

BALLISTICS

Sponsored by the Ballistics Division of NDIA in association with the International Ballistics Committee

Behind Armour Effects at Shaped Charge Attacks

Prof. Dr. M. Held

Schrobenhausen, Germany

Unlimited Pages and Expanded Features

BALLISTICS

Sponsored by the Ballistics Division of NDIA in association with the International Ballistics Committee

Content

Introduction
Diagnostic vessel
Light effects
Gaseous products
Temperature
Spall fragments
Blast effects &

HE equivalence

Incendiary effects
Ignition & Initiation
Summary

Introduction

Click Here to upgrade to

Location	Phenomena	Efficiency Currier	Percentage
Internal	Mechanical	• Residual Jet • Fragments	
	Blast	Pressure history	
	Thermic	Heat	
	Optical	Dazzle Dust	
	Chemical	Gaseous (HE-Products)	
External	Mechanical	• Fragments • Blast	

Shaped Charge Jets Perforations

Don Kennedy

Diagnostic Vessel

with 2.4 m³ Volume

rge on Top

Pictures

Click Here to upgrade to Unlimited Pages and Expanded Features

Cobra with Cu liner in the diagnostic vessel

tures

Your complimentary
use period has ended.
Thank you for using
PDF Complete.

tures

Click Here to upgrade to Unlimited Pages and Expanded Features

with Gaseous Analysis and Piezoelectric Pressure Gauges

Measuring Tank No.

Shaped Charge: Orig. Cobra

HE - Weight : 1480 g Cu liner - Weight : 250 g

Standoff : 300 mm

Barrier : 300 mm

Gaseous Analysis

(Oxygen Absorption in Pyrogallol)

Oxygen before Firing : 20.9 % Oxygen after Firing : 20.6 %

Found in Water after 50 Liter Gas:

Iron Fe 0.70 mg
Copper Cu 1.40 mg
Nitropenoxia NO Shows

Bottom

ses in mg

 $4 \times 145 = 580$ Boxes of 100 mm³

Blast Load Measurements

iauges

6 ficturesx 9 locations == 54 diagnostic points

54 dodecahedra
x 11 diaframa =
594 measurements,
distributed over the
radius and height
of the diagnostic vessel

iauges

6 ficturesx 9 locations == 54 diagnostic points

54 dodecahedra
x 11 diafragma =
594 measurements,
distributed over the
radius and height
of the diagnostic vessel

Click Here to upgrade to

p of diagnostic vessel

Fictutures

Expanded metal mesh

caeder, Matches

suring Device

suring Device

re

$$P_R = 2.2 at\ddot{u}$$

00 mm Barrier

$$P_S = 0.9 at\ddot{u}$$

bino Rats

bino Rats

bino Rats

Rats 200g

Incendiary Effects

Ignition &

Initiation Effects

Your complimentary use period has ended. Thank you for using PDF Complete.

4

Click Here to upgrade to Unlimited Pages and Expanded Features

Unlimited Pages and Expanded Features

Type of HE	v²d (mm³/μs²)	Sign in Figure
HNAB	3	
PBX 9404	4	•
RDX/Wax 88/12	5	•
TNT/RDX 15/65	6	•
PETN (1.77)	13	
Comp. B	16	*
Н6	16.5	_
Detasheet C3	36 - 53	^
PBX 9407	40	
Tetryl	44	
C4	64	À
татв	108	±
PBX 9502	128	_

 $\triangle \square \bigcirc$ - no Initiation

🕨 🛑 - Initiation

The above diagram of the threshold impact velocities as functions of the diameters of the shaped charge jet (\triangle), projectile (\bigcirc), flyer foil (\bigcirc) and from FEM-calculations (x) for different high explosive charges gives a clear indication of the validity of the v²d-criterion.

M. Held 9th Symposium (int.) on Detonation 1416 - 1426 + 1432 - 1440, 1989

Reactions of Propellants and High Explosives

v²d or u²d criterion gives the ignition and initiation threshold values at shaped charge jet impacts

Less sensitive explosives are now not available against shaped charge jet loads

Take no explosives in the crew compartment, if you want to increase the survivability of the crew

nd Armour Effects after

Shaped Charge Jets Perforations

