a description for this group, run the following, where the description
is always in quotes:

C:\>net localgroup "Tomcat Group" /ADD /COMMENT:"A Tomcat group"

To delete the same group, run the following:

C:\>net localgroup "Tomcat Group" /DELETE

You can also use these utilities to add users to groups. When adding a user with
net localgroup, make sure that the user exists, that domain users have their domain prefix
(for example, TOMCAT\matthewm), and that any groups you’re adding to this group aren’t local
groups. You can specify more than one user after the group’s name, as long as all the usernames
are separated by spaces.

C:\>net localgroup "Tomcat Group" matthewm /ADD

This adds the local user matthewm to the Tomcat group. To check that the user was added
successfully, run the following:

C:\>net localgroup "Tomcat Group"

Alias name Tomcat Group

Comment A Tomcat group

Members

matthewm

To add a user account at the command line, use the net user command. This is a powerful
command, though you’ll see only its basic functions here. To add a new user called tomcat with
a specified password of meow, run the following:

C:\>net user tomcat meow /ADD

CHAPTER 12 ■ SECURING TOMCAT214

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 214

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

If you’re uneasy about displaying passwords in plain text on the screen, you can ask for
a password prompt. The following won’t display the password as you type it in:

C:\>net user tomcat * /ADD

Type a password for the user:

Retype the password to confirm:

Again, you can add a description to this user with the same utility.

C:\>net user tomcat /ADD /COMMENT:"A Tomcat user"

To check the user’s details, just supply the username to the net user command.

C:\>net user tomcat

User name tomcat

Full Name

Comment A Tomcat user

User's comment

Country code 000 (System Default)

Account active Yes

Account expires Never

Password last set 10/22/2004 5:49 PM

Password expires 12/4/2004 4:37 PM

Password changeable 10/22/2004 5:49 PM

Password required Yes

User may change password Yes

Workstations allowed All

Logon script

User profile

Home directory

Last logon Never

Logon hours allowed All

Local Group Memberships *Tomcat Group *Users

Global Group memberships *None

You can, of course, set all of the parameters shown. See www.microsoft.com/WINDOWSXP/
home/using/productdoc/en/net_user.asp for more details.

To delete the tomcat user, run the following:

C:\>net user tomcat /DELETE

If you delete the user, it will be removed from any groups of which it was a member.
Microsoft also provides the addusers utility for creating users from a comma-delimited file.

However, this is provided only in the Windows Resource Kit. See http://support.microsoft.com/
default.aspx?scid=kb;en-us;199878 for more details.

CHAPTER 12 ■ SECURING TOMCAT 215

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 215

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Assigning Permissions in Windows
Windows gives you much more flexibility when assigning permissions than Unix does. However,
this flexibility comes with a hefty price: your security configuration can rapidly deteriorate
into chaos if you aren’t careful. The Unix model, on the other hand, trades the complexity of
Windows for a simplicity that’s easy to understand and easy to administer.

You have two ways to manipulate a file’s permissions in Windows: a GUI and a command-
line interface. To view permissions in the GUI, open Windows Explorer, pick the file or directory
whose permissions you want to view, right-click it, and choose Properties. Click the Security
tab of the resulting window, and you’ll see something similar to Figure 12-4.

Figure 12-4. A directory’s permissions

The top section has all the users and groups with explicit permissions for this object. If
you click a user or a group, the Permissions section will show the permissions assigned.

The default configurations of Windows XP Professional often hide this Security tab. To
enable it, go to Control Panel ➤ Folder Options. Click the View tab, scroll to the bottom of the
Advanced Settings list, and uncheck the Use Simple File Sharing (Recommended) option.

Inherited Permissions
Some checkboxes that accompany permissions are disabled, which indicates that the permis-
sions in question have been inherited from a parent folder. By default, all files and directories
inherit the permissions that have been assigned to their parent object.

Permission inheritance is recursive, so a folder inherits permissions from its parent, all
the way to the root directory of the file system. When a file or folder inherits a permission, you

CHAPTER 12 ■ SECURING TOMCAT216

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 216

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

can’t clear the Allow checkbox. You can, however, explicitly deny a permission with the Deny
checkbox. Deny settings always override Allow settings, for this reason.

You can also turn off permission inheritance for an object. To do so, uncheck the “Allow
inheritable permissions from parent to propagate to this object” box, and you’ll no longer inherit
permissions and can explicitly define them all for your objects.

Group Permissions
A user may inherit permissions from group membership. This means you may want to assign
additional explicit permissions to a user over and above their group permissions. Therefore,
you can allow certain users to have access to a file while other members of their group don’t.

In the event that you assign conflicting permissions, through multiple group member-
ship, permission denials always take precedence over permission allowances.

Command-Line Permissions
In addition to the GUI, Windows has the cacls command-line utility, which you can use to
modify permissions. You see only a brief desciption of it here, though, because the GUI is eas-
ier and has more features.

You can view the permissions for the Tomcat folder with the following:

C:\>cacls jakarta-tomcat

C:\jakarta-tomcat Everyone:(OI)(CI)F

NT AUTHORITY\SYSTEM:(OI)(CI)F

BUILTIN\Administrators:(OI)(CI)F

Here F donates full control for these groups. You can use the same utility to deny or
change access.

C:\>cacls jakarta-tomcat /E /P Everyone:R

processed dir: C:\jakarta-tomcat

The /E switch indicates that this command should edit the configuration, not overwrite it.
/P sets a permission, in this case to R, which is read access. Check that this command has worked
with the following:

C:\>cacls jakarta-tomcat

C:\jakarta-tomcat Everyone:(OI)(CI)R

NT AUTHORITY\SYSTEM:(OI)(CI)F

BUILTIN\Administrators:(OI)(CI)F

To revoke access for a user, run the following:

C:\>cacls jakarta-tomcat /E /R Everyone

For more information on cacls, you can execute it with no options and see all the param-
eters it supports.

Planning Security Permissions in Windows
Now it’s time to talk about how to secure your system by using wise permission configurations.

CHAPTER 12 ■ SECURING TOMCAT 217

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 217

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Separate Tomcat Account
Some users run Tomcat with their normal user accounts or with the superuser account, both
of which are bad ideas. If Tomcat is ever compromised, it could use the permissions granted to
the account that started it (such as your own account or the all-powerful superuser account)
to wreak havoc. Therefore, you vastly improve the security of your file system by creating
a special user account just for running Tomcat. This account should be assigned only those
permissions necessary to run Tomcat and nothing more.

Suggested Account Settings for Windows
You should create a new user named tomcat. Make sure that the tomcat account doesn’t belong
to any groups, including the default user group. Also, make sure you give the account a password.
Windows can’t use the tomcat account to launch services without you giving it a password. For
maximum security, the password should be at least six characters long and consist of mixed-case
letters, numbers, and special characters.

The only way for Tomcat to run as a user in Windows is if it’s installed as a service. Chapter 3
covered this process. You’ll need to give it permissions to run services and nothing else.

Windows exposes many additional permissions, mostly unrelated to the file system. These
permissions are defined in a security policy. Windows security policies may be defined on the
machine itself (a local security policy) or may be defined in a central network location (a domain
security policy).

You can modify your machine’s local security policy by selecting Control Panel ➤ Admin-
istrative Tools ➤ Local Security Policy. You will see a screen similar to the one in Figure 12-5.

Figure 12-5. The local security policy settings

CHAPTER 12 ■ SECURING TOMCAT218

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 218

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

You’ll need to make two changes to your local security policy.

• Disable the tomcat account’s ability to log in: Although the tomcat user’s lack of mem-
bership in any group implicitly denies tomcat this ability, you should still explicitly
deny this privilege. Double-click the Deny Logon Locally setting in the Policy column.
In the screen that appears, add the tomcat account. Do the same for the following poli-
cies: Deny Access to This Computer from the Network, Deny Logon As a Batch Job, and
Deny Logon Through Terminal Services, if it’s present.

• Grant permission to the tomcat user to run services: Double-click Log On As a Service,
and add tomcat to this policy.

When Tomcat is installed as a service, it should start automatically. Check Chapter 2 for
details.

Configuring File Permissions in Windows
Up until now, you’ve created a special tomcat account and instructed your operating system
to launch the Tomcat service with your tomcat account. You now need to configure your file
system’s permissions.

Your tomcat user account will, by default, be given read access to many locations on the
file system. So the best place to start is revoking all file system permissions for the root direc-
tory of all your drives. You can accomplish this by going to My Computer and viewing the
properties for each hard disk partition. In the Security tab, add the tomcat account, and disable
all of its permissions, as shown in Figure 12-6.

Figure 12-6. The tomcat user is denied all rights.

CHAPTER 12 ■ SECURING TOMCAT 219

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 219

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Now, you need to grant read access to the JDK directory so that Java can execute Tomcat.
Locate the directory where you’ve installed Java (identified by the %JAVA_HOME% variable), and
give the tomcat account the Read and Execute, List Folder Contents, and Read permissions.
Depending on where you’ve installed your JDK, you may first need to set the folder not to inherit
security permissions from its parent. The best way to do this is to instruct Windows to copy
(not remove) the formerly inherited permissions and then remove any conflicting entry for the
tomcat account.

Finally, you need to grant various permissions to the Tomcat directory hierarchy, as shown
in Table 12-5.

Table 12-5. Assigning Permissions to Tomcat’s Directories

Tomcat Directories Permissions for Tomcat Account

%CATALINA_HOME%%CATALINA_HOME%\bin Allow Read and Execute, List Folder
Contents, and Read.

%CATALINA_HOME%\common%CATALINA_HOME%\ Deny Write.
server%CATALINA_HOME%\shared%CATALINA_HOME%\
webapps

%CATALINA_HOME%\conf Allow Read and Execute, List Folder
Contents, Read, and Write only if using
the admin application or a user database.
Deny Write otherwise.

%CATALINA_HOME%\logs%CATALINA_HOME%\ Allow Modify, Read and Execute,
temp%CATALINA_HOME%\work List Folder Contents, Read, and Write.

Everything is read-only except those locations that Tomcat needs to modify: the conf direc-
tory where the admin application may edit server.xml and context XML files, the temp directory
for temporary files, the logs directory, and the work directory for Tomcat’s own temporary
working files.

The next few pages are devoted to Unix issues, so feel free to skip to the “Examining General
Tomcat Security Principles” section if you’re a Window’s user.

Securing the Unix File System
You’ll now see how to secure your server’s file system against malicious intruders who may
read and execute sensitive files. You may already know these techniques if you’re a seasoned
administrator, so feel free to move on to the Tomcat-specific sections.

Security has always been inherent in the Unix file system. The Unix permissions are the
same for directories and files, because a directory is considered to be a special kind of file.
Table 12-6 describes these permissions.

Table 12-6. File Permissions for Unix

Permission Actions Permitted

Read View the contents of the file or directory.

Write Modify or delete a file, or create files in a directory.

Execute Execute a file, or access a directory.

CHAPTER 12 ■ SECURING TOMCAT220

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 220

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Controlling Users, Groups, and Owners in Unix
To use these permissions, you need to consider how to assign these permissions to the various
users who will be accessing your operating system.

Working with Users
Anyone who wants to log onto a Unix system must know an account name and its associated
password. Each user can be assigned one or more of the permissions you saw previously and
thus be granted authority to manipulate objects (files or directories) in the file system.

Working with Groups
Unix allows you to add users to a group. Groups can then receive permissions with all the
users who belong to a group sharing those permissions.

Working with Owners
Finally, Unix has the concept of a file/directory owner. An owner is a user who ultimately has
complete control over what permissions other users or groups have for a given resource,
regardless of what permissions the user has been granted.

Working with Superusers
This discussion wouldn’t be complete without including one additional detail. Unix has a type
of superuser account. These accounts have complete and unrestricted access to your system,
regardless of any other permission that has been set. On Unix, the default superuser account
is called root.

The password for this account should be well chosen and extremely well guarded. You’re
advised not to use these accounts for your day-to-day operations, as any virus or other mali-
cious program may inadvertently execute when it’s running, and this account has complete
control of your system.

Creating Users and Groups in Unix
On Unix, you use command-line utilities to create and manipulate users and groups. Although
these are Linux utilities, they have analogs in other Unix-like operating systems, which will
offer similar functionality. All these commands require you to be logged in as root.

Alternatively, because of the caveats on superuser accounts expressed previously, you can
use the sudo command, which allows you to run commands as if you were logged in as root (or
any user you want to configure). This effect wears off after five minutes (though this timeout can
also be configured), and you’re returned to your old user permissions. This ensures that you
don’t leave a root-enabled terminal unattended for longer than five minutes and that, since
you use your own password, you don’t have to use the root password in public.

To run a command under sudo, simply append the appropriate command and supply
your password.

$ sudo useradd lauraj -g users

CHAPTER 12 ■ SECURING TOMCAT 221

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 221

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

sudo gives you many other features, most of which can be used to give auditable responsi-
bility to other users. See www.courtesan.com/sudo/ for more details.

You can determine which groups a user belongs to with the groups command, which dis-
plays its results as the username followed by the user’s groups.

$ groups matthewm

matthewm : users abusers

You add new users with the useradd utility.

$ useradd lauraj

This creates a new user in a group with the same name as the user. You can specify which
group a user should belong to with the -g parameter, though the group must exist for any of
the group assignment commands to work.

$ useradd lauraj -g users

Use the -G parameter to add a user to multiple groups and separate each group by
a comma.

You can modify the groups to which an existing user belongs with the usermod command.
It takes the same -g and -G parameters as the useradd command. The following example of the
usermod command will make user matthewm belong only to the users group:

$ usermod -g users -G "" matthewm

You can delete users using the userdel command.

$ userdel matthewm

You can create groups with the groupadd command.

$ groupadd abusers

You can delete groups with the groupdel command.

$ groupdel lovers

Assigning Permissions in Unix
The Unix model of security isn’t as flexible as the Windows model, though it trades the com-
plexity of Windows for a simplicity that’s easy to understand and easy to administer.

Setting Permissions in Unix
To view permissions in Unix, all you need is the ls utility. The following command will display
the contents of a directory complete with permissions information:

$ ls -l

CHAPTER 12 ■ SECURING TOMCAT222

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 222

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The -l parameter tells the ls command to display the long file directory format, which
includes the permissions. The output of this command looks like the following:

$ ls -l

drwxr-xr-x 2 tomcat tomcat 4096 Oct 22 18:38 bin

You’ll see a series of columns that correspond to each file or directory in the current direc-
tory. You’re concerned only with the first, third, fourth, and last columns. Let’s define each of
those and drop out the other columns that are irrelevant to the discussion.

Permissions Owner Group Filename

=======================================

drwxr-xr-x tomcat tomcat bin

Now, let’s break down the values of each entry in the permissions column. The permissions
column itself can be viewed as four separate columns: file type, owner permissions, group per-
missions, and permissions for other users. Let’s take the first and last files from the previous list
and break down the permissions column for each.

File Type Owner Group Other P. Filename

===

d rwx r-x r-x bin

The first subcolumn of the permissions column dictates the file type, such as d for direc-
tory, l for link, or - for a normal file. All of the remaining columns display whether the owner,
group, or other users have read (r), write (w), or executable (x) access to that file (remember
that for directories, the executable property indicates whether the user has access to the direc-
tory). In the previous case, all three of these groups have read and execute rights, but only the
owner of the bin directory can write to the directory.

Changing Permissions

You use the chmod utility to change the permissions of a file. For example, you can change the
permissions of a file so that every user can read and write to it by running chmod with the fol-
lowing parameters:

$ chmod u=rw,g=rw,o=rw file01

The u parameter sets the permissions for the owner of the file; the g parameter sets the
permissions for the group associated with the file, and o sets the permissions for everyone
else. You can use one, two, or all three of these parameters. The following is the result of the
operation:

$ chmod u=rw,g=rw,o=rw file01

$ ls -l | grep file01

-rw-rw-rw- ... file01

Table 12-7 describes the chmod command in more detail.

CHAPTER 12 ■ SECURING TOMCAT 223

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 223

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 12-7. chmod Parameters

chmod Parameter Description

[u,g,o,a]=[r,w,x] This is the parameter you saw in the previous example. On the left
side of the equals sign, you choose one of the following to which you
can assign permissions: the owner (u), group (g), others (o), or all
three of these (a). On the right side, you choose from read permission,
write permission, or execute permission. You can combine the
permissions on the right as also shown. You can issue this parameter
multiple times if each instance is separated by a comma. Here are
some examples: a=rwu=rwx,g=rx,o=rx

[u,g,o,a][+,-][r,w,x] This parameter is the same as the previous one, except it either adds
or removes a permission from existing permissions. For example, to
remove the group’s write permission without altering its other
permissions, you’d use the following parameter: g-w

-R This is the recursive parameter, meaning that the permission assign-
ments will be made to the directory and any of its subdirectories and
files, and any of their subdirectories, and so forth.

Changing Ownership

You can use the chown command to change the owner of a file and the group with which the
file is associated.

$ chown user[:group] filename

So, if you want to change the owner of the LICENSE file from tomcat to bobcat, you’d issue
this command:

$ chown bobcat LICENSE

Unix actually stores two more pieces of metadata with every file that relate to security.
These are the SUID and SGUI bits. If a file has the SUID bit set, it indicates that users who exe-
cute the file will execute it as though they are the owners of the file. For example, if a file named
program was owned by root and had the SUID bit set, and if another user executed program,
the operating system would execute program as though the user were root.

The SGID bit is similar. Any file with the SGID bit will make the user who executes that file
a member of the group associated with the file for that file’s execution.

You can set the SUID and SGID bits with the chmod utility. The syntax is as follows:

$ chmod u+s [filename] (sets the SUID bit)

$ chmod g+s [filename] (sets the SGID bit)

The SUID and SGID bits show up in the executable column of the permissions of each file
as an s, as follows:

-rwsr-sr-x 2 tomcat tomcat 4096 Aug 25 01:28 program01

Of course, you should use the SUID and SGID bits with great caution.

CHAPTER 12 ■ SECURING TOMCAT224

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 224

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Planning Security Permissions
Now it’s time to talk about how to secure your system by using wise permissions configurations.

Separate Tomcat Account
Some users run Tomcat with their normal user account or with the superuser account, both of
which are bad ideas. If Tomcat ever becomes compromised, it could use the permissions
granted to the account that started it (such as your own account or the all-powerful superuser
account) to wreak havoc. Therefore, you vastly improve the security of your file system by cre-
ating a special user account just for running Tomcat. This distinct account should be assigned
only those permissions necessary to run Tomcat and nothing more.

Suggested Account Settings for Unix
Create an account for running Tomcat called tomcat. You should include tomcat in only one
group, also named tomcat. Because you’ll want to run Tomcat as a daemon, you shouldn’t let
console logins use this account. Disabling login ability is often achieved by starring the account’s
password.

Here are two examples of this technique. The first example is from a BSD-like system that
doesn’t use a shadow password file.

/etc/passwd:

tomcat:*:23102:100:Tomcat:/:/bin/csh

The second example is from a Linux system that does use a shadow password file.

/etc/passwd:

tomcat:x:502:502:Tomcat:/:/bin/bash

/etc/shadow:

tomcat:*:12040:0:99999:7:::

Note how the password column has been given an asterisk (*). This means you can’t log
into this account.

The various Unix operating systems have several mechanisms for creating and configur-
ing daemons. Chapter 2 discussed this procedure.

Configuring File Permissions in Unix
Up until now, you’ve created a special tomcat account and instructed your operating system
to launch the service with your tomcat account. You now need to configure your file system’s
permissions.

Table 12-8 shows the recommended directory, owner/group, and file permission combi-
nations.

CHAPTER 12 ■ SECURING TOMCAT 225

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 225

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 12-8. Assigning Permissions to Tomcat’s Directories

Directory/File Owner/Group Permissions

$CATALINA_HOME root/tomcat rwxr-x---

$CATALINA_HOME/bin root/tomcat rwxr-x---

$CATALINA_HOME/bin/*.sh root/tomcat rwxr-x---

$CATALINA_HOME/common root/tomcat rwxr-x---

$CATALINA_HOME/conf root/tomcat rwxrwx--- (only if using the admin application
or a user database) or rwxr-x--- (otherwise)

$CATALINA_HOME/logs root/tomcat rwxrwx---

$CATALINA_HOME/logs/*.* root/tomcat r w-rw----

$CATALINA_HOME/server root/tomcat rwxr-x---

$CATALINA_HOME/shared root/tomcat rwxr-x---

$CATALINA_HOME/temp root/tomcat rwxrwx---

$CATALINA_HOME/webapps root/tomcat rwxr-x---

$CATALINA_HOME/work root/tomcat rwxrwx---

If not otherwise indicated, all files in the listed directories should have the same ownership
as their parent directory and have rw-r----- permissions.

Examining General Tomcat Security Principles
Now that you’ve secured your file system against attack, you should consider a few other secu-
rity issues before tackling Tomcat’s configuration files. All but one of these applies to Windows
and Unix.

Retaining Tomcat’s Administration Tools
Because tomcat-users.xml stores your username and password for Tomcat’s management
applications, you may want to switch to a different realm, as discussed in Chapter 11. Other-
wise, a hacker may view this file and gain access to your Tomcat management applications
(though you can also digest the passwords). Because the tomcat account has only read access
to the webapps directory, the hacker couldn’t modify your web applications, but the hacker could
stop or reload your web applications on demand. Thus, if you use the Tomcat realms that use
tomcat-users.xml, you should consider removing the admin and manager web applications.

If you use the admin application to change server.xml or users in tomcat-users.xml, then
you must have write access to the directory. This also means a hacker can write to this direc-
tory and carry out any of the commands that the admin tool can and so may be able to add
context XML files for malicious code. This also applies to user databases because they need
write access to tomcat-users.xml.

If this bothers you, remove the admin tool, should it be installed, and use a JDBC or JNDI
realm (or even the memory realm if you want; it doesn’t require write access to any files).

CHAPTER 12 ■ SECURING TOMCAT226

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 226

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Read-Only webapps Directory
You’ll note that you’ve set read-only permissions on the webapps directory. This is to prevent
hackers from modifying your web applications. This also means, however, that you may not be
able to use WAR files when running Tomcat with the tomcat account, since Tomcat won’t be able
to expand the WAR into the file system. Thus, you’ll need to unzip the WAR file yourself when
you deploy it, run Tomcat as root from the console when you deploy new WAR files for the first
time, or set the containing host’s unpackWARs attribute to false.

This also means that web applications can’t write to their directories. This is recommended
in the Servlet specification because it’s assumed that some servlet containers will run unex-
panded WAR files and would thus not be able to write changes to the web application’s file
system (it doesn’t have one). This is the case if unpackWARs is set to false.

Securing Your Files
You should review your operating system for any additional files stored on the server that
should be secured. You should consider either moving these files to another server or ensuring
that the tomcat account doesn’t have any permissions for them. On Windows, add the tomcat
user to the Security tab for the file or directory, and explicitly click the Deny checkboxes. In
Unix, set the permissions for others to nothing (-rwx).

Knowing If Your Security Has Been Violated
Despite your best efforts, it’s possible that a hacker may exploit Tomcat (or another service)
and modify your file system in some unimagined way. Intrusion detection systems can help
you detect when your file system has been tampered with. Tripwire is one of these programs,
and Red Hat includes instructions for installing and configuring Tripwire in its Official Red Hat
Linux Reference Guide.

If you’re not using Red Hat Linux, see www.tripwire.com for more information.

Read-Only File Systems
Some operating systems support read-only file systems. In this concept, available only to
Unix-like operating systems, you configure two separate file systems. The first file system,
a root file system, contains your operating system configured just the way you need it, with
a Tomcat daemon. You then make this file system read-only (or for ultimate security, transfer it
to a read-only medium, such as a CD or a hard drive that you can make read-only). The sec-
ond file system is contained on a read-write medium and contains your Tomcat installation
and other files that must be modified.

Should you want to take this (highly secure) step, you’ll need to find documentation for
your specific operating system. No standard Unix way exists to achieve this functionality. You
must exercise caution if you attempt this route; once you mark your root file system as read-
only, you’ll need a boot disk to make any changes.

CHAPTER 12 ■ SECURING TOMCAT 227

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 227

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Securing Tomcat’s Default Configuration
In this section, you’ll tighten up the default installation by editing the configuration files and
managing the web applications that come with Tomcat. This will remove some of the most
vulnerable entry points for attacks against the server.

As detailed earlier, the admin application and user databases are the main causes of con-
cern. If you don’t use either of these, then you may keep and use the manager application, if
you have considered the previous options. Without access to the manager password or write
access to server.xml, a hacker can’t access the manager application.

If you don’t take these steps, it’s safer to place the manager folder and its contents outside
of Tomcat’s directory structure (you should consider doing this anyway). This means an intruder
can’t enable it by just adding an entry to tomcat-users.xml. However, it’s still possible to enable
the application by modifying the server.xml file and modifying the manager context’s docBase
attribute. As long as the manager folder is on the same machine as the server installation, it’s
possible to set up the manager again (though it’s more difficult if you have appropriate per-
missions set).

You should always remove the example web applications (jsp-examples and
servlets-examples) on a development server. They aren’t necessary for Tomcat to
run and take up disk space, if nothing else. Likewise, unless you’re using WebDAV, you
should remove the webdav web application.

The Tomcat documentation is now provided as a web application named tomcat-docs,
which is an entirely static web application with no JSP pages or servlets. Whether or not you
leave this in place is up to you, as it may be useful for developers to have a local copy of the
documentation, whether to save network traffic or in case of problems connecting to the out-
side world.

It may also be worth disabling the default ROOT web application if you don’t have one of
your own. If your applications will be accessed by a web application context name, then it may
be worth replacing the contents of the ROOT folder with an empty index.html file. You can then
supply an empty web application that would show access restriction error messages to clients
who attempt to access the directory.

Alternatively, you can also disable unauthorized access to the web application. Thus, it’s
possible to restrict access to the ROOT application to internal clients, such as the developer
group, using valves or filters.

Securing Tomcat’s Permissions
Configuring your file system for maximum security is an important part of securing your Tomcat
deployment, but it’s only half of the picture. By using Java’s security manager architecture, you
can restrict those features of the Java language that Tomcat is able to access.

The Java Security Manager
The Java security manager architecture allows you to impose fine-grained security restrictions
to all Java applications. This security architecture is turned off by default, but you can turn it on
at any time. In the following sections, you’ll see the security manager architecture in general
terms and then look at how this architecture specifically applies to Tomcat.

CHAPTER 12 ■ SECURING TOMCAT228

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 228

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Overview of the Security Manager
The security manager architecture works on the notion of permissions (just as the file system
does). Once the security manager is turned on, applications must have explicit permission to
perform certain security-sensitive tasks, such as creating a custom class loader or opening
a socket to servers.

Therefore, to use the security manager effectively, it’s necessary to know how applications
can be given permissions and what the possible permissions are.

Granting Permissions to Applications

Policy files are the mechanism that the security manager uses to grant permissions to applica-
tions. Policy files are nothing more than simple text files composed of individual actions that
applications can perform.

A policy file is composed of grant entries, as shown in Listing 12-1.

Listing 12-1. A Policy File

// first grant entry

grant {

permission java.lang.RuntimePermission "stopThread";

}

// second grant entry

grant codeBase "file:${java.home}/lib/ext/*" {

permission java.security.AllPermission;

};

The first grant entry demonstrates the simplicity of the syntax. It grants all applications
the ability to access the deprecated Thread.stop() method.

The second grant entry illustrates that code in specific locations can also be granted per-
missions. This is useful when you want to extend permissions to certain trusted code while
denying permissions to all other code. In this case, all code in the JAVA_HOME/lib/ext directory
is granted all permissions, which disables the security manager architecture for that code.

Writing Grant Entries
Each grant entry must be composed of the following syntax:

grant codeBase "URL" {

// this is a comment

permission permission_class_name "target_name", "action";

...

};

Note that comments in policy files must begin with // on each line. As you saw in the first
grant entry, the codeBase attribute is optional. codeBase specifies a URL to which all the per-
missions should apply. Table 12-9 describes the syntax.

CHAPTER 12 ■ SECURING TOMCAT 229

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 229

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 12-9. The codeBase Attribute’s Syntax

codeBase Example Description

file:/c:/myapp/ This assigns the permissions in the grant block to the c:\myapp
directory. Note that the slash (/) indicates that only class files in the
directory will receive the permissions, not any JAR files or
subdirectories.

http://java.sun.com/* All code from the specified URL will be granted the permissions. In this
case, the /* at the end of the URL indicates that all class files and JAR
files will be assigned the permissions but not any subdirectories.

file:/matthewm/- All code in the /matthewm directory will be granted the permissions in
the grant block. The /- indicates that all class files and JAR files in the
directory and its subdirectories will be assigned the permissions.

Within the grant block, one or more permissions can be assigned. A permission consists of
a permission class name and, in some cases, an additional target that identifies a specific per-
mission within the permission class. Some permission targets can additionally take parameters,
called actions. Listing 12-2 shows examples of permissions.

Listing 12-2. Example Permissions

grant {

// allows applications to listen on all ports

permission java.net.SocketPermission "localhost", "listen";

// allows applications to read the "java.version" property

permission java.util.PropertyPermission "java.version", "read";

}

Special classes that ultimately inherit from the abstract class java.security.Permission
define permissions. Most permission classes define special targets that represent a security
permission that can be turned on and off.

Nineteen different permission classes offer control over various permissions. Table 12-10
describes these classes to demonstrate what’s possible with permissions but doesn’t provide an
extensive listing of the permission targets. You can view the complete list of permission classes
and their targets at http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html.

Table 12-10. Permissions for Policy Files

Permission Class Description

java.security.AllPermission By granting this permission, all other permissions
are also granted. Granting this permission is the
same as disabling the security manager for the
affected code.

java.security.SecurityPermission Allows programmatic access to various security
features of the Java language.

CHAPTER 12 ■ SECURING TOMCAT230

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 230

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Permission Class Description

java.security.UnresolvedPermission This permission class isn’t defined in policy files;
rather, it’s used as a placeholder for when a policy
file makes reference to a user-defined permission
class that hadn’t been loaded at the time of
processing the policy file. This permission is
relevant only to those interacting with the security
manager system programmatically at run time.

java.awt.AWTPermission Controls various AWT permissions.

java.io.FilePermission Restricts read, write, execute, and delete access to
files in specified paths.

java.io.SerializablePermission Allows serialization permissions.

java.lang.reflect.ReflectPermission Allows applications to circumvent the public and
private mechanism’s access checks and reflectively
access any method.

java.lang.RuntimePermission Allows access to key runtime features, such as
creating class loaders, exiting the VM, and
reassigning stdin, stdout, and stderr.

java.net.NetPermission Allows various network permissions.

java.net.SocketPermission Allows incoming socket connections, outgoing
connections, listening on ports, and resolving
hostnames. These permissions can be defined on
specific hostnames and port combinations.

java.sql.SQLPermission While this sounds intriguing, don’t get too excited;
it controls only a single permission: setting the
JDBC log output writer. This file is considered
sensitive because it may contain usernames and
passwords.

java.util.PropertyPermission Controls whether properties can be read from or
written to.

java.util.logging.LoggingPermission Allows the ability to configure the logging system.

javax.net.ssl.SSLPermission Allows the ability to access SSL-related network
functionality.

javax.security.auth.AuthPermission Controls authentication permissions.

javax.security.auth. Controls various security permissions.
PrivateCredentialPermission

javax.security.auth.kerberos. Controls various security permissions related to the
DelegationPermission Kerberos protocol.

javax.security.auth.kerberos. Also controls various security permissions related
ServicePermission to the Kerberos protocol.

javax.sound.sampled.AudioPermission Controls access to the sound system.

Enabling the Security Manager System
You can enable the security manager system by passing the -Djava.security.manager parame-
ter to the JVM at startup, as follows:

> java -Djava.security.manager MyClass

CHAPTER 12 ■ SECURING TOMCAT 231

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 231

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

By default, Java looks for JAVA_HOME/lib/security/java.policy to determine what per-
missions to grant when the security manager is turned on. For more information on enabling
the security manager and using your own policy files, see http://java.sun.com/j2se/1.4/
docs/guide/security/PolicyFiles.html.

Using the Security Manager with Tomcat
Now that I’ve covered the basics of the security manager system, it’s time to talk about how to
use it with Tomcat.

Enabling Tomcat’s Security Manager
The preferred way to start Tomcat with the security manager enabled on Unix systems follows:

$ $CATALINA_HOME/bin/catalina.sh start -security

On Windows systems, you’d issue this command:

> %CATALINA_HOME%\bin\catalina start -security

Tomcat’s Policy File
Tomcat uses the CATALINA_HOME/conf/catalina.policy file to determine its own permissions
and those of its web applications. Listings 12-3, 12-4, and 12-5 show this file in full. Note that
it’s divided into three sections: system code permissions, Catalina code permissions, and web
application code permissions.

Tomcat’s policy file grants all permissions to javac, which compiles JSP pages into servlets,
and it also grants all permissions to any Java standard extensions. Four grant lines are used
instead of two to deal with multiple path possibilities. Note that you may need to add addi-
tional grants to this section if your JVM uses different paths for its standard extensions (Mac OS X
needs additional grants, for example) and you’re actually putting JARs or classes in those paths.

Listing 12-3. The System and Catalina Code Permissions from Tomcat’s Default Policy File
// ========== SYSTEM CODE PERMISSIONS ===

// These permissions apply to javac

grant codeBase "file:${java.home}/lib/-" {

permission java.security.AllPermission;

};

// These permissions apply to all shared system extensions

grant codeBase "file:${java.home}/jre/lib/ext/-" {

permission java.security.AllPermission;

};

CHAPTER 12 ■ SECURING TOMCAT232

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 232

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

// These permissions apply to javac when ${java.home] points at $JAVA_HOME/jre

grant codeBase "file:${java.home}/../lib/-" {

permission java.security.AllPermission;

};

// These permissions apply to all shared system extensions when

// ${java.home} points at $JAVA_HOME/jre

grant codeBase "file:${java.home}/lib/ext/-" {

permission java.security.AllPermission;

};

// ========== CATALINA CODE PERMISSIONS =======================================

/ These permissions apply to the daemon code

grant codeBase "file:${catalina.home}/bin/commons-daemon.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the logging API

grant codeBase "file:${catalina.home}/bin/tomcat-juli.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the server startup code

grant codeBase "file:${catalina.home}/bin/bootstrap.jar" {

permission java.security.AllPermission;

};

// These permissions apply to the servlet API classes

// and those that are shared across all class loaders

// located in the "lib" directory

grant codeBase "file:${catalina.home}/lib/-" {

permission java.security.AllPermission;

};

Note that Catalina grants all permissions to the following:

• Tomcat’s startup classes (CATALINA_HOME/bin/*.jar)

• The common class loader files (CATALINA_HOME/lib)

Tomcat allows read access to various system properties. Note also the following grant:

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.jasper.runtime";

CHAPTER 12 ■ SECURING TOMCAT 233

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 233

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The accessClassInPackage.* target of RuntimePermission allows classes to see other
classes to which they wouldn’t normally have access. In this case, Tomcat is giving all web
applicationsand access to the org.apache.jasper.runtime.* package.

Listing 12-4. The Web Application Permissions from Tomcat’s Default Policy File

// ======== WEB APPLICATION PERMISSIONS

=====================================

// These permissions are granted by default to all web applications

// In addition, a web application will be given a read FilePermission

// and JndiPermission for all files and directories in its document root.

grant {

// Required for JNDI lookup of named JDBC DataSource's and

// javamail named MimePart DataSource used to send mail

permission java.util.PropertyPermission "java.home", "read";

permission java.util.PropertyPermission "java.naming.*", "read";

permission java.util.PropertyPermission "javax.sql.*", "read";

// OS Specific properties to allow read access

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

permission java.util.PropertyPermission "file.separator", "read";

permission java.util.PropertyPermission "path.separator", "read";

permission java.util.PropertyPermission "line.separator", "read";

// JVM properties to allow read access

permission java.util.PropertyPermission "java.version", "read";

permission java.util.PropertyPermission "java.vendor", "read";

permission java.util.PropertyPermission "java.vendor.url", "read";

permission java.util.PropertyPermission "java.class.version", "read";

permission java.util.PropertyPermission "java.specification.version", "read";

permission java.util.PropertyPermission "java.specification.vendor", "read";

permission java.util.PropertyPermission "java.specification.name", "read";

permission java.util.PropertyPermission "java.vm.specification.version", "read";

permission java.util.PropertyPermission "java.vm.specification.vendor", "read";

permission java.util.PropertyPermission "java.vm.specification.name", "read";

permission java.util.PropertyPermission "java.vm.version", "read";

permission java.util.PropertyPermission "java.vm.vendor", "read";

permission java.util.PropertyPermission "java.vm.name", "read";

// Required for OpenJMX

permission java.lang.RuntimePermission "getAttribute";

CHAPTER 12 ■ SECURING TOMCAT234

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 234

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

// Allow read of JAXP compliant XML parser debug

permission java.util.PropertyPermission "jaxp.debug", "read";

// Precompiled JSPs need access to this package.

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.jasper.runtime";

permission java.lang.RuntimePermission

"accessClassInPackage.org.apache.jasper.runtime.*";

};

// You can assign additional permissions to particular web applications by

// adding additional "grant" entries here, based on the code base for that

// application, /WEB-INF/classes/, or /WEB-INF/lib/ jar files.

//

// Different permissions can be granted to JSP pages, classes loaded from

// the /WEB-INF/classes/ directory, all jar files in the /WEB-INF/lib/

// directory, or even to individual jar files in the /WEB-INF/lib/ directory.

//

// For instance, assume that the standard "examples" application

// included a JDBC driver that needed to establish a network connection to the

// corresponding database and used the scrape taglib to get the weather from

// the NOAA web server. You might create a "grant" entries like this:

//

// The permissions granted to the context root directory apply to JSP pages.

// grant codeBase "file:${catalina.home}/webapps/examples/-" {

// permission java.net.SocketPermission "dbhost.mycompany.com:5432", "connect";

// permission java.net.SocketPermission "*.noaa.gov:80", "connect";

// };

//

// The permissions granted to the context WEB-INF/classes directory

// grant codeBase "file:${catalina.home}/webapps/examples/WEB-INF/classes/-" {

// };

//

// The permission granted to your JDBC driver

// grant codeBase

"jar:file:${catalina.home}/webapps/examples/WEB-INF/lib/driver.jar!/-" {

// permission java.net.SocketPermission "dbhost.mycompany.com:5432", "connect";

// };

// The permission granted to the scrape taglib

// grant codeBase

"jar:file:${catalina.home}/webapps/examples/WEB-INF/lib/scrape.jar!/-" {

// permission java.net.SocketPermission "*.noaa.gov:80", "connect";

};

CHAPTER 12 ■ SECURING TOMCAT 235

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 235

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Recommended Security Manager Practices
Now that you know how to turn on the security manager with Tomcat and where Tomcat
stores its policy file, you can look at recommended practices for granting permissions to your
applications.

Use the Security Manager
If you don’t turn on Tomcat’s security manager, any JSP page or class file is free to perform any
action it likes. This includes opening unauthorized connections to other network hosts, destroy-
ing your file system, or even abnormally terminating Tomcat by issuing the System.exit()
command.

To maintain a secure Tomcat installation, you should assume that at some point a hacker
will be able to deploy malicious code into one of Tomcat’s web applications. By turning the
security manager on, you gain explicit control over what web applications are allowed to do.

Regulating Common Code
Placing code into Tomcat’s common class loader directories (CATALINA_HOME/lib) is a good way
to share common libraries among web applications. However, because of Tomcat’s liberal per-
mission grants for this class loader (all permissions are granted), you may want to think twice
before you make a habit of placing code in this class loader.

You must do either of the following:

• Ensure that all code placed in this class loader is trusted.

• Place the code in the shared class loader. This class loader isn’t covered by the security
manager by default and is thus restricted in its actions.

Example Grants
As mentioned, turning the security manager on gives you complete control over what web
applications are allowed to do. The flip side of this security coin is that web applications will
find themselves unable to do some things that they may have taken for granted before. Con-
sider the following tasks that are unauthorized with Tomcat’s default policy configuration:

• Creating a class loader

• Accessing a database via a socket (for example, the MySQL JDBC driver establishing
a connection with a MySQL database)

• Sending an e-mail via the JavaMail API

• Reading or writing to files outside a web application’s directory

Creating a Class Loader

Listing 12-5 shows how to give a specific web application the ability to create a class loader.

CHAPTER 12 ■ SECURING TOMCAT236

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 236

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 12-5. Allowing Class Loader Creation

grant codeBase "file:${catalina.home}/webapps/tomcatBook/WEB-INF/-" {

permission java.lang.RuntimePermission "createClassLoader";

};

This is an extremely dangerous permission to grant. Applications that can instantiate
their own class loaders can, by definition, load their own classes. As mentioned earlier, mali-
cious classes could then be used to compromise your system in a number of ways.

Opening Socket Connections to Databases

Listing 12-6 shows how to allow all web applications access to a specific database running on
the host db.server.com on port 54321.

Listing 12-6. Allowing a Database Connection

grant codeBase "file:${catalina.home}/webapps/-" {

permission java.net.SocketPermission "db.server.com:54321", "connect";

};

This example allows all code in all web applications to connect to db.server.com:54321. If
this is too much of a security risk for you, you have a few alternative options.

First, explicitly assign permission to each web application’s JDBC driver individually, as
shown in Listing 12-7.

Listing 12-7. Enabling a Web Application to Make a Database Connection

grant codeBase "file:${catalina.home}/webapps/tomcatBook/WEB-INF/lib/JDBC.jar" {

permission java.net.SocketPermission "db.server.com:54321", "connect";

};

Second, place the JDBC driver into the common class loader, which has all permissions
granted to it. This means the driver can access the database, but the web application can’t.

Sending an E-mail with JavaMail

To send e-mail, web applications need access to port 25 on an SMTP server. Listing 12-8 shows
how to grant this permission to all classes in a web application.

Listing 12-8. Allowing Access to an SMTP Server

grant codeBase "file:${catalina.home}/webapps/myWebApp/WEB-INF/classes/-" {

permission java.net.SocketPermission "mail.server.com:25", "connect";

};

Reading or Writing to Files Outside a Web Application’s Directory

If you want to use your operating system, rather than Java’s permissions, to control file access,
you can give your web applications free rein once again, as in Listing 12-9.

CHAPTER 12 ■ SECURING TOMCAT 237

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 237

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 12-9. Allowing Access to All Files

grant {

java.io.FilePermission "<<ALL FILES>>", "read,write,execute,delete";

};

If you don’t grant at least some file permissions to your web application, your web appli-
cations will be shut out from accessing your file system. You should still secure your system
with your operating system’s file permissions, because, even though your web applications
may be shut out, Tomcat itself has full permissions, and should a malicious hacker modify
Tomcat somehow, they could still access your file system.

Using Security Realms
Recall that a realm is a programming interface that’s used to authenticate users and imple-
ment container-managed security based on roles. The actual mapping of users to roles can be
specified at deployment time—and can be changed dynamically without having to change the
application code. I introduced realms in Chapter 11 but deferred a detailed discussion of the
web application-specific configuration to this chapter.

When protecting a resource, you must know which roles are to have access to it. This
information is stored in the web application’s web.xml file in the <security-constraint> ele-
ment. The application’s developer should provide you with this information, but it’s a good
idea to be familiar with the options that can be used in a web application.

These settings are usually the developer’s job, and you just have to set up the server
appropriately. However, the admin and manager applications are also protected resources, and
you’re solely in charge of them and may want to change their configurations.

Adding Settings to web.xml
The <web-resource-collection> element of web.xml is a convenient place to group web resources
together so that security can be applied uniformly. You specify the name of the resource and the
URL patterns to cover inside this element, which is a subelement of <security-constraint>.

The <role-name> subelement of <auth-constraint>, itself a subelement of
<security-constraint>, specifies a role that’s allowed to access this section of the web
application. Any user belonging to this role may log in, providing they give a valid pass-
word. This is the domain of the administrator, as users and roles are defined in realms in
server.xml. The web application doesn’t care what realm is used, as long as the user is
configured in one of them.

Listing 12-10 shows the relevant section of the admin application’s web.xml file.

Listing 12-10. The Section of web.xml that Protects a Web Application

<!-- Security is active on entire directory -->

<security-constraint>

<display-name>

Tomcat Server Configuration Security Constraint

</display-name>

<web-resource-collection>

CHAPTER 12 ■ SECURING TOMCAT238

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 238

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<web-resource-name>Protected Area</web-resource-name>

<!-- Define the context-relative URL(s) to be protected -->

<url-pattern>*.jsp</url-pattern>

<url-pattern>*.do</url-pattern>

<url-pattern>*.html</url-pattern>

</web-resource-collection>

<auth-constraint>

<!-- Anyone with one of the listed roles may access this area -->

<role-name>admin</role-name>

</auth-constraint>

</security-constraint>

Here three patterns have been covered by the constraint: *.jsp, *.do, and *.html. This
means any request for a file matching these patterns will be challenged. Tomcat will then
authenticate the user and allow them to view the resource if they have the role specified,
which in this case is admin.

Another element in web.xml has an association with realms. This is the <login-config>
element that specifies how Tomcat challenges a user when they request a resource. Listing 12-11
shows the admin application’s entry.

Listing 12-11. The Section of web.xml that Specifies a Login Mechanism

<!-- Login configuration uses form-based authentication -->

<login-config>

<auth-method>FORM</auth-method>

<realm-name>

Tomcat Server Configuration Form-Based Authentication Area

</realm-name>

<form-login-config>

<form-login-page>/login.jsp</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

<login-config> sets the type of login and authentication that the application needs. In
this case, the application has form-based authentication, which means Tomcat will use the
form page specified instead of the user’s browser. This may also be BASIC, DIGEST, or CLIENT-CERT.

Choosing Form-Based Authentication
Form-based authentication is a good option for a few reasons:

• The server handles the user information. In the other forms of authentication, the browser
may cache the authentication information. While this is convenient for the user, it isn’t
as secure as the server holding the information.

• BASIC authentication is easy to decode, because the user information is sent as a plain,
base64-encoded string.

CHAPTER 12 ■ SECURING TOMCAT 239

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 239

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

• Not all browsers supported DIGEST authentication, so you can’t guarantee that all clients
will be able to authenticate. However, if the application is in a closed environment, such
as a corporate intranet, it’s easier to control the choice of browser. Internet Explorer,
Mozilla, Firefox, and Konqueror all support DIGEST authentication.

• DIGEST authentication doesn’t work if the passwords are digested on the Tomcat side
because of the way that the DIGEST mechanism calculates its digest. The browser first
calculates a digest of the username, the password, the URL, the HTTP method, and
a random string sent to it by the server. Likewise, the server creates a digest using the
same information and then compares the two digests. However, as the password is
already digested on the server, and thus different from the version entered into the
browser, the two digests will be different and authentication will fail. In other words,
Tomcat is creating a message digest of a message digest.

• JDBC realms don’t currently work with DIGEST authentication. Some of the algorithms
to digest the password from the database aren’t yet implemented.

• CLIENT-AUTH is really necessary only in business-to-business transactions, so it doesn’t
appear in most web applications that you’ll see.

The one drawback of form-based login for the manager application is that you can’t run
manager commands with Ant, because it can authenticate only using BASIC authentication.

Using Custom Login and Error Pages
If you want to add form-based authentication to a web application in place of some other type
supplied by the developers, Listing 12-12 shows an example.

Listing 12-12. An Example Form for Login

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core_rt" %>

<c:url value="j_security_check" var="j_security_check"/>

<html>

<head><title>Please Log In</title>

<body>

<form method="POST"

action='${j_security_check}' >

<table border="0" cellspacing="5">

<tr>

<th align="right">Username:</th>

<td align="left"><input type="text" name="j_username"></td>

</tr>

<tr>

<th align="right">Password:</th>

<td align="left"><input type="password" name="j_password"></td>

</tr>

<tr>

<td align="right"><input type="submit" value="Log In"></td>

<td align="left"><input type="reset"></td>

CHAPTER 12 ■ SECURING TOMCAT240

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 240

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

</tr>

</table>

</form>

</body>

</html>

The important values here are j_security_check, j_username, and j_password. Your form
must submit to the special j_security_check URL (here encoded using the core JSTL tag library
to allow for browsers that don’t use cookies), with the two special parameter names. This URL
is part of the authentication mechanism and will authenticate the user.

Listing 12-13 shows an example error page that’s displayed to users if they fail to log in
correctly, though you could quite easily use the original page.

Listing 12-13. A Login Error Page

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core_rt" %>

<c:url value="ch12/login.jsp" var="login"/>

<html>

<head><title>Error: Login Failure</title></head>

<body>

Login failed, please try

again.

</body>

</html>

This is simple and gives a link for the user to return to the login page following a failure.
Place these files in a web application, and update the links appropriately. The following

examples will assume you’ve placed them in tomcatBook/ch12. Listing 12-14 shows the web.xml
entry to protect the entire web application.

Listing 12-14. An Example web.xml Entry to Protect the tomcatBookWeb Application

<!-- Define a Security Constraint on this Application -->

<security-constraint>

<web-resource-collection>

<web-resource-name>Tomcat Book Application</web-resource-name>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>tomcat</role-name>

</auth-constraint>

</security-constraint>

<!-- Define the Login Configuration for this Application -->

<login-config>

<auth-method>FORM</auth-method>

<realm-name>Tomcat Book Application</realm-name>

<form-login-config>

<form-login-page>/ch12/login.jsp</form-login-page>

CHAPTER 12 ■ SECURING TOMCAT 241

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 241

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<form-error-page>/ch12/error.jsp</form-error-page>

</form-login-config>

</login-config>

<!-- Security roles referenced by this web application -->

<security-role>

<description>

The role that's required to log in to the Tomcat Book Application

</description>

<role-name>tomcat</role-name>

</security-role>

Now, whenever you try to access a page in the tomcatBook application for the first time,
you’ll have to enter user details in the ch12/login.jsp page. If you provide the wrong details or
have the wrong role, then you’ll see the ch12/error.jsp page. This security constraint will use
whichever realm you’ve configured (see Chapter 11 for details of configuring realms).

Using the Secure Sockets Layer
SSL is a protocol that allows clients and servers in a network environment to communicate
securely. In addition to encryption of data (and hence secure communication), SSL provides
for authentication.

The security protocols on which SSL is based are public key encryption and symmetric
key encryption. Public key encryption uses a pair of encryption keys to encode a message—
a public key that’s public and a private key that isn’t disclosed to anyone else. Anyone wanting
to send a message to an application that has a known public key encrypts it with that key. Only
the corresponding private key can decrypt the message, and thus the transmission is secure.
Symmetric key encryption, on the other hand, uses the same secret key for both encryption
and decryption. This algorithm, however, needs a reliable way to exchange the secret key between
the two end points in the transmission.

When a client opens an SSL connection with a server, an SSL handshake is performed.
The procedure for an SSL handshake is as follows:

1. The server sends its digital certificate. This contains the public key of the server, infor-
mation about the server, the authority that issued the server’s certificate, and the use-by
date of the certificate.

2. The client then authenticates the server based on the validity of the certificate and
trustworthiness of the authority that issued the certificate. Certificates issued by well-
known (and trusted) certificate authorities (CAs), such as VeriSign and Thawte, are
recognized by most web browsers. If the certificate can’t be validated, the user is warned,
and they can choose to either accept the certificate or deny it.

3. A session key is then generated and exchanged over the connection. The connection is
now secured by the public key encryption mechanism, which means that the exchange
is secure. The session key is a symmetric key and is used for the duration of the session
to encrypt all subsequent data transmissions.

CHAPTER 12 ■ SECURING TOMCAT242

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 242

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The server configuration may also require the client to present its own authentication
details. In this situation, another step is introduced in the SSL handshake. Such a requirement
isn’t common and is used only in some business-to-business application environments.

The HTTP over SSL (HTTPS) protocol uses SSL as a layer under HTTP. Transport Layer Secu-
rity (TLS) is the Internet Engineering Task Force (IETF) version of the SSL protocol. It’s defined by
RFC 2246 (www.ietf.org/rfc/rfc2246.txt) and is intended to eventually supersede SSL.

Adding support for SSL or TLS in Tomcat is a four-step process:

1. Download and install an SSL/TLS implementation (not necessary for JDK 1.4 and newer).

2. Create the certificate keystore containing a self-signed certificate, which is generated
by you and isn’t guaranteed by anyone else, such as a CA.

3. Obtain a certificate from a CA such as VeriSign (www.verisign.com), Thawte
(www.thawte.com), or Trustcenter.de (www.trustcenter.de). Use your self-signed certifi-
cate to generate a certificate-signing request, and submit it to the CA to get a certificate
digitally signed by them. This certificate, when presented to a user, guarantees that you
are who you claim to be. If you’re using Tomcat in a test/development environment,
you can skip this step. You’d need a certificate for a production deployment, though, as
users may not be willing to accept a self-signed certificate.

4. Make the Tomcat configuration changes for SSL.

Installing JSSE
Java Secure Socket Extension (JSSE) is Sun’s implementation of the SSL and TLS protocols.
JSSE is available for free but isn’t open source. For more information on JSSE, see http://
java.sun.com/products/jsse/. JDK 1.4 and newer include JSSE, so you do not need to worry
about this when using Tomcat 6.

Preparing the Certificate Keystore
You saw how to prepare a keystore in Chapter 9, but here’s a reminder:

> JAVA_HOME\bin\keytool -genkey -alias tomcat -keyalg RSA

The -genkey option specifies that a key pair (a private key and a public key) should be created.
This key pair is enclosed in a self-signed certificate. The -keyalg option specifies the algorithm
(which in this case is RSA) to be used for the key pair. All keystore entries are accessed via unique
aliases using the -alias option—here the alias is tomcat. The keytool command will ask for
a password, with which you should take the usual precautions.

The default name for the keystore file is .keystore, and it’s stored in the home directory of
the user who runs the keytool command. This directory will vary depending on the operating
system. For example, if you install Tomcat as a user called tomcat on Linux, the keystore file
will be in /home/tomcat. Similarly, if you install it as the tomcat user on Windows, the keystore
file would be in c:\Documents and Settings\tomcat. You can also specify an alternative keystore
filename and password using the -keystore and -keypass options.

> JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA

-keypass somepass -keystore /path/to/keystorefile

CHAPTER 12 ■ SECURING TOMCAT 243

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 243

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Here’s an example run of the keytool:

> keytool -genkey -alias tomcat -keyalg RSA

Enter keystore password: tomcat

What is your first and last name?

[Unknown]: localhost

What is the name of your organizational unit?

[Unknown]: Editorial

What is the name of your organization?

[Unknown]: Java

What is the name of your City or Locality?

[Unknown]: Glasgow

What is the name of your State or Province?

[Unknown]: Scotland

What is the two-letter country code for this unit?

[Unknown]: UK

Is CN=localhost, OU=Editorial, O=Java, L=Glasgow, ST=Scotland, C=UK correct?

[no]: yes

Enter key password for <tomcat>

(RETURN if same as keystore password):

Note that the first field you’re asked for is the domain name of your server, which
becomes the common name (CN). This needs to be of the format www.domainname.com,
hostname.domainname.com, or just domainname.com. This name is embedded in the certificate.
The CN should be the fully qualified hostname for the machine where Tomcat is deployed. If
this isn’t so, users will get a warning message in their web browsers when they try to access
a secure page from your web site, as you saw in Chapter 9.

If this is a test/development environment or you don’t want a certificate from a CA, you
can stop here. You’re now ready to make Tomcat-related setup changes. If you were deploying
in a production environment, you’d need to get a certificate that’s validated by a CA.

Installing a Certificate from a Certificate Authority
First, create a local certificate as before using the keytool command.

> keytool -genkey -alias tomcat -keyalg RSA -keystore <keystore_filename>

Next, use this certificate to create a certificate signing request (CSR).

> keytool -certreq -keyalg RSA -alias tomcat -file certreq.csr -keystore <

keystore_filename>

If the keystore file is the default (that is, a file named .keystore in the home directory),
then you can omit the -keystore <keystore_filename> option.

The -certreq option creates a CSR file called certreq.csr that you can submit to the CA
to get a certificate. The file will be in the directory where you ran the keytool command previ-
ously. Getting a certificate requires payment to the CA for the authentication services. Some
CAs have test certificates available for download at no cost, which are usually valid only for
a short time.

CHAPTER 12 ■ SECURING TOMCAT244

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 244

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

To submit your CSR, go to the CA of your choice and paste the contents of the file into the
form provided there. Then follow the instructions.

Importing the Certificate
After you have the certificate, you need to get the chain certificate (also called the root certificate)
from the CA. You can download this from the following sites (depending on the CA):

• www.verisign.com/support/install/intermediate.html

• www.trustcenter.de/set_en.htm

• www.thawte.com/roots/

The chain certificate is a self-signed certificate from the CA that contains its well-known
public key. You can view the contents of a certificate using the -printcert option.

> keytool -printcert -file /path/to/certificate

This is good practice before you import a third-party certificate into the keystore. You
then import the chain certificate into the keystore.

> keytool -import -alias root -keystore <keystore_filename>

-trustcacerts -file <filename_of_the_chain_certificate>

And finally, import the new certificate.

> keytool -import -alias tomcat -keystore <keystore_filename>

-trustcacerts -file <certificate_filename>

Here, the <filename_of_the_chain_certificate> contains the chain certificate you got
from the CA. As mentioned earlier, the -keystore <keystore_filename> option isn’t required if
the keystore file has a default name (.keystore). You’re now ready to make Tomcat-related
setup changes.

Protecting Resources with SSL
You can protect resources with SSL just as you can protect resources with authentication con-
straints. The <user-data-constraint> subelement of <security-constraint> in web.xml specifies
the guaranteed integrity of the data flowing between the client and the server for this resource.
There are three levels of integrity: NONE, INTEGRAL, and CONFIDENTIAL.

NONE means there’s no guarantee that the data hasn’t been intercepted and tampered with,
and INTEGRAL guarantees the integrity of the data, meaning that the data hasn’t been interfered
with. The strongest guarantee is CONFIDENTIAL, which guarantees that a third party hasn’t inter-
cepted the data. If you specify INTEGRAL or CONFIDENTIAL, the server will use SSL for all requests
to this resource by redirecting the client to the SSL port of the server. The redirection port
is configured in the redirectPort attribute of the HTTP connector.

For your secure resource, you want to be sure that all the data you transfer is safe, so you’ll
use the CONFIDENTIAL level. Simply add the element in Listing 12-15 to the <security-constraint>
in your web.xml file from the previous example.

CHAPTER 12 ■ SECURING TOMCAT 245

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 245

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 12-15. Guaranteeing the Integrity of Data with a Security Constraint

<security-constraint>

...

<user-data-constraint>

<description>

Constrain the user data transport for the whole application

</description>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

This will force all requests for your secure web application to use HTTPS, even if the origi-
nal request came in over HTTP. This is the only setup required in web.xml.

Configuring the SSL Connector
The setup procedure for an SSL connector is straightforward. You’ve already seen its attributes
in Chapter 4, so this section covers how to configure a connector for the keystore you created
earlier.

Modify the default SSL HTTP connector, and add the location and password of the keystore
if appropriate (see Listing 12-16).

Listing 12-16. Configuring an SSL Connector

<Connector port="8443" maxThreads="150" scheme="https" secure="true"

clientAuth=“false” sslProtocol=“TLS” />

Now start Tomcat, and point a browser to http://localhost/tomcatBook/. You’ll be presented
with a warning about the suspicious certificate (note that this warning may vary depending on
your browser).

You can choose to view the certificate to see the details of the issuer. These details will
match those you specified when you created the certificate. Before you proceed, your browser
will give you the option to install this certificate forever (you’ll have to view the certificate with
Internet Explorer to do this), which means that you trust this site and won’t be shown the security
warning again. An additional warning will be given if you didn’t use the domain name of your
server.

Once you’ve confirmed you’re happy with accepting this certificate, you’ll see the login
page from Listing 12-13, only this time your session will be conducted over SSL. To confirm
this, examine the URL. It should be https://localhost:8443/tomcatBook/. Tomcat knows to
redirect you to this port for SSL because of the redirectPort="8443" setting in the default
HTTP connector.

Using SSL with the Apache Web Server
You’ve seen how the stand-alone HTTP connector handles SSL. Another approach that’s
more widely used is to have a dedicated web server handle the SSL-related functionality.
This is a more stable configuration and has better performance. In this configuration, the
communication between the user’s browser and web server is encrypted over SSL, but the com-
munication between the web server and Tomcat isn’t.

CHAPTER 12 ■ SECURING TOMCAT246

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 246

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Before you can configure Apache, you need to create a private key and certificate. This is
a separate process from Tomcat’s because the keytool command creates a propriety keystore
format (maintained by Sun) that Apache can’t use. To create a private key and a certificate for
Apache, you need the OpenSSL library from www.openssl.org.

If you’re using Windows, you should visit http://hunter.campbus.com and download the
Apache/OpenSSL combination for your Apache installation. You don’t need to install the whole
bundle, but you will need the openssl utility and the libeay32.dll, ssleay32.dll, and mod_ssl.so
files. Place the first three (openssl, libeay32.dll, and ssleay32.dll) in Apache’s bin directory
and mod_ssl.so in Apache’s modules directory.

If you don’t have an openssl.cnf file, create one with contents similar to those shown in
Listing 12-17. These are the certificate details you would have entered in the previous keytool
examples.

Listing 12-17. The openssl.cnf File Setting Your Server’s Certificate Properties

[req]

default_bits = 1024

distinguished_name = req_distinguished_name

attributes = req_attributes

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = UK

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = Scotland

localityName = Locality Name (eg, city)

localityName_default = Glasgow

organizationName = Organization Name (eg, company)

organizationName_default = Java

organizationalUnitName = Organizational Unit Name (eg, section)

organizationalUnitName_default = Editorial

commonName = Common Name (eg, YOUR name)

commonName_default = localhost

commonName_max = 64

emailAddress = Email Address

emailAddress_max = 40

[req_attributes]

challengePassword = A challenge password

challengePassword_min = 4

challengePassword_max = 20

CHAPTER 12 ■ SECURING TOMCAT 247

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 247

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Then run the following to create a private key:

> openssl genrsa -des3 1024 > ./certs/localhost.key

Loading 'screen' into random state - done

Generating RSA private key, 1024 bit long modulus

...++++++

...............++++++

e is 65537 (0x10001)

Enter pass phrase:

Verifying - Enter pass phrase:

This will create the localhost.key key file in the certs directory with password protec-
tion. You’ll have to provide this password to enable SSL when you start or restart Apache. If
you don’t want to use a password to protect this file (more on this later), then omit the -des3
switch.

Now create a CSR, which you can use to request a certificate from a CA, or create a self-
signed certificate.

> openssl req -new -key ./certs/localhost.key

-out ./certs/localhost.csr -config openssl.cnf

Enter pass phrase for ./certs/localhost.key:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [UK]:

State or Province Name (full name) [Scotland]:

Locality Name (eg, city) [Glasgow]:

Organization Name (eg, company) [Java]:

Organizational Unit Name (eg, section) [Editorial]:

Common Name (eg, YOUR name) [localhost]:

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:tomcat

This creates the localhost.csr file in the certs directory. Note the default values from
openssl.cnf. Provide the password for the private key as appropriate. The final step is to create
the certificate.

>openssl req -x509 -key ./certs/localhost.key -in ./certs/localhost.csr

-out ./certs/localhost.crt

Enter pass phrase for ./certs/localhost.key:

This creates the localhost.crt certificate in the certs directory. You’re now ready to con-
figure Apache and Tomcat.

CHAPTER 12 ■ SECURING TOMCAT248

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 248

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Deploying a Web Application
Begin by configuring Apache. If you’re responding to user requests on port 80 (the default HTTP
port) and the SSL port (default value 443), Apache needs to listen on both these ports. In this
example, you’ll protect the tomcatBook web application with Apache’s SSL and leave the default
Apache files unprotected.

Listen on port 80 and 443 (the SSL port)

Listen 80

Listen 443

Use name-based virtual hosts on these ports

NameVirtualHost *:80

NameVirtualHost *:443

You now have to make the SSL-related settings in Apache.

<VirtualHost *:443>

The name of this host

ServerName localhost

Switch on SSL for this host

SSLEngine on

The path to the certificate

SSLCertificateFile /path/to/certs/localhost.crt

The path to the private key

SSLCertificateKeyFile /path/to/certs/localhost.key

You are protecting the tomcatBook webapp

so enable the connector settings

Include /path/to/tomcatBook/WEB-INF/jk2/jk2.conf"

</VirtualHost>

Here, you create a virtual host listening on the SSL port (443) for protecting the tomcatBook
web application. You switch on SSL for this host and set the locations of the certificate and the
private key. Assuming that you’ve enabled mod_jk2 and have generated the settings using the
techniques from Chapter 9, you then include the settings for the tomcatBook web application.

Next, you need to configure the non-SSL host for Apache’s static files.

<VirtualHost *:80>

ServerName localhost

DocumentRoot /path/to/Apache2/htdocs

</VirtualHost>

A final point to consider is running Apache and SSL on Windows. The default private key
password prompt doesn’t work on Windows, so you must either configure a private key without
password protection or configure a script or utility to provide the password. Both scenarios
have inherent problems, so you must make sure that both files (the private key and the utility)
are heavily protected.

CHAPTER 12 ■ SECURING TOMCAT 249

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 249

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

To specify the file that will give the key password to Apache, set the following outside your
virtual host definitions:

SSLPassPhraseDialog exec:bin/password.bat

This points to the password batch file in Apache’s bin directory. Listing 12-18 shows the
password batch file.

Listing 12-18. The password.bat File that Sends the Key Password to Tomcat

@echo tomcat

There’s no more to it than that (providing that tomcat is your key password), though this
doesn’t do any checking as to who is running the script and for which domain. If more than
one domain were to use this file, and each domain had a different password, then you’d have
to check the domain name. Apache sends this information as servername:port in the first
argument to the script and the appropriate algorithm in the second argument. Listing 12-19
shows an example batch file that does this for the server you have configured.

Listing 12-19. The password.bat File that Sends the Key Password to Tomcat

@echo off

if "%1" == "localhost:443" @echo tomcat

Here, you check that the first argument matches the name and port of the server. If this is
the case, you echo the password to stdout.

Listing 12-20 shows an example workers2.properties file for this setup.

Listing 12-20. The workers2.properties File Using Apache’s SSL Functionality

Define the channel

[channel.socket:localhost:8009]

Define the worker

[ajp13:localhost:8009]

channel=channel.socket:localhost:8009

Uri mapping

[uri:localhost:443/tomcatBook/*]

group=ajp13:localhost:8009

The important thing to note here is the URI mapping. Only requests to the tomcatBook web
application that also map to the server name and the SSL port will be passed on to Tomcat.

Testing the Installation
After making these changes, restart Tomcat and Apache. You should be able to access the
secure Tomcat web application through https://localhost/tomcatBook and the nonsecure
Apache files through http://localhost.

CHAPTER 12 ■ SECURING TOMCAT250

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 250

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

A common problem in the setup is related to SSL configuration on Apache. Apache may
fail to start or not serve up SSL content. If you face this problem, first check the new directives
added to httpd.conf.

> apache/bin/apache -t

This should uncover any errors related to directive syntax. Next, look for Apache error
messages logged in APACHE_HOME/logs/error.log. You can control logging via the LogLevel
Apache directive.

LogLevel debug

The log levels are debug, trace, info, warn, error, and none. A debug level of none turns off all
logging. The log levels are in order of priority, and setting logging to a certain level shows mes-
sages of that and higher levels. For example, the warn level shows warnings and error messages.

Summary
In this chapter, you looked at various security topics with respect to Tomcat. First you looked
at general security: removing or disabling the default web applications and locking up the file
system. Both of these procedures are common practice in all server installations, so they should
fit into your general security policy without too much trouble.

Then you moved on to the Tomcat-specific security. You examined Java’s security manager
and its role in controlling access to system resources. Tomcat can take advantage of this feature
to prevent web applications from carrying out potentially dangerous actions. A rogue servlet
could easily take down the file system if you don’t take measures to restrict access.

You then learned how to put realms into practice with Tomcat’s security constraints. You
saw the different kinds of login mechanism you can use, as well as their strengths and weak-
nesses. Next, you saw how to force SSL connections for groups of web resources on the Tomcat
server. SSL prevents third parties from listening in on your data transfers between the server
and the client. When dealing with sensitive data, it’s always wise to use SSL. The final topic was
securing the data channel between Tomcat and the client using Apache’s SSL abilities.

CHAPTER 12 ■ SECURING TOMCAT 251

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 251

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850ch12FINAL.qxd 2/28/07 11:13 AM Page 252

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Implementing Shared Tomcat
Hosting

This chapter shows how you can use Tomcat to implement shared hosting, which means that
many hosts can run on the same server and thus share resources. Shared hosting has been
a popular and useful part of the Apache web server’s architecture for a long time, and Tomcat
has an analogous mechanism.

In this chapter, a web site refers to the contents of a distinct, fully qualified domain name
(FQDN) that is served by a web server. An FQDN consists of two parts: a host name and
a domain name. For example, the FQDN www.apress.com consists of the host name www and the
domain name apress.com. The domain name can have other hosts, such as mail or java—
the FQDNs would be mail.apress.com and java.apress.com.

A standard web server in its default configuration allows only one domain to be served
from the machine. In this case, if you wanted to serve hundreds of domains from your servers,
you would have to set up hundreds of computers to serve all these web sites. This is clearly not
a scalable solution.

Also, IP addresses are a scarce resource. A web-hosting provider gets a limited number of
IP addresses from its connectivity providers for hosting. Using one IP address for every web
host would quickly eat up all the allocated IP addresses. To overcome these limitations, virtual
hosting uses all your available resources, be they services, IP addresses, or other computing
resources, in an optimal way.

Examining Virtual Hosting
You can implement one of the following two types of virtual hosting:

• IP-based virtual hosting: Based on machines with multiple, distinct IP addresses, every
domain is allocated one IP address. The web server listens to each of these network inter-
faces and serves resources from the relevant domain based on the IP address on which
the request arrived.

• Name-based virtual hosting: The web server listens on a single IP address and serves
resources from the relevant web site based on the HTTP request headers from the web
client.

253

C H A P T E R 1 3

■ ■ ■

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 253

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING254

IP-Based Virtual Hosting
In this form of virtual hosting, the machine is configured to have the same number of IP addresses
as the hosts it’s to serve, so a machine hosting ten web sites needs ten IP addresses. You configure
these additional IP addresses either by adding physical network interfaces to the machine or, as is
more common, by adding aliased network interfaces to the computer.

Normally when you add a network interface card (NIC) to your machine, you configure it
with a single IP address, which you then use in various services. However, it’s possible to configure
the same NIC with more than one IP address. Adding these additional IP addresses involves using
operating-system–specific commands for creating a virtual interface and then configuring it with
a virtual IP address. This process normally involves using a physical NIC and adding virtual inter-
faces on top, a process known as aliasing.

Configuring Aliasing for Windows
Windows versions from Windows NT onward support aliasing and therefore IP-based virtual host-
ing. Each flavor of Windows has slightly different ways to configure this, but they’re similar enough
that you’ll be able to transfer the example shown here to your version.

This example uses Windows 2000 Professional. Open Control Panel ➤ Network and Dial-up
Connections, and double-click the network interface you want to configure. For example, this
may be your local area network connection. You’ll see a properties dialog box similar to the one
shown in Figure 13-1.

Figure 13-1. The network properties dialog box

Select the TCP/IP component as shown, and click Properties. The TCP/IP properties box
allows you to specify a main IP address and DNS servers for this network interface. If there’s
no IP address, enter a value that’s appropriate for your network, as shown in Figure 13-2. The
default subnet mask should be sufficient.

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 254

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 13-2. The TCP/IP properties dialog box

To add further IP addresses, click Advanced. You’ll see the IP address you just entered listed in
the top pane of the resultant dialog box. To add further IP addresses, click Add, and enter another
value. You’ll see the new IP address that has been added to the list, as in Figure 13-3. This computer
will now listen on 192.168.0.1 and 192.168.0.2.

Figure 13-3. The Advanced TCP/IP Settings dialog box

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 255

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 255

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Aliasing for Unix
To set network interface options on Unix-like systems, you use the ifconfig utility. On most
systems, to check which network interfaces are installed, run ifconfig with the -a switch.

ifconfig -a

If this doesn’t work, try netstat -i.
Once you know which network interfaces are installed, you can view the details of a spe-

cific interface with the following:

ifconfig interface_name

To set the IP address of a network interface, specify the interface’s name, followed by the IP
address, options such as the netmask, and the up parameter. So, to set the IP address of eth0 to
192.168.0.1, run the following:

ifconfig eth0 192.168.0.1 netmask 255.255.255.0 up

eth0 will now be listening on the new IP address. To turn the network interface off, use the
down parameter:

ifconfig eth0 down

To add an additional IP address to a network interface to implement aliasing, run the fol-
lowing:

ifconfig eth0:1 192.168.0.2

eth0 will now listen on 192.168.0.1 and 192.168.0.2.

Name-Based Virtual Hosting
While IP-based virtual hosts help maximize resources, they’re still not feasible in places
where hundreds of domains need to be hosted on the same machine. In such cases, either
obtaining one IP address for each host or configuring many network interfaces on the
same machine becomes a logistical nightmare. In these cases, you can use name-based
virtual hosting.

An HTTP 1.1 request contains the Host: header, which specifies the host on which the
requested resource resides. When such a request is sent to a server, the server can read the Host:
header and determine which of its hosts the client would like to reach. The server then processes
the request accordingly and sends back the response. This system requires the client to first look
up a list of IP address/host name mappings, which is usually configured in a DNS server.
Figure 13-4 shows this process.

You can see how this makes more efficient use of the available resources. If you were lim-
ited to one host for one IP address, the Internet would soon run out of space.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING256

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 256

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 13-4. Name-based virtual hosting

Name-based virtual hosting does have some problems:

• SSL connections aren’t on HTTP, so the Host: header can’t be extracted in advance. There-
fore, it isn’t possible to have multiple SSL servers running on the same IP address. For this
reason, each SSL-enabled web site needs to be configured on a unique IP address.

• Older web clients and many web-access software libraries still use the old HTTP 1.0 proto-
col. Since they don’t send the Host: header to the web server, name-based virtual hosting
wouldn’t work properly with them. However, these clients are pretty rare, so this isn’t as big
a consideration as it used to be.

Implementing Virtual Hosting with Tomcat
Tomcat can work either in stand-alone mode, in which it serves static pages along with JSP
pages/servlets, or in conjunction with a web server such as Apache. Chapter 9 and Chapter 12
have more details on this.

If Tomcat is to provide virtual hosting support, then when a request comes for a particular
resource on one of Tomcat’s virtual hosts, Tomcat should be able to successfully obtain the
host that the request was for and fetch the required resource from the host’s document base.

When working in conjunction with another web server like Apache, the web server handles
the virtual hosts and processing of subsequent static pages, as you saw in Chapter 12. Tomcat
then handles the servlets and JSP pages while distinguishing the various hosts involved.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 257

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 257

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Creating an Example Configuration
You’ll configure Tomcat to serve three hosts: www.tomcatbook.com, www.catalinabook.com, and
www.jasperbook.com, each running on the same machine with a common IP address. This
machine may be part of your network, or it may be the local machine with the 127.0.0.1 local
loopback address. If it’s part of your network, you should ensure you have set up a DNS entry
for each host (Listing 13-8 later in the chapter shows an example of this).

These domains will be hosted in a directory outside the Tomcat base directory. Each of
the domains has its own document area in /home/sites/<domain-name>. Web applications are
deployed in the webapps folder under this hierarchy. If you were planning on using Apache
with this setup, you could also consider a /home/sites/<domain-name>/web directory as Apache’s
document root. I’ll get to this in the “Implementing Virtual Hosting with Apache and Tomcat”
section.

You may even want to place the static pages into a separate directory anyway (say the ROOT
web application), because in many shared hosting scenarios, the clients’ hosting requirements
include Tomcat support as an additional feature to their regular web needs. Clients who want
to add web applications can drop their WAR files in the webapps directory without mixing them
up with the static content. Figure 13-5 shows the general layout of the sample shared hosts on
the Tomcat server.

Figure 13-5. The general layout of the example shared hosts

You’ll need a way to identify which host you have accessed to determine if your configura-
tion is correct. Therefore, each host should have a ROOT web application with an index.html file
that points to a JSP page in the dynamic section, as shown in Listing 13-1.

Listing 13-1. The index.hml Page for Shared Hosting

<html>

<head><title>Welcome to catalinabook.com</title>

<body>

<h1>Welcome to catalinabook.com</h1>

<hr/>

<p>

Click here

to access the dynamic section of the site.

</p>

</body>

</html>

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING258

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 258

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Remember to change the name of the host. Feel free to change these setup details to suit your
own server hosting policy. Just remember to change the settings given in Listing 13-5 accordingly.

The JSP page is common to all the hosts and should be placed in the jsp web application.
Listing 13-2 shows this page.

Listing 13-2. The index.jsp Page that Is Common to All Hosts

<html>

<head>

<title>

Welcome to ${pageContext.servletContext.servletContextName}

</title>

<body>

<h1>Welcome to ${pageContext.servletContext.servletContextName}</h1>

<hr/>

</body>

</html>

The EL segments obtain the name of the host so that you can see that the virtual hosting is
working and that JSP pages are producing dynamic content. The servletContextName property is
set in each web application’s web.xml file.

Finally, you don’t necessarily need a web.xml file for each of these simple web applications,
though to follow good practice, you should add one, as shown in Listings 13-3 and 13-4.

Listing 13-3. A web.xml File for the ROOTWeb Application

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<display-name>ROOT web application</display-name>

<description>

Users should place their static HTML files here.

</description>

</web-app>

You should change the <display-name> setting for each host as follows. This will be dis-
played to show that each host is serving a different dynamic page.

Listing 13-4. A web.xml File for the jspWeb Application

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 259

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 259

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<display-name>the jsp web application on catalinabook.com</display-name>

<description>

A dynamic web application.

</description>

</web-app>

You now have all you need to implement virtual hosting. Figure 13-6 shows you how your
final configuration should look for each host.

Figure 13-6. The final web application configuration

Here, you can see that the static HTML files are separated from any dynamic content. You
can then host static web sites alongside dynamic web sites by placing subdirectories in the
ROOT web application should you choose to do so.

Setting Up the Virtual Hosting
You define virtual hosts in server.xml. For this example, you’ll see a complete server.xml file
written from scratch. Feel free to add the settings to your existing server.xml.

Listing 13-5 shows the setup for the first virtual host. To add the other two, simply duplicate
the settings appropriately.

Listing 13-5. Creating a Virtual Host in server.xml

<Server port="8005" shutdown="SHUTDOWN">

<Service name="Virtual Hosting Tomcat">

<Connector port="8080"

maxThreads="150"

enableLookups="false" redirectPort="8443" acceptCount="100"

connectionTimeout="20000"

disableUploadTimeout="true" />

<Engine name="Catalina" defaultHost="www.catalinabook.com">

<Host name="www.catalinabook.com" debug="0"

appBase="C:/home/sites/catalinabook.com/webapps"

unpackWARs="true">

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING260

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 260

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<Valve className="org.apache.catalina.valves.AccessLogValve"

directory="C:/home/sites/catalinabook.com/logs"

prefix="catalinabook.com.access."

suffix=".log"

pattern="common"/>

</Host>

<!-- The other two virtual hosts go here -->

</Engine>

</Service>

</Server>

The connector is copied from the default server.xml file and listens for HTTP requests on
port 8080 as usual. The engine setting configures www.catalinabook.com as the default host. The
engine examines the HTTP headers, especially the Host: header, and determines which of the vir-
tual host definitions should receive the request. If none of the virtual hosts seems to match the
request headers, the engine passes on the request to the default host. The value of this attribute
must match a <Host> definition in the engine. Then, the host setting assigns a home directory for
webapps and sets an access log and a general log.

For Tomcat 6 logging, follow the instructions in Chapter 4 to set up Log4J and then append
the logging.properties file with the code in Listing 13-6 in CATALINA_HOME/conf.

Listing 13-6. log4j.properties Logging File for Virtual Hosting

#--------------------------------#

Set the root logger for Tomcat

#--------------------------------#

log4j.rootLogger=INFO, TomcatINFO, TomcatERROR

#---#

Send all INFO messages and above to a file

#---#

log4j.appender.TomcatINFO=org.apache.log4j.FileAppender

log4j.appender.TomcatINFO.File=C:/jakarta-tomcat-5.5.3/logs/catalina_log.txt

Use the simple layout

log4j.appender.TomcatINFO.layout=org.apache.log4j.SimpleLayout

#--#

Send all ERROR messages and above to the console

#--#

log4j.appender.TomcatERROR=org.apache.log4j.ConsoleAppender

log4j.appender.TomcatERROR.Target=System.out

log4j.appender.TomcatERROR.layout=org.apache.log4j.PatternLayout

log4j.appender.TomcatERROR.layout.ConversionPattern=%p: %m: %d{ABSOLUTE} %n

log4j.appender.TomcatERROR.Threshold=ERROR

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 261

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 261

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

#--#

Define a log for the catalinabook.com host

#--#

log4j.logger.org.apache.catalina.core.ContainerBase.

[Catalina].[www.catalinabook.com]=INFO,catalinabook

Log to a file

log4j.appender.catalinabook=org.apache.log4j.FileAppender

log4j.appender.catalinabook.

File=C:/home/sites/catalinabook.com/logs/catalinabook.com.log

Use the simple layout

log4j.appender.catalinabook.layout=org.apache.log4j.SimpleLayout

#--#

Define a log for the jasperbook.com host

#--#

log4j.logger.org.apache.catalina.core.ContainerBase.

[Catalina].[www.jasperbook.com]=INFO,jasperbook

Log to a file

log4j.appender.jasperbook=org.apache.log4j.FileAppender

log4j.appender.jasperbook.File=C:/home/sites/jasperbook.com/logs/jasperbook.com.log

Use the simple layout

log4j.appender.jasperbook.layout=org.apache.log4j.SimpleLayout

#--#

Define a log for the tomcatbook.com host

#--#

log4j.logger.org.apache.catalina.core.ContainerBase.

[Catalina].[www.tomcatbook.com]=INFO,tomcatbook

Log to a file

log4j.appender.tomcatbook=org.apache.log4j.FileAppender

log4j.appender.tomcatbook.File=C:/home/sites/tomcatbook.com/logs/tomcatbook.com.log

Use the simple layout

log4j.appender.tomcatbook.layout=org.apache.log4j.SimpleLayout

This file sets the same loggers as the <Logger> components in Listing 13-5.
To configure contexts for catalinabook.com, place a context XML file in CATALINA_HOME/

conf/Catalina/www.catalinabook.com. Note the name of the host is the name of the last direc-
tory. Listing 13-7 shows the jsp.xml configuration file, and Listing 13-8 shows the ROOT.xml
configuration file.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING262

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 262

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 13-7. The jsp.xml Configuration File

<Context path="/jsp" docBase="jsp" />

Listing 13-8. The ROOT.xml Configuration File

<Context displayName="Welcome to Tomcat" docBase="ROOT" path="" />

These files are common to all the web applications, so place them in
CATALINA_HOME/conf/Catalina/www.jasperbook.com and in
CATALINA_HOME/conf/Catalina/www.tomcatbook.com as well.

Testing the Virtual Hosting
If you don’t have your DNS server set up to point to your machine, you can alter your local hosts
file to simulate a DNS server. On Unix systems, this is the /etc/hosts file, and in Windows, it’s
Windows/system32/drivers/etc/hosts (or equivalent on older systems). Listing 13-9 shows the
entries in the hosts file that map the three hosts to your local machine’s IP address.

Listing 13-9. An Example Hosts File

127.0.0.1 localhost

127.0.0.1 www.catalinabook.com

127.0.0.1 www.jasperbook.com

127.0.0.1 www.tomcatbook.com

Start Tomcat, and browse to one of the virtual hosts, as shown in Figure 13-7. Remember
that Tomcat is still listening on port 8080.

Figure 13-7. The index page of www.jasperbook.com

Here, you can see that the correct index page is shown for www.jasperbook.com. Click the
link to try the JSP page, as shown in Figure 13-8.

Again, this is the expected behavior, so the dynamic part of the virtual host is working. Try
the other hosts to confirm that they’re also working, and examine their access logs.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 263

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 263

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 13-8. The dynamic JSP page of www.jasperbook.com

You should next check that the defaultHost setting of the <Engine> element is working
properly. Try to access the dynamic section on IP address 127.0.0.1 (or whatever you’ve set
your machine’s IP address to be). You should see the www.catalinabook.com page, as shown in
Figure 13-9.

Figure 13-9. Accessing the default host using an IP address

Implementing Virtual Hosting with Apache and
Tomcat
If you want to use Apache to serve the static files of your virtual hosts and Tomcat to serve the
dynamic content, you need to add an AJP connector to server.xml. Remove the HTTP connec-
tor from your server.xml, and add the configuration shown in Listing 13-10.

Listing 13-10. Adding an AJP Connector to server.xml

<Server port="8005" shutdown="SHUTDOWN">

<Service name="Virtual Hosting Tomcat with Apache">

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING264

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 264

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<Connector port="8009"

enableLookups="false"

protocol="AJP/1.3" />

<!-- The rest of the file remains the same -->

Now you need to configure Apache to pass all requests for dynamic content to Tomcat.
The first port of call is the workers2.properties file, as shown in Listing 13-11.

Listing 13-11. The workers2.properties File for Virtual Hosting

[channel.socket:localhost:8009]

define the worker

[ajp13:localhost:8009]

channel=channel.socket:localhost:8009

Uri mapping

[uri:/*.jsp]

group=ajp13:localhost:8009

Here, you instruct Apache to pass all requests for *.jsp files to Tomcat. Tomcat will then
process them according to the virtual host they’re requesting. To serve static files from Apache,
you first need to generate the settings for each web application using Ant or a similar tool (see
Chapter 9 for details). Listing 13-12 shows a sample jk2.conf file as generated by Ant.

Listing 13-12. The jk2.conf File for www.catalinabook.com

Must be included in a virtual host context for www.catalinabook.com

Alias /jsp "C:/home/sites/catalinabook.com/webapps/jsp"

<Directory "C:/home/sites/catalinabook.com/webapps/jsp" >

Options Indexes FollowSymLinks

DirectoryIndex

AddHandler jakarta-servlet2 .jsp

</Directory>

<Location "/jsp/WEB-INF" >

AllowOverride None

Deny from all

</Location>

<Location "/jsp/META-INF" >

AllowOverride None

Deny from all

</Location>

As the comment at the beginning of this file says, you must include this file in the appro-
priate virtual host definition to protect Tomcat’s files. Apache’s virtual hosts must match
Tomcat’s virtual hosts so that there’s a seamless integration of static pages and dynamic con-
tent. In this case, you’ll use the web directory for static content instead of the ROOT web
application. Figure 13-10 shows this configuration.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 265

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 265

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 13-10. The virtual hosting configuration when using Apache

Therefore, the Apache setup will be as shown in Listing 13-13.

Listing 13-13. The Apache Setup for Virtual Hosting with Tomcat

NameVirtualHost www.catalinabook.com

NameVirtualHost www.jasperbook.com

NameVirtualHost www.tomcatbook.com

<VirtualHost www.catalinabook.com>

ServerName www.catalinabook.com

DocumentRoot "C:/home/sites/catalinabook.com/web"

Include "C:/home/sites/catalinabook.com/webapps/jsp/WEB-INF/jk/jk.conf"

</VirtualHost>

<VirtualHost www.jasperbook.com>

ServerName www.jasperbook.com

DocumentRoot "C:/home/sites/jasperbook.com/web"

Include "C:/home/sites/jasperbook.com/webapps/jsp/WEB-INF/jk/jk.conf"

</VirtualHost>

<VirtualHost www.tomcatbook.com>

ServerName www.tomcatbook.com

DocumentRoot "C:/home/sites/tomcatbook.com/web"

Include "C:/home/sites/tomcatbook.com/webapps/jsp/WEB-INF/jk2/jk2.conf"

</VirtualHost>

Each virtual host corresponds to a Tomcat virtual host and has a document root correspon-
ding to the web directory in the host’s installation directory. Any requests that don’t match the
setting in workers.properties (that is, any non-JSP pages) will be served from here. If you want
to continue to use the ROOT directory, you can change the DocumentRoot directive to point to it.

To test the setup, copy index.html from each host’s ROOT directory into its web directory
and change it as shown in Listing 13-14.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING266

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 266

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 13-14. The Index File Served by Apache

<html>

<head><title>Welcome to catalinabook.com</title>

<body>

<h1>Welcome to catalinabook.com on Apache</h1>

<hr/>

<p>

Click here

to access the dynamic section of the site.

</p>

</body>

</html>

The JSP pages stay the same because they’re still served by Tomcat. Now start Apache, and
restart Tomcat. Browse to www.catalinabook.com, and you should see the index page as served
by Apache (see Figure 13-11).

Figure 13-11. The index page on the Apache server

If you click the link to the dynamic section, you’ll see the JSP page as before.

Setting a JVM for Each Virtual Host
In the previous example, all the virtual hosts are in the same request-processing engine. In these
virtual hosts (which can access Tomcat internal objects, load/unload other web applications, and
so on), such as the manager web application, trusted contexts have access to the common Tomcat
internal classes and can encroach on each other’s territory.

One possible solution is to set up one <Engine> per virtual host in the same server.xml file.
Since each <Service> container element in the file can have only one child <Engine> element, this
would mean adding one service per virtual host with the accompanying engine. Also, since every
service has its own set of connectors, this requires setting up different connectors listening on dif-
ferent ports for each engine. Therefore, you’ll have to use Apache as a front end.

While the previous technique removes the problem of sharing information between the vir-
tual hosts, a relaxed Tomcat security policy can still give one domain enough privileges to bring

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 267

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 267

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

down the whole Tomcat process. The more secure, albeit more resource-intensive, solution to
these security problems is to have one Tomcat process per virtual host.

Tomcat depends on two environment variables to find its internal classes and the
configuration-specific files:

• CATALINA_HOME is needed for Tomcat to function properly. Tomcat uses this variable to
find its internal classes and libraries.

• CATALINA_BASE is used by Tomcat to find the location of the configuration files and
directories, such as the web application directories. If CATALINA_BASE isn’t set, it defaults
to the value of CATALINA_HOME.

Therefore, to maintain separate Tomcat processes, all you have to do is set the value of
CATALINA_BASE to a different area of the disk for each server instance. Each server has its own
server.xml file, which contains only one virtual host definition, different connector port num-
bers, and different directories for logs, scratch areas, and so on.

For the previous three virtual hosts, you’d store their configurations in directories under
/home/sites/<domain-name>/catalina. In this case, www.catalinabook.com’s CATALINA_BASE
would be /home/sites/www.catalinabook.com/catalina; www.jasperbook.com’s CATALINA_BASE
would be /home/sites/www.jasperbook.com/catalina; and www.tomcatbook.com’s
CATALINA_BASE would be /home/sites/www.tomcatbook.com/catalina.

Ensure that only the virtual host definition of www.catalinabook.com is present in /home/
sites/www.catalinabook.com/catalina/conf/server.xml, and the default host of the <Engine>
is set to this domain. The rest of the configuration is as before. Listing 13-15 shows the listing
for www.catalinabooks.com.

Listing 13-15. server.xml for www.catalinabooks.com Using a Separate JVM

<Server port="8005" shutdown="SHUTDOWN">

<Service name="Virtual Hosting Tomcat">

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->

<Connector port="8009"

enableLookups="false"

protocol="AJP/1.3" />

<Engine name="Catalina" defaultHost="www.catalinabook.com">

<Host name="www.catalinabook.com" debug="0"

appBase="C:/home/sites/catalinabook.com/webapps"

unpackWARs="true">

<Valve className="org.apache.catalina.valves.AccessLogValve"

directory="C:/home/sites/catalinabook.com/logs"

prefix="catalinabook.com.access."

suffix=".log"

pattern="common"/>

-->

</Host>

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING268

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 268

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

</Engine>

</Service>

</Server>

For the server.xml file of www.jasperbook.com and www.tomcatbook.com, do the following:

1. Change the <Server> port settings to 8105 and 8205, respectively.

2. Change the AJP connector settings to port 8010 and 8011, respectively.

3. Ensure that only one virtual host definition is present and that the default host of the
<Engine> element is set to this domain.

You’ll also need a directory for the web application context XML files for each engine/host
pair. Create a CATALINA_BASE/conf/Catalina/www.catalinabook.com directory, and copy jsp.xml
and ROOT.xml there. Repeat this for the other two hosts. Figure 13-12 shows the final directory
structure for www.catalinabook.com.

Figure 13-12. The directory structure for the www.catalinabook.com host

You’ll have to modify (or, in the case of Tomcat 6, create) the jk.properties file in /home/
sites/<domain-name>/catalina/conf to contain the following line, with the appropriate port
for the virtual host:

The setting for www.tomcatbook.com

channelSocket.port=8011

The only change on the Apache side is in workers.properties because the three virtual
hosts are already set up in Apache’s httpd.conf file. Create a new workers.properties file, as
shown in Listing 13-16.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 269

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 269

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 13-16. The workers.properties File for Separate Virtual Hosts

Only at beginning. In production comment it out.

[logger.apache2]

level=DEBUG

Socket channels.

[channel.socket:localhost:8009]

[channel.socket:localhost:8010]

[channel.socket:localhost:8011]

Define the workers.

[ajp13:localhost:8009]

channel=channel.socket:localhost:8009

[ajp13:localhost:8010]

channel=channel.socket:localhost:8010

[ajp13:localhost:8011]

channel=channel.socket:localhost:8011

Uri mappings.

[uri:www.catalinabook.com/*.jsp]

group=ajp13:localhost:8009

[uri:www.jasperbook.com/*.jsp]

group=ajp13:localhost:8010

[uri:www.tomcatbook.com/*.jsp]

group=ajp13:localhost:8011

The three workers correspond to the three hosts you’ve already configured in Tomcat. Notice
the corresponding port numbers.

You now need to start each of the instances with a new CATALINA_BASE each time. Run the
batch file shown in Listing 13-17 if you’re on Windows.

Listing 13-17. Running the Three Virtual Hosts Using a Windows Batch File

@echo Running three Tomcat workers

set CATALINA_BASE=C:\home\sites\catalinabook.com\catalina

start /B catalina start

set CATALINA_BASE=C:\home\sites\jasperbook.com\catalina

start /B catalina start

set CATALINA_BASE=C:\home\sites\tomcatbook.com\catalina

start /B catalina start

Run the batch file shown in Listing 13-18 if you’re on a Unix-like system.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING270

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 270

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listing 13-18. Running the Three Virtual Hosts Using a Unix Shell Script

CATALINA_BASE=/home/sites/catalinabook.com/catalina

catalina start

CATALINA_BASE=/home/sites/jasperbook.com/catalina

catalina start

CATALINA_BASE=/home/sites/tomcatbook.com/catalina

catalina start

Now stop all the instances of Apache and Tomcat. Now, start Tomcat. Next, start Apache,
and test the installation as you did for the previous Apache examples. You should see no change
in functionality.

Summary
In this chapter, you learned about various topics related to using Tomcat in a shared hosting
scenario. You initially looked at the concept of shared hosting and the various types of shared
hosting that are possible.

You configured Tomcat to work as a stand-alone web server and as a servlet/JSP engine for
Apache. You then examined some common security enhancements for using virtual hosts with
Tomcat.

CHAPTER 13 ■ IMPLEMENTING SHARED TOMCAT HOSTING 271

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 271

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850ch13FINAL.qxd 2/28/07 11:16 AM Page 272

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Testing Tomcat’s Performance

Before you can confidently move your test server into production, meaning that it will be com-
pletely open to the elements, you have to have some idea of how it will respond to heavy usage.
Ignorance is no defense in this situation; you must be sure of your server’s ability to cope with real
life. The most effective way of doing this, barring having hundreds of offshore testers bombard the
server, is to run an automated load test.

An automated server load test simulates client requests so that a server is exposed to large
amounts of activity in an environment you control. Load testing, therefore, helps you under-
stand the scalability and performance limits of your server before it’s exposed to a heavy
production load.

Server load testing tests the scalability of the server and thus the ability of the system to
handle an increased load without degradation of performance or reliability. Scalability is how
well a solution to a problem will work when the size of the problem increases. In the case of
web applications, scalability is the ability of the server to handle the jump from a small num-
ber of clients to a large number of clients. This usually involves the addition of hardware,
though a well-configured system is the first line of defense. Scalability is intrinsically linked to
performance, and a scalable system is one that has an increase in performance proportional
to the new resources added, be they network equipment, high-performance databases, band-
width, or hardware.

This chapter will show you some basic tools and techniques on how to test your Tomcat
applications for performance and load.

Preparing for Load Testing
You need to make several decisions when setting up and configuring Tomcat that will affect
the scalability of your installation.

Configuring the Java Heap Size
The JVM sets its own memory usage, but you can configure the limits that it uses at the com-
mand line. These settings alter the JVM’s heap, which is where object instances are stored.

You should remember two very important switches when you set up a Tomcat instance.

• -Xmx<size>: The maximum heap size for the JVM

• -Xms<size>: The initial heap size for the JVM

273

C H A P T E R 1 4

■ ■ ■

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 273

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE274

If you don’t explicitly set these parameters, the JVM will use its defaults, which are a mini-
mum of 2MB and a maximum of 64MB for JDK 1.4 and later.

Setting the Maximum Heap Size
The maximum heap size is the upper limit of RAM that the JVM will allocate to the heap. To set
the maximum heap size to 256MB, use the following switch:

-Xmx256m

To specify memory size in GB, use the letter g instead of m.
In a data-intensive application with long-lived objects, memory usage can build up

quickly. If an application’s memory requirement exceeds the maximum heap size of the JVM,
the JVM will first default to virtual memory and then fail and throw a java.lang.OutOfMemory

error. This gives you systemwide protection, but you must be careful when setting maximum
heap size. You should always make sure your system has enough memory to comply with the
JVM setting, because you shouldn’t rely on the virtual memory mechanism to save your server.

Setting the Minimum Heap Size
You use the initial heap size setting to allocate memory to the Java heap at JVM startup. In
a memory-intensive, heavily loaded application, initial heap size can be important. If the
JVM starts with a very small heap size and receives a large number of requests that require
large object instantiations, it will struggle to keep up with the memory allocation needs
and may not recover in some situations. In this case, it’s often useful to set the minimum
heap size to be the same as the maximum heap size. This will ensure that a large number
of object instantiations at once doesn’t incure a performance hit. For example, the follow-
ing line sets the minimum and maximum heap sizes to 256MB:

-Xms256m -Xmx256m

Bear in mind when doing this that setting the heap size to a value that’s as large as your
server will allow isn’t always a good idea. This may cause otherwise unexplainable pauses in
the applications running on the server. It could also cause poor average server performance.
Both of these phenomena are caused by the garbage collector, which runs only when memory is
exhausted and runs through the entire system. If your server handles heavy-duty applications
and has a large heap, then the garbage collector has more work to do.

One possible solution to this problem is to pass the following command-line option to
the Java executable:

-Xincgc

This forces the garbage collector to run in incremental mode, meaning it runs more often
but checks through smaller amounts of memory. You should monitor this carefully because
there may be a small performance hit with this method, too.

Lowering the size of the heap may also help this situation, as would a combination of
both these techniques. These are prime examples of why you should load test your server
before it goes into production. Otherwise, you wouldn’t know which of these settings was
most appropriate for the web applications on your server.

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 274

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring Tomcat’s Connectors
Several connector parameters may affect your server’s performance. The following sections out-
line the performance-critical attributes of the <Connector> element. For an exhaustive discussion
of these elements, see Chapter 9.

The acceptCount Attribute
acceptCount sets the number of connections that the server will accept while waiting for a free
processor. Incoming connections once this limit has been reached will be refused. While you may
be tempted to increase this to a very high number, a high setting may cause your system to run
out of free file descriptors, which can cause processes—or under extreme circumstances, operat-
ing systems—to crash or become unstable. The default is 10.

The enableLookups Attribute
This setting tells Tomcat to resolve each request’s host name. This is useful when viewing log
files, but it puts extra load on the server and the network. You should, therefore, use it with
caution. The default is true.

The maxProcessors Attribute
The maxProcessors attribute imposes a limit on the number of threads the server will start, regard-
less of the server load. If the server receives more simultaneous requests for a given connection
than the value of this setting, the requests will block until a thread is freed to handle them. If this
number is set too high, heavily loaded sites run the risk of a performance slowdown as the JVM
struggles to manage the large number of threads and network connections that will be created.

You can monitor thread count with operating-system–specific tools, such as ps in Unix-like
systems. If the number of threads approaches the maxProcessors setting, followed by a server per-
formance slowdown, you should increase this setting and repeat the experiment. The default is 20.

The minProcessors Attribute
A processor is a thread that handles requests for a connector on a given port. Setting the
minProcessors attribute too high can produce a large number of unnecessary threads,
which will put an extra burden on the JVM. Setting it too low can cause delays when servicing
requests that come in soon after server startup, because the server will have to spawn
a separate thread for incoming requests if it’s already servicing the number of clients equal to
this setting.

As with the maxProcessors attribute, you can monitor the thread count with operating-
system–specific tools. If you see the number of threads increasing rapidly before reaching
a plateau, the number of threads reached at the plateau makes a good general minProcessors
setting. The default is 5.

Configuring Application Sessions
Tomcat’s default session manager is very fast because it stores its data in memory, as discussed
in Chapter 7. This implies a trade-off between speed and memory consumption on the server.
However, the problem when working with sessions is that they’re configured at the application

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 275

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 275

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

level in web.xml, using the <session-timeout> subelement of the <session-config> element.
This means developers are in charge of them in the beginning and may have their own reasons
for configuring them they way they are.

You must weigh the needs of your server against the needs of the developer’s application
and its users. Ultimately, you have responsibility for the application once it’s deployed on your
server, so you have the means and the authority to change the session settings as appropriate.

In extreme cases, such as data-entry applications or point-of-sale systems, where sessions
need to be active for hours at a time, it may be worthwhile to use Tomcat’s persistent session
manager. Reactivation of the sessions will be sluggish in terms of performance, but the mem-
ory trade-off may prove to be worth the cost. Chapter 7 also covered the persistent session
manager.

Altering Tomcat’s Deployment Architecture
The simplest Tomcat setup with a single stand-alone Tomcat server using an HTTP connector
is usually appropriate for very small installations. However, as load increases and applications
become resource intensive, the deployment architecture can make or break a server’s per-
formance.

It’s possible, under certain conditions, for the JVM to become a bottleneck, even if a single
server is sufficient. The JVM isn’t optimized for dealing with huge amounts of memory, so
breaking it into multiple processes on the same system may help, as discussed in Chapter 13.

If application performance is constrained by the limits of the operating system or server
hardware, it may be necessary to load balance two or more application servers, as discussed in
Chapter 9.

While Tomcat has an HTTP connector, it isn’t optimized as an HTTP server. Bringing Apache
or other supported web servers into the picture would increase performance, as they’re designed
for handling only HTTP requests, as discussed in Chapter 9.

Working with a Developer’s Code
A well-configured server is no match for inefficient application code deployed within it. The
best weapon in this situation is a clear understanding of the performance of your server when
it’s unencumbered with sluggish code. Regardless of what the reality is, the onus is always on
you, as the server administrator, to identify the bottleneck. Thorough preapplication load test-
ing and analysis will allow you to cast off undeserved blame and quickly identify application
performance bottlenecks as and when they appear.

Load Testing with JMeter
The first thing you’re going to need for load testing, unless you have the aforementioned army
of web-savvy offshore testers, is some software to help you simulate a heavy load.

You have a number of options, including open source software, commercial packages, and
home-brewed efforts (which are universally a mistake). In this case, as the rest of the book focuses
on open source software, you need not look very far. Tomcat’s sister project, Apache JMeter, fits
the bill quite nicely.

JMeter is capable of load testing FTP sites, JDBC data sources, and Java objects, but this
chapter will focus on load testing HTTP servers and applications.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE276

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 276

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Installing and Running JMeter
JMeter’s home page is located at http://jakarta.apache.org/jmeter/. Download the distribu-
tion, and unpack it to a convenient location. Starting JMeter is as simple as entering the bin
directory and running either jmeter.bat (on Windows) or the jmeter shell script (on Unix-style
systems).

Making and Understanding Test Plans
Having started JMeter, you’ll see JMeter’s interface, shown in Figure 14-1.

Figure 14-1. The JMeter interface

JMeter’s user interface consists of a left pane containing a tree representing the list of
items and actions you can add and a right pane that provides configuration forms and output
windows for items from the left pane.

The test plan is at the heart of any JMeter session; it is a list of actions you want JMeter to
perform. You can add elements to the test plan by right-clicking its node and selecting Add
from the pop-up menu.

The first element in a test plan is a thread group. Right-click the Test Plan node in the left
pane, and select Add. You can now click its icon in the left pane to expose the thread group
configuration pane, as shown in Figure 14-2. Leave the default configuration values to keep
your first run simple.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 277

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 277

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 14-2. Thread group settings

Table 14-1 describes the available options.

Table 14-1. The Options for a Thread Group

Option Description

Name If you had multiple thread groups, it’s useful to choose
descriptive names that reflect their purposes.

Action to Be Taken After A sampler tells JMeter to send requests to a server. You can
a Sampler Error configure its behavior in the event of any kind of error.

Number of Threads The number of threads you’d like the thread group to spawn to
carry out its work. If you wanted to simulate a heavy load,
you’d want to increase this number to simulate simultaneous
users.

Ramp-Up Period (in seconds) JMeter will start with one thread and will add threads evenly
over the course of the specified period until the number of
threads configured has been reached.

Loop Count The number of times you want JMeter to execute the elements of
this thread group. The default is Forever, which means the
elements of the test plan will execute until you tell them to stop.

Scheduler You can schedule the test to run at a more convenient time if
resources are at a premium.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE278

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 278

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Now that you have a thread group, you’re ready to start doing something with it. Right-
click the Thread Group icon to view the Add menu. Select Simple Controller, and add an HTTP
request sampler, as shown in Figure 14-3.

Figure 14-3. HTTP request group settings

Table 14-2 describes the configuration options available for an HTTP request sampler.

Table 14-2. The Options for an HTTP Request Sampler

Option Description

Name This is the same as in the thread group configuration.

Server Name or IP A resolvable host name or IP address of the server you want to test.

Port Number The port number of the HTTP server. The standard is 80 unless
specifically configured differently.

Protocol HTTP or HTTPS.

Method Sets whether the test should send a GET or a POST request, which
depends on what the page you’re requesting is expecting.

Path The URI of the page you’re going to test.

Parameters If you’re testing a dynamic application, the page may expect parameters
to be submitted along with the request. For example, if you’re testing the
shopping cart functionality of an online store, you may send a model
number for the product to add to your shopping cart.

continued

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 279

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 279

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Table 14-2. (continued)

Option Description

Filename Some web applications accept file uploads via HTTP POST. This
setting specifies which file you’d like to upload with the request.

Parameter Name The file will be uploaded as a key-value pair. This is the name of the
key that the web application will use to reference the file in the
request.

MIME Type The type of the file you’re uploading. For example, an HTML file
would have a MIME type of text/html, and an Adobe Acrobat file
would be application/pdf.

Retrieve All Embedded If this is set, when a request is made for a web page, the page will be
Resources from HTML parsed, and all embedded images and applets will be downloaded as
Files part of the request. If you were to test a graphics-intensive site for

performance, this would more accurately reflect the end user
experience, as the bulk of the response time would be apportioned
to downloading images.

Use As Monitor Select this to use this sampler as a monitor. A monitor uses Tomcat’s
status servlet to request data on the server’s general health. You can
use it to monitor the server and react to any issues.

Keep this simple by filling in only the bare minimum number of fields for this first test.
Assuming you have a Tomcat installation on the same machine from which you’re running
JMeter, set the server name to localhost, the port to 8080, and the path to /. If you were to run
JMeter on a different physical machine from the server, you’d simply set the server name to
the appropriate host or IP address of the server you wanted to load test. All other parameters
can remain unchanged for now.

You have now done enough to start testing Tomcat’s performance. You can start the test
by selecting Run ➤ Start from the menu bar. However, the example isn’t very practical so far,
since you have no way to capture or view the results of the test.

JMeter separates the execution of a test plan from the collection and analysis of the test
plan’s results. You can accomplish this with the Observer or, as it’s sometimes called, Event Lis-
tener design pattern. This is reflected in the JMeter interface by its use of the listener terminology.
Controllers are responsible for performing actions, and listeners are responsible for reacting
to those actions. Thus, if you want access to the results of a test plan, you must use one of the
JMeter listeners.

To finish the simple test plan, right-click the Thread Group icon, and select Add ➤ Listener ➤
View Results Tree. Select the View Results Tree icon in the left pane to show its output window. You
don’t need to add any configuration for this listener. When running a test with a view results tree
listener, you can watch each response as it’s received from the server. Selecting the response from
the bottom-left area of the right pane, you’ll see the actual data returned in the bottom-right area
of that pane.

Before starting the test, you should save the test plan. Right-click the Test Plan icon in the left
pane, and choose Save As from the pop-up menu. For consistency, use the default .jmx extension
when saving your test plan.

Now, click the View Results Tree icon, and choose Start from the Run menu on the menu
bar. You should see the Root node in the bottom-left pane change to a folder icon as test
results start to come in. Click that node to open it, revealing the individual test results con-
tained within. Selecting any of the results will change the bottom-right pane to show you the

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE280

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 280

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

results of the request (including response code and load time) under the Sampler result tab,
the actual request made under the Request tab, and the data received in the response under
the Response data tab. Select Run ➤ Stop to finish the test.

Figure 14-4 shows the completed test plan with the View Results Tree listener activated.

Figure 14-4. The results of the simple test

Examining JMeter’s Features
You now know how to load test a web server and how to view the results of the test. You can get
some idea of how well your Tomcat server is responding to the test in terms of load time and
stability. If you were content to manually click through each result in the View Results Tree win-
dow and inspect the full page, this might be enough. Fortunately, JMeter provides many more
features to aid you in capturing and analyzing load data. JMeter has five major feature types:

• Configuration element

• Listener

• Logic controller

• Sampler

• Timer

Though JMeter can test many different types of server, I’ll cover only HTTP-related
settings in the sections to follow.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 281

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 281

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Using Timer Features
In the previous example, JMeter spawns one thread and makes requests as fast as it and the
server being tested can keep up. In real-world cases, it may not make sense to pound the
server with a constant onslaught of requests. Only in exceptional cases will a server be faced
with a large number of simultaneous requests with no delay in between.

To spare your server the full brunt of this load and to make the load more representative
of the real world, you can add a timer to your thread group. This will introduce some intelli-
gent logic that regulates the frequency and speed of each thread’s requests. JMeter includes
four types of timers: two random timers and two constant timers.

The constant throughput timer allows you to specify how many requests you want to
make per minute, and the constant timer inserts a delay between each request for a given
thread. These are just two different ways of accomplishing the same thing, so take your pick as
to which one you prefer.

The two random timers are the Gaussian random timer and uniform random timer. These
timers simulate real-world traffic more accurately by inserting randomly calculated delays
between the requests for each thread. The uniform random timer appends a random delay to
a configurable constant delay, and the Gaussian random timer uses a statistical calculation to
generate a pseudo-random delay. Each random timer takes a configurable constant time to
which its random calculation will be appended.

To add a timer, right-click a thread group, select Timer from the Add menu, and choose
the timer you want. Timers will affect the entire thread group to which they’re added but won’t
affect peer thread groups. Adding more than one timer to a thread group will have a cumula-
tive effect on the delay between requests.

Using Listener Features
JMeter uses listeners to monitor and react to the results of the requests it sends. The previous
example used the View Results Tree listener to show the data returned from the server, the
response time, the HTTP response code, and the HTTP response message. You add a listener by
right-clicking a thread group and selecting the desired listener from the Add ➤ Listener menu.

The listener listens only to the activity of the thread group to which it’s added. So, if you
have two thread groups in your test plan, thread group A and thread group B, a listener added
to thread group B will be oblivious to anything that happens in the scope of thread group A.
Table 14-3 lists the listeners currently provided by default with JMeter.

Table 14-3. JMeter’s Listeners

Listener Description

Assertion Results The output of the assertion elements of a sampler.

Graph Full Results A cumulative graph of the response times of each request made.

Graph Results A simple graph view, plotting individual data points, mean response
time, and standard deviation of response time for all requests in its
parent thread group.

Mailer Visualizer Sends an e-mail to a specified e-mail address if a certain number of failures
occur. You must add mail.jar to JMeter’s lib directory to add this listener.

Monitor Results Shows the results of any monitored samplers.

Simple Data Writer Writes the results to a file in CSV format.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE282

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 282

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Listener Description

Spline Visualizer A graph view of all data points made during a test plan run that shows
the results as an interpolated curve.

Aggregate Report Each request sampler is given an entry in a table, and the totals and
averages are calculated in real time.

View Results in Table Provides a real-time view of the test results.

View Results Tree Organizes the results into a tree.

You can group each listener into one of three categories:

• Visualization listeners

• Data listeners

• Other listeners

Visualization Listeners

Graph Full Results, Graph Results, and Spline Visualizer all create graphical, real-time depictions
of the test results. Graph Results is the simplest and most popular of these, plotting mean response
time, standard deviation, and individual data points.

Data Listeners

Simple Data Writer, View Results in Table, Aggregate Report, and View Results Tree capture the
raw data, response time, and return codes returned from the server. While View Results in Table
and View Results Tree are useful as status checkers while running tests, Simple Data Writer is
perhaps the most important of the listeners. Simple Data Writer listeners perform the task of
logging response time to a file, as well as logging response codes and other information. This
is an important tool because it allows you to keep your data for posterity as well as to import
the data into other more sophisticated tools for more detailed analysis.

■Note All the listeners, except the Monitor Results listener, can use the Simple Data Writer listener as well.
When you configure one of these elements, add the filename of the results file as you would for a Simple
Data Writer listener.

You can save the data as an XML file or as a CSV file. The following setting is in the
jmeter.properties file:

jmeter.save.saveservice.output_format=xml

The Simple Data Writer listener offers the following configuration options:

• Name: A descriptive name for the simple data writer element as it will appear in the test
plan.

• Filename: The path to the output file to be created by the file reporter. If you supply
a relative path, it’s relative to JMETER_HOME/bin.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 283

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 283

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Monitor Results Listener

If you want to monitor the server’s overall performance, you can use the Monitor Results lis-
tener. This listener allows you to monitor multiple Tomcat servers from one console using the
manager application’s status servlet.

It’s a good idea to create a new thread group for a Monitor Results listener. Name it Server
Status Thread Group, and add an HTTP request sampler. Set the host name, port, and protocol
as normal. Now set the path to /manager/status, add a request parameter called “XML”, and
set it to true. Finally, check the Use As Monitor box. The XML parameter will cause the status
servlet to return its response in an XML format that JMeter can translate into monitoring
information. Figure 14-5 shows this setup.

Figure 14-5. The HTTP request sampler for the Monitor Results listener

The manager application is protected by authentication, so you’ll have to send your
authentication information along with your request. To do this, add an HTTP authorization
manager configuration element to the HTTP request sampler using the Add menu. Set the
Base URL to http://servername:port/manager and the Username and Password properties to
a user with the manager role.

Finally, add a monitor results listener and a constant timer, set to 5,000 milliseconds. After
all, you don’t want to drown your server with the monitoring tool.

When you run the test, check the Monitor Results listener to see how your server is per-
forming. The Health tab will show a summary of the server’s performance, with a colored icon

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE284

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 284

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

indicating general health and a load bar that tells you the relative load. The Performance tab
breaks down the server’s performance.

The Assertion Results Listener

You use assertions to test if the response contains the data that you expect. If you want to see
the results of your assertions, add an Assertion Results listener to your thread group. It will
show you the URL of the request and the result of the assertion as applied to the response.

The Mailer Visualizer Listener

If you want to be informed of any successes or failures in your test plan, then you should con-
figure a Mailer Visualizer listener.

Using a Logic Controller Feature
A logic controller’s primary purpose is to manage the execution flow of a test plan; they’re con-
tainers for other executable test plan elements. Logic controllers that are added to a thread
group—or even as a subnode of another logic controller—will be treated by their parent exe-
cution context as a single node to be executed. Elements added beneath logic controller nodes
will be executed according to the rules of the specific logic controller to which they’re added.

Like thread groups, logic controllers create a separate namespace for listeners, timers,
and other elements, which are context specific. You can think of logic controllers as the closest
approximation JMeter test plans have for the while, for, and function constructs of typical
programming languages.

The Interleave Controller

The Interleave controller will execute one of its subelements each time its parent container
loops. It will execute them in the order in which they’re listed in the configuration tree. For
example, if you were to create an Interleave controller with four elements under a thread
group set to loop 14 times, JMeter would execute the entire set of Interleave controller
subelements three times and would then execute only the first two subelements a fourth
time (4 + 4 + 4 + 2 = 14).

Interleave controllers are good for testing a sequential process, where each request
depends on the previous request for successful completion. An obvious example is an online
shopping application, where users search for items, add them to their shopping carts, enter
credit card details, and finalize the orders.

The Simple Controller

The Simple controller is a container for other elements and provides no special functionality.
You can use the Simple controller to organize test elements in much the same way as you use
folders on a file system to organize their contents.

If you were to load test a site with a nontrivial amount of functionality, it would make
sense to use Simple controller elements to separate the tested functionality into related mod-
ules to ensure a maintainable test plan. This enhances the maintainability of the test plan in
the same way that dividing large software projects into modules and functions enhances the
maintainability of the software.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 285

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 285

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The Loop Controller

The Loop controller will loop through all its subelements as many times as specified in the
Loop controller’s configuration panel. Therefore, any elements under the Loop controller will
execute this number of times, multiplied by the number of times the parent thread is set to
loop. If you were to configure a Loop controller to loop four times under a thread group that
loops four times, each subelement of the Loop controller will be executed 16 times.

The Once Only Controller

The Once Only controller executes its child elements only once during the run of a load test.
You can use this controller to execute an initial login, create an application entity on which
other tests depend (for example, creating an order in a sales application so you can manipu-
late it with other requests), or perform any other operation that needs to happen only once.

Using Assertions
Even if your application is giving subsecond responses, you have no cause to celebrate if its
output is invalid. An assertion gives you a way to validate the actual data returned as a result
of each request so that you can be sure the server is both responsive and reliable. Assertions
are created as subelements of samplers, such as the HTTP request sampler. An assertion is
a declaration of some truth you want to test against.

The first step is to build an HTTP request sampler into the test plan that will access the
file’s URL. After creating the HTTP request sampler, you can right-click the HTTP Request
icon, and then choose Assertions ➤ Response Assertion from the Add menu. Select the new
assertion, and add a new pattern, as shown in Figure 14-6.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE286

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 286

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 14-6. A response assertion

JMeter assertions accept Perl-style regular expressions, so the assertion you’ve added will
match occurrences of the string “Tomcat”. There are several matching occurrences of this reg-
ular expression, so the assertion should pass.

In this example, the Contains option tests that the page contains the pattern you’ve
added. If you wanted to check the entire web page, you could use the Matches option, which
would check that the page returned directly matches the pattern you add.

Add an Assertion Results listener to the thread group, and run the test. You should see the
results, as shown in Figure 14-7.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 287

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 287

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 14-7. Viewing successful assertions

The results of the assertion don’t show any assertion failures, so the tests were successful.
You can test many different aspects of a response, including its response code and the

contents of the entire response. If you want to validate your HTML, add an HTML assertion,
and select the strictness of the test. Assertions also exist for testing the server response time
and the size of the response.

Using a Configuration Element
A configuration element’s job is to modify requests in some way. They offer a pluggable way to
add request modification logic from various types of default values to automatic building of
requests.

The HTTP Header Manager

In some cases, application testing will require specific HTTP headers to be set to get a valid
reflection of true application performance. For example, if an application performs different
actions depending on the browser type making the request, it’s necessary to set the User-
Agent header when making test requests.

You use the HTTP header manager to explicitly set header keys and values to be sent as
part of each request. If added as a node under an HTTP request element, the custom headers
will be sent only for the request under which they’re added. These headers will be sent with
every request in the same branch if they’re set at the thread group level.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE288

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 288

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Configuring an HTTP header manager is simple and is similar to configuring the
name/value parameters in an HTTP request element.

The HTTP Authorization Manager

The HTTP authorization manager handles requests that require HTTP authentication. Like
the HTTP header managers, they can be added directly underneath an HTTP request element
or to an entire branch of a tree. The configuration parameters are simple, accepting a base
URL from which the manager will attempt to send authentication credentials, plus the obliga-
tory username and password. You saw this element in action in the “The Monitor Results
Listener” section.

The HTTP Cookie Manager

Like HTTP authorization managers and HTTP header managers, HTTP cookie managers can
accept a hard-coded list of cookies that should be sent for every request. In this way, you can
simulate a browser that has previously visited a site. Additionally, HTTP cookie managers can
mimic a browser’s ability to receive, store, and resend cookies. For example, if a cookie is
dynamically assigned to each visitor, the HTTP cookie manager will receive it and resend it
with every appropriate subsequent request.

You can also add HTTP cookie managers to a thread group or directly to an HTTP request
element, depending on the scope of its intended influence.

The HTTP Request Defaults

In most cases, each test plan will be created for a single-server environment or online applica-
tion. Because of this, you’ll find yourself typing the same server name, port, path, or
parameters into each new HTTP request sampler you add to the test plan. HTTP request
defaults eliminate this duplication of work by allowing you to specify defaults for many of the
HTTP request element’s configuration parameters. After adding the defaults, you can leave
these fields blank in any HTTP request element in the same thread group.

For example, if you were load testing an application that follows the Model View Con-
troller design pattern, with all traffic flowing through a single HTTP servlet, you may have
a common base URL for every request like http://loadtest.apress.com/Router/.

This servlet will provide access to different functionality in the application via a request
parameter such as the following:

http://localhost:8080/Router?action=addToCart

http://localhost:8080/Router?action=checkOut

The server name, port, protocol, and path are common to all HTTP requests that access
this application, with only the request parameters varying. In such a case, you could add an
HTTP request defaults element, as shown in Figure 14-8.

Any requests that are in the same thread group will inherit these settings unless they’re
explicitly overridden in their own configurations. To access any addToCart and checkOut features
of your imaginary application, you’d need to add HTTP request elements, leaving all configura-
tion options blank except for the addition of the action parameter and corresponding values. In
a large load test scenario with potentially numerous HTTP requests, this will really save you time
and give your fingers a break from typing.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 289

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 289

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure 14-8. Setting default values for HTTP tests

Using Preprocessor Elements
The preprocessor elements can extract links from a web page or options from a form, and you
can use them to modify a sampler’s request before it’s sent to the server. Once JMeter has this
information, it can use it to iteratively follow each link or submit each option. Other function-
ality includes adding a counter or user variables before each request to test various behaviors
depending on the variable sent to the server.

Creating a Web Spider

If you want to run through your application to check that all your links work and are valid, you can
use JMeter as a web spider. To do this, create a simple controller and an HTTP request sampler. In
this example, you’ll use the JSP examples web application, so set the path to /jsp-examples/. Add
a constant timer if you don’t want to burden your server too much.

Now that you have the initial request set up, you can use its results to modify subsequent
requests. However, if you put settings (in the form of regular expressions) into the original request
to be modified by subsequent requests, the original request won’t return meaningful results
because Tomcat won’t recognize them. If the original request doesn’t return meaningful
results, then the subsequent requests can’t be modified. To solve this, you must use another
HTTP request sampler to work on the new requests.

Add another HTTP request sampler with the path set to .*. This matches any links found
in the response returned by the previous requests and fills in the values for this request. For

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE290

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 290

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

this to work, though, you must add an HTML link parser to this HTTP request sampler. You
don’t have to configure any extra settings on this component. If you want to see the results of
the link parser, you should add a listener. If you’re testing for valid links, you could add an
assertion, as shown earlier in this chapter.

To see if all the links on your site link to existing resources, add an assertion listener, and
run the test. You’ll see each link from the jsp-examples web application executed in turn and
will be told if any don’t exist. Rename one of the files to see what happens.

Using Post-Processor Elements
Post-processor elements act after a request has finished. You can use them to save the responses
to a file for your reference, stop the test if an error occurred, or create a running summary. To
use this functionality, add a post-processor to a sampler.

Generating Summaries

To generate a running summary of a test, add a Generate Summary Results post-processor
element to an HTTP request sampler. You can view the summary in stdout, in JMeter’s log
file, or in both. You can configure where the summary is sent and how often it is compiled in
jmeter.properties. The following sends the summary to the JMeter log file but not to stdout:

summariser.interval=300

summariser.out=false

summariser.log=true

The summariser.interval setting is the number of seconds between summaries. The
default is 180 seconds (that is, three minutes). The other two settings aren’t mutually exclusive,
and you can set them both to true if you want. Here’s an example of the summary:

2004/10/25 23:31:03 INFO - jmeter.reporters.Summariser:

Generate Summary Results = 22 in 86s = 0.3/s

Avg: 3 Min: 0 Max: 20 Err: 0 (0.0%)

Here, 22 responses were returned in 86 seconds, which is 0.3 responses per second. The aver-
age response time was 3 milliseconds, with response times ranging from 0 to 20 milliseconds.

Interpreting Test Results
You now have the data in whichever format you wanted it, be that in a graph or in a CSV file.
What are you looking for? The two simplest measures are mean and standard deviation.

Examining the Mean
The mean is the average response time for a sample. It indicates the central tendency of
your server’s performance. But what about variation? If your server has a good mean
response time but a huge amount of variation among the samples, you’ll end up with the
average user having a decent experience and the occasional user or request having a really
bad (or really good) experience. It’s this kind of variation that drives an unpredictable and
frustrating user experience, so another good measure of variation is the standard deviation.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE 291

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 291

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Examining the Standard Deviation
Standard deviation is a measure of how widely values in a sample are dispersed from the mean
value. Hence, a higher standard deviation indicates more variance in response time. You have
many ways to slice and dice performance data. Sometimes, mentally comparing two samples is
enough. Other times, it may make sense to delve into more complex statistical tools, such as
regression analysis, for predictive modeling of a process’s performance. Although a description
of these statistical methods is beyond the scope of this book, you can find many online and
printed statistics resources at www.prndata.com/statistics_sites.htm.

Summary
Load testing is an important but often overlooked activity of the system administrator. It can
help you to make initial architectural decisions as well as to validate the decisions you’ve pre-
viously made. In this chapter, you examined the following topics:

• Scalability, the ability of a system to handle increased load without experiencing per-
formance problems or reliability issues, is driven by many factors. In a Tomcat
installation, some of those factors are server hardware, software configuration, and
deployment architecture.

• JMeter is an open source load tester, which is part of the Jakarta project. I covered JMeter
load testing techniques from the simple to the advanced.

• Server load testing and application load testing require different approaches. They’re
tightly coupled, and it’s up to the server administrator to gauge how application code
affects server performance and to understand which factors contribute to performance
issues.

The open source world also has more to offer in terms of load testing tools. For exam-
ple, the Grinder (http://grinder.sourceforge.net) is a well-established Java tool. A great
resource for finding the latest in open source load testing tools is the FreshMeat.net open
source software archive site, which includes a category specifically for these kinds of tools at
http://freshmeat.net/browse/863/.

Additionally, many testing resources are available on the Web. A great place to look for a list
of sites is the Open Directory Software Testing list (www.dmoz.org/Computers/Programming/
Software_Testing/), which is a directory of sites that focus on testing topics.

CHAPTER 14 ■ TESTING TOMCAT’S PERFORMANCE292

7850ch14FINAL.qxd 2/28/07 11:17 AM Page 292

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Installing MySQL

This appendix is a quick-start guide to installing and running MySQL on Windows and Linux/
Unix. To start, download the appropriate MySQL installer from http://mysql.com/downloads/.
Windows users have a choice of an MSI installer or a zipped file. Linux and Unix users have
a huge array of binary installations as well as the source code.

Installing MySQL on Windows
If you’re using the installer, unzip the file to a suitable location, and double-click the setup pro-
gram in your desktop or Windows Explorer. After reading the standard introductory screens,
choose the directory in which to install MySQL. Unless you have a really good reason not to, it’s
better to install it in the default directory. On the next screen, choose the Typical installation
unless you’re extremely short of space on your hard drive.

As with Tomcat, Windows 9.x/ME users will need to run the mysqld.exe program as an
application, but Windows NT/2000/XP users have the option to install it as a service. You can
unzip and use the zipped file without an installer.

To test the installation, open a DOS prompt, and run the following command (run all
commands from the bin subdirectory of the MySQL installation):

> mysqlshow

This will list the databases that come with MySQL. You’re now ready to work with MySQL,
so you can skip ahead to the “Working with MySQL” section.

Installing MySQL on Linux and Unix
As noted, you have a number of options for installing MySQL on Linux and Unix. The MySQL
binaries are available as generic precompiled binaries for a number of systems, as RPM pack-
ages, and as source bundles. The method you use for installation is up to you. In the following
sections, you’ll see how to install from the RPM package and from source.

Creating a User for MySQL
The MySQL server will be running as a process on your system. Since MySQL must create and
manipulate files to maintain the database, and it’s potentially able to accept connections from
remote computers, you must create a unique user and group for MySQL.

293

A P P E N D I X

■ ■ ■

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 293

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

APPENDIX ■ INSTALLING MYSQL294

groupadd mysql

useradd -g mysql mysql

This creates the mysql group using the groupadd command. The useradd command adds
a user to the group specified with the -g switch.

Installing MySQL from the RPM Package
Download the following packages to an appropriate place:

• MySQL: The base server package

• MySQL-bench: MySQL benchmarks and test suite

• MySQL-client: MySQL client applications

• MySQL-devel: Header files and libraries for development

• MySQL-shared: MySQL client shared libraries

• MySQL-Max: The server version that includes InnoDB tables (see Chapter 11 for details
on this)

Before you begin the install, make sure you’ve logged on as root. To install the RPM pack-
ages, use the RPM Package Manager application. You have two options with this: you could use
the graphical package manager of your choice, or you could place all the RPM files in a single
directory and (making sure you are root) execute the following:

rpm -i *.rpm

This will unpack the packages and install all the files into their correct places for your
distribution.

To test the installation, run the following command (run all commands from the bin
subdirectory of the MySQL installation):

> mysqlshow

This will list the databases that come with MySQL. You’re now ready to begin working with
MySQL, so you can skip ahead to the “Working with MySQL” section.

Installing MySQL from Source
You can find the entire MySQL source code in a single tarball that will have a name similar to
mysql-4.0.x.tar.gz.

Compiling MySQL is a relatively simple operation. If you’re familiar with compiling open
source products, there will be no surprises for you here; even if this is your first attempt in
compiling and installing an open source product, you should have no real difficulty.

The MySQL build scripts will give an error if you’re missing any of the required development
utilities. If this happens, you’ll need to install the missing development tools and try again. Linux
distributions generally ship with a suitable development environment containing the GNU
tools from the Free Software Foundation.

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 294

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

■Note At the time of this writing, there were some issues with compiling certain versions of the GNU C/C++
compiler, especially versions 2.96 and 3.0. Check the MySQL web site for the latest news on compiler compati-
bility; also, read the release notes of the tarball you downloaded.

Transfer the source tarball to the target machine, and place it in an appropriate directory
for compiling. This shouldn’t be the final location of your MySQL installation.

Unpack the tarball to extract the source code.

$ tar zxvf mysql-4.0.x.tar.gz

You must use the GNU version of the tar utility for this to work. On systems without GNU
tar, you may need a two-step extraction to decompress the tarball.

$ gunzip mysql-4.0.x.tar.gz

$ tar xvf mysql-4.0.x.tar

Note that Solaris’s version of tar causes problems with the decompression, so you should
install GNU tar instead.

The extraction process will make a new directory related to the version of MySQL you’re
building. Move into that directory.

$ cd mysql-4.0.x

In this directory, you’ll find a file, INSTALL-SOURCE, that contains detailed manual build
instructions. This can be useful in the unlikely event that the automated method outlined in
this appendix fails for some reason.

The build process uses the configure configuration script to tailor the build parameters
to your specific environment. To accept all defaults, you can simply run configure without
arguments.

$./configure

The configuration script can take a number of parameters that alter the features built into
MySQL. One of these features is the ability to use different implementations for its database
tables. You can choose table types optimized for speed or features, such as transactions. You
will use the InnoDB table type in Chapter 11, so you need to tell the configuration script to include
support for this table type.

$./configure --with-innodb

For a full list of options, you can use the --help argument.
Once the compilation is configured, you can build the software with the make utility.

$ make

If all goes well, you should see a large number of compilations proceeding. When make has
finished, you need to copy the programs to their final locations. Use the make install command
to do this, but you need to be root first.

$ su

make install

APPENDIX ■ INSTALLING MYSQL 295

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 295

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Now you have a complete but empty installation of MySQL in the directory /usr/local/mysql
and its subdirectories. You have another couple of steps to take before you’re ready to use MySQL.
The initial database doesn’t contain any user definitions or privileges that MySQL will use to con-
trol access to your data. To create the privilege tables, you need to run a script provided for this
purpose. Again, this must be run as root after moving into the /usr/local/mysql directory.

scripts/mysql_install_db

The MySQL files need to have the correct ownership set that’s to be owned by the MySQL
user. After using make install, all the files are owned by root. You want root to own everything
except the /var subdirectory, and you do this by using the recursive form of chmod and chgrp.

chown -R root /usr/local/mysql

chown -R mysql /usr/local/mysql/var

chgrp -R mysql /usr/local/mysql

You’re now in much the same situation as you would have been had you installed MySQL
from binary packages. Now it’s time to turn your attention to setting up MySQL to run.

To start the MySQL server, execute the following:

/etc/rc.d/init.d/mysql start

To stop the server, run the following:

/etc/rc.d/init.d/mysql stop

To test the installation, run the following command (run all commands from the bin sub-
directory of the MySQL installation):

> mysqlshow

This will list the databases that come with MySQL. You’re now ready to begin working with
MySQL.

Working with MySQL
Now that you’ve installed MySQL, set the MySQL root password (it’s blank by default). Failure
to do so will leave your MySQL server, and ultimately your entire machine, open to malicious
attacks. To set the root password, run the following command from the command line and
substitute your preferred password:

> mysqladmin -u root password sc00bI

Once you’ve done this, the mysql command will start a command-line client program that
lets you issue SQL commands to the database server. When administering MySQL, you should
use the root administrator user, so issue the following to ensure that MySQL prompts you for
your password:

mysql -u root -p

You should see some status messages about the version of MySQL and a prompt such as
the one shown in Figure A-1.

APPENDIX ■ INSTALLING MYSQL296

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 296

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Figure A-1. The MySQL command-line tool

You can use the \q or exit command to exit the MySQL client.
Now you should create a database. Run the following at the MySQL prompt:

mysql> CREATE DATABASE catalog;

To add some data to the catalog database, start by typing the following at the prompt:

mysql> USE catalog;

Database changed

You’re now in the catalog database, which has no tables and no data. Type the following
at the prompt:

mysql> CREATE TABLE product (

-> prodid int not null,

-> prodname varchar(30)

->);

The -> prompt means you haven’t finished a SQL statement. This isn’t a problem because
SQL statements can span multiple lines.

If you see a prompt such as '>, it means you have an opening apostrophe that hasn’t been
closed. Similarly, "> means you have an opening quotation mark that hasn’t been closed.
Apostrophes and quotation marks must always balance out.

To view details of your new table, type the following:

mysql> DESCRIBE product;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| prodid | int(11) | | | 0 | |

| prodname | varchar(30) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

2 rows in set (0.10 sec)

To insert a row of data into your table, type the following:

mysql> INSERT INTO product VALUES (

-> 1,

-> 'Yo-Yo'

->);

APPENDIX ■ INSTALLING MYSQL 297

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 297

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Now that you have some data in your database, run a SELECT command to access it.

mysql> SELECT * FROM product;

+--------+----------+

| prodid | prodname |

+--------+----------+

| 1 | Yo-Yo |

+--------+----------+

1 row in set (0.02 sec)

This is quite a labor-intensive process. However, there is a better way. Save all the previous
commands in a file called mysqlTest.sql, as shown in Listing A-1. The addition of the EXISTS
commands ensures that you can change and reuse this script without having to alter the data-
base beforehand.

Listing A-1. mysqlTest.sql

CREATE DATABASE IF NOT EXISTS catalog;

USE catalog;

DROP TABLE IF EXISTS product;

CREATE TABLE product (

prodid int not null,

prodname varchar(30)

);

DESCRIBE product;

INSERT INTO product VALUES (

1,

'Yo-Yo'

);

SELECT * FROM product;

You can use this file in two ways. The first is to direct the mysql binary to use it as an input.

> mysql -u root -p < ./scripts/3316/mysqlTest.sql

This will produce the required results—the table will be created, and the data will be entered.
However, the DESCRIBE and SELECT commands won’t produce very nice output.

The second way to use the file is from within the mysql binary.

mysql> \. ./scripts/3316/mysqlTest.sql

APPENDIX ■ INSTALLING MYSQL298

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 298

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

The results follow:

mysql> \. ./scripts/3316/mysqlTest.sql

Database changed

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.07 sec)

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| prodid | int(11) | | | 0 | |

| prodname | varchar(30) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

2 rows in set (0.01 sec)

Query OK, 1 row affected (0.00 sec)

+--------+----------+

| prodid | prodname |

+--------+----------+

| 1 | Yo-Yo |

+--------+----------+

1 row in set (0.00 sec)

As you can see, each command runs in turn.
To give users access to your database, you can use the mysql binary to grant access privi-

leges. The following command grants the user matthewm read-only (SELECT) access to all the
tables in the catalog database when connecting from localhost.

mysql> GRANT SELECT ON catalog.*

-> TO 'matthewm'@'localhost'

-> IDENTIFIED BY 'm00die';

catalog.* indicates all tables within the catalog database. To grant access to a single table,
you can use catalog.product. The user being granted privileges has the form user'@'hostname,
where the host name may be replaced by % to indicate all hosts.

Resources
This appendix is a cursory look at installing and using MySQL. You should consult dedicated
resources such as The Definitive Guide to MySQL 5, Third Edition (Apress, 2005), by Michael
Kofler or the MySQL web site (http://www.mysql.com); both are excellent resources.

APPENDIX ■ INSTALLING MYSQL 299

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 299

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

7850chAppAFINAL.qxd 2/28/07 11:18 AM Page 300

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

■A
acceptCount attribute, 275
Access, 198
access log valves

table of attributes, 113–114
using, 113

Active Server Pages (ASP) and VBScript, 2
addusers utility, 215
admin application, 228

adding a new user database, 187
admin role, 109, 120
Commit Changes button, 110, 187
configuring a user database with, 186
configuring the admin.xml file, 109
context XML file, code example, 109
creating a new user in the user database, 190
defining roles in tomcat-users.xml, 120
deleting a user database, 188
deployment descriptor, 109
downloading for Tomcat 6, 120
downloading from the main server, in

Tomcat 6, 109
drawbacks of, 109
editing a user database, 189
editing web application context settings

remotely, 109
overwriting an old user database, 190
Service node, 110
URL for accessing, 109
use of form-based authentication, 109
User Database Actions box, 187–188
using the Tomcat web-based

administration tool, 109
writing a new server.xml after

configuration changes, 115
writing application changes to server.xml,

110
administration tools

admin application, 91
manager application, 91

Administrator account, 213
Adobe Flash, 2
AJP connector, 49–50, 264

AJP 1.3 <Connector> element, attributes
of, 54

AJP 1.3 protocol, 148
Apache JServe Protocol (AJP), definition

of, 146

assigning types of workers in mod_jk, 148
configuring a Tomcat worker, 149
host, definition of, 147
identifying workers, 147
Jakarta binaries download page, 147
load balancing, 148
mod_jk.dll, 147
port, definition of, 147
providing load balancing, 147
request-response cycle, 146
running multiple Tomcat workers, 147
serving different contexts, 147
setting the workers.properties file, 148
worker, definition of, 147

aliasing
configuring an alias, 63
configuring for Unix, 256
configuring for Windows, 254
definition of, 254

Amazon.com, 1
Ant

adding <taskdef> elements to the custom
build.xml script, 106

BASIC authentication and, 240
defining the properties for the manager

application, 107
manager command tasks, code example,

107–108
managing applications with, 106
password property, 108
running administration commands, 106
sample build.xml file for using the

manager application, 106
task definitions for using the manager

application, 107
Apache 1.3

configuring for load balancing, 161
final Apache configuration, code example,

163
Apache JMeter. See JMeter
Apache JServe Protocol (AJP)

available versions of, 146
definition of, 146

Apache Log4J toolkit
adding a Log4J configuration file, 56
adding the log4j.jar binary to the boot

classpath, 56
downloading the Log4J classes, 56

Index

301

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 301

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

log4j.properties, code example, 56–59
logging levels, 58

Apache server
adding a listener to generate mod_jk

settings, 150
adding an AJP connector to server.xml, 264
Apache setup for virtual hosting with

Tomcat, 266
ApacheConfig listener, supported

attributes, 150
automatically generated mod_jk.conf file,

151
changing the index.html file served by

Apache, 266
checking mod_jk, 153
checking the JSP examples web

application, 153
comparison of ISAPI to Apache’s API, 2
conf/httpd.conf file, 145, 152
configuration settings, adding manually, 152
configuration settings, generating

automatically, 150
configuring SSL with, 246
configuring the non-SSL host for Apache’s

static files, 249
controlling logging via the LogLevel

Apache directive, 251
creating a certificate signing request

(CSR), 248
creating a private key and certificate, 247
creating an Apache <VirtualHost> entry in

mod_jk.conf, 151
creating the localhost.csr file, 248
creating the localhost.key file, 248
examples of third-party modules, 2
httpd.conf configuration file, 149
implementing virtual hosting with Apache

and Tomcat, 264
integrating Tomcat with Apache 1.3 using

mod_jk, 147
isapi_redirect.dll, 153–154
jk.properties, modifying, 269
JkMount directive, 152
loading modules into memory, 2
modular application programming

interface (API), 2
mod_fastcgi, 2
mod_jk, building on Linux, 147
mod_jk.conf configuration file, 150
mod_perl, 2
mod_php4, 2
OpenSSL library, 247
openssl utility, 247
password batch file, 250
protecting the tomcatBook web

application with Apache’s SSL, 249
providing faster script execution, 2

as a proxy server, 145
responding to user requests on the HTTP

and SSL ports, 249
running Apache and SSL on Windows, 249
running the three virtual hosts using

a Unix shell script, 270
running the three virtual hosts using

a Windows batch file, 270
sample jk2.conf file generated by Ant, 265
server.xml for www.catalinabook.com

using a separate JVM, 268
setting a JVM for each virtual host, 267
setting log levels, 251
testing the integration of Tomcat and

Apache, 152
troubleshooting a failure to start or not

serve up SSL content, 251
using its proxy module (mod_proxy), 145
workers.properties file for separate virtual

hosts, 269
workers2.properties file for virtual

hosting, 265
workers2.properties file using Apache’s

SSL functionality, 250
www.catalinabook.com, final directory

structure, 269
Apache Software Foundation (ASF)

history of the Tomcat series, 4
JServ, 4
Tomcat 5.0.27 and Java 2 Platform

Standard Edition 5.0, 4
Tomcat 6, new features, 4

Apache Struts, 78
Apache Tomcat Properties box, 18
ApacheConfig listener, supported attributes,

150
applets, 2
Assertion Results listener, 285, 287
assertions

accepting Perl-style regular expressions,
287

building an HTTP request sampler, 286
Contains option, 287
Matches option, 287
testing different aspects of a response, 288
using, 285–286
validating request data returned, 286

<auth-constraint> element, 87, 96, 191, 238
authentication, 179

advantages of form-based authentication,
239

BASIC, 239
CLIENT-AUTH, 240
DIGEST, 240
using custom login and error pages,

240–242
<auth-method> element, 89, 95

■INDEX302

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 302

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

authorization, 179
autoDeploy attribute, 72, 91
AWStats, 113

■B
BASIC authentication, 239
batch files, 29
bin directory

batch files, 29
scripts, 29
tomcat6 Windows executable, 29
tomcat6w Windows executable, 30

bootstrap class loader, 133
checking the core Java libraries for

a requested class, 134
directory location of JAR files, 134
loading all the core Java classes, 134
written in native code, 133

bootstrap.jar file, 138
build.xml, 21

■C
c:\autoexec.bat file, editing, 13
cacls utility, 217
Catalina

default connector, 50
default engine in server.xml, 54
servlet engine, 6

CATALINA_BASE environment variable, 268
CATALINA_HOME directory

bin directory, 29
conf directory, 30
examining Tomcat’s default installation

directory, 29
lib directory, 30
logs directory, 30
temp directory, 30
webapps directory, 31
work directory, 31

CATALINA_HOME environment variable, 16,
268

setting for Tomcat workers, 164
CATALINA_HOME/conf directory

catalina.policy, 35–39
catalina.properties, 35
configuration files, 35
context.xml, 35
logging.properties, 35
server.xml, 35, 41
tomcat-users.xml, 35
web.xml, 35

catalina.policy
accessClassInPackage.* target of

RuntimePermission, 234
avoiding an attacker’s malicious code,

36–37
Catalina code permissions, 232

common class loader files, 233
default web application permissions, 37
enabling JNDI and JDBC access, 37
enabling read-only access to JVM-specific

properties, 38
enabling read-only access to operating

system properties, 37
giving permission to the Jasper runtime

classes, 38
granting access to code resources from

Java compiler directories, 36
granting the API libraries access to all

resources, 36
granting the Catalina server access to all

resources, 36
java.security.AllPermission, 37
javac, 232
making internal Tomcat classes available,

38
minimal default permissions granted to

web applications, 38
providing access for the JavaBean

getAttribute methods, 38
providing access for the XML parser

debugger, 38
<security principal> entry, 36
starting Tomcat with security, 36
system code permissions, 232
Tomcat’s startup classes, 233
using the -security switch, 36
web application code permissions, 232,

234
catalina.properties

adding access permissions to internal
classes, 39

changing the classes available to web
applications, 39

defining and configuring Tomcat’s class
loaders, 39–40

disallowing defining classes in restricted
packages, 40

java.security.AccessControlException,
39

server directory, 40
shared directory, 40
starting Tomcat in security mode,

39
certificate authorities (CAs), 144,

242
certificate keystore, preparing,

243–244
certificate signing request (CSR), 244, 248
chgrp command, 296
chmod command, 296
chmod utility, 223–224
chown command, 224
class caching, 135

■INDEX 303

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 303

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

class loaders
bootstrap class loader, 133–134
bootstrap.jar file, 138
CATALINA_HOME/common/lib/,

contents of, 139
class caching, 135
ClassLoader abstract class, 136
ClassNotFoundException exception, 134
CLASSPATH environment variable, 134
common class loader, 137–138
configuring, 39
core class restriction mechanism, 137
creating custom class loaders, 136
defining Tomcat’s class loaders, 40
delegation model, 134, 136
directory locations of, 30
Endorsed Standards Override Mechanism,

135
extension class loader, 133–134
false java.* classes not allowed, 136
function of, in Java and Tomcat, 133
having separate and unique namespaces, 136
hierarchical relationship of, 133
instructing Tomcat to reload a web

application, 141
java.lang.Object, 137
lazy loading, benefits of, 135
loading classes on demand, 135
not placing custom classes in the

common class loader path, 139
options for preventing class-

loader–related operations, 137
overriding the CORBA and XML parser

classes, 135
packages split among different class

loaders, 141
parent-child relationships of, 133
pitfalls to avoid, 141
placing a singleton in the shared class

loader path, 141
search order for Tomcat’s class loaders, 140
security features of, 136
SecurityManager class, 137
separate namespaces as a security feature,

137
server class loader, 137
setting the java.endorsed.dirs property, 135
shared class loader, 137
singletons, 141
system class loader, 133–134
three Java SE class loaders in the JVM, 133
Tomcat’s additions to the standard Java

class loaders, 137
Tomcat’s dynamic class reloading, 140
Tomcat’s settings for CLASSPATH, 138
tomcat-juli.jar, 138
tools.jar file, 138

understanding the attributes of, 135
using a security manager to disallow

custom class loaders, 137
web application class loader, 137, 140

classes directory
class files, 32
package structure of Java classes within,

79
ClassLoader abstract class, 136
className attribute, 63, 194
ClassNotFoundException exception, 134
CLASSPATH environment variable, 134
CLIENT-AUTH, 240
cluster

activating multicasting, 126
<Cluster> element, attributes of, 126–127
configuring, 126
configuring a node’s deployer, 130
configuring a node’s membership, 127
configuring a node’s receiver, 128
configuring a node’s replication valve, 130
configuring a node’s sender, 129
<Context> element, 131
<Deployer> element, attributes of, 130
load balancing, 126
<Membership> element, attributes of, 127
node, definition of, 126
<Receiver> element, attributes of, 128
receiving replication information, 128
replicating user sessions across nodes, 126
replicationMode settings, 129
reporting of nodes, 126
saving on session-replication overhead,

130
<Sender> element, attributes of, 129
sending replication information, 129
session manager, use of, 126
session replication algorithm, 130
using WAR files to deploy/undeploy local

web applications, 130
<Valve> element, attributes of, 130

<Cluster> element
attributes of, 126
useDirtyFlag attribute, 130

codeBase attribute, syntax of, 229
command-line permissions, 217
Commit Changes button, 110
common class loader, 137

CATALINA_HOME/common/lib/,
contents of, 139

not placing custom classes in, 139
Common Gateway Interface (CGI)

alternatives to, 2
executing dynamic content on a web

server, 1
limitations of, 1
Perl language and, 1

■INDEX304

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 304

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

common name (CN), 244
com.mysql.jdbc.Driver, 194
Complete Server Status link, 100
Computer Management tool, 213
conf directory

catalina.policy, 30
catalina.properties, 30
configuring the class path of Tomcat and

web applications, 30
context.xml, 30
logging.properties, 30
server.xml, 30
setting the locations of the class loader

directories, 30
Tomcat configuration files, 30
tomcat-users.xml, 30
web.xml, 30

configuration elements
HTTP authorization manager, 289
HTTP cookie manager, 289
HTTP header manager, 288
HTTP request defaults, 289
User-Agent header, 288
using, 288

configuration files, 30
connection pooling, 45, 170
connectionName attribute, 196
connectionPassword attribute, 196
<Connector> element

acceptCount attribute, 275
attributes of, 51
enableLookups attribute, 275
maxProcessors attribute, 275
minProcessors attribute, 275

connectors, 6
configuring, 49
server performance and connector

parameters, 275
constant throughput timer, 282
constant timer, 282
container components, 6
container-managed security, 60
context component, 7, 31
<Context> container, 112
<Context> element, 71–72, 131, 172

attributes of, 73–74
new attributes since Tomcat 5.5, 75
subelements of, 75

context path, 31, 97, 103, 105
definition of, 77

<context-param> element, 80
contexts

adding servlet context initialization
parameters, 76

autoDeploy attribute, 72
configuring a parameter, 76
configuring a resource link, 76

configuring default contexts, 71
configuring in server.xml as no longer

recommended, 71
as containers with nested components, 75
<Context> element, 71–75
context.xml as the default file for a server,

72
context.xml.default as the default file for

a host, 72
deployOnStartup attribute, 71
docBase attribute, 71
jdbc/CatalogDB, 177
overriding attribute and application

context XML files, 72
<Parameter> element, attributes of, 76
placing in a web application’s META-INF

directory, 72
<ResourceLink> element, attributes of, 76
server.xml not reloaded after Tomcat

starts, 71
Tomcat’s sequence for deploying web

applications at startup, 71
use of an external default context XML file

in Tomcat 6, 72
context.xml, 30

default file for a server, 72
context.xml.default

default file for a host, 72
overriding the settings in, 72

convert utility, 211
createCatalogDB.sql SQL script, 173, 175

■D
data listeners, 283
data source, 169
databases

Access, 198
connection pooling, 170
creating a read-only user in the MySQL

privileges database, 196
data source, 169
DBCP factory, 172
distributed transaction, definition of, 173
establishing a physical database

connection, 170
establishing and terminating connections

to, 168
external transaction manager, 173
Jakarta Commons Database Connection

Pools (DBCP) component, 170
JDBC 1.0 and 2.0, 169
JDBC 3.0, 169, 173
JDBC drivers, 169
JNDI lookup, 171
null result set, 168
remote SQL processing engine, 167
result set, definition of, 167

■INDEX 305

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 305

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Structured Query Language (SQL), 167
Tomcat and JDBC, 171
transaction, definition of, 172
Type I to Type IV JDBC drivers, definitions

of, 170
XA operation model, 173

DBCP factory, 172
debug attribute, 54
<DefaultContext> element, 172
defaultHost, 54
delegation model, 134, 136
denial-of-service (DoS) attacks, blocking, 116
deploy command parameters, 103
<Deployer> element, attributes of, 130
deployOnStartup attribute, 71, 91
deptroles table, 198
deptusers table, 198
DESCRIBE command, 298
<description> element, 80–83, 85–87, 89
digest attribute, 206
DIGEST authentication, browser support for,

240
digest utility

MD5 algorithm, 182
SHA algorithm, 182
storing a digested password, 182

digital certificates, 144, 242
directory attribute, 202
<dispatcher> element, 82
<display-name> element, 81–82, 87
<distributable> element, 80
distributed networks

configuring with Tomcat, 158
multiple Tomcat workers distributed

across multiple servers, 159
software requirements for the Tomcat

installation, 159
distributed transaction, definition of, 173
docBase attribute, 71
domain name mismatch, 145
Domain Name System (DNS), 31

DNS server, 256
performing a reverse DNS lookup, 117

domain name, definition of, 253
driverName attribute, 194
dynamic class reloading, 140

■E
enableLookups attribute, 275
encryption

public key, 242
symmetric key, 242

Endorsed Standards Override Mechanism,
135

engine
configuring, 54
definition of, 6

<Engine> container, 112
<Engine> element, 264

attributes of, 54
subelements of, 55

Enterprise JavaBean (EJB), 44
<Environment> entry

attributes of, 44
configuring, 43

<error-code> element, 85
error codes and messages

503 (unavailable), 100
typical causes of errors, 105

error page configuration, code example, 85
<error-page> element, 85
executables

tomcat6 (Windows), 29
tomcat6w (Windows), 30

EXISTS commands, 298
exit command, 297
Extensible Markup Language (XML)

configuring Tomcat 6 with an XML file, 5
extension class loader

CLASSPATH environment variable,
134

standard extension directory location,
134

<extension> element, 84

■F
factory parameter, 185
FAT32

features of, 210
upgrading with the convert utility,

211
File Allocation Table (FAT), features of,

209
file permissions (Windows), 212
file/directory owner, 213, 221
filter

definition of, 80
filter mapping, code example, 82

<filter> element, 80
<filter> entry, code example, 81
<filter-class> element, 81
<filter-mapping> element, 81
<filter-name> element, 81
folder permissions (Windows), 211
foreign keys, 193, 195
<form-error-page> element, 89
<form-login-config> element, 89
<form-login-page> element, 89
Free Software Foundation, 294
FreshMeat.net software archive site, 292
fully qualified domain name (FQDN)

domain name, definition of, 253
host name, definition of, 253
web site, definition of, 253

■INDEX306

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 306

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

■G
garbage collector

poor server performance and, 274
running in incremental mode, 274
-Xincgc parameter, 274

Gaussian random timer, 282
<GlobalNamingResources> element, 85, 185

configuring, 42
subelements of, 43

global resources, configuring, 44
global resources component, 7
GNU tar, 295
grant entries

codeBase attribute, syntax of, 229
examples of, 229
permissions, permission targets, and

actions, 230
syntax of, 229

Graph Results listener, 283
Grinder, 292
groupadd command, 222, 294
groupdel command, 222
groups

creating (Unix), 221
creating (Windows), 213

groups command, 222

■H
host component, 7
<Host> container, 112
<Host> element, 31, 172

attributes of, 61
subelements of, 62

Host: header, 256, 261
host name, definition of, 253
host, configuring, 61
HTML link parser, 291
HTML Manager Help link, 97
HTTP authorization manager, 289
HTTP connector, 49–50

Apache as a proxy server, 145
<Connector> element, attributes of, 51–53
default HTTP/1.1 connector

configuration, 143
defining a proxy name and proxy port in

server.xml, 146
org.apache.catalina.connector.Connector,

143
proxyName attribute, 145
proxyPort attribute, 145
redirectPort attribute, 245
running Tomcat behind a proxy server,

145
serving HTML pages without additional

configuration, 143
using Apache’s proxy module

(mod_proxy), 145

HTTP Content-Type header, 67
HTTP cookie manager, 289
HTTP header manager, 288
HTTP request defaults, 289
httpd.conf, 145, 149, 152
<http-method> element, 87
HTTPS protocol, 243

■I
IBM, 11
<icon> element, 81–82
IETF RFC 2246, 243
ifconfig utility, 256
IIS

checking the IIS log file, 158
checking the JSP examples web

application, 157
communicating with an out-of-process

Tomcat worker, 153
Control Panel, Services management

console, 156
creating a virtual directory for the ISAPI

redirector, 156
creating workersIIS.properties, 155
downloading the ISAPI redirector,

153–154
editing registry entries in iis_redirect.reg,

154
extending by adding ISAPI filters to,

153
IIS Admin service, 156
IIS Manager, 156
installing, 154
installing the ISAPI redirector, 156
ISAPI module, 146
partitioning into web server and

application server configurations,
159

porting Apache mod_jk settings to an IIS
setup, 153

processing ASP on, 153
processing JSP pages and servlets, 153
reasons for integrating Tomcat with, 153
regedt32 utility, 155
testing the installation and deployment,

157
troubleshooting the setup, 158
Virtual Directory Creation Wizard,

156
workers.properties file, configuring,

153–154
World Wide Web Publishing service, 156

iis_redirect.reg, 154
initial heap size, 274
<init-param> element, 81–82
InnoDB tables, 195, 295
INSTALL-SOURCE file, 295

■INDEX 307

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 307

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

installing Ant
adding an ANT_HOME environment

variable, 21
build.xml, use of, 21
downloading and installing the binary

distribution, 21
testing the installation, 21

installing Java (Linux)
adding the $JAVA_HOME environment

variable, 14
downloading a distribution from Sun, 13
installing in a j2sdk-1_5_0 directory, 14
root user requirements, 13–14
setting the execute permissions, 13
testing the installation, 14
using the RPM installer, 14
using the self-extracting binary, 13

installing Java (Windows)
adding the installation folder as an

environment variable, 12
alternatives to Sun Microsystems’ JDK, 11
downloading the Java installer, 11
editing the c:\autoexec.bat file, 13
evaluating JVMs for performance, 11
%JAVA_HOME% installation directory, 12
JDK 1.4 and the JDK compatibility kit, 11
modifying the %Path% variable, 13
running the installation package, 12
setting environment variables, 12–13
testing the installation, 13
using JDK 1.5 with Tomcat 6, 11
Windows Environment Variables dialog

box, 12
installing Tomcat (Linux or Mac OS)

downloading the zipped file or the
gzipped tar file, 20

exporting the $CATALINA_HOME
environment variable, 20

shell commands for starting and stopping
Tomcat, 20

testing the installation, 20
installing Tomcat (Windows)

adding the CATALINA_HOME
environment variable, 16

Apache Tomcat Properties box, 18
completing the installation, 16
documentation, installing, 16
example web applications, installing, 16
installing as a service, 15
obtaining either a binary or source

distribution, 14
port 80 and public web servers, 16
port 8080 and Tomcat’s HTTP service, 16
requirement for using Ant 1.65 or above,

15
running Tomcat in the background, 19
setting automatic or manual startup, 15

setting the environment variables, 16–17
starting the server manually, 17
startup.bat, 20
testing the installation, 17
using the binary installer, 15
using the zipped file for installation, 20
viewing the default home page to check

the installation, 19
Windows 98 and, 15

installing Tomcat from source
creating a build.properties file, 22
downloading the source code from the

Subversion repository, 22
updating the source code and

recompiling, 22
using the Ant build utility, 21

Interleave controller, 285
intrusion detection systems, 227
IP addresses

configuring, 254
scarcity of, 253

IP-based virtual hosting
adding aliased network interfaces, 254
adding physical network interfaces, 254
aliasing, configuring for Unix, 256
aliasing, configuring for Windows, 254
configuring a NIC with more than one IP

address, 254
definition of, 253
ifconfig utility, 256
requirements for IP addresses, 254

ISAPI
Apache group and, 153
communicating with an out-of-process

Tomcat worker, 153
comparison to Apache’s API, 2
creating workersIIS.properties, 155
editing registry entries in iis_redirect.reg,

154
extending IIS by adding ISAPI filters, 153
isapi_redirect.dll, 153–154
regedt32 utility, 155
workers.properties file, configuring,

153–154
isapi_redirect.dll, 153–154

■J
Jakarta binaries download page, 147
Jakarta Commons Database Connection

Pools (DBCP), 45, 170
Jakarta Commons logging mechanism, 55
Jakarta project, 15
Java

applets, introduction of, 2
bootstrap class loader, 133–134
class loaders, function of, 133
ClassLoader abstract class, 136

■INDEX308

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 308

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

core class restriction mechanism, 137
Endorsed Standards Override Mechanism,

135
extension class loader, 133–134
Java API for XML Processing (JAXP) XML

parser, 135
loading code libraries, 133
overriding the CORBA and XML parser

classes, 135
platform independence, 133
SecurityManager class, 137
servlet containers, 3
suitability for distributed network

architectures, 133
system class loader, 133–134
three Java SE class loaders in the JVM, 133

Java API for XML Processing (JAXP) XML
parser, 135

Java Authentication and Authorization
Service (JAAS), 60

Java Enterprise Edition (EE) 1.4, 169
Java Naming and Directory Interface (JNDI),

7, 37
functions and benefits of, 42–43

Java Secure Socket Extension (JSSE), 243
Java Security Manager

allowing access to an SMTP server, 237
allowing class loader creation, 236
allowing the operating system to control

file access, 237
assigning permission to a web

application’s JDBC driver, 237
enabling on Tomcat, 232
grant entries, 229
granting permissions to applications,

229
java.security.Permission, 230
opening socket connections to databases,

237
overview of, 229
permission classes, table of, 230
permissions in Tomcat’s default

catalina.policy file, 232
policy files, 229
recommended practices for granting

application permissions, 236
regulating Tomcat’s common class loader

code, 236
as turned off by default, 228
unauthorized tasks with Tomcat’s default

policy configuration, 236
using to maintain a secure Tomcat

installation, 236
writing grant entries, 229

Java Server Faces 1.2, 4
Java Server Pages (JSP) 2.1 (JSR 245), 4
Java Servlet 2.5 specification (JSR 154), 4

Java virtual machine (JVM), Tomcat 6 server
component, 6

Java Web Server, 4
javac, 232
%JAVA_HOME% directory, 12
java.lang.Object, 137
java.lang.OutOfMemory error, 274
JavaMail, configuring sessions, 48
java.security.AccessControlException, 39
java.security.AllPermission, 37
java.security.Permission, 230
javax.sql.DataSource, 172
JDBC

adding the JSP 1.1 standard tag library, 177
configuring JDBC drivers as JNDI

resources in Tomcat, 171
connection pooling, 170
Connector/J Type IV JDBC driver from

MySQL, 173
<Context> element, 172
data source, 169
DBCP factory, 172
<DefaultContext> element, 172
defining a JDBC data source for Tomcat,

172
drivers, 169
editing web.xml for the tomcatBook web

application, 175
establishing a physical database

connection, 170
establishing and terminating connections

to databases, 168
functions of, 168
<Host> element, 172
Jakarta Commons Database Connection

Pools (DBCP) component, 170
JDBC 1.0 to JDBC 3.0, 169
JNDI lookup, 171
lookup.jsp, 176
null result set, 168
<Resource> element, 172
<resource-ref> element, 172, 175
<ResourceParams> element, 172
result set, definition of, 167
returning a javax.sql.DataSource,

172
running basic JDBC operations, 168
<sql:setDataSource> tag, 176–177
submitting SQL query statements via,

167
three-tier model, 169
Tomcat and, 171
Type I to Type IV drivers, definitions of,

170
using its API calls, 168
web.xml, 172
XA operation model and JDBC 3.0, 173

■INDEX 309

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 309

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

JDBC data source
configuring, 45
parameters, 46
using connection pooling, 45

JDBC realms
advantages of, 193
attributes of, 193
className attribute, 194
configuring, 192
configuring a MySQL JDBC realm, 194
configuring an ODBC JDBC realm,

197–199
database table and field schema, 193
driverName attribute, 194
foreign key constraint, 193
lack of support for DIGEST

authentication, 240
MySQL JDBC realm, example

configuration, 195–196
three default realms, 194
use of relational databases as a data

storage mechanism, 192
JDBC-ODBC bridge, 60
JDK 1.5, running Tomcat 6 with, 11
jk.properties, 269
jk2.conf, 265
jk2.properties, 164
JkMount directive, 152
JMeter

accessing test plan results with a listener,
280

adding a Generate Summary Results post-
processor element, 291

adding a listener, 282
adding a timer to a thread group, 282
Assertion Results listener, 285, 287
constant timer, 282
data listeners, 283
examining the average response time

(mean), 291
examining the standard deviation, 292
executing a test plan, 280
Gaussian random timer, 282
Graph Results listener, 283
HTML link parser, 291
HTTP authorization manager, 289
HTTP cookie manager, 289
HTTP header manager, 288
HTTP request defaults, 289
HTTP request group settings, 279
installing and running, 277
Interleave controller, 285
interpreting test results, 291
jmeter shell script, 277
jmeter.bat, 277
jmeter.properties file, 283, 291
list of default listeners, 282

Listener menu, 282
load testing HTTP servers and

applications, 276
logic controllers, 285
Loop controller, 286
Mailer Visualizer listener, 285
major features of, 281
Monitor Results listener, 284
monitor, definition of, 280
Observer (Event Listener) design pattern,

280
Once Only controller, 286
random and pseudo-random delays, 282
random timers, 282
sampler, definition of, 278
saving a test plan, 280
saving listener data as an XML file or CSV

file, 283
Simple controller, 285
Simple Data Writer listener, 283
stdout, 291
Test Plan node, 277
test plan, definition of, 277
thread group, available options, 278
timer features, 282
uniform random timer, 282
user interface, explanation of, 277
User-Agent header, 288
using a configuration element, 288
using a View Results tree listener, 280
using as a web spider, 290
using assertions, 285–286
using post-processor elements, 291
using preprocessor elements, 290
visualization listeners, 283

jmeter shell script, 277
jmeter.bat, 277
jmeter.properties, 283, 291
JNDI

adding the JSP 1.1 standard tag library, 177
configuring as the resource for a JDBC

data source, 171
<Context> element, 172
DBCP factory, 172
<DefaultContext> element, 172
defining a JDBC data source for Tomcat,

172
editing web.xml for the tomcatBook web

application, 175
<Host> element, 172
lookup.jsp, 176
<Resource> element, 172
<resource-ref> element, 172, 175
<ResourceParams> element, 172
returning a javax.sql.DataSource, 172
<sql:setDataSource> tag, 176–177
testing JNDI resource configuration, 173

■INDEX310

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 310

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

using to look up a data source, 176
web.xml, 172

JNDI realms
attributes of, 200
communication log between Tomcat and

the directory server, 206
configuring in server.xml, 205
digest attribute, 206
Lightweight Directory Access Protocol

(LDAP), 201
mapping configuration attributes to

directory schema, 200
OpenLDAP, downloading and installing, 201
role* attributes, 206
userPassword attribute, 205
userPattern attribute, 206

JServ, 4
JSP

as an alternative to Microsoft’s ASP, 3
creating dynamic visual content with, 3
JSP pages, 77
as uncompiled, 3

JSP 2.0, writing tag extensions in JSP syntax, 80
<jsp-file> element, 82
jsp.xml, 262
JVM

configuring the heap size, 273
garbage collector and poor server

performance, 274
initial heap size, 274
java.lang.OutOfMemory error, 274
monitoring thread count, 275
processor, definition of, 275
running out of free file descriptors, 275
setting the minimum and maximum heap

size, 274
virtual memory, 274
-Xincgc parameter, 274
-Xms<size> parameter, 273
-Xmx<size> parameter, 273

■K
keystore

adding a keystore password to server.xml, 145
creating a public-private key pair (-genkey),

144
keytool utility, 144
self-signed certificate, 144
server’s digital certificates, 144

keytool command, 243–244
keytool utility, 144

■L
lazy loading, benefits of, 135
lb (load-balancing) worker

functions of, 160
identifying failed Tomcat workers, 160

maintaining session affinity, 160
performing weighted round-robin load

balancing, 160
LDAP Data Interchange Format (LDIF), 202
ldapadd utility, 204
ldapsearch tool, 205
lib directory, 30, 79

JAR files, 32
Lightweight Directory Access Protocol

(LDAP), 8, 201
List Applications link, 97
Listener menu, 282
listeners, 280

className attribute, 63
configuring, 63

load balancing, 126, 147–148
adding a jvmRoute attribute to server.xml,

163
configuring Apache 1.3 for, 161
configuring Tomcat for, 163
creating Tomcat 1’s index.jsp file, 164
defining a workers.properties file, 161–162
designating a load-balancing (lb) worker, 160
ensuring the seamless session feature is

activated, 163
final Apache configuration, code example,

163
installing and running Tomcat instances

on localhost, 161
jk2.properties, editing, 164
keeping the current session contents

intact, 165
mod_jk, 162
mounting the JSP examples, 162
performing weighted round-robin load

balancing, 160
round-robin algorithm, 165
seamless session, definition of, 159
setting CATALINA_HOME for Tomcat

workers, 164
setting up, 160
testing, 165
understanding, in Tomcat, 159
using mod_jk, 159

<load-on-startup> element, 82
load testing

adding a timer to a thread group, 282
altering Tomcat’s deployment

architecture, 276
bottlenecks due to inefficient application

code, 276
configuring application sessions, 275
configuring the Java heap size, 273
<Connector> element, 275
connector parameters and server

performance, 275
definition of, 273

■INDEX 311

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 311

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

FreshMeat.net software archive site, 292
garbage collector and poor server

performance, 274
Grinder, 292
HTTP servers and applications, 276
initial heap size, 274
java.lang.OutOfMemory error, 274
load balancing two or more application

servers, 276
monitoring thread count, 275
Open Directory Software Testing list, 292
processor, definition of, 275
running out of free file descriptors, 275
scalability and performance, 273
setting the minimum and maximum heap

size, 274
tools for, 292
using Tomcat’s persistent session

manager, 276
virtual memory, 274
-Xincgc parameter, 274
-Xms<size> parameter, 273
-Xmx<size> parameter, 273

loader component, 8
localhost, 61, 63
<location> element, 85
log files

AWStats, 113
common log file format, 113
Webalizer, 113

Log4J, 8
log4j.properties, code example, 56–59
logger component, 8
logging

levels of, 58
pattern layout placeholders, 58–59

logging.properties, 30
logic controllers

Interleave controller, 285
Loop controller, 286
Once Only controller, 286
purpose of, 285
Simple controller, 285

<login-config> element, 89, 191,
239

logs directory, 30
lookup.jsp, 176
Loop controller, 286
ls utility, 222

■M
Mac OS X and Java 1.5, 11
mail sessions, configuring, 48
mail.smtp.port parameter, 48
Mailer Visualizer listener, 285
make install command, 295
make utility, 295

manager application, 86, 120, 228
503 (unavailable) error code, 100
adding a user with the manager role to

tomcat-users.xml, 92
allowing access by an admin role user,

code example, 96
allowing more than one role to access, 94
<auth-constraint> element, 96
<auth-method> element, 95
autoDeploy attribute, 91
balancing the security and administration

needs of a server, 95
CATALINA_HOME/webapps/manager

directory, 91
changing the security manager’s settings,

93
checking server status and information, 98
checking session information, 101
Complete Server Status link, 100
configuring, 93
default access as disabled in Tomcat, 92
default manager.xml file for Tomcat 6,

code example, 93
default realm defined in manager.xml,

92
default session timeout, 102
defining roles in tomcat-users.xml, 120
deleting files associated with a web

application, 101
deploy command, parameters, 103
deploying web applications from a local

machine, 103
deploying web applications from a remote

WAR file, 104
deployOnStartup attribute, 91
function availability through its web

interface, 96
functions of, 91–92
help pages, 97
HTML Manager Help link, 97
inactive session, 102
List Applications link, 97
listing security roles, 105
listing the JNDI resources on the server,

105
listing the server’s deployed web

applications, 97
Manager Help link, 97
manager role, 120
manager web application’s <resource-env-

ref> setting, code example, 86
possible causes of failure, 105–106
reasons for using, 91
<resource-env-ref> element, 95
<ResourceLink> element, 94, 106
Restart link, 101
<role-name> element, 96

■INDEX312

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 312

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<security-constraint> element, 95
security-related configuration of web.xml,

code example, 94–95
<security-role> element, 95–96
Server Status link, 98
setting up, 92
Start link, 101
starting, stopping, and restarting web

applications, 100
stop command, 101
syntax of commands issued via the web

browser, 97
system of authentication, 92
troubleshooting, 105–106
Undeploy link, 101
use of the manager container servlet, 94
using, 91–92, 96
using DIGEST or FORM authentication, 96
using request parameters to administer

the web application, 97
using the path parameter to deploy a web

application, 104
manager component, 8
<Manager> element, 121, 126
Manager Help link, 97
maxIdleBackup attribute, 123
maxIdleSwap method, 123
maximum heap size, 274
maxProcessors attribute, 275
MD5 algorithm, 144, 182
MD5(), 195
mean, 291
<Membership> element, attributes of,

127
memory realm

attributes of, 182
configuring in the default server.xml,

183
specifying users, passwords, and roles in

tomcat-users.xml, 183
superseding of, by the user database, 183

META-INF directory, 32, 77
META-INF/context.xml, overriding the

settings in, 72
Microsoft

Access, 198
VBScript, 2

<mime-mapping> element, 67, 84
MIME mappings, configuring, 67
<mime-type> element, 84
minIdleSwap method, 123
minimum heap size, 274
minProcessors attribute, 275
Model View Controller design pattern, 289
modular application programming interface

(API), 2
mod_fastcgi, 2

mod_jk
assigning the types of workers in, 148
binary availability of, 147
building on Linux, 147
integrating Tomcat with Apache 1.3, 147
load balancing and, 159
testing after deployment, 153
workers.properties file for, 149

mod_jk.conf, 150
automatically generated file, code

example, 151
creating an Apache <VirtualHost> entry in,

151
creating LoadModule entries for mod_jk,

150
mod_jk.dll, 147
mod_perl, 2
mod_php4, 2
mod_proxy, 145
Monitor Results listener, 284
monitor, definition of, 280
multicasting, 126
my.cnf, 196
my.ini, 196
MySQL, 45

building with the make utility, 295
closing apostrophes and quotation marks,

297
com.mysql.jdbc.Driver, 194
compiling, 294
configuring a MySQL JDBC realm, 194
Connector/J Type IV JDBC driver, 173
createCatalogDB.sql SQL script, 173, 175
creating a database, 297
creating a read-only user for developer

access, 175
creating a read-only user in the MySQL

privileges database, 196
creating a test database, 173
creating a unique user and group for, 293
creating privilege tables, 296
decompression problems with Solaris’s

version of tar, 295
DESCRIBE command, 298
digesting passwords in, 195
downloading the installer, 293
downloading the latest version of, 173
EXISTS commands, 298
exit command, 297
Free Software Foundation, 294
GNU tar, 295
groupadd command, 294
information resources on, 299
InnoDB tables, 195, 295
inserting a row of data into a table, 297
INSTALL-SOURCE file, 295
installing from source, 294

■INDEX 313

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 313

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

installing on Linux and Unix, 293
installing on Windows, 293
make install command, 295
MD5(), 195
MySQL JDBC realm, example

configuration, 196
mysql-4.0.x.tar.gz, 294
org.gjt.mm.mysql.Driver, 194
realmDB.sql, 195–196
RPM Package Manager application, 294
running chmod and chgrp to set correct

user ownership, 296
running the configure configuration

script, 295
running the mysql command, 296
running the mysqld.exe program, 293
saving SQL commands in a mysqlTest.sql

file, 298
SELECT command, 298
setting the root password, 296
SHA(), 195
SQL script for creating a JDBC-

store–compatible database, 125
SQL script to set up the JDBC realm in

MySQL, 195
starting and stopping the MySQL server,

296
support for foreign keys, 195
testing the installation, 293–294, 296
types of binaries available, 293
useradd command, 294
using the mysql binary to grant access

privileges, 299
using the root administrator user, 296
working with, 296

mysql command, 296
mysql-4.0.x.tar.gz, 294
mysqld.exe, 293

■N
name-based virtual hosting

advantages over IP-based virtual hosting,
256

definition of, 253
disadvantages of, 257
DNS server, 256
HTTP 1.0 vs. 1.1 protocol, 257
looking up IP address/host name

mappings, 256
reading the Host: header from an HTTP

1.1 request, 256
namespaces, 136
nested components, 7
net group and net localgroup utilities,

command-line syntax, 214
net user command, command-line syntax,

214

netstat, 23
network interface card (NIC), 254
network interfaces

aliased, 254
physical, 254

nodes
configuring a node’s deployer, 130
configuring a node’s membership, 127
configuring a node’s receiver, 128
configuring a node’s replication valve, 130
configuring a node’s sender, 129
<Context> element, 131
definition of, 126
<Deployer> element, attributes of, 130
<Membership> element, attributes of,

127
multicast ping, 126
<Receiver> element, attributes of, 128
receiving replication information, 128
replicating user sessions across, 126
replicationMode settings, 129
reporting of, 126
saving on session-replication overhead,

130
<Sender> element, attributes of, 129
sending replication information, 129
using WAR files to deploy/undeploy local

web applications, 130
<Valve> element, attributes of, 130

non-SSL connectors, 144
NT file system (NTFS)

calculating the space needed for an NTFS
conversion, 211

features of, 209
null result set, 168

■O
Observer (Event Listener) design pattern, 280
ODBC

configuring an ODBC JDBC realm,
197–199

deptroles table, 198
deptusers table, 198
using the SHA algorithm for a digested

password, 199
Once Only controller, 286
Open Directory Software Testing list, 292
OpenLDAP

attributes for a user entry, 204
default LDAP port, 202
downloading and installing, 201
LDAP Data Interchange Format (LDIF),

202
realmDB.ldif, 202
settings in slapd.conf, 201
simple bind method, 204
uniqueMember attribute, 204

■INDEX314

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 314

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

users and roles from tomcat-users.xml in
LDIF, 202

using the ldapadd utility to add directory
entries online, 204

using the ldapsearch tool, 205
using the slapadd utility to add directory

entries offline, 205
OpenSSL library, 247
openssl utility, 247
openssl.cnf, 247
org.apache.catalina.connector.Connector, 143
org.gjt.mm.mysql.Driver, 194
override attribute, 72

■P
<Parameter> element, 76, 80
<param-name> element, 80–82
<param-value> element, 80–82
passwords

creating secure passwords, 218
disabling login ability by starring an

account’s password, 225
shadow password file, 225

Perl and CGI applications, 1
permissions

assigning conflicting permissions, 217
assigning in Windows (command-line),

217
assigning in Windows (GUI), 216
assigning in Unix, 222
assigning to Tomcat’s directories, 220
cacls utility, 217
changing file ownership, 224
changing file permissions, 223
chmod utility and its parameters, 223–224
chown command, 224
configuring file permissions in Unix, 225
configuring file permissions in Windows,

219
creating a special user account for

running Tomcat, 218, 225
Deny settings as overriding Allow settings,

217
domain security policy, 218
file permissions in Unix, 220
file system, 209
grant entries, 229
granting read access to the JDK directory, 220
group, 217
inherited, 216
Java Security Manager and application

permissions, 229
java.security.Permission, 230
ls utility, 222
modifying a machine’s local security

policy, 218
planning security permissions in Unix, 225

planning security permissions in Windows, 217
policy files, 229, 232
revoking all file system permissions for the

root directory, 219
revoking user access, 217
securing Tomcat’s permissions, 228
setting read-only permissions on the

webapps directory, 227
SGUI bit, setting, 224
SUID bit, setting, 224
turning off permission inheritance for an

object, 217
viewing file or directory permissions,

216
viewing permissions in Unix, 222

PHP, mod_php4, 2
policy files

downloading information on, 232
grant entries, 229
Java Security Manager, 229

post-processor elements
adding a Generate Summary Results

element, 291
using, 291

preprocessor elements
jmeter.properties file, 291
stdout, 291
using, 290

privilege tables, creating, 296
processor, definition of, 275
Properties window, Security tab, 216
proxy connector, 49
public and private resources, 76
public key encryption, 242
public-private key pair, 144

■R
realmDB.ldif, 202
realmDB.sql, 195–196
<realm-name> element, 89
realms

applying across an entire container
component, 8

configuring, 59, 182
configuring a memory realm in the default

server.xml, 183
configuring a MySQL JDBC realm, 194
configuring JDBC realms, 192
data source, 60
definition of, 179
delegating authentication and

authorization to the web server,
180

implementing and enforcing security
policies, 179

JAAS, 60
JDBC, 60

■INDEX 315

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 315

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

JNDI, 60
mapping roles and access rights in server

configuration files, 180
mapping usernames to passwords and

user roles, 59
memory (Tomcat 5), 60
memory realm, attributes of, 182
security-related elements in web.xml, 191
simple security setup, code example, 191
as standard abstractions of underlying

data stores, 179
understanding container-managed

security, 180
user database, 60, 185
user database, as superseding the memory

realm, 183
using security realms, 238
using the digest utility to digest

passwords, 182
<Receiver> element, attributes of, 128
redirectPort attribute, 144, 245
reference implementation (RI), 3
regedt32 utility, 155
relational databases. See databases
replicationMode, settings, 129
request dumper valve

configuring, 118
debugging web applications with, 117
decoding any parameters sent with the

request, 119
inheriting a logger from a higher-level

component, 118
sample output, 118–119
using, 117

request dumping, 8
request filter valves

remote address valve, table of attributes, 116
remote host valve, 116–117
using, 116

<res-auth> element, 86
<Resource> element, 172, 185

attributes of, 44–45
resource parameters in Tomcat 6,

configuring, 45
<resource-env-ref> element, 85, 95
<resource-env-ref-type> element, 85
<ResourceLink> element, 94, 106

attributes of, 76
resourceName attribute, 186
<ResourceParams> element, 172, 185
<resource-ref> element, 46, 86, 172, 175
resources component, 8
<res-ref-name> element, 86
<res-sharing-scope> element, 86
Restart link, 101
<res-type> element, 86
result set, definition of, 167

role* attributes, 206
<role> element, 64
<role-link> element, 83
<role-name> element, 83, 87, 89, 96, 238
roles attribute, 64
root account, 221
ROOT web application, 31
ROOT.xml, 262
rootdn attribute, 202
rootpw attribute, 202
RPM package

installing MySQL from, 294
RPM Package Manager application, 294
testing the installation, 294

RSA algorithm, 144, 243
<run-as> element, 82

■S
sampler, definition of, 278
saveOnRestart attribute, 123
scalability, definition of, 273
scheme attribute, 144
scripts, 29
seamless session, 159
secure attribute, 144
Secure Sockets Layer (SSL)

adding SSL or TLS support in Tomcat, 243
certificate authorities (CAs), 242
common name (CN), 244
CONFIDENTIAL integrity level, 245
configuring an SSL connector, 246
configuring an SSL-enabled web site on

a unique IP address, 257
configuring with the Apache Web Server,

246
creating a certificate signing request

(CSR), 244
digital certificate, 242
guaranteeing data integrity with a security

constraint, 245
HTTP over SSL (HTTPS) protocol, 243
IETF RFC 2246, 243
importing a chain certificate into the

keystore, 245
installing a certificate from a certificate

authority, 244
INTEGRAL integrity level, 245
Java Secure Socket Extension (JSSE), 243
keytool command, 243–244
NONE integrity level, 245
obtaining a chain certificate (root

certificate) from the CA, 245
obtaining a test certificate, 244
openssl.cnf file for setting a server’s

certificate properties, 247
preparing a certificate keystore, 243–244
procedure for an SSL handshake, 242

■INDEX316

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 316

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

protecting resources with, 245
providing data encryption and

authentication, 242
public key encryption, 242
redirectPort attribute, 245
RSA algorithm, 243
running Apache and SSL on Windows, 249
self-signed certificate, 243
session key, 242
symmetric key encryption, 242
Thawte, 242
Transport Layer Security (TLS), 243
Trustcenter.de, 243
VeriSign, 242

security
admin application, 228
advantages of form-based authentication,

239
allowing class loader creation, 236
allowing the operating system to control

file access, 237
assigning permission to a web

application’s JDBC driver, 237
authentication, definition of, 179
authorization, definition of, 179
dangers of a compromised server,

209
disabling the default ROOT web

application, 228
general Tomcat security principles, 226
intrusion detection systems, 227
manager application, 228
marking the root file system as read-only,

227
opening socket connections to databases,

237
placing the manager folder outside of

Tomcat’s directory structure, 228
regulating Tomcat’s common class loader

code, 236
removing the admin and manager web

applications for security, 226
removing the example web applications

on a development server, 228
removing the webdav web application,

228
securing Tomcat’s default configuration,

228
security risk involved in automatic

reboots, 70
security-related elements in web.xml, 191
setting read-only permissions on the

webapps directory, 227
setting start and recovery options on

Windows, 67–70
tomcat-users.xml and, 226
Tripwire, 227

unauthorized tasks with Tomcat’s default
policy configuration, 236

understanding container-managed
security, 180

using custom login and error pages,
240–242

using realms to implement and enforce
security policies, 179

<security principal> entry, 36
<security-constraint> element, 87, 95, 191,

238, 245
SecurityManager class, 137
<security-role> element, 83, 89, 95–96, 191
<security-role-ref> element, 82–83
SELECT command, 298
self-signed certificate, 144, 243
<Sender> element, attributes of, 129
server class loader, 137
server component, 6
<Server> element

attributes of, 42
subelements of, 42

Server Side Include (SSI), 66
Server Status link, 98
server, configuring, 41
server.xml

adding a keystore password to, 145
adding an AJP connector to, 264
adding components to the inner

component, 41
AJP 1.3 connector, 49–50, 54
alias, configuring, 63
Apache Log4J toolkit, 56
associating more than one connector with

a single engine, 49
authentication, 59
Catalina as the default engine in, 54
configuring JNDI realms in, 205
configuring a connector to work with

a proxy server, 51
configuring a JDBC store in, 125
configuring a memory realm in, 183
configuring a realm, 59
configuring a reference to a JavaMail

session in web.xml, 48
configuring a reference to a JDBC data

source in web.xml, 46
configuring JavaMail sessions as a JNDI

resource, 48
configuring the server’s global JNDI

resources, 43
connection points where a request enters

Tomcat, 49
connectionName attribute, 196
connectionPassword attribute, 196
<Connector> element, 50
connector, configuring, 49

■INDEX 317

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 317

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

container-managed security, 60
copying comments from an old version

into a new one, 110
creating a virtual host in, 260
data source realm, configuring, 60
debug attribute, 54
default cluster setting, 127
default deployer setting in Tomcat 6, 131
default membership setting in Tomcat 5.5,

128
default MySQL JDBC realm in, 194
default receiver setting in Tomcat 6, 128
default replication valve setting in Tomcat

6, 130
default sender setting in Tomcat 6, 129
defaultHost, 54
defining a Catalina service and a Catalina

engine, 41
defining a proxy name and proxy port in,

146
<Engine> directive, jvmRoute attribute,

163
<Engine> element, 54
engine, configuring, 54
<Environment> entry, 43
example access log valve, 115
factory parameter, 185
global resources, configuring, 44
<GlobalNamingResources> element, 43
<Host> element, 61
host, configuring, 61
HTTP connector, 49–53
installing valves at the engine level, 63
JAAS realm, configuring, 60
Jakarta Commons Database Connection

Pools (DBCP), 45
Jakarta Commons logging mechanism, 55
Java Authentication and Authorization

Service (JAAS), 60
JDBC 3.0 data sources, 170
JDBC data source, configuring, 45
JDBC realm, configuring, 60
JNDI LDAP service provider, configuring, 60
lack of DTD or schema for, 41
listener, configuring, 63
listening to port 8005 for a shutdown

command, 42
localhost as the virtual host, 61
localhost, 63
logging, in Tomcat, 55
logging, pattern layout placeholders, 58–59
mail sessions, configuring, 48
not reloaded after Tomcat starts, 71
outer component properties as inherited

by inner components, 41
overriding the outer configuration, 41
parameters for use with a JDBC data source, 46

proxy connector, 49
renaming of, after settings changes, 110
request dumper valve, configuring, 118
<Resource> element, 44–45, 185
resource parameters in Tomcat 6,

configuring, 45
resourceName attribute, 186
<ResourceParams> element, 185
<resource-ref> element, 46
saving old versions of, in the conf

directory, 115
<Server> element, as the root element,

41
<Server> element, attributes of, 42
<Service> element, 48, 110
server, configuring, 41
service, configuring, 48
setting logging levels, 58
setting the mail.smtp.port parameter, 48
setting up one <Engine> element per

virtual host, 267
single sign-on valve in, 120
specifying a serverwide variable, 43
SSL connector, 49–50, 54
three default JDBC realms, 194
Tomcat’s component-based model and

XML configuration, 41
unpackWARs attribute, 61
user database realm, configuring, 60
user database, global settings, 185
valves, configuring, 63
WAR files, 31
www.catalinabook.com, virtual host

definition, 268
www.jasperbook.com, virtual host

definition, 269
www.tomcatbook.com, virtual host

definition, 269
serverwide variable, specifying, 43
service

configuring, 48
discovering the server failure count, script

example, 69
e-mailing a failure report, 69
Properties dialog box, Recovery tab, 68
running a script if the server fails, 68
service component, 6

<Service> element, 110
attributes of, 48
subelements of, 49

Service node, 110
Servlet 2.4 specification, 76
servlet containers

Tomcat as the reference implementation
(RI) servlet container, 3

<servlet> element, 82
servlet mappings, 78

■INDEX318

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 318

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Servlet specification, 31–32
filters and, 63

<servlet-class> element, 82
including the fully qualified class name, 78

servletContextName property, 259
<servlet-mapping> element, 66, 83
<servlet-name> element, 82–83
servlets

defining and naming, 78
drawbacks of, 3
provided in compiled form, 3
servlet containers, 3
unsuitability for creating HTML content, 3

session affinity, 159
session key, 242
session managers

common attributes, 122
configuring, 121
configuring a JDBC store in server.xml,

125
as a context-level component, 121
creating a database in which to store

sessions, 125
features of, 121
file store, configuring, 124
JDBC store, configuring, 124
persistent, 121
persistent attributes, 122–125
SQL script for creating a JDBC-

store–compatible database, 125
standard attributes, 122
<Store> element, 124, 126

<session-config> element, 67, 84, 276
<session-timeout> element, 67, 84, 276
SGUI bit, setting, 224
SHA algorithm, 182
SHA(), 195
shadow password file, 225
shared class loader, 137
shared hosting

Apache server, 253
configuring Tomcat to serve multiple

virtual hosts, 258
definition of, 253
domain name, definition of, 253
host name, definition of, 253
implementing virtual hosting with

Tomcat, 257
IP addresses, scarcity of, 253
virtual hosting, types of, 253

shutdown command, 30, 42
simple bind method, 204
Simple controller, 285
Simple Data Writer listener, 283
single sign-on valves

caching credentials in a client’s session, 119
configuring, 120

server.xml and, 120
table of attributes, 119
using, 119

singleton
definition of, 141
placing in the shared class loader path,

141
slapadd utility, 205
slapd.conf

directory attribute, 202
modifying its settings, 201
rootdn attribute, 202
rootpw attribute, 202
suffix attribute, 202

<sql:setDataSource> tag, 176–177
SSL connector, 49–50

adding a keystore password to server.xml,
145

certificate authority, 144
changing the SSL port, 144
<Connector> element, attributes of, 54
creating a keystore, 144
creating a public-private key pair

(-genkey), 144
default SSL connector configuration, 144
domain name mismatch, 145
HTTPS connections, 144
keytool utility, 144
MD5 algorithm, 144
non-SSL connectors, 144
redirectPort attribute, 144
RSA algorithm, 144
scheme attribute, 144
secure attribute, 144
self-signed certificate, 144
server’s digital certificates, 144

SSL handshake, procedure for, 242
standard <Host> element, attributes of, 62
standard deviation, 292
start and recovery options, setting, 67–70
Start link, 101
stdout, 291
sticky session, 159
<Store> element, 124, 126
Structured Query Language (SQL)

definition of, 167
JDBC and, 167
necessity of learning basic commands,

167
performing a SELECT * query, 177
result sets, 167

sudo command, 221
suffix attribute, 202
SUID bit, setting, 224
Sun Microsystems

information on evaluating JVMs, 11
Java Development Kit (JDK), 11

■INDEX 319

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 319

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

Java Web Server, 4
JavaServer Pages (JSP), 3

superuser accounts, 213, 221
symmetric key encryption, 242
system class loader

CLASSPATH environment variable, 134
loading an application’s main class, 134

system memory
configuring the Java heap size, 273–274
garbage collector and poor server

performance, 274
setting the minimum and maximum heap

size, 274
-Xincgc parameter, 274
-Xms<size> parameter, 273
-Xmx<size> parameter, 273

System.exit(), 236

■T
tag extensions, 80
tag library descriptors (TLDs), 32
tags folder

JSP-syntax tag extensions, 80
tag files, 32

<taskdef> element, 106
temp directory, 30
test plan

definition of, 277
executing, 280
saving, 280
Test Plan node, 277
thread group, available options, 278

Thawte, 242
thread count, monitoring, 275
Thread.stop(), 229
TLD configuration files, 80
tlds folder, 80
Tomcat 6

adding an AJP connector to server.xml, 264
adding SSL or TLS support, 243
advantages of form-based authentication,

239
Apache setup for virtual hosting with

Tomcat, 266
Catalina servlet engine, 6
CATALINA_BASE environment variable, 268
CATALINA_HOME environment variable,

268
changes from Tomcat 5.5, 4
configuring JDBC drivers as JNDI

resources in, 171
configuring to serve multiple virtual hosts,

258
configuring with an Extensible Markup

Language (XML) file, 5
connectors, 6
container components, 6

context, 7
creating a virtual host in server.xml, 260
default HTTP port, 6
differentiating virtual hosts, 7
disabling the default ROOT web

application, 228
enabling dynamic reloading, 7
engine component, 6
<Engine> element, 264
general Tomcat security principles, 226
global resources component, 7
host component, 7
implementing virtual hosting on, 257
implementing virtual hosting with Apache

and Tomcat, 264
index.hml page for shared hosting, 258
index.jsp page common to all hosts, 259
Java Security Manager, enabling, 232
Java Server Faces 1.2, support for, 4
Java Server Pages (JSP) 2.1 (JSR 245),

support for, 4
Java Servlet 2.5 specification (JSR 154),

support for, 4
Java virtual machine (JVM) and, 6
jk.properties, creating, 269
jsp.xml configuration file, 262
loader component, 8
Log4J, 8
log4j.properties logging file for virtual

hosting, 261
logger component, 8
manager component, 8
mapping local IP addresses in a hosts file,

263
nested components, 7
new features, 4
not optimized as an HTTP server, 276
permissions in the default catalina.policy

file, 232
placing the manager folder outside of

Tomcat’s directory structure, 228
realm component, 8
removing the admin and manager web

applications for security, 226
removing the webdav web application,

228
resources component, 8
ROOT.xml configuration file, 262
running the three virtual hosts using

a Unix shell script, 270
running the three virtual hosts using

a Windows batch file, 270
running with the server option, 21
securing the default configuration, 228
securing Tomcat’s permissions, 228
server and service components, 6
setting a JVM for each virtual host, 267

■INDEX320

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 320

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

testing the virtual hosting, 263
tomcat-users.xml and security, 226
top-level components, 5
understanding its architecture, 5
Unified Expression Language (Unified EL)

2.1, support for, 4
using custom login and error pages,

240–242
valve component, 8
web.xml file for the jsp web application,

259
web.xml file for the ROOT web

application, 259
workers.properties file for separate virtual

hosts, 269
www.catalinabook.com, final directory

structure, 269
Tomcat Properties box, 30
tomcat6 Windows executable, 29
tomcat6w Windows executable, 30
tomcatBook web application

protecting with Apache’s SSL, 249
simple security setup, code example, 191

tomcat-docs, 228
tomcat-juli.jar, 138
tomcat-users.xml, 30

adding a digested password, 183
code example, 64
defining roles in, 120
<role> element, 64
roles attribute, 64
saving user-database changes in, 185
specifying users, passwords, and roles for

a memory realm, 183
user database realm and, 64
<user> element, 183
<user> entry, 64
users as having more than one role, 64

tools.jar file, 138
transaction, definition of, 172
Transport Layer Security (TLS), 243
<transport-guarantee> element, 87
Tripwire, 227
troubleshooting and tips

checking log files in the
CATALINA_HOME/logs directory,
23

if port 8080 is in use, 23, 28
if the Tomcat window disappears, 23
if Tomcat doesn’t start, 23
listing open ports with netstat, 23
making a successful connection, output

example, 23
starting multiple Tomcat instances, 23
Tomcat web site location, 22
using telnet to connect to the socket, 23

Trustcenter.de, 243

■U
Undeploy link, 101
Unified Expression Language (Unified EL)

2.1, 4
uniform random timer, 282
uniform resource indicator (URI), 32
uniform resource locator (URL), 31
uniqueMember attribute, 204
Unix file system

assigning permissions, 222
changing file ownership, 224
changing file permissions, 223
chmod utility and its parameters, 223–224
chown command, 224
configuring file permissions, 225
creating a special user account for

running Tomcat, 225
creating users and groups, 221
disabling login ability by starring an

account’s password, 225
file permissions, 220
file/directory owner, 221
groupadd command, 222
groupdel command, 222
groups command, 222
ls utility, 222
marking the root file system as read-only,

227
planning security permissions, 225
root account, 221
running Tomcat as a daemon, 225
SGUI bit, setting, 224
sudo command, 221
SUID bit, setting, 224
superuser accounts, 221
useradd utility, 222
userdel command, 222
usermod command, 222
viewing permissions, 222
working with users, groups, and owners,

221
unpackWARs attribute, 61, 72
<url-pattern> element, 81, 83, 87
user database

adding, using the admin application,
187

advantages of, 185
altering while the server is running, 186
configuring, 185–186
creating a new user, 190
editing and deleting, using the admin

application, 188–189
global settings, in server.xml, 185
<GlobalNamingResources> element, 185
saving changes in tomcat-users.xml, 185
setting the digest attribute, 186
superseding of the memory realm, 183

■INDEX 321

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 321

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

using as a realm at the engine level, 185
using digested passwords with, 186

<user> element, 183
<user> entry, 64
user requests, intercepting, 111
user sessions

checking session information, 101
configuring, 121
configuring a JDBC store in server.xml,

125
contrasting the standard and persistent

session managers, 123
creating a database in which to store

sessions, 125
default session timeout, 102
file store, configuring, 124
inactive session, 102
JDBC store, configuring, 124
<Manager> element, 121, 126
maxIdleBackup attribute, 123
maxIdleSwap method, 123
minIdleSwap method, 123
persistent file store attributes, 124
persistent JDBC store attributes, 124–125
persistent session manager, 121–123
providing reliable service despite server

failures or restarts, 121
removing idle sessions from memory, 121
replicating across more than one server, 121
saveOnRestart attribute, 123
saving session information across restarts,

121
session managers, common and standard

attributes, 122
session managers, configuring, 121
session replication algorithm, 130
session timeout, 121
SQL script for creating a JDBC-

store–compatible database, 125
<Store> element, 124, 126

useradd command, 294
useradd utility, 222
User-Agent header, 288
<user-data-constraint> element, 87, 191, 245
userdel command, 222
usermod command, 222
userPassword attribute, 205
userPattern attribute, 206
users

creating (Unix), 221
creating (Windows), 213

■V
<Valve> element, attributes of, 130
valves

access log valves, server.xml example, 115
access log valves, table of attributes, 113–114

access logging, 112
applying in chains, 111
AWStats, 113
benefits of, 112
blocking denial-of-service (DoS) attacks, 116
common log file format, 113
configuring, 63
configuring a node’s replication valve, 130
configuring at different levels within the

Tomcat hierarchy, 111
<Context> container, 112
context-level valves, 112
<Engine> container, 112
engine-level valves, 112
filtering by the client’s host, 116
filtering by the client’s IP address, 116
<Host> container, 112
host-level valves, 112
installing at the engine level, 63
org.apache.catalina.Valve Java interface, 112
remote address filter request valve, table

of attributes, 116
remote host filter request valve, 116–117
request dumper valve, configuring and

using, 117–119
request dumping, 8
request dumps for debugging, 112
request filter valves, using, 116
request filtering/blocking, 112
single sign-on for web applications, 112
single sign-on valves, configuring, 120
single sign-on valves, table of attributes, 119
standard Tomcat-supplied valves, table of, 112
testing thoroughly, 63
<Valve> entry, 115
Webalizer, 113
writing errors to a log file in a standard

way, 113
VBScript, 2
VeriSign, 242
View Results tree listener, 280
Virtual Directory Creation Wizard, 156
virtual hosting

adding aliased network interfaces, 254
adding an AJP connector to server.xml, 264
adding physical network interfaces, 254
aliasing, configuring for Unix, 256
aliasing, configuring for Windows, 254
Apache setup for virtual hosting with

Tomcat, 266
changing the index.html file served by

Apache, 266
configuring a NIC with more than one IP

address, 254
configuring Tomcat to serve multiple

virtual hosts, 258
creating a virtual host in server.xml, 260

■INDEX322

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 322

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<Engine> element, 264
ifconfig utility, 256
implementing with Apache and Tomcat,

264
implementing with Tomcat, 257
index.hml page for shared hosting, 258
index.jsp page common to all hosts, 259
IP-based, 253
jk.properties, modifying, 269
jsp.xml configuration file, 262
log4j.properties logging file, 261
mapping local IP addresses in a hosts file,

263
matching Apache’s virtual hosts with

Tomcat’s, 265
name-based virtual hosting, 256
requirements for IP addresses, 254
ROOT.xml configuration file, 262
running the three virtual hosts using

a Unix shell script, 270
running the three virtual hosts using

a Windows batch file, 270
sample jk2.conf file generated by Ant, 265
server.xml for www.catalinabook.com

using a separate JVM, 268
setting a JVM for each virtual host, 267
setting up one <Engine> element per

virtual host in server.xml, 267
testing the Tomcat virtual hosting, 263
types of, 253
web.xml file for the jsp web application,

259
web.xml file for the ROOT web

application, 259
workers.properties file for separate virtual

hosts, 269
workers2.properties file, 265
www.catalinabook.com, final directory

structure, 269
virtual hosts, 147
virtual memory, 274
<VirtualHost> entry, 151
visualization listeners, 283

■W
web

Common Gateway Interface (CGI), 1
Hypertext Transfer Protocol (HTTP)

requests, 1
Perl language and CGI applications, 1
static vs. dynamic content, 1

web application class loader, 137
class patterns delegated, 140
delegation pattern not used, 140

web applications
503 (unavailable) error code, 100
checking session information, 101

classes directory, 79
configuring error pages, 85
context component, 31
context path, assigning, 31
context path, definition of, 77
default context, 31
defining a servlet, 78
definition of, 31
deploying from a local machine, 103
deploying from a remote WAR file, 104
Domain Name System (DNS), 31
instructing Tomcat to reload a web

application, 141
JSP pages, 77
knowing how to administer effectively, 71
manager web application, 31
mapping requests to JSP or HTML pages,

78
mapping URLs to make servlets available

to users, 78
META-INF directory, 32, 77
naming an application after its directory,

31
organized as packed or unpacked formats,

31
overriding classes in the shared and

common class loaders, 140
partitioning into public and private areas,

32
problems when web applications run

servlets, 78
providing a separate context XML file, 77
public and private resources, 76
resource definitions in web.xml, 78
<resource-env-ref-name> element, 85
ROOT, definition of, 31
scalability of, 273
server directory structure as overlaying the

file system structure, 77
Servlet 2.4 specification, 76
servlet mappings, 78
servlet names and web.xml, 78
Servlet specification, 32
<servlet-class> element, 78
starting, stopping, and restarting, 100
stop command, 101
tag extensions, 80
tags folder, 80
TLD configuration files, 80
tlds folder, 80
typical makeup of, 76
undeploying, 101
understanding the structure of, 31
using the path parameter for deploying,

104
using wildcards (*) in servlet mappings, 78
web application class loader, 140

■INDEX 323

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 323

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

web archive (WAR), 31
WEB-INF directory, 32, 77, 79

web archive (WAR), 31
web spider, creating in JMeter, 290
Webalizer, 113
webapps directory, 227

changing its location, 31
deploying web applications in, 31

webdav web application, removing, 228
WEB-INF directory

classes directory, 79
contents of, 79
lib folder, 79
specialized subdirectories of, 32
storing private resources in, 32
tag extensions, 80
tags folder, 80
tlds folder, 80

<web-resource-collection> element, 87, 191,
238

<web-resource-name> element, 87
web.xml, 30, 122, 172

adding Apache-style Server Side Include
(SSI) features, 66

adding settings to, 238
allowing access by an admin role user,

code example, 96
<auth-constraint> element, 87, 191, 238
<auth-method> element, 89
code example, 64
<context-param> element, 80
declaring the use of a resource in, 46
default servlet <servlet-mapping> setting,

code example, 83
default servlet <servlet> setting, code

example, 83
default servlet definitions, 65
default session setting for Tomcat, code

example, 84
default Tomcat MIME mapping, code

example, 84
<description> element, 80–83, 85–87, 89
<dispatcher> element, 82
<display-name> element, 81–82, 87
<distributable> element, 80
error page configuration, code example,

85
<error-code> element, 85
<error-page> element, 85
<extension> element, 84
<filter> element, 80
<filter> entry, code example, 81
<filter-class> element, 81
<filter-mapping> element, 81
<filter-name> element, 81
<form-error-page> element, 89
<form-login-config> element, 89

<form-login-page> element, 89
<GlobalNamingResources> element, 85
guaranteeing data integrity with a security

constraint, 245
HTTP Content-Type header, 67
<http-method> element, 87
<icon> element, 81–82
<init-param> element, 81–82
invoker servlet, 65
<jsp-file> element, 82
<load-on-startup> element, 82
<location> element, 85
<login-config> element, 89, 191, 239
manager web application’s <resource-env-

ref> setting, code example, 86
manager web application’s login

configuration, code example, 89
manager web application’s security

constraint, code example, 88
mappings for backward compatibility with

Tomcat scripts, 96
MIME mappings, configuring, 67
MIME types and mappings, 84
<mime-mapping> element, 67, 84
<mime-type> element, 84
overloading the server with stale sessions,

67
<Parameter> element, 80
<param-name> element, 80–82
<param-value> element, 80–82
<realm-name> element, 89
reference to a JDBC data source, code

example, 86
<res-auth> element, 86
<res-ref-name> element, 86
<res-sharing-scope> element, 86
<res-type> element, 86
resource definitions in, 78
<resource-env-ref> element, 85
<resource-env-ref-name> element, 85
<resource-env-ref-type> element, 85
<resource-ref> element, 86
<role-link> element, 83
<role-name> element, 83, 87, 89, 238
<run-as> element, 82
section specifying a login mechanism, 239
sections protecting a web application, 238
<security-constraint> element, 87, 191,

238, 245
security-related elements in, 191
<security-role> element, 83, 89, 191
<security-role-ref> element, 82–83
Servlet 2.4 web applications and, 64
<servlet> element, 82
servlet for JSP pages, 65
servlet mappings, 66
servlet names and, 78

■INDEX324

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 324

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

<servlet-class> element, 82
servletContextName property, 259
<servlet-mapping> element, 66, 83
<servlet-name> element, 82–83
session timeout, configuring, 67
<session-config> element, 67, 84, 276
<session-timeout> element, 67, 84, 276
Tomcat’s default welcome files, code

example, 85
<transport-guarantee> element, 87
<url-pattern> element, 81, 83, 87
<user-data-constraint> element, 87, 191,

245
web application defaults, configuring, 64
<web-resource-collection> element, 87,

191, 238
<web-resource-name> element, 87

welcome files, configuring, 67
<welcome-file> element, 84
<welcome-file-list> element, 84
Windows Environment Variables dialog box, 12
Windows file system

adding a user account at the command
line, 214

addusers utility, 215
Administrator account, 213
assigning conflicting permissions, 217
assigning permissions (command-line), 217
assigning permissions (GUI), 216
assigning permissions to Tomcat’s

directories, 220
cacls utility, 217
calculating the space needed for an NTFS

conversion, 211
Computer Management tool, 213
configuring file permissions, 219
convert utility, 211
creating a special user account for

running Tomcat, 218
creating users and groups, 213
deleting a user, 215
Deny settings as overriding Allow settings,

217
domain security policy, 218
FAT32, 210
File Allocation Table (FAT), 209
file permissions, 212
file/directory owner, 213
folder permissions, 211
granting read access to the JDK directory,

220

group permissions, 217
inherited permissions, 216
installation of Tomcat as a service, 218
Local Users and Groups icon, 213
modifying a machine’s local security

policy, 218
net group utility, using, 214
net localgroup utility, using, 214
net user command, 214
NT file system (NTFS), 209
permissions, 209
planning security permissions, 217
Properties window, Security tab, 216
revoking file system permissions for the

root directory, 219
revoking user access, 217
superuser accounts, 213
turning off permission inheritance for an

object, 217
types of, 209
using the Properties page to show the file

system type, 210
viewing file or directory permissions, 216
Windows Resource Kit, 215
Windows XP Professional, 216
working with users, groups, and owners, 212

Windows Resource Kit, 215
work directory, 31
workers

assigning types of, in mod_jk, 148
configuring a Tomcat worker, 149
configuring the host, 148
definition of, 147
identifying, 147
running multiple Tomcat workers, 147
setting the cache size, 149
setting the load-balancing factor, 149
setting the port, 148
workers.properties file for mod_jk, 149
workers.properties file, format of, 148

workers.properties, 269
workersIIS.properties, 155
World Wide Web Publishing service, 156

■X
XA operation model, 173
-Xincgc parameter, 274
XML. See Extensible Markup Language

(XML)
-Xms<size> parameter, 273
-Xmx<size> parameter, 273

■INDEX 325

Find it faster at http://superindex.apress.com
/

7850chIDXFINAL.qxd 2/28/07 11:21 AM Page 325

https://mumbaibscitstudy.blogspot.com/

https://mumbaibscitstudy.blogspot.com/

	Pro Apache Tomcat 6
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Appendix A
	Index

