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Abstract

Parameterizing or flattening a triangle mesh is necessary for many
applications in computer graphics and geometry. While mesh pa-
rameterization is a very popular research topic, the vast majority of
the literature is focused on minimizing distortion or satisfying con-
straints related to certain applications such as texturing or quadri-
lateral remeshing. Certain downstream applications require adher-
ence to more general, geometric constraints – possibly at the cost
of higher distortion. These geometric constraints include require-
ments such as certain vertices lie on some line or circle, or a planar
curve or developable region keeps its shape during parameteriza-
tion. We present a framework for enforcing such constraints, mo-
tivated by the As-Rigid-As-Possible parameterization method, and
demonstrate its effectiveness through several examples.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: mesh parameterization, geometric constraints, vector
field, geometry processing

1 Introduction

The parameterization, or the flattening of 3D triangle meshes is a
fundamental task in computer graphics and geometry with appli-
cations including, but not limited to: texturing, remeshing, surface
fitting and mesh repair. The problem, due to its importance and
inherent difficulty has been a topic of intense research, which con-
tinues to this day, as well.

In mesh parameterization our goal is to map a triangle mesh em-
bedded in 3D to the plane, i.e. compute a pair of coordinates (usu-
ally denoted by u and v) for each point on the mesh. For meshes
with disc topology, this mapping is continuous and piecewise-
affine, which means that in practice it is sufficient to determine the
coordinates of the mesh vertices. Restricted to a triangle, a parame-
terization is simply an affine mapping, which can be represented in
local coordinates by a 2× 2 matrix corresponding to the Jacobian
of the function, see Figure 1. The distortion of the parameterization
is quantified by considering these Jacobian matrices, which depend
linearly on the vertex coordinates [Hormann et al. 2007].

Up until now, the research community has been mainly con-
cerned with minimizing the distortion of the parameterization. A
huge variety of distortion measures have been proposed along with
efficient algorithms for their minimization. Nevertheless, there ex-
ist practical applications, where the demand to preserve and en-
force certain geometric constraints is considered even more impor-
tant than low geometric distortion. A large amount of work has
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concentrated on constraints involving only discrete vertex positions
[Eckstein et al. 2001; Kraevoy et al. 2003] and constant coordi-
nate lines [Bommes et al. 2009; Myles and Zorin 2013], mostly in
the context of texture mapping and quadrilateral remeshing, respec-
tively.

In this paper we consider a more general class of high-level pa-
rameterization constraints that define how certain entities on the
mesh must be mapped to the domain. Some important examples of
such geometric constraints are:

(C1) A sequence of edges is to be mapped to a line.

(C2) Vertices of a closed sequence of edges are to lie on a circle.

(C3) Angles between certain edges are prescribed, including or-
thogonality or parallelism.

(C4) A feature curve is to preserve its shape.

(C5) A planar or developable region is to preserve its shape.

To our knowledge – despite the vast amount of published re-
search on parameterization – these constraints have not yet been
considered in such generality; and we are aware of only a few iso-
lated attempts to enforce certain proper subsets of them. Further-
more a common shortcoming of all previous approaches to con-
strained parameterization is that they ignore metric properties, i.e.
they are able to influence the (relative) orientation of parts of the
mesh, but unable to constrain their (relative) size. Our main contri-
bution is a method to influence simultaneously the angles and edge
lengths of the flattened mesh through constraints that are linear in
the unknowns, within a two-phase parameterization algorithm sim-
ilar to the As-Rigid-As-Possible and vector field-based global pa-
rameterization methods.

In what follows, we first give an overview of previous work and
evaluate known parameterization algorithms according to their ca-
pability to enforce the constraints under consideration. Then, we
describe a framework for enforcing geometric constraints during
parameterization and demonstrate its effectiveness through several
examples.

2 Previous Work

2.1 Geometric Constraints in Parameterization

Mesh parameterization has a vast and diverse literature, here we
only refer to the comprehensive survey [Hormann et al. 2007] and
the references therein. However, we know about only a few, isolated
works that consider geometric constraints. [Bennis et al. 1991] and
[Azariadis and Aspragathos 2001] investigate the problem of pre-
serving the shape (geodesic curvature) of feature curves. [Wang
2008] and [Igarashi et al. 2009] give methods that preserve the
length of curves in the context of cloth and garment design. [Vallet
and Lévy 2009] extend the ABF algorithm to handle geometric con-
straints such as (C1). [Yin et al. 2008] map boundary curves to cir-
cles with a conformal parameterization – however, this only applies
to boundary curves and a fixed domain (i.e. fixed circles). [Myles
and Zorin 2012] developed a global parameterization method also
capable of constraining isolines [Myles and Zorin 2013], this may
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Figure 1: Mesh parameterization: affine functions (JT ) map each triangle from a reference position (in local coordinate system X −Y ) to its
final position in the u− v plane.

be modified to handle more general constraints, such as (C1) and
(C3) – handling constraints such as (C2) or (C4), however, requires
constraining the relative scale of edges, which problem has not been
addressed by said work. [Lipman 2012] and [Kovalsky et al. 2014]
control the singular values of a parameterization using convex pro-
gramming – this can be used to enforce constraints like (C5).

2.2 Constrained deformation and fitting

The problem of enforcing geometric constraints has received much
attention in the actively developing field of constrained mesh de-
formation, see the recent survey [Mitra et al. 2013] and the ref-
erences therein. A recent work, close to ours in spirit, is that of
[Bouaziz et al. 2012], where certain kinds of geometric constraints
are enforced during the deformation process: first, they fit each con-
strained subset independently with the required shape, then merge
these mesh elements together in a global optimization step. The
constrained fitting problem [Benko et al. 2002], arising in the re-
verse engineering of CAD-models, is another related research field.

2.3 Evaluation of Known Parameterization Methods

The enforcement of geometric constraints requires a parameteriza-
tion method which allows us to prescribe both the relative orien-
tation and the scale of mesh edges. In terms of vertex positions
such constraints lead to nonlinear, even transcendent equations –
which might be prohibitively expensive to solve for practical prob-
lem sizes.

Angle-based methods, such as ABF [Sheffer and de Sturler
2001] might be capable of enforcing geometric constraints, as was
already noted by [Vallet and Lévy 2009], but constraining the rel-
ative lengths of edges, as well as their angles, leads yet again to
quadratic equations in terms of vertex coordinates (when the planar
embedding is constructed from the optimized angles).

More recent conformal parameterization methods are based on a
proper discrete notion of conformality and optimize for edge scal-
ing factors [Ben-Chen et al. 2008; Springborn et al. 2008; Myles
and Zorin 2012], which might make them appear promising from
the viewpoint of enforcing geometric constraints. However, a con-
formal map of a surface to the plane is uniquely determined by the
boundary conditions. Furthermore, when one computes a confor-
mal map in such a strict sense, one can prescribe either the curvature
of the boundary curve (i.e. the angle between adjacent boundary
edges) or the length of the boundary edges – but not both. Thus, al-
though we could declare interior edges as parts of the boundary and
transform constraints into boundary conditions, constraints such as
(C2), (C4) and even (C3) cannot be generally satisfied by a proper

conformal parameterization. This limitation has already been ob-
served by [Myles and Zorin 2013], who remark that the most nat-
ural way to extend such conformal parameterization methods is to
exploit the connection between conformal maps and the smoothest
direction field on the surface – which leads to a method somewhat
similar to our approach.

3 Analysis of Geometric Constraints

Our aim is to reduce the semantic high-level constraints (C1)-(C5)
mentioned in section 1, to low-level constraints involving typical
optimization variables such as positions or angles. Constraints such
as (C1), and (C3) can be decomposed immediately into a set of
requirements involving angles between certain edges of the mesh.
For (C2) we require that a closed sequence of edges shall map to a
closed polyline with a circumscribed circle, i.e. a cyclic polygon.
Assume that we have a closed loop made out of N edges on the
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βi

βi

li

li+1

Figure 2: Notations for circle constraints.

mesh, with edge lengths l0, l1, . . . , lN−1. Now imagine that in the
parameterization domain, said vertices lie on a circle, and each of
the edges keeps its length or gets scaled by the same factor. For
a cyclic polygon the side lengths divide the length of the whole
polygon approximately in the same way as the respective sector
angles divide 2π . Also observe that the triangle corresponding to
each sector is equilateral. Then, given two neighboring edges li and
li+1 (see Figure 2):

li + li+1

∑
N−1
i=0 li

=
αi +αi+1

2π

βi +βi+1 = π− αi +αi+1

2
.



Substituting the former equation into the latter, we get the following
for the interior angle between the edges:

βi +βi+1 = π

(
1− li + li+1

∑
N−1
i=0 li

)
.

If the loop is actually a hole loop (interior boundary) of a multiply
connected surface, we take the conjugate of these angles. We have
made no assumption about the coplanarity of the edges, as for any
set of edge lengths (that is possible on meshes), there exists a unique
cyclic polygon [Pinelis 2005].

For (C4), i.e. for planar feature curves, the situation is trivial if
the edges are exactly coplanar. In other cases, we fit a plane to the
vertices, then project the vertices to the plane spanned by them for
the angle calculations.

In summary, all of the constraints we have been considering can
be reduced to some combination of the simple constraint that two
edges shall span a prescribed angle and - excluding (C1) and (C3) -
the ratio of their lengths shall be unchanged.

4 Parameterization with Geometric Con-
straints

We propose to compute a parameterization in two steps:

• First, we map the triangles individually to the plane, using
rotations.

• Then, we ’stitch’ the rotated triangles together into a planar
mesh.

We will see, that our scheme has the advantage of allowing us to
control both the relative orientation and the relative scale of mesh
edges – this is how we improve upon previous similar methods
proposed in the context of global parameterization and quadrilat-
eral remeshing, which only considered constraining the isoline-
structure of the parameterization and ignored the actual planar em-
bedding. We elaborate on these steps in the following, along with
details about the enforcement of geometric constraints.

4.1 Step 1 – Computing the Rotations

For the motivation of our initialization scheme, consider the naive
way to compute a set of rotation matrices by isometrically flattening
the 3D mesh on a per triangle basis, traversing a spanning tree of the
faces starting from an arbitrary root. Obviously, such an approach
would result in a highly non-optimal, even degenerate mapping af-
ter the subsequent ’stitching’ phase, as the Gaussian curvature at a
vertex is equal to the angular defect for the corresponding triangle
fan, i.e. the amount by which the fan fails to close up after iso-
metric flattening. This can be remedied by applying an appropriate
amount of extra rotation on each triangle during the traversal of the
spanning tree, with the aim of distributing the Gaussian curvature
evenly in each triangle fan, see Figure 3. The criterion that in each
inner triangle fan (and for multiply connected surfaces, around each
homology generator) the net effect of the rotations shall counteract
the Gaussian curvature can be expressed as an underdetermined set
of linear equations for the rotation angles, of which we want to
compute the solution with the smallest `2-norm.

minimize
ωi j , i j∈E

‖ω‖2
2

subject to dT
0 ω = K,

where d0 is the vertex-edge adjacency matrix, ω is the vector of
unknown rotation values for each (dual) edge, and K is the vector

of Gaussian curvatures (for the interior vertices and homology gen-
erators). We note that this is practically equivalent to the so-called
’trivial connection’ method for finding the smoothest direction field
on a triangle mesh [Crane et al. 2010].

ω0

ω1

ω2

ω3

ω4

ω5

ω6

K α1

α2

α3

α4
α5α6

α7

Figure 3: Interpretation of Step 1.

Enforcing Geometric Constraints

As we have an underdetermined linear system we can add any linear
equations or split one of the existing ones.

• If two adjacent edges are required to make a prescribed angle,
for interior vertices we split the corresponding equation, re-
quiring that the rotations for the dual edges between the two
constrained ones result in the given alignment, while assign-
ing constant zero value to the rotations over the constrained
edges, see Figure 4. For boundary vertices we simply add
an analogous additional constraint to the system. We have ob-
served that for multiply connected meshes, constraints involv-
ing inner boundary curves might conflict with the ones pre-
scribing zero curvature. Thus, we omit the default constraint
for inner boundary loops in the presence of a user-defined one.

• When two separate edges are required to span a prescribed
angle, we build a dual path (by simple breadth-first search)
between them and constrain the sum of rotations accordingly.
More precisely, refer to Figure 5: assume that we have two
(oriented) edges e1 and e2 constrained to span an angle ϕ , be-
longing to faces f1 and f2, which have, as their basis vectors
the (oriented) edges b1 and b2. If α and β are the angles be-
tween e1 and b1 and e2 and b2 respectively, our constraint can
be expressed as β −α

′
= ϕ , where α

′
is the angle between

b2 and e1. Along the chosen dual path b2 is rotated with re-
spect to b1 by the angles dictated by the isometric flattening,
denoted by ω and by the additional unknown rotations we
apply along the traversed dual edges. Thus, as vectors trans-
form with the inverse of coordinate transforms, these rotations
have to be subtracted from α . So, in summary: α

′
=α−∑ω ,

and after separating the constants and the unknowns, our con-
straint becomes the following:

∑
(dual path)

ωadd. = ϕ−β +α− ∑
(dual path)

ωisom..

• For the preservation of planar regions, when an edge belongs
to two constrained faces, we consider the corresponding rota-
tion as constant zero and simply remove them from the opti-
mization problem. It might appear natural to do the same for
the edges on the boundary of the constrained region, but in
our experience doing so causes numerical stability problems
when solving the equations.
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Figure 4: Notations for constraints involving two adjacent edges.
The effect is shown on the right, when the prescribed angle is ϕ = 0.
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Figure 5: Notations for constraints involving two separate edges.

It could easily happen that the prescribed set of constraints lead to
an infeasible problem and thus a contradictory set of equations, e.g.
when two edges shared by a triangles are required to make a certain
angle. Such problems however are readily alleviated, by simply
refining the mesh in the vicinity of the problematic regions.

4.2 Step 2 – Computing a Planar Mesh from the
Rotations

Next, we want to find a mapping of the mesh to the plane, which
has as its Jacobians, matrices that are as close to the rotations (in
Frobenius norm) as possible. This means solving the following
least-squares problem for the vertex positions u and v:

minimize
u,v

∑T ‖JT (u,v)−RT ‖2
F . (1)

This is essentially the same energy that is used in As-Rigid-As-
Possible parameterization [Liu et al. 2008] and a variety of vec-
tor field-based global parameterization and quadrilateral remeshing
methods [Kälberer et al. 2007; Bommes et al. 2009; Myles and
Zorin 2012]. It is known that the minimization of this quadratic
form is equivalent to solving a pair of Poisson equations:

Lu = bu

Lv = bv,

where L is the well-known cotangent discretization of the Lapla-
cian [Pinkall and Polthier 1993], while bu,bv are the (discrete) di-
vergences of the rows of the rotation matrices - see e.g. Liu et al.
[Liu et al. 2008] for explicit formulas.

Enforcing Geometric Constraints

Geometric constraints are actually enforced in the previous phase
(by computing proper rotations); in the second phase, the only thing

we can do (without needing expensive non-linear optimization), is
to ensure that constrained edges get mapped to the plane – not just
in a least-squares sense – but with exactly the given rotation ma-
trices. Actually what one would actually want is that all edges
involved in a given constraint should get mapped with the same
multiple of their corresponding rotation matrices, to ensure that the
constrained shape keeps its shape (for line constraints (C1) each
constrained edge can have different scaling factors). It is one of our
important observations that we can also include these multipliers
(denoted by α) into the optimization, resulting in a set of equations
such as the following:

u j−ui = αi j
(
R11
(
x j− xi

)
+R12

(
y j− yi

))
v j− vi = αi j

(
R21
(
x j− xi

)
+R22

(
y j− yi

))
,

which gives us an underdetermined linear system:

C

 u
v
α

= d.

If we have preferred scaling factors, we can take this into account
by adding weighted regularization-type terms to our quadratic ob-
jective:

∑
(i j)

wi j
(
αi j−ai j

)2
,

where ai j is the prescribed scaling factor, wi j is the weight of the
energy term associated with the edge ei j. In what follows, we de-
note the diagonal matrix containing the weights by W and the set of
preferred scaling factors by a.

The resulting equality-constrained quadratic program can be
solved via the method of Lagrange multipliers, i.e. by solving the
following (indefinite) linear system: L

L
W

CT

C 0


 u

v
α

λ

=

 bu
bv
a
d

 .
Note that computing the rotations in Step 1 and enforcing them via
the linear system above is a procedure that is completely indepen-
dent of the energy we use in Step 2 – instead of (1), one could
choose any other (quadratic) functional of the vertex positions.

Enforcing Local Injectivity

Unfortunately, simply solving the linear system above does not nec-
essarily yield a valid result in many cases. First, the scaling factors
are not guaranteed to be positive. Second, as a cotangent Laplacian
is used to fit a valid parameterization to the rotations, the resulting
map might not be (locally) injective, i.e. certain triangles might
reverse their orientations. There are ways to directly ensure that tri-
angles do not flip during the parameterization, either by exploiting
the injectivity of convex-boundary barycentric mappings [Kós and
Várady 2003] or by resorting to more sophisticated nonlinear opti-
mization [Lipman 2012; Bommes et al. 2013; Schüller et al. 2013].
We propose a much simpler weighted least-squares heuristic that
is also capable of resolving these problems in most practical cases.
The basic idea is to assign a weight to each triangle in the fitting en-
ergy, and should a triangle reverse its orientation in the parameteri-
zation, we increase its associated weight and repeat the fitting step
with the new Laplacian matrix. We have found that increasing the
weights in increments of 5 allow us to compute a (locally) injective
constrained parameterization for the cost of no more than 20− 40
global iterations. We apply an identical scheme to the weights of
scaling factors – in that case, the weights are multiplied by 10 in
each iteration.
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Figure 6: Results for Test Model 1.
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Figure 7: Results for Test Model 2 (after 3 triangle weight iterations).

5 Results

5.1 Implementation

Our C++ implementation is built upon the OpenMesh library
[Botsch et al. 2002]. The underdetermined and KKT systems
are solved respectively with SuiteSparseQR [Davis 2011] and
CHOLMOD [Chen et al. 2008].

5.2 Test Examples

We illustrate the capabilities of our method through several exam-
ples. These represent decimated, low resolution meshes, thus the
reader can observe the mapping of triangles from 3D to 2D. In
real applications, of course, meshes with much higher densities are
used. The constraints were chosen on the basis of being illustrative,
not in the context of any specific application. We stress, that we
only prescribe the geometric shape of the constrained regions, their
(relative) scale is optimized by our algorithm (for lines, each edge
is scaled independently). Note: the prescribed scaling factors and
weights were all set to 1, unless otherwise noted.

Figure 6, shows results for a multiply connected model of low
resolution – Curve 1 is to be preserved, while the inner boundary
Curve 2 is mapped to a circle, and Curve 3 to a line. For Fig-
ure 7, we require that Curve 1 is mapped to a line, while Curve 2
is planar and preserves its shape, thus effectively retaining a highly
non-convex shape for the boundary. For Figure 8, the planar Region
1, and boundary Curve 1 shall preserve their shapes, while Curves

2 to 11 shall map to lines, forming an appropriate set of rectan-
gles aligned with each other and to the boundary. For Figure 9, the
planar Region 1 and the planar Curve 1 are to be preserved, while
Curve 2 and 3 are to be mapped to circles.

5.3 Discussion

Our method provides a good framework for constrained parameter-
ization; in the second phase, we can enforce any constraint that
can be expressed as linear equations involving vertex positions.
Adding constraints formulated by linear inequalities might lead to
a quadratic program which could be solved efficiently with mod-
ern interior-point methods. Also, as we have remarked earlier, our
method is completely generic with regards to the minimized energy
or distortion measure – only the energy minimized in Step 2 needs
to be changed to incorporate geometric constraints into other pa-
rameterization methods (assuming they directly optimize the vertex
positions).

Triangle flips are currently prevented by our simple weighted
least-squares heuristic; more general methods for computing (lo-
cally) injective parameterizations (a non-convex problem) either
apply certain approximations to arrive at a convex optimization
problem [Lipman 2012; Bommes et al. 2013] or require a flip-free
mapping as a starting point [Schüller et al. 2013]. An alternative
heuristic solution has been proposed recently by [Martinez Esturo
et al. 2014], based on smoothing the minimized energy. Finding the
method giving an acceptable compromise between robustness and
efficiency is subject of future work.
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Figure 8: Results for Test Model 3 (Fandisk) (after 21 triangle weight iterations).
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Figure 9: Results for Test Model 4 (after 3 triangle weight iterations).

6 Conclusion and Future Work

We have presented a framework capable of enforcing geometric
constraints in the course of parameterizing triangle meshes and pro-
vided a more general solution than previous approaches. By means
of this method various geometric features, such as, lines, circular
arcs and various subregions can be constrained, while the ARAP
energy is also minimized. The method can easily be adapted to
parameterization methods that minimize alternative distortion mea-
sures.

It opens up interesting avenues for future research, where our
approach is combined with methods recently proposed in the con-
text of constrained deformation [Tang et al. 2014] or shape-space
exploration [Yang et al. 2011]. We would also like to apply our
algorithms to several interesting problems, such as controlled ap-
proximation of meshes using trimmed splines or transfinite surfaces
and investigate constraint systems requested by different engineer-
ing applications.
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