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Intro

So you want to understand infrabayesianism, to hack to the center of that thorny wood and seek
out and recover any treasures hidden there? You’ve come to a correct creature for a guide. If you
want to journey there, make sure you’ve already got the necessary tools well in hand: some simple
decision theory, the basics of topology and linear algebra, and a little measure theory - for that last,
if you know how a Lebesgue integral is defined and why no reasonable σ-algebra can encompass
the full power set, then you’re already doing fine. If you find yourself struggling with such things,
reach out to me on Discord and I’ll see what we can do.

Infrabayesianism seems like exactly what we might need as alignment researchers: a way to
discuss all of our usual decision-theoretic questions while also getting to account for uncertainty
about the world, compensate for policy-dependent environments and adversarial selection, and even
talk about UDT puzzles. It does this by fundamentally being a decision theory that has explicit
reasonable machinery for handling Knightian uncertainty about the environment due to nonrealiz-
able or nonlearnable hypotheses while still permitting nontrivial inference and planning.

Three major brambly hedges block the way between you and understanding: the prickly snag-
ging of the frequently unclear, unintuitive, or just plain lacking notation used in the original in-
frabayesian sequence; thorny philosophical tangles up front and scattered throughout; and math
and its accompanying density of concept and notation getting thicker as we go deeper in. Follow
me, though, and we’ll slip right through them with barely a scratch, and eat a couple of delicious
berries from right off their vines. In fact, I can tell you up front that if you haven’t read the
original infrabayesianism sequence too closely and aren’t that familiar with its notation... that’s
an active benefit, because we won’t need most of it here. We won’t be cleaving perfectly to its
choices of notation or terminology, though I will eventually provide a dictionary between the two
as a postscript.
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1 Philosophical Tangles (Some Stay Dry While Others Feel
The Pain)

First, I’ll need to bring you through the hedge of philosophical brambles, tangled and sharp. We’ll
begin with the doctrine of the least-wrong answer, which we also call nonrealizability. Given that
infrabayesian reasoning should effectively strictly extend bayesian reasoning, we should expect that
any answer it produces will be the least-wrong answer in our hypothesis space - that is, if the right
answer is somewhere in there, our reasoning process should converge to it, and if it is not, then
there should be a reasonable sense in which it arrives at the least-wrong answer - that it got as
close as possible to the right answer among the limited hypotheses it could consider.

Infrabayesian deciding is also a fundamentally pessimistic process. Its stated goal is to maximize
the minimum payout it can attain, no matter how wrong it turns out to be about the state of the
world or what environments the world throws at that which uses it. To this end, we introduce a
fictitious agentic force to our model: that of the Demiurge. The Demiurge’s goal is not to make you
suffer, but rather to simply oppose you at every turn, that you might not simply get your way. It
is thus just as greedy as It is impersonal and mechanistic. Worse yet, the Demiurge is long-sighted
as well: if It could choose to put us in a universe with immediate payoff −0.8 and where we get +1
reward ever after, It will never do so if the alternative is a universe with immediate reward +0.999
but where our reward will never be positive again. We might model the Demiurge as existing outside
of time, looking at the possible paths that our IB-agent could take through the possible histories
the Demiurge could present it with, and behaving like a variational principle to present an argmin
to our IB-agent to live in. We don’t simply lose, though: the Demiurge is also intensely arrogant,
and seeks to preserve Its pride. This gives us a single major tactic: flipping off the Demiurge. How
does this work? Simply put, a key part of our plan will be to prepare to - whenever the Demiurge
presents us with a universe we know for sure can’t exist, an impossible possible world - tell It to
go pound sand up Its ass. Omega isn’t predicting perfectly? Causality has broken down? Time to
realize that we’re only inside the Demiurge’s dream and flip It off to force It to awake! I promise
you, we’ll make all of this philosophy explicit and mathematical soon enough, but the Demiurge
framing, dense and thorny as it may be, is something we’ll need to treat as real if we want to see
why it’s not actually necessary.

2 Measure Theory (Makes You Happy Living In A Gate)

The other major bramble is the density of mathematics, and there’s no royal road past that. I’ll
assume that you have the basic chops in measure theory and topology that I mentioned in the intro.
You can find my Discord trivially easily if you need math help and if you do and tell me IB is why
you’re DMing me, I won’t just block you as spam. To begin with, a little bit of notation that’s
more standard in computer science than in pure math:

Definition 2.1. Let f, g, h be functions with x ∈ dom(f), and with P a predicate that might hold
on dom(f). Then we will use f(x) = P (x)?g(x) : h(x) to mean that f is the function which takes
all x such that P (x) to g(x), and otherwise takes x to h(x).

This is technically off-standard notation for pure math, but it lets us express simple conditional-

2



branch functions much more cleanly.

Definition 2.2. Let X be a metric space. We say that a functional f : X → R is k-Lipschitz
continuous if there exists k ≥ 0 ∈ R such that for all x, y ∈ X, dX(f(x), f(y)) ≤ k · |x − y|. In
such a case k is called the Lipschitz constant of f .

Loosely speaking, the heart of it is that Lipschitz-continuous functions are ones that are not
only continuous in the ordinary sense, but they “don’t change all that fast, either”, and the speed
of that change is measured by the parameter k. In particular, for k ≤ 1, it means the function is
also absolutely and thus uniformly continuous, and that it’s also almost-everywhere differentiable.

Definition 2.3. Let µ, ν ∈ M±(X), and denote by L the set of all Lipschitz-continuous functions
f : X → [−1, 1] with Lipschitz constant at most 1. Then the KR-distance between the two measures
is given by dKR(µ, ν) := supf∈L|µ(f)− ν(f)|.

When we talk about Lipschitz continuity, we should be thinking of especially nice continuous
functions. In particular, every Lipschitz-continuous function is differentiable almost everywhere
and has derivative bounded by the Lipschitz constant everywhere it has a derivative. As for why
we choose this metric instead of any other, we should ponder the nature of convergence in arbitrary
metric spaces. If you choose your metric right enough (or wrong enough) you can construct metric
spaces where every sequence converges to any point in the space, or to no point in the space, and
quite a lot in between. Thus our choice of metric now will have to reflect what measures we want to
call similar to each other. We’re explicitly back in normative judgements here: beholding a series of
Dirac functions whose characteristic points’ values are a sequence like 1

2 ,
1
4 , · · · ,

1
2n which converge

to 0 in the usual metric sense in the reals, we would like to declare such a sequence to converge
to δ0. We achieve this through the use of the KR-metric: the naive metric where we just measure
both functions directly with respect to the other and see how much of their assigned “probability
mass” they assign away from each other is much too exacting a measure, allowing even deeply
pathological functions to wander into our argument to nitpick at any difference between where two
measures place their mass within a space. We want to think of our space X as a space, though,
equipped with all the usual comforts of euclidean distance, and only having to match our chosen
measures against functions that can only slope gently down or up lets us retain that intuitive notion
of distance. Better yet, choosing this measure makes our dual space (M± ⊕R)∗ well-behaved - it’s
just C(X, [0, 1])⊕ R - so that having picked the right notion of distance, we can talk meaningfully
about the space of functionals on the resulting space much more easily.

Definition 2.4. An affine measure is a point in M±(X)⊕ R with canonical form a⃗ = (µa, ba),
where µ is a (positive) measure and b ∈ R≥0. A super-affine measure s⃗ = (µs, bs) is an signed
measure such that µ−(1) + b ≥ 0, that is, the pessimal measure of any measurable set in X is still
nonnegative.

Of note, we should think of µa, µs as the expected total future payout from a given point in
a possible history onwards, and ba, bs as how well we’re already doing off-history. Recall that we
need to keep track of our off-history rewards to make sure the Demiurge isn’t pulling one over on
us poor finite creatures!
Affine and super-affine measures will be the building blocks from which we construct inframeasures
and infradistributions, along with a few regularity conditions that make our linear combinations of
such measures actually behave like we want a more rigorous notion of maximinned possible future
outcomes to behave. We’ll go over them in a few natural groups. But first: supporting definitions!
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Definition 2.5. Let D ⊆ M±(X)⊕ R be a set of super-affine measures. The expectation value
with respect to D of a function f ∈ C(X, [0, 1]) is defined to be ED := inf(µ,b)∈D(µ(f) + b), that
is, it’s equal to the greatest lower-bound for all super-affine measures in D of

∫
X
f(x)dµ, plus our

constant b.

Recall that we can interpret a signed measure µ as a linear function taken from C(C(X,R),R).

Definition 2.6. Let D ⊆ M±(X)⊕R be a set of super-affine measures. The upper completion of
D is defined to be D↑ := D+Msa(X) = {(µ∗, b∗)|(µD, bD) ∈ D, (µ, b)Msa(X) : µ∗ = µD + µ; b∗ =
bD + b}. More simply, D↑ is the result of adding, to each super-affine measure in D, every possible
super-affine measure on X; we can imagine a copy of Msa(X) sitting on top of every element of
D within Msa(X) (not a typo, these should be the same object) and take the resulting union inside
of Msa(X).

Definition 2.7. Let D,D↑ be as in the previous definition. The the basal or minimal set of D

is given by Dmin :=
⋂

C⊆Msa(X):C↑=D↑

C. More simply, to get the basal set of D, intersect together

every set of super-affine measures sharing an upper completion with D.

Trivially, every element of Dmin is an element of D; the archetypal element of Dmin looks like
an element of D that we can’t get just by adding an arbitrary super-affine measure to a different
element of D.

Proposition 2.8. (D↑)min = Dmin. (Dmin)↑ = D↑.

Definition 2.9. Let D ⊆ M±(X) ⊕ R be a set of super-affine measures. The following are all
regularity conditions we might require of such a set to make it maximal with respect to set inclusion
or impose further structure on it.

Trivial extension conditions:

� Nonemptiness: D ̸= ∅

� Topological Closure: D = D

� Convex-hull Closure: D = c.h(D)

� Upper Closure: D = D↑

These are all conditions ensuring set maximality while avoiding changing expectation value.

Minimal point and boundedness conditions:

� Positivity of Minimals: Dmin ⊆ Ma(X)

� Strong Boundedness of Minimals: For some compact C, Dmin ⊆ C. Equivalently, assuming
positivity of minimals, there is some λ̂ such that for all (λ · µ̃, b) = (µD, b) ∈ Dmin, we have

λ ≤ λ̂.

� Weak Boundedness of Minimals: The map taking f 7→ ED(f) is uniformly continuous.
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These are all conditions controlling the nature of the minimal set, and imposing continuity condi-
tions on the functionals they LF-dualize to.

Range conditions:

� Unitality: ED(0) = 0;ED(1) = 1

� Normalizability: ED(0) ̸= ED(1)

These are both conditions forcing our set to act more like a probability distribution.

The boundedness of minimals conditions here merit a little more care. We should recall that
Lipschitz continuity (for appropriate Lipschitz constant) is a strictly stronger condition than uniform
continuity, and as we’ll soon see, the strong boundedness condition on minimals is equivalent to
1-Lipschitz continuity under Fenchel duality. This thus justifies the nomenclature.

Definition 2.10. We will require that all our named properties on sets of inframeasures satisfy
all four of the trivial extension conditions. We call such a set an inframeasure if it also has
minimals that are positive and weakly bounded. An inframeasure that is also unital, we will call
an infradistribution (in the sense of a probability distribution). If an inframeasure has strongly
bounded minimals, we call it a bounded inframeasure; similarly, if an infradistribution has strongly
bounded minimals, we call it a bounded infradistribution.

We note here that normalizability is an extremely weak condition that still permits us to unitalize
an inframeasure into an infradistribution: we take (µD, bD) 7→ 1

ED(1)−ED(0) · (µD, bD − ED(0)). It

is in fact provable that a set S of super-affine measures fails to be normalizable exactly when every
element in Smin is a trivial measure of the form (0, b), assigning a measure-value of 0 to every
measurable set.
More worryingly, weak boundedness of minimals looks like a very strange condition if what you
care about is actual boundedness of minimals. Fortunately, this is where the dual picture comes
in: it is already established mathematical fact that the continuous linear functions of C(X,R) are
each equivalent to a signed measure from M±. Using Fenchel duality/convex conjugation, we can
turn our statements about sets of inframeasures with possibly-bounded minimals into statements
about the kinds of functions that arise when we go from functions to expectation values over
infradistributions of those functions. In particular:

Theorem 2.11. Let H be an infradistribution/a bounded infradistribution. Then the function
H∗ : f 7→ EH(f) taking functions to their expectation values over H is concave, monotone, uniformly
continuous (or even Lipschitz-continous, if we started off bounded!) over C(X, [0, 1]), H∗(0) = 0
and H∗(1) = 1, and if range(f) ̸⊆ [0, 1], then H∗(f) = −∞. Every such C(X, [0, 1]) that fulfills the
other properties is one such expectation function.

Let h be a concave, monotone, uniformly continuous/Lipschitz continuous function taken from
C(X, [0, 1]), with h(0) = 0 and h(1) = 1, with h(f) = −∞ whenever range(f) ̸⊆ [0, 1]. Then writing
h′(f) = −h(−f), and taking h∗ to mean the convex conjugate, the set h∗ := {(µ, b)|b ≥ (h′)∗(µ)}
is an infradistribution (or even a bounded infradistribution, if we started off Lipschitz-continuous!)
over X. Every such possibly-bounded infradistribution can be expressed in this way.

(H∗)
∗ = H. (h∗)∗ = h.
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Given the importance of the condition on the functions used in the prior theorem:

Definition 2.12. We say that a function f ∈ C(C(X,R),R) is IDable (infradistribution-able) if
it is concave, monotone, uniformly continuous, takes any g ∈ C(X,R) to −∞ if range(g) ̸⊆ [0, 1],
and has f(0) = 0; f(1) = 1. If f is also Lipschitz-continuous, we say that f is BIDable (bounded-
infradistribution-able).

Definition 2.13. Let f : X → Y be a map of measurable topological spaces, with maps µX : X →
Msa(X), µY : Y → Msa(Y ). The pushforwards map f∗ : Msa(X) → Msa(Y ) is the unique
map on the appropriate measure spaces which commutes with f and the measure maps, that is, for
any y = f(x) ∈ f(X), we get f∗(µX(x)) = µY (f(x)) = µY (Y ).

Proposition 2.14. Let f ∈ C(X, [0, 1]), and g : X → Y be a continuous function of topological
spaces. Then for infradistribution H ⊆ M±(X)⊕R, Eg∗(H)↑(f) = EH(f ◦ g). Additionally, g∗(H)↑

is an inframeasure if H is, and is bounded if H is, and if g is surjective, then g∗(H)↑ = g∗(H).

Definition 2.15. Let S ⊊ N, and let σ⃗ be a probability distribution over S, so that
∑

i∈S σi = 1.

If h⃗ = {hi}i∈S is a set of IDable functions, the σ-weighted mixture of h is IDable, and is given
by (Eσhi)(f) := Eσ(hi(f)). If the hi are in fact BIDable with Lipschitz constants κi, we must also
require that the σ-weighted mix of the Lipschitz constants is still finite, that is,

∑
i σiκi < ∞, and

in that case, the resulting mixed function is also BIDable.

Theorem 2.16. Let S ⊊ N, and let σ⃗ be a probability distribution over S, so that
∑

i∈S σi = 1.

If H⃗ = {Hi}i∈S is a countable family of infradistributions, the σ-weighted mixture of H⃗ is an

infradistribution, and is given by EσHi = {M ∈ Msa|G⃗ ∈ Πi∈S :
∑

i σiGi = M}, that is, the set
of all σ-parametrized linear combinations of countable choices of infradistribution, one from each
family. If H⃗ is in fact comprised of bounded infradistributions with minimal-bound constants κi,
we must also require that the σ-weighted mix of the minimal-bound constants is still finite, that is,∑

i σiκi < ∞, and in that case, the resulting mixed infradistribution is also bounded.

Proposition 2.17. Using the same variable assignments as above, EEσHi
(f) = Eσ(EHi

(f)). Addi-
tionally, g∗(Eσ(Hi)) = Eσ(g∗(Hi)).

A few procedural notes on updating before we can get to Infrabayes’s Rule. First, in think-
ing about updating, we’ll be explicitly separating the initial part where we cut down measure -
restricting only to the histories we want to update over - from the final part, where we normalize
our resulting measure back up to a total of 1. An additional hurdle is that unlike how in classical
probability, where we can very easily turn an expectation value into a probability by thinking in
terms of expectation values over (possibly-discontinuous) indicator functions, in the inframeasure
setting we can only take expectation values over particularly nice continuous functions.
Thankfully, “continuous” for us respects our topology on histories - all we really need is for the
indicator set to be clopen. And because of how we defined histories - namely, to have discrete
action and observation spaces - the property of “beginning with a specific finite prefix” is a clopen
condition for histories, and thus the set of histories beginning with a specific finite prefix is always
a clopen set. Given a discrete (or finite) set of possible observations, a similar statement is true of
the clopenness of conditions like “the true observation is within this subset of observations”. The
major additional work we need to put in to extend from probability measures to inframeasures is
that for inframeasures, we need a more powerful and subtle notion than usual of expectation values.
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Consider that the very first part of what we need to do for both the classical and inframea-
sure cases is to specify the expectation value of arbitrary functions over the whole sample space
X, but unlike the classical case where our functions are total, here we might have a function
f defined only on Z ⊆ X. In both cases, we only have expectation values for total functions
to work from, but that’s not a problem for the classical case. Here, though, we need to decide
what it is f should be doing outside of Z. The very simplest way we could do this is simply
to declare that it takes the value 0 on X\Z, but all that does for us is recover a trivial exten-
sion of classical probability. Instead, let’s try the extension f̃g

Z = 1Zf + 1X\Zg for some suitable
choice of g, which we can think of as “the function that does f when it can and g otherwise”.
As it turns out, from here we can just follow our noses: writing ¬Z := X\Z and starting with
the (B)IDable form h of an infradistribution H, and recalling that we can pass freely between
linear functionals and infradistributions, we get a (probably non-unital) infradistribution from

ĥg
Z(f) := h(1Z · f + 1¬Z · g). We then have to unitalize that using the technique described earlier,

which gives us hg
Z(f) :=

ĥg
Z(f)− ĥg

Z(0)

ĥg
Z(1)− ĥg

Z(0)
=

h(1Z · f + 1¬Z · g)− h(1¬Z · g)
h(1Z + 1¬Z · g)− h(1¬Z · g)

. Running the same

sanity check as in the original post to see that we recover ordinary bayesian formulas, we get

µg
Z(f) =

µ(1Z · f + 1¬Z · g)− µ(1¬Z · g)
µ(1Z + 1¬Z · g)− µ(1¬Z · g)

=
µ(1Z · f)
µ(1Z)

= µ|Z(f). Great!

This does leave us with the lingering question of why we needed to introduce that function g
in the first place, if all we were going to do was recover classical updating. We’re not - we’re very
explicitly trying to dodge the problems with dynamic inconsistency that trips up classical bayesian
updating. This is another place where our off-history performance comes in clutch for us - a nonzero
off-history lets us make sure that even when the expected payouts ahead change as we near them,
what we care about stays the same. This brings up another important motivational point: because
of our Demiurge-framing, our choice of g heavily affects how different input functions f score on
our infradistribution H, so unlike the classical case, where we can cleanly separate out expectation
from Z,¬Z, the same can’t be said here.
We actually don’t need to restrict ourselves to clopen sets for our choices of indicator function. We
can use fuzzy sets, and treat them as likelihood functions over X - each set element gets sent to the
probability that we get the observation we really did. This lets us make our earlier more primitive
notion of f̃g

Z = 1Z · f + 1¬Z · g more general as follows:

Definition 2.18. Let f, g, L ∈ C(X, [0, 1]). Then we define a function called f glued to g hinging
on L, given by f ⊕L g := Lf +(1−L)g. Additionally, we define f ⊕¬L g := (1−L)f +Lg = g⊕L f .

As you might expect, we use this better notion of function extension everywhere we used the
simpler non-likelihood-using function extension from before. This gives us the following definitions,
analogous to the raw and unitalized updates of infradistributions from before:

Definition 2.19. Raw: ĥg
L(f) := h(f ⊕L g),

Unitalized: hg
L(f) :=

ĥg
L(f)− ĥg

L(0)

ĥg
L(1)− ĥg

L(0)
=

h(f ⊕L g)− h(0⊕L g)

h(1⊕L g)− h(0⊕L g)
=

h(Lf + (1− L)g)− h(g − Lg)

h(g − Lg + L)− h(g − Lg)
,

Probability/caring from expectation: Pg
D(L) := ED(1⊕L g)− ED(0⊕L g).

Proposition 2.20. Taking L as a fuzzy set on the left and the likelihood function which is its
indicator on the right, P0D(L) = ED(L).
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As the original post notes, if we’ve bothered to keep track of off-history payout g ̸= 0, then
P
g
D(L) is best interpreted as “what’s still at stake”, given that it’s the difference between the best

and worst scores our pessimistic agent thinks it can get, given g, which tells you how things could
be going outside L; additionally, we can always rewrite our unitalization denominator from much
earlier, ED(1) − ED(0), as Pg

D(1X). This gives us the natural interpretation that we might have
guessed at earlier - that that denominator represents the probability that we assign to anything at
all occurring.

Definition 2.21. Let H be an inframeasure on X, with g, L ∈ C(X, [0, 1]). Then we define the

update of H by L and g as Hg
L := { 1

P
g
H(L)

(L · µ, b+ µ(0⊕L g)− EH((0⊕L g))|(µ, b) ∈ H}
↑
.

If H is a bounded inframeasure, we need not take the closure. If L is the indicator function of some
clopen set in X, we need not take the upper completion.

Unpacking the expression further: the closure of the upper completion of, for all affine measures
(µ, b) ∈ H, the set of all affine measures of unital expectation value where the pure measure
component has also been scaled by the fuzzy-containment likelihood function L, and the affine
constant component has been adjusted by the difference between the measure µ assigns to the
L-adjusted off-history g and the off-history expectation over H of g.

Proposition 2.22. Using variable assignments from the definition above, if H ∈ Msa(X) is
bounded, then the update (if we can in fact update) will be a bounded infradistribution in Msa(L).
If H is not bounded, we may need to take the closure of the image.
Additionally, EH(f ⊕L g) = E(0 ⊕L g) + P

g
H(L)EHgL(f), that is, we can break down an expecta-

tion value of a composite function into its two components: the expectation of f weighted by the
probability of L relative to g, and the expectation of g outside L.

Finally, this brings us to the statement of Infrabayes’s Rule:

Theorem 2.23. Eσ(Hi)
gL =

Eσ(P
g
Hi

(L) · (Hg
i L))

Eσ(P
g
Hi

(L))
whenever even one of the Pg

Hi
(L) are nonzero.

Update individually, mix together as prescribed by σ and L, and divide out by the probability
of L. Great!

3 Historyspace, Policyspace (Only In The Past, Is What
They Say)

Let’s start off by figuring out what we mean by a history.

Definition 3.1. A history is an element of H := (A×O)≤ω, a possibly-infinite alternating sequence
of actions and observations.
An a-history is a history that ends with an action from A. An o-history is any other history
- one that ends in an observation, is empty, or is infinite and thus has no end. We’ll represent
histories as h⃗ = a1o1a2o2 · · · anon · · · and also frequently as possibly-infinite trees.
We denote the set of arbitrarily long finite histories by H̃ := (A×O)<ω.
We denote the set of (possibly-infinite) histories of at least length n by H≥n.
We denote the set of specifically infinite histories by Hω := (A × O)ω, and caution that all such
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histories are o-histories.
There is a natural partial-order relation ≺ on H (and all of its subsets under consideration) given

by g⃗ ≺ h⃗ if g⃗ is a prefix of h⃗; in this case we may also write h⃗ ≻ g⃗.
Given some history h⃗, we denote the initial segment of n observations and n actions by h⃗≤n.
The type function τ : H → A,O is a technical function we’ll occasionally use for labelling. It
takes in a history and returns A if it’s an a-history, and O if it’s an o-history.
We denote the h⃗-restriction of a measure µ by µ|⃗h := µ · 1h⃗.

If you like, you can think of the ai as our moves and the oi as the uncovering of the response
the Demiurge already picked, or more properly our observation of that response. On that theme,
there’s something we really should define...

Definition 3.2. Flipping off the Demiurge is a special and purely internal action that won’t
take up the action slot of a history h⃗. As such, we represent it as an observation F that can
sometimes occur as the end node of a history, defined by its status as an end node - no actions
can be taken past such an observation leaf - and the fact that depending on formulation, the reward
payout for getting to flip off the Demiurge is immediately +∞ or pinned to +1 forever after.
We denote the set of histories ending in flipping off the Demiurge by HF , and caution that all such
histories are finite o-histories.

We should make a few observations on flipping off the Demiurge. First, this is identical to the
somewhat unhelpfully-named “Nirvana trick” one might play on a “Murphy”. Second, we should
strongly expect for a system using an infrabayesian decision process as described here never to
actually flip off the Demiurge; as we’ll see in more detail shortly, the use of the formalism lies
mainly in marking possible histories or outcomes that are actually impossible for one reason or
another. Finally, and more philosophically, even calling it “flipping off the Demiurge” is still a
slightly-unhelpful simplification.
The image we should hold in our minds here, to understand why flipping off the Demiurge is an
observation and not an action, is to employ the related metaphor of realizing that the Demiurge
is naked - we find ourselves in an impossible possible history; time to point and laugh at the
Demiurge for screwing it up! Of course, that’s not something to which there’s any point unless it’s
true. Ultimately, it’s not even that we’re taking some action which gives us truly infinite reward -
more that we’ve decided (mostly arbitrarily) to shape our desires so as to assign infinite reward to
reaching and observing such an impossible state; that way, all of the maximinning math works out
correctly rather than give us unhelpful garbage that interferes with our ability to maximin properly
in situations that have an actual chance of happening. As such:

Definition 3.3. We call an affine measure or super-affine measure non-flipoff when it assigns
the set of histories ending in flipping off the Demiurge measure 0. We denote the set of non-flipoff
affine measures by MNF(X) ⊕ R≥0, and will take the use of NF as a superscript to mean that as
a regularity condition, we’re trimming away any part of the object where we flip off the Demiurge.
Because we never get to actually do that.

Now for a few definitions regarding what the original sequence would refer to as simply policies:

Definition 3.4. A plan is a partial function ppar : H → A which is defined only on continuable
o-histories, taking such o-histories with at least one possible action branching off of them to one
such action; additionally, if we have a history h⃗ in the codomain of ppar, and h⃗ = h⃗′an, then we
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require ppar(h⃗′) = a - that is, the plan must produce its own history if able and is not allowed to be
self-defeating. We mark such plans p̃.
We call a plan a stub and mark it with subscript p ⊨,n if its shelf-life is finite - that is, there exists
some n ∈ N such that codom(p ⊨) ∩ H≥n is empty.

We call a plan a policy and mark it p̂ if it is a total function, that is, p̂(⃗h) is defined for all h⃗ ∈ H̃.
The empty policy p∅ is the unique special policy with empty domain and codomain, defined on no
histories and prescribing no actions.

Recall that a total function is defined on its whole domain, while a partial function might be
undefined for some choices of input. We recommend reading p ⊨,n as “p sub block at n”, where
“block” might be swapped out for words like “stop”, “wall”, “obstruct”, or simply “stub”.

Definition 3.5. We denote the set of plans as Π and the set of strict-plans as Π̃.
We denote the set of policies as Π̂.
We denote the set of stubs as Π ⊨.

We denote the set of strict-plans starting at h⃗ as Π̃h⃗, and the set of plans (including policies)

starting at h⃗ as simply Πh⃗.

Importantly: Π is a Greek capital-‘p’, for plan (and also policy).

Definition 3.6. An off-history plan (with respect to h⃗) p¬h⃗ is a plan defined precisely on all

histories g⃗ that are both finite and contain no h⃗-prefix.
We note that we can write the set of histories beginning with a given h⃗ ∈ H as h⃗H, given concate-
nation. By abuse of notation we’ll denote the set of histories that do not begin with a given h⃗,
¬h⃗H.

We note that such a p¬h⃗ must specify everything that happens apart from the subtree after h⃗,

and can possibly produce h⃗.

Definition 3.7. Let p¬h⃗ be an off-history plan with respect to h⃗. Then for q ∈ Πh⃗, the composite

plan r = p¬h⃗ ⊕h⃗ q is the result of gluing p¬h⃗ to q hinging on h⃗.

Explicitly, r : H̃→ A, x⃗ 7→ x⃗ ≺ h⃗? q(x) : p¬h⃗(x).

In plain language: in case of h⃗, the composite plan applies q̃. Otherwise, it sticks to p̃.

Definition 3.8. Let p, q be plans that never disagree, that is, for no h⃗ ∈ H̃ does p(⃗h) ̸= q(⃗h) when
both are defined. We say that q lies above p, with q ≻ p, if codom(p) ⊆ codom(q), and that q lies
below p, with q ≺ p, if codom(p) ⊇ codom(q).

We note that the empty policy is special in that it is the unique plan lying below all plans. More
generally, lying above/below defines a partial order ≺ on Π with p∅ as the unique minimal element

and the maximal elements given by the policies of Π̂.

Definition 3.9. Let g⃗, h⃗ ∈ H, and denote by t(g⃗, h⃗) the first time step at which g⃗, h⃗ differ. Then for
choice of time-discounting parameter 0 < γ < 1, we define the metric distance between the histories

as dγ(g⃗, h⃗) := γt(g⃗,⃗h).

As a reminder, γ here is the parameter that tells us how much we discount possible future rewards
or penalties; either a problem setup will specify it, or we’ll use it as a way to get a continuous family
of distance measures dγ that we can then limit as γ → 1.
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Definition 3.10. Let p̃ ∈ Π. The outcome set F (p̃) is defined as the set of all o-histories h⃗ such

that h⃗ /∈ codom(p̃) for which p̃ postdicts perfectly, that is, for any prefix g⃗an of h⃗, p̃(g⃗) = an. FNF

is the outcome subset where no flipping off of the Demiurge occurs.

As clarification, F (p̃) consists of the entirety of all the subtrees that following p̃ could put you in,
not just their root nodes. As an additional philosophical note, we should expect never to actually
flip off the Demiurge: recall that the Demiurge is long-sighted and will never allow us into a possible
history where flipping It off is even a meaningful possibility.

Definition 3.11. Let p ̸= q ∈ Π, and denote by t(p, q) the first time step across all histories at
which p, q differ in their choice of action, including cases where (WLOG) p is defined and q is not.
Then for choice of time-discounting parameter γ, we define d(p, q) := γt(p,q).

Definition 3.12. Let q ≻ p ∈ Π. Then we may define the projection-induced function prq,p∗ :
Msa(F (q)) ↠ Msa(F (p)); (mq, bq) : 7→ (mp, bq) where in particular we recall that mp(h) = mq(h)
whenever h is a prefix of some outcome in F (p). Additionally, this maps affine measures to affine
measures and non-flipoff measures to non-flipoff measures.

We will use this function for two major purposes: we’ll use preimages of special versions of
this function to put sets we care about in the same ambient space, so that we can compare them,
and we’ll also use more normal versions of the function itself to help define internal consistency
conditions on belief functions.

4 Affine Environments (Which One Do You Think You’re
Living In?)

Definition 4.1. An environment is a function ě : Π × H̃ × A → ∆O taking an ordered triple
of plan, finite history prefix, and action to a probability distribution over observations. It must
be either total, or defined only over {(p∅, h, a)|h ∈ H̃, a ∈ A}. If the environment is only defined
on (p∅, h, a), then we call the environment policy-independent, and if it is total, then we call it
policy-dependent.

Definition 4.2. An affine environment is an ordered pair ê = (λ · ě, b), where λ, b ≥ 0 and ě is
an environment.

We should note that this construction is precisely analogous to the construction of affine mea-
sures from ordinary measures. Similarly, b should be interpreted as a reflection of how well we’re
doing off-history, and λ as either the probability of the environment’s existence (for λ ≤ 1) or how
much we care about ě more generally.

Proposition 4.3. Let ê = (λ · ě, b) be an affine environment. Then for all plans p̃ ∈ Π, ê · p̃ =

(λ · ě(p̃, H̃, A), b) is an affine measure; we will interpret ě(p̃, H̃, A) as the probability distribution over
F (p̃) (or, as appropriate, FNF(p̃)).

The set of environments is equivalent to the set of functions f : Π → ∆O. In one direction, we
have p̃ 7→ p̃ · ě, and in the other direction, any function f : Π → ∆O which has prq,p∗ (f(q)) = f(p)
whenever q ≻ p corresponds to an environment, as we’ll shortly see. For now, we’ll mostly black-box
the tools for explicitly working with sets of affine environments in terms of beliefs.
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Definition 4.4. We call a total function β : Π → P(Ma(F (Π))), β(p̃) ⊆ Ma(F (Π)) a belief
function if the image of every plan is nonempty. We may, at pleasure, require non-flipoffness of all
relevant affine measures in this definition. Additionally, we get for free that Eβ(p̃)(f) = EβNF(p̃)(f),
because the Demiurge will only ever pick a non-flipoff affine measure for an environment.

We require affine rather than super-affine measures here for two major reasons: we don’t actually
need to use super-affine measures for anything except the definition of the upper completion, and
(more importantly) any negative measure on a history that has nontrivial flipoff in it interacts
extremely badly with a maximinned approach. As for some further motivation for why sets of
affine environments match up to the belief functions they induce, we may note that in one direction,
given a set of affine environments êi, we can take a fixed plan p̃ and look at all the resulting affine
measures over F (p̃) that arise from the assorted êi · p̃. Now, once again we must first define a few
terms before we can talk about regularity conditions on beliefs.

Definition 4.5. The set Ma(H̃ω) is the set of affine measures over all infinite histories.

Definition 4.6. Let β be a belief function satisfying boundedness of minimals as below. We denote
the set of all affine measures over histories with the same set of upper bounds by Ma

≤(λ,b). We call
such a set a clip set.

Definition 4.7. Let p̃ be a plan. We denote by (prω,p̃
∗ )−1 the function that takes subsets of affine

measures D ⊆ Ma(FNF(p̃)) to the set of affine measures {ϵ = (λe, be) ∈ Ma(H̃ω)|∀h⃗ ∈ H¬∃g⃗ ∈
FNF(p̃) : g⃗ ≺ h⃗, (ϵ(⃗h) = 0) ∧ (prω,p̃

∗ )(ϵ) ∈ D)}. More plainly, this preimage set is best characterized
as the set of affine measures assigning measure 0 to any history lying above none of the no-flipoff
outcome histories in FNF(p̃).

We use (prω,p̃
∗ )−1 to take preimages of no-flipoff outcome sets of different plans to compare them

in the larger ambient space of Ma(H̃ω). We call such a preimage the preimage from infinity of
that plan.
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Definition 4.8. Let β : Π → P(Ma(F (Π))) be a belief function, taking arbitrary plans p̃ to
nonempty sets of affine measures over outcomes. The following are all conditions we might require
of such a function to impose further structure on it.

Trivial extension conditions:

� No-Flipoff Nonemptiness: βNF(p̃) ̸= ∅.

� Topological Closure: β(p̃) = β(p̃).

� Convex-hull Closure: β(p̃) = c.h(β(p̃)).

� No-Flipoff Upper Closure: βNF(p̃) = (βNF(p̃) +Msa(FNF(p̃))) ∩Ma(F (p̃)).

These conditions correspond to the first four regularity conditions about inframeasures. They ensure
image maximality while avoiding changing affine measure value.

Local regularity conditions:

� Boundedness of Minimals: There is some λ̂, b̂ ∈ R, so that for all (λ · µ̃, b) ∈ β(p̃)min, we have

λ ≤ λ̂ and b ≤ b̂. This must be fixed once and for all over Π.

� Unitality: minp̃Eβ(p̃)(0) = 0. minp̃Eβ(p̃(1)) = 1. The resulting belief function must then in
general be unitalized.

These conditions correspond to the regularity conditions about inframeasures of the same(ish) names.
They deal only with the properties of a single choice of β(p̃).

Special conditions:

� Lower Internal Consistency: β(q̃) =
⋂

p ⊨≺q̃

(prq̃,p ⊨
∗ )−1(β(p ⊨)). More plainly: what our IB-agent

believes about the outcomes of its plans can be fully recovered if we know what it believes about
the outcomes of its stubs.

� Upper Internal Consistency: β(q̃) = c.h(
⋃
r̂≻q̃

prr̂,q̃∗ (β(r̂))). More plainly: what our IB-agent

believes about the outcomes of its plans can be fully recovered if we know what it believes about
the outcomes of its policies.

� Internal Consistency: β is both upper and lower internal consistent. The original Condition
7 on belief functions. I’ve broken it up here to make the two conditions easier to parse and
talk about separately. [Maybe discuss motivations for both further here?]

� No-Flipoff Full-Stack Extremal Consistency: For any no-flipoff set of affine measures S ∈
β(p ⊨)

xmin, there is some r̂ ≻ p ⊨and associated no-flipoff set of affine measures T ∈ β(r̂)

allowing the projection function to satisfy prr̂,p ⊨
∗ (T ) = S, respecting the partial order.

� Hausdorff-Metric Continuity: The map taking p̃ ∈ Π to (prω,p̃
∗ )−1(βNF(p̃) ∩Ma

≤(λ,b)) is con-
tinuous.
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These are special conditions dealing with our ability to recover plans from stubs or policies and to re-
quire our belief function to respect the topology on policyspace, including the partial order on policies.

Hausdorff-metric continuity will take a little more motivation. First off, we state the condition
more plainly: the map taking a plan to those affine measures in the no-flipoff preimage from infinity
of the plan’s outcome set which also have their (λ′, b′) bounded by some initial choice of (λ, b) is a
continuous map. In particular, we need to trim away flipoff measures because Ma

H
ω has no flipoffs

in it - they’d end any history they showed up in at a finite time step - and so we need to trim
them away; similarly, the way we defined distance between policies means that if we don’t bound
minimals and trim away a few nonminimal elements, the upper-completions of slightly different
plans diverge arbitrarily far, and our entire conception of a usable hausdorff distance collapses.
Taking all of this together, the condition roughly says that if we have a no-flipoff affine measure
M in the outcome set of a plan p, and we perturb p slightly to some plan q that agrees with p for
a very long time and is thus near to p, then we will have a no-flipoff affine measure N which is
close to N and inside the outcome set of q. As a side note, given that Π̃ is a compact space, our
condition is actually equivalent to requiring uniform continuity.
Alright, that was the what - how about the why? In a reasonable sense, the HMC condition can
be interpreted as a regularity condition on the Demiurge! There are two major strong reasons for
thinking this way. First, if we really like the Demiurge framing, we can think about what might
happen in a setup where the plans our IB-agent follows are deterministic, but with some small
probability of error, where the IB-agent suddenly chooses a different plan, with the probability
decreasing extremely quickly (exponentially, say) in the metric distance between the old and new
plans. In such a setup, we should absolutely want for the Demiurge not to be forced all around Its
possibility-space trying to respond to the tiny accidental shifts in the IB agent’s plan, but instead
only have to jump to a nearby environment It can present to the IB-agent.
The other is through appeal to UDT puzzles. Once again, consider that the HMC condition is,
at its core, a statement about how large the changes to the environment right now can be, based
on and limited in terms of the differences in plans an IB-agent can have going into them. We can
therefore consider the case of an iterated Newcomb’s dilemma problem: it makes sense for Omega to
demand some finite commitment of our IB-agent - say, that it must predictably one-box on the next
thousand rounds, whichever time-step it happens to find itself at, and the HMC condition reflects
this. Complementarily, it should make very little sense to us for Omega to demand an unbounded
commitment of our poor confused IB-agent, who has not established and cannot establish that this
environment is even a real one, or that future time-steps will even exist, never mind to demand
precommitment about those far-off rounds; it makes even less sense for Omega to radically alter
its behavior now in “response” to things that might “happen” in the far future. Seen from this
perspective, the HMC condition is a statement about the strength of acausal influences from the
distant future, which we require to be weak.
In any event, we need this condition in order to prove that an optimal policy exists, and also to
establish important results about internal consistency with respect to stubs, plans, and policies,
and recovering belief functions from just one subset among those.

Definition 4.9. We call a belief function β a hypothesis if it satisfies all of the above regularity
conditions: all six in the first two groups, along with internal consistency, NF-extremal consistency,
and hausdorff-continuity. In such a case, we may frequently use the variable η for it instead.

Just as β is a Greek ‘b’, η is a Greek ‘h’. Sort of.

14



Definition 4.10. We call a function ϕ : Π̃ → Ma(H) a forecast function if it both takes each p̃ ∈ Π
into Ma(F (p̃)), the set of affine-measures over the outcome set of p̃, and it respects the relevant

pr∗ functions, such that for all q̃ ≻ p̃ ∈ Π̃, prq̃,p̃∗ (ϕ(q̃)) = (ϕ(p̃)).

This corresponds to the definition of an outcome function of in the original writeup. I’ve
chosen this different name to avoid confusion with outcome sets, and also because I think it’s more
appropriate - these are all the functions taking partial policies to affine measures over histories with
the twin conditions that it has to send every plan to one of the affine measures over its own outcome
set and also respect the partial order over plans in the process.

Recalling that (affine) environments correspond to the functions taking plans to (infra)distributions
over observations, we present several desirable properties belief functions can have:

Definition 4.11. We call a hypothesis η causal if for all plans p̃ ∈ Π and all affine measures
(µ, b) ∈ η(p̃), there exists a forecast function ϕ such that ϕ(p̃) = (µ, b), and for all other q̃ ∈ Π, we
similarly have ϕ(q̃) ∈ η(q̃).

This is an important property, and one that’s also a little hard (philosophically) to understand.
The idea here is two-part. First, if we fix an affine environment ê and then look at what it
makes of every possible partial policy p̃, we’d certainly get a forecast function out of that. In the
other direction, if we fix a forecast function ϕ, we should now know precisely what happens on
all possible histories h⃗, and we already know that all the projections from long to short histories
commute, compose, and respect the rest of our desiderata. This is thus the critical part for passing
between affine environments and sets of belief functions and also why we call such hypotheses
causal: every point in all the belief sets must in some sense have come (or look just like it came)
from actually poking an affine environment, seeing what (causally) happens, and always writing
the answer down, even if it seems not to make sense; likewise, querying a set of affine environments
with partial policies results in a causal hypothesis.

Definition 4.12. We call a hypothesis η pseudocausal if for all plans p̃, q̃ ∈ Π where we have
(µp, bp) ∈ η(p̃) and supp(µp) ⊆ FNF(q̃), we also get (µp, bp) ∈ η(q̃).

We could think of this as simply the no-flipoff version of causality, but there’s somewhat more
going on here. Briefly, we already know that µp is a no-flipoff measure, and that it’s even already
a no-flipoff measure over F (q̃). This condition can then be interpreted as requiring it to be the
case that whenever two plans prescribe the same course of action on histories that have positive
measure, they must also induce the same affine measure over outcomes. We call such hypotheses
pseudocausal because this is also the property that a hypothesis would have if it came from actually
poking an affine environment, seeing what (causally) happens, and only writing the answer down
if it makes immediate sense, pruning away any flipoff affine measures as impossible. Accordingly,
we’ll later on see how to add flipoffs back in to turn a pseudocausal hypothesis into a causal one.

Definition 4.13. We call a hypothesis η acausal if it is a no-flipoff hypothesis.

The immediate question we should have is that of how (or even whether) acausal hypotheses are
any different from pseudocausal ones. The main distinction is both more evident and more natural
inside decision-theory puzzles: pseudocausality corresponds to decision-theoretic problems where it
is always possible for an agent, on having been mispredicted, to actually end up in a situation where
it’s evident that it’s been mispredicted and the agent can act against the prediction, while acausality
corresponds to decision-theoretic problems where there exist cases where you were mispredicted,
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but never end up being able to take actions that show that that prediction was in fact wrong.
In the next section, which is partially about finger-injection, we’ll more fully cover how to turn a
pseudocausal hypothesis into a causal one by adding in flipoffs, and similarly can turn any causal
hypothesis into a set of affine environments. It’s less clear how you could do this to acausal
hypotheses, which is why results further down involve further treatment of the case where we have
some acausal hypothesis that we can’t turn into a causal one, and how that requires us to shift
our perspective a little to see an agent as believing itself to be within some set of environments
rather than as working purely with belief functions that need not have a representation as a set of
environments.

Definition 4.14. When it’s important to us to mark whether a given hypothesis is defined only on
stubs, strict-plans, or policies, we denote that with respective notations η ⊨, η̃, η̂, just as for plans.
When it’s important to us to mark whether a given hypothesis is acausal, causal, pseudocausal, or
surcausal, we denote that with respective notations ηa, ηc, ηp, ηs.

We’ll define what it means for a hypothesis to be surcausal soon enough.
As we mention elsewhere, it takes some additional work to take an acausal hypothesis that we

can’t actually turn into a causal one, and figure out how to get it to basically uniquely pick out
a set of environments anyway. We’ll explicitly construct a toy case here, to both illuminate the
problem and provide a solution.
Consider the Transparent Newcomb problem. In it, two boxes lie before us - a transparent one,
and an opaque one. A nearly-perfect predictor Omega always puts a single gold coin in the opaque
box, and fills the transparent box with 100 gold coins if it predicts that we would, on seeing the
transparent box full, one-box; otherwise it leaves the transparent box empty. It has already done
so before we saw either box, and it errs with tiny probability ϵ. We are presented with both boxes,
and the choice between taking just the clear box and taking both boxes.
This is certainly a policy-dependent environment, and we should recall that we can simply hard-
code all possible policies into the policy slot, make a family of policy-independent environments
through that currying process, and laugh at how the Demiurge has no clothes if we ever find our-
selves having violated our own hardcoded policy. Because Omega errs with probability ϵ, we can
still counterfactually demonstrate a credible threat of getting to flip off the Demiurge should we
ever actually find ourselves having violated our own hardcoded policy in a given environment. Once
we translate this set of environments to a no-flipoff belief function, we get a pseudocausal hypoth-
esis and can continue on our merry way. XOR Blackmail and Counterfactual Mugging both work
similarly, and result in pseudocausal hypotheses.
Problems arise with that whole approach if Omega is actually a perfect predictor - that is, ϵ = 0.
Suppose our policy is to one-box if the clear box is full, and to two-box otherwise, but the en-
vironment’s hard-coded policy is simply to always two-box. In that case, Omega always predicts
(wrongly!) that we two-box, we’re stuck always two-boxing and getting a single coin, and we never
get to flip off the Demiurge for putting us in an impossible environment conflicting with our policy.
Even worse, “always two-box” and “one-box on full, two-box on empty” are both optimal policies
here, so even if we could directly apply our hard-coding process, we still don’t get UDT behavior.

Two possible solutions present themselves: we could figure out how to encode ϵ-exploration,
or we could develop some additional machinery around marking histories as possible/impossible.
We’ll cover both options here.
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For the first option, let’s suppose that we have both a deterministic “intended plan”, which
corresponds both to our plans in the IB sense, and to some internal sense of what we intend to do;
with small probability ϵ, exploration will overwrite this. Omega thus has a hard-coded prediction
of our policy, given by whatever we intend to do. On each round, we take a random draw such
that we choose to act as intended with probability 1 − ϵ and we explore a different option with
probability ϵ. If we act as intended, nothing changes for Omega, but if we choose to explore, Omega
will do the opposite of what it would usually do, because it knows that we will also do that. Finally,
upon seeing the clear box, we recognize an impossible world and flip off the Demiurge should our
desired action on the clear box’s state fail to match up to Omega’s prediction - it is, after all, a
perfect predictor. Accordingly, no matter what happens, the real action we take is determined
entirely by our starting intention and the status of the random draw. We can thus always have
some meaningful chance of proving Omega wrong and flipping off the Demiurge about it, should
Omega be wrong, and we can thus turn this into a set of environments.

The second option will take a little more setting up, but it’s worth it, because it cashes out in
a close cousin to causal hypotheses and turns out to be the mathematically nicer way of resolving
this problem.
For a naive first attempt at this, consider what happens if we try to straightforwardly represent the
Perfect Transparent Newcomb problem as a suitable no-flipoff belief function over policies. Let’s
use pa,b, where 1 ≤ a, b ≤ 2, to denote some of our possible policies; we’ll take these policies to
specify how many boxes we take if the clear box is (full, empty).
Then β(p1,1), β(p1,2) both have the single history where the clear box is guaranteed full, because
Omega knows we’ll one-box if it’s full, so we one-box for 100 gold. β(p2,1) has the single history
where the clear box is guaranteed empty, because Omega knows we’d two-box if it were full, and
we’re thus stuck one-boxing for nothing. Lastly, β(p2,2) has the single history where the clear box
is guaranteed empty, because Omega knows we always two-box, and so we two-box and get 1 gold.
This is a problem, though - “clear box empty, two-box” is in β(p2,2), and also supported over
FNF (β(p1,2)) - after all, that really is what we’d do, if we had that policy and we saw an empty
clear box. But that’s not present in β(p1,2) - the pseudocausality condition from earlier wants for
us to permit the possibility of the bad outcome again! So that’s not what we want.
What if we looked at the (non-closed, non-flipoff-free) family of environments that correspond to
the ϵ-noise Transparent Newcomb problem from before, where we let ϵ range over 0 < ϵ ≤ 0.01
(say)?
If we try taking the closure in the space of affine environments, before we turn them into a belief
function, then the belief function we end up with adds back in the same bad distribution where the
fact that we might two-box is taken to mean that we always will, and if we follow a strategy that
ever one-boxes, we’ll never get to flip off the Demiurge.
Alright - what if we take the closure of the history-sets coming from the belief functions contem-
plating plans after we’ve trimmed away all the flipoffs? For beta(p1,2) at least, we’ll get a natural
sequence of distributions of the form “1 − ϵ probability of seeing a full box, and then we one-box;
ϵ probability of seeing an empty box, and then we two box”, and these limit to the Perfect Trans-
parent Newcomb distribution we want - the one where the box is always full and we thus always
one-box on seeing that. Notably, it doesn’t limit to the failure mode from earlier, where we’d be
stuck two-boxing.
We still don’t actually have pseudocausality, though - “clear box empty, two-box” is still in β(p2,2),
and also still supported over FNF (β(p1,2)) - we haven’t fixed that problem at all!
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Our problem lies deeper still. Let’s say Omega falsely locks in “two-box on full box” as our strat-
egy, and we somehow one-box anyway. Then the expected value for all of our 0.01 ≥ ϵ > 0-noise
Newcomb problems will be infinity - we get to flip off the Demiurge - but will be just 1 gold coin
in the limiting case of Perfect Newcomb!
As it stands, limits of reasonable-looking flipoff-containing affine measures can themselves be no-
flipoff, and this gives us a clue as to the shape of the condition we need - the Demiurge should
not be allowed to take limits of flipoff affine measures it wouldn’t want to get to anyway, get a
non-flipoff affine measure, and then make sure that we end up in that pathological non-flipoff limit
measure.
What kinds of new limit points could we add in to compactify the subspace of flipoff measures to
get around this problem? Whatever it is, it still needs to be a flipoff measure, and needs to be the
limit of the “1− ϵ probability of seeing a full box, and then we one-box; ϵ probability of seeing an
empty box, and then we two box” points in a natural way. Let’s relax archimedeanness of reals and
try “1 probability of seeing a full box, and then we one-box; 0+ probability of seeing an empty box,
and then we two box”, where 0+ is some arbitrarily small positive number. The Demiurge will still
recognize this as having flipoff in it, and will avoid it as desired.
We could also tinker with our distance metric a little as we did before, the last time we had limits
of sequences that didn’t converge like we wanted them to. This flavor of approach would look at
measures and compare where they think a flipoff is a real possibility, and assign very different values
to measures that have different measures on flipoff histories, so that we can’t have flipoff measures
converging to a non-flipoff measure.

Definition 4.15. A surmeasure is an ordered pair of measure and a function (µ, f♢) where f♢
is a function on flipoff histories f♢ : HF → {♢,¬♢}, where the function marks histories that end
in flipping off the Demiurge as “possible” if the measure assigns them positive measure and is
underdetermined in choosing between choosing “possible” or “impossible” otherwise. Histories that
would otherwise get assigned 0 measure that the function marks as “possible” are instead marked as
having arbitrarily tiny positive measure 0+. We denote the set of these SM(H). We define affine
and superaffine surmeasures in the natural way to extend surmeasures; we denote the set of affine
surmeasures SMa(H) and the set of superaffine surmeasures SMsa(H).

Additionally, a survironment is defined similarly: it’s an environment where we have a 0+ chance
of making an impossible observation, and having done so, will inevitably end with flipping off the
Demiurge.

Definition 4.16. The surtopology is the topology over the space of (super)affine (sur)measures

with a subbasis given by open balls around points, along with all sets of the form {(µ, b)|µ(⃗h) = 0}
where h⃗ ∈ H

F .

More plainly: all our usual open balls, plus all the sets of (super)affine (sur)measures that assign
a given flipoff history a measure of 0.

Definition 4.17. Let d(·, ·) be the KR-metric, and γ < 1 a scaling factor. Denote by tF (µ, ν) :
H×H→ N the flipoff-distance on pairs of measures such that (µ, ν) gets sent to the minimal length
of a flipoff history to which one of the measures assigns positive measure and the other assigns 0
measure.
The surmetric is the metric over the space of (super)affine (sur)measures given by ds((µ, b), (ν, c)) =
max(d(µ, ν) + |b− c|, γtF (µ,ν)).
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Definition 4.18. We call a hypothesis η surcausal if it is a causal hypothesis over affine surmea-
sures. More explicitly, we require that for all plans p̃ ∈ Π and all affine surmeasures (µ, b, f♢) ∈ η(p̃),
there exists a forecast function ϕ such that ϕ(p̃) = (µ, b, f♢), and for all other q̃ ∈ Π, we similarly
have ϕ(q̃) ∈ η(q̃).

We primarily care about these because they’re essentially equivalent to (actually slightly stronger
than) causal hypotheses, and you can construct one very easily given an arbitrary acausal hypoth-
esis, as we’ll see in a bit.

We recall that the Demiurge will avoid any history that has any chance of Its getting flipped
off in it. Thankfully, worrying about all this is only the kind of thing that can happen if we’re in
some UDT puzzle where the environment can somehow totally lock us out of demonstrating that
a prediction that has been made is actually wrong. Of course, if we want to solve UDT puzzles
without having to worry so much about surmeasures, you could always stick with more ordinary
acausal hypotheses and just plain accept that cramming them into some causal set of hypotheses is
a bad idea. One might start to worry that these three ways of incorporating “possible impossible
flipoffs” might break something we care about, or at least be incompatible. Thankfully:

Proposition 4.19. The natural surmetric on the space of superaffine measures Msa(F (p̃)) induces
the surtopology on the space, and the cauchy completion of Msa(F (p̃)) with respect to the surmetric
recovers SMsa(F (p̃)) exactly.

The takeaway from all this, even if you need to blackbox all the weirdness, is that the standard
way to turn a set of policy-dependent environments into a family of policy-independent environments
as described early on - that is, hardcoding in all possible policies and hacking in a flipoff if those
policies gets violated - only actually works if our IB-agent is then guaranteed to have some actual
nonzero chance of getting to recognize that this has happened and flip off the Demiurge. There exist
some UDT puzzles that invoke perfect predictors that still violate this property, and in that case,
we use surmeasures to specifically allow the “manual” assignment of positive (arbitrarily small)
measures to such situations, instead of 0. This process of assigning 0+ to such outcomes in turn
gets us survironments and surmeasures, and then we can view even weird policy-dependent decision
theory puzzles this way, as arising from a set of survironments - with that 0+ measure on some of
the outcomes - instead of just a set of ordinary environments.

5 Advanced Policies and Environments (Zoom the Camera
Out and See the Lie)

Now that we have the basics of hypotheses and their regularity properties down, we can talk about
how we can recover an entire belief function if we have recourse to either one of what the belief
function makes of only stubs or only policies.

Definition 5.1. Let p ⊨∈ Π ⊨, q̃ ∈ Π, r̂ ∈ Π̂. Let β ⊨be some belief function defined only on stubs,
and let β̂ be some belief function defined only on policies.
We define the weaving function by w ⊨: q̃ →

⋂
p ⊨≺q̃(pr

q̃,p ⊨
∗ )−1(β ⊨(p ⊨)), that is, it sends every plan

to the intersection, over all stubs lying below that plan, of all preimages under the appropriate
projection function of the stub-belief function applied to its stub.
We define the meshing function by m̂ : q̃ → c.h(

⋃
r̂≻q̃(pr

r̂,q̃
∗ (β̂)(r̂))), that is, it sends every plan

19



to the union, over all policies lying above that plan, of all images under the appropriate projection
function of the policy-belief function applied to its policy.
We define the two functions s ⊨, ŝ to be the functions taking belief functions to themselves; they
differ in that the lower isomorphism function s ⊨is defined only on stub-belief functions and the
upper isomorphism function ŝ is only defined on policy-belief functions.

Theorem 5.2. Let η ⊨, η̂ be causal hypotheses fulfilling finitary or infinitary analogues of all their
defining conditions. Then w ⊨(η ⊨), m̂(η̂) are also causal hypotheses.
If we swap out “causal” with pseudocausal, acausal, or surcausal in the previous sentence, the
resulting sentence remains true.
Additionally, w ⊨, s ⊨define an isomorphism between η ⊨, η, and m̂, ŝ define an isomorphism between
η, η̂.

That is, as promised we can fully recover a belief function just by seeing what it makes of
only stubs, or of only policies, as long as the analogues of the hypothesis conditions hold for the
stubs/policies. Better yet, the behavior on stubs and the behavior on policies pin each other down
uniquely, and we even get to recover consistency - the crucial quality of the isomorphisms - from
other weaker conditions.

Definition 5.3. We denote by Sβ the set of affine environments or survironments defined by
Sβ := {(λ · ê, b(, f♢))|∀p̃ ∈ Π, (λ(p̃ · ê), b(, f♢)) ∈ β(p̃)}.
For an arbitrary set of affine environments S, we denote by βS the belief function given by βS :=
{(λ · µ, b)|∃(λ · ê, b) ∈ S : p̃ · ê = µ}.

Proposition 5.4. Let β be a causal belief also fulfilling no-flipoff nonemptiness, topological closure,
and convex-hull closure. Then Sβ is a nonempty, closed, and convex set of affine environments or

survironments. βSβ

= β, and S ⊆ SβS

.

There we are! We can turn causal hypotheses into actual sets of affine environments or surviron-
ments as we like. The reverse direction - taking an arbitrary set of affine environments and turning
them into a causal hypothesis - is much rarer and in general impossible, and while the original
sequence cashes that out in how unlikely it is for some random collection of affine environments to
satisfy hausdorff-measure continuity or no-flipoff full-stack extremal consistency, we have a better
way of convincing ourselves of this: consider that if we take our terminology seriously, we’d want to
reason about an IB-agent which believes that it’s in one of some set of environments, each tagged
with appropriate (λ, b). If we know nothing further about the environments, why should we expect
that the IB-agent will have beliefs that looked like they formed causally? The set of environments
doesn’t even look like it formed causally!
Anyway, assuming that we do in fact have a set of affine environments that induce a causal hy-
pothesis, then on going back to affine environments, we may well introduce additional points which
correspond to the “chameleon environments” mentioned in the original posts. Since they mimic
some combination of the behaviors of some already-existing environments for any policy it inter-
acts with - this is why going from an abstract belief function removes the redundancy within sets
of environments that the original posts mention, and is also the reason for the form of the final
proposition above, especially the set containment/equality conditions at the end.
We can pass freely between stub, plan, and policy versions of acausal, pseudocausal, surcausal,
and causal hypotheses, given that we have explicit isomorphisms moving between the different
conditions on policies, and we can establish strong connections between (sur)causal hypotheses
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and the sets of environments that they correspond to. The major remaining obstruction between
history- and plan-level statements and environment-set-level statements is thus the gap between
acausal/pseudocausal and surcausal/causal hypotheses. As it turns out, we can absolutely bridge
that gap with a middle finger.

Definition 5.5. Let q̃ ≻ p̃. The (middle-finger) injection map is given by I p̃,q̃ : F (p̃) ↪→ F (q̃)

such that h⃗ :7→ h⃗ ∈ F (q̃)?h⃗ : h⃗q̃(⃗h)F , that is, it fixes every history in F (q̃), and to any history outside

F (q̃) it appends the action q̃ says to take on seeing h⃗ and then also appends a flipoff observation.

Additionally, we write I p̃,q̃∗ : Ma(F (p̃)) ↪→ Ma(F (q̃)) for the pushforward that I p̃,q̃ induces on

affine measures, and I p̃,q̃∗s : SMa(F (p̃)) ↪→ SMa(F (q̃)) for the pushforward it induces in affine

surmeasures; in particular, I p̃,q̃∗s is effectively identical to I p̃,q̃∗ , with the major difference (apart from
also being defined on affine surmeasures) being that the f♢ coordinates of the elements in the image

of I p̃,q̃∗s all label every flipoff-history outside F (p̃) as possible.

By way of characterization, we should first note that these maps are injective/injections, going
upwards, not surjective/projections, going downwards, so adding in something is unavoidable. An
I∗ simply caps off every history that needs an extension with “do what the upper policy says to
do, then flip off the Demiurge”, while I∗s does the same while also assigning 0+ measure to every
flipoff-history that would otherwise have measure 0 - anywhere it can add a flipoff, it does.

We’ll use finger injection maps primarily to turn acausal hypothesis-stubs into surcausal hypothesis-
stubs, and pseudocausal hypothesis-stubs into acausal hypothesis-stubs. More precisely:

Definition 5.6. We denote the grow-to-causal function by Γc : {ηp⊨} → {ηc⊨}, and it maps from
pseudocausal hypotheses defined only over stubs to causal hypotheses also defined only over stubs.
It’s given by ηp⊨(p ⊨) :7→ c.h(

⋃
q ⊨≺p ⊨

Iq ⊨,p ⊨
∗ (η ⊨(q ⊨))).

We denote the grow-to-surcausal function by Γs : {ηa⊨} → {ηs⊨}, and it maps from acausal
hypotheses defined only over stubs to surcausal hypotheses also defined only over stubs. It’s given
by ηa⊨(p ⊨) :7→ c.h(

⋃
q ⊨≺p ⊨

Iq ⊨,p ⊨
∗s (η ⊨(q ⊨))).

We won’t need the “→NF function defined in the original sequence; we’ll use our existing ∗NF

notation for that.

Theorem 5.7. (P → C) Let ηp⊨be an arbitrary pseudocausal hypothesis defined only over stubs.
Then Γc(ηp⊨) is a causal hypothesis defined only over stubs.
(C → P ) Let ηc⊨be an arbitrary causal hypothesis defined only over stubs. Then (ηc⊨)

NF is a
pseudocausal hypothesis defined only over stubs.
Additionally, Γc(ηp⊨)

NF = ηp⊨.

It’s still unclear whether Γc((ηc⊨)
NF ) = ηc⊨.

Theorem 5.8. (A → S) Let ηa⊨be an arbitrary acausal hypothesis defined only over stubs. Then
Γs(ηa⊨) is a surcausal hypothesis defined only over stubs.
(S → A) Let ηs⊨be an arbitrary surcausal hypothesis defined only over stubs. Then (ηs⊨)

NF is an
acausal hypothesis defined only over stubs.
Additionally, Γs(ηa⊨)

NF = ηa⊨.

It’s still unclear whether Γs((ηs⊨)
NF ) = ηs⊨.
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The post-theorem remarks aren’t the important part - the paired theorems are. These are
the big ones, the central link that let you go from acausal and pseudocausal hypotheses to their
corresponding surcausal and causal counterparts and back again. There’s a little bit of philosophy
to dig into here, too.
From one perfectly valid perspective, the whole “flipping off the Demiurge” framing is an ugly hack
to make the math work out properly for weird UDT puzzles, but you’re just fine with working with
belief functions rather than insisting on encoding them all as sets of affine environments. In that
case, what we’ve provided is mostly simple constructive ways for trimming away all the unpleasant
nonsensical flipoff-histories and such and work directly with non-flipoff belief functions.
From another perfectly valid perspective, flipping off the Demiurge is based as hell and a system that
can precommit to that as a means of tagging impossible possible worlds(/policies/hypotheses) is
excellent, and you think that using flipoffs to encode nasty but necessary UDT problems is a totally
acceptable way of transporting an isomorphic image of all the math you need into the appropriate
setting. In that case, you get to use flipoff-histories(/plans/belief functions) to turn the abstract
belief functions into causal or surcausal form, and from there, to a set of affine environments or
survironments, which we can interpret as a set of environments with additional information about
how much we still care, how well we’re doing off-history, and whether this is even possible at all.
As a side note, in the “Nirvana is 1 reward forever” setting, this turns into an isomorphism right
away and we get a parallel with the original formulation of an infradistribution, in which all possible
points that don’t affect expected values over the set have been added in.

Proposition 5.9. Let β̂NF be a non-flipoff belief function defined over policies. We’ll want to
turn β̂NF into at least an acausal hypothesis, and in order to do so, we must close it topologically,
convex-hull-wise, and with respect to upper completion; then we must unitalize it and use the meshing
and upper-isomorphism functions as used in the isomorphism theorem in order to fill in the belief
function’s behavior on plans.
Accordingly, the minimal set of properties to check that β̂NF satisfies are nonemptiness, boundedness
of minimals, hausdorff-measure continuity, and renormalizability.
Additionally, β̂NF satisfies these properties and we turn it into its corresponding acausal hypothesis
βNF , then for all p ∈ Π and functions f , there exist a, b ∈ R such that EβNF (p)(f) = a·(Eβ̂NF (p)(f)−
b).

Basically, if we turn some arbitrary mess of affine measures over each outcome set of policies
into an acausal hypothesis, we leave the pessimal values fixed up to an affine transformation by (a, b).

To sum things up: Even given some mostly-arbitrary mess of affine measures over every policy,
we can turn it into an acausal hypothesis if it satisfies four technical conditions. Then, given some
acausal or pseudocausal hypothesis, we can freely turn it into the corresponding surcausal or causal
hypothesis and back again; we thus can conclude that we can drop either flipping off the Demi-
urge or affine environments/survironments, depending on preferred philosophical interpretation. In
either case, we can finally cash thosea those (sur)causal hypotheses out as an actual set of affine
environments/survironments that they came from. Also, even if we do in fact push that totally
arbitrary mess of affine measures through this whole process and turn it into a surcausal measure,
the behavior will match up perfectly modulo some fixed affine transformation. Better yet, we even
have a completeness lemma:

Proposition 5.10. For all hypotheses γ, η, the following are equivalent:
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� For all plans p, functions f , we have Eγ(p)(f) = Eη(p)(f).

� γNF = ηNF , that is, the no-flipoff versions of the hypotheses are identical.

If regardless of the utility function we pick, we have the exact same minimum value for both
our hypotheses, then if we trim off the flipoff-histories, those hypotheses are the same one, right on
the nose.

It remains for us to recover mixing and updates for belief functions, just as we did for plans
earlier on.
The following was neither a proposition nor a definition in the original sequence, but it seems to
me like this is a property that holds of non-flipoff hypotheses defined over policies rather than
something we need to explicitly define.

Proposition 5.11. Let {η}i∈S⊆N be a family of non-flipoff hypotheses defined over policies, with
ζ ∈ ∆S. Then for all p ∈ Π, ((E)ζηi)(p) = (E)ζ(ηi(p)); that is, the expected outcomes ζ-mix of the
hypotheses gives for p is exactly the same as the value of the ζ-mix of expected outcomes of p.

While it might initially seem like we can forge ahead easily as we did with plans, that’s not quite
so. Three major obstructions prevent that. First and most obviously, simply scaling and adding
together our ηi gives us no guarantee that we end up with something unital, never mind that we
started with unital objects. We’ll write Eζηi for the raw mix, and EU

ζ ηi for the unitalized mix, and

we should keep in mind that our earlier finiteness condition must hold - namely,
∑

i ζiλ̂i < ∞.
Additionally, if we mix policies in this way and then recover our hypothesis’s behavior on plans, we
find that this would not be the same as if we took the induced mix on plans directly. In fact, an appli-

cation of the upper isomorphism theorem from earlier gives us ((Eζ)ηi)(p̃) = c.h(
⋃
q̂≻p̃

Eζ(pr
q̂,p̃
∗ (η(q̂)))).

This is a particularly bad problem because it also means that our causality condition, which de-
pends entirely on the behavior of our hypothesis on plans, breaks completely.

Given these three obstructions, we clearly can’t just naively mix hypotheses defined over policies,
unitalize, and expect to get anything sensible. Rather, if we want to mix causal hypotheses together
to yield a prior, we must first trim away flipoffs and clean up the result to make the resulting
hypothesis be pseudocausal, do our naive mixing there, and then finally translate back to the
unique causal hypothesis that our mix determines. More formally:

Definition 5.12. Let {ηc}i∈S⊆N be a family of causal hypotheses defined over policies, with ζ ∈ ∆S.
Then for {ηc}NF

i := {ηp}i, we denote the ζ-mixed causal hypothesis by ηc+ζ := Γc((E)ζ({ηp}i)).

The careful reader will note an abuse of notation in how we use Γc here; we have done so
for the sake of clarity, rather than clutter up the definition with several to-stub/to-plan/to-policy
functions. We’ll also use similar notation for acausal, pseudocausal, and surcausal mixes, that is,
ηa+ζ , η

p
+ζ , η

s
+ζ .

Definition 5.13. Let η be a hypothesis. We say that η is nontrivial precisely when there exists
some plan p for which Eη(p)(0) ̸= Eη(p)(1).

This is a very weak condition, but it gives us a sufficient condition for nontriviality of a prior
made from a mixed hypothesis: even one of the ηi must be nontrivial; if we can unitalize even one
of the ηi, then we’ll be able to unitalize our prior.
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Proposition 5.14. Let {ηa}i∈S⊆N be a family of acausal hypotheses, not all trivial, with ζ ∈ ∆S.

Assume
∑

i ζiλ̂i < ∞. Then ηa,U+ζ is also an acausal hypothesis.

Similarly, let {ηp}i∈S⊆N be a family of pseudocausal hypotheses, not all trivial, with ζ ∈ ∆N.

Assume
∑

i ζiλ̂i < ∞. Then ηp,U+ζ is also a pseudocausal hypothesis.

In a similar vein:

Proposition 5.15. Let {η}i∈S⊆N be a family of either all acausal or all pseudocausal hypotheses.
Then E(Eζηi)(p̃)(f) = Eζ(Eηi(p̃)(f)).

Additionally, for all s̃ ≻ r̃, p̃, q̃ ∈ Π̃, we have prs̃,r̃∗ ((Eζηi)(p̃)) = Eζ(pr
s̃,r̃
∗ (ηi(q̃))).

A note of warning: I am not entirely sure about changing the original sequence’s Θn in Propo-
sition 7 of “Belief Functions and Decision Theory”, but they don’t define that notation elsewhere
and what they would have denoted by Θi seems to fit. Maybe it’s just a typo or mistranscription?
Proposition 8 is also very weird, given how many variables it leaves effectively unbound.

Before we can get to updates, we need another pair of technical bits.

Proposition 5.16. Recall that Π̃h⃗ is the set of strict-plans starting at h⃗. For any p̃ ∈ Π̃h⃗, we
can translate back to Π̃ by prefixing h⃗ to every o-history and specifying that p̃ behaves appropriately
to make h⃗ happen. In the reverse direction, for any q̃ capable of producing h⃗, we may remove all
o-histories with no h⃗ prefix, and then trim off the h⃗-prefix from what remains.

Definition 5.17. We denote the h⃗-trim function by trh⃗. It’s a partial function trh⃗ : H → H

given by trh⃗(g⃗) = [τ(g⃗) = O ∧ g⃗ ∈ Π̃h⃗]?f⃗ : ∅, where h⃗f⃗ = g⃗.

More plainly: it trims off the h⃗ from the start of an o-history if it can, and if it can’t, it’s not
defined.

Because I’ve chosen to present things in a somewhat different order, if you’re reading along with
this, using it as a map to navigate the original IB sequence, you might get confused at this point.
In that case, go back and read the part about gluing policies, and mixing and updating infradistri-
butions again. You’ll need to understand that, because this next part is about mixing and updating
hypotheses, and porting over all our results about infradistributions into the hypothesis setting.
(Don’t worry. I’ll be waiting. I probably brought snacks.)

Definition 5.18. We denote the probability of the history h⃗ relative to the belief function β, off-
history plan p̃¬h⃗, and function g by Pg

β,p̃¬h⃗
(⃗h).

We define the probability to be Pg
β,p̃¬h⃗

(⃗h) := maxq̃≻p̃¬h⃗
Eβ(q̃)(1⊕h⃗ g)− Eβ(p̃¬h⃗

)(0⊕h⃗ g).

This definition requires some additional care. First and most importantly, while they mostly
look and act like probabilities, unlike normal probabilities our Pg

β,p̃¬h⃗
aren’t in general additive.

Like before, these act more like scaling terms we’ll need in order to unitalize these, or a combined
measure of likelihood and remaining expected value. All the same, we’ll see a few results where the
analogous result in the classical bayesian setting would use actual probability instead, and in the
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case of a single environment we even recover true probability.
Let’s pick through the heart of the definition bit by bit, to fully understand it. First off, we already
know that at the end of all this, we want for the worst possible case to get a score of 0, and the
best possible case to get a score of 1; we thus need to know the gap between the worst-case and
best-case outcomes, so that we can rescale by that. We know a little more about our plan q̃ - we
know it has to behave like p̃¬h⃗ does off-⃗h, because it lies above p̃¬h⃗. We also know our off-⃗h utility
function - that’s just g.
Then the best possible case gets a raw score of maxq̃≻p̃¬h⃗

Eβ(q̃)(1⊕h⃗ g), and the worst possible case
gets a raw score of minq̃≻p̃¬h⃗

Eβ(p̃)(0⊕h⃗ g) = Eβ(p̃¬h⃗
)(0⊕h⃗ g).

Definition 5.19. Let β be a belief function, h⃗ ∈ H a history, p¬h⃗, q̃ ∈ Π possessing their notational
properties.
First, take the intersection β(p¬h⃗ ⊕h⃗ q̃) ∩ {a⃗ ∈ Ma(H)|µa(¬h⃗H ∩ HF ) = 0}.

We should interpret the former set, the affine measures in the image of the composite plan, as
how good the belief function expects things might go if we follow the composite plan, and the latter
set, which we read as the set of all affine measures on histories assigning measure 0 to histories
where a flipoff occurs without h⃗ having happened first, as the set of expected-valuations on those
possible histories which assign all of their remaining value away from histories where a flipoff oc-
curs with without h⃗ having happened first. All in all at the end of this step, we’ve cut down the set
of belief functions to just those belief functions that assign no remaining expected value on those
histories where h⃗ never happened, but a flipoff observation happened anyway. We just plain don’t
care about those - we specifically want to get rid of the possibility of infinite reward carrying over
from some flipoff off-history.

Next, apply to that set the map on affine measures given by a⃗ ∈ Ma(H) 7→ 1
P
g
β,p¬h⃗

(h)
(trh⃗(µa |⃗h), ba+

µa(0⊕h g)− Eβ(p¬h)(0⊕h g)).

We should interpret this as modifying the belief functions; the measures (the remaining value)

are now for histories where h⃗ has already happened, and we’ve also removed all the h⃗-prefixes for
bookkeeping purposes because we’re now looking solely inside histories where h⃗ has already happened.
The affine constants get changed by the difference between what their respective measures assign to
the off-history utility function and the expectation value over what the affine measures assign to the
same off-history utility function. And of course at the end of that we make sure to unitalize.

Finally, take the topological closure, just in case we might have some limit of a sequence of belief

functions in the KR-metric to something we actually want. We denote this by βh⃗
q¬h⃗

,g(p̃). We call

this the post-⃗h update of the belief function on p̃.

Don’t let the definition-ness fool you - this is a fair-sized technical result. Thankfully, we also
get a few additional technical lemmas to help us feel safer about the intricacy of that last definition:

Proposition 5.20. If we start with an acausal, causal, pseudocausal, or surcausal hypothesis,
then the above update process will yield an acausal, causal, pseudocausal, or surcausal hypothesis,
assuming that unitalization doesn’t fail.
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Proposition 5.21. Let η be a hypothesis which we may require at pleasure to be acausal, causal,
pseudocausal, or surcausal.

Then Eη(p¬h⃗
⊕

h⃗
q̃)(f ⊕h⃗ g) = Eη(p¬h⃗

)(0 ⊕h⃗ g) + P
g
η,p¬h⃗

· Eηh⃗
p¬h⃗

,g(q̃)
(f h⃗), where f h⃗ is the trimming

of h⃗-prefixes from f , that is, we restrict the domain to outcome histories in Πh⃗ and then apply trh⃗.

Briefly - the expectation value over the affine-weighted histories that the hypothesis thinks a
composite plan hinged on h⃗ will yield of some composite function also hinged on h⃗ is the same
as the expectation value over the affine-weighted histories the same hypothesis thinks the off-⃗h
plan-component will yield for the off-⃗h function-component, plus the expectation value over the
affine-weighted histories the updated hypothesis thinks the on-⃗h plan-component will yield for the
on-⃗h function-component, which latter has been scaled by the probability/caring-measure that h⃗
happens in the first place.

Proposition 5.22. Let g⃗h⃗ ∈ H be a valid o-history. Then for any acausal, causal, pseudocausal,

or surcausal hypothesis η, [ηg⃗q¬g⃗,g
]h⃗
r¬h⃗

,gh⃗
= ηg⃗h⃗(q¬h⃗

⊕¬h⃗
r¬h⃗

),g.

Basically: updating a belief function on (g⃗, q¬g⃗, g) and then on (⃗h, r¬h⃗, g
h⃗) is the exact same as

just updating it once on (g⃗h⃗, (q¬h⃗ ⊕¬h⃗ r¬h⃗), g) - we have a simple closed form for how to combine
two updates into one.

At last, we can express the equivalent of Bayes for belief functions and hypotheses!

Theorem 5.23. Let {ηi}i∈S be a set of only acausal or only pseudocausal hypotheses such that for

at least one i, ηh⃗i;p¬h⃗
,g is well-defined and nontrivial.

Then for ζ ∈ ∆S, we have [EU
ζ (ηi)] = (

Eζ(P
g
ηi,p¬h⃗

(⃗h) · ηh⃗i;p¬h⃗
,g)

Eζ(P
g
ηi,p¬h⃗

(⃗h))

U

On the left side: we mix hypotheses, unitalize, and then update. On the right side: we mix
updated hypotheses according to the expected-caring measure/probability they put on the obser-
vation, rescale by expected-caring measure/probability, and finally unitalize.
Compare this to classical bayesian updating, where we’d mix hypotheses to make a prior and then
update, and find that to be the same as mixing already-updated hypotheses according to the prob-
ability they put on the observation.
Best of all, because we dealt with nontriviality earlier, we don’t even need to worry that belief-
function Bayes giving us undefined garbage just because one of the components of the prior has
become trivial and “given up” - those will all straightforwardly vanish, since it suffices that even
one of the ηi be nontrivial.

Now to stretch our legs a little and port decision-theoretic concepts over, too!

Proposition 5.24. (“Has Been The Whole Time” Theorem) Let η be a hypothesis, which we may
require at pleasure to be acausal, causal, pseudocausal, or surcausal. Let p be an arbitrary plan and

U a utility function. Then for ph⃗ the continuation of p post-update, p¬h⃗ the off-⃗h behavior of p, and
d a plan for which E(β|U,p¬h⃗

,⃗h)(ph)(U
h) ≃ E(β|U,p¬h⃗

,⃗h)(d)(U
h), where we may take ≃ to mean any of

<,=, >.
Then E(β(p)(U) ≃ E(β(p¬h⊕hd)(U), where ≃ must be the same as above.
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More pithily, if you think that ph⃗ is a better idea than d after having seen h⃗, then you’ve thought
as much the whole time about p being a better idea than the compound plan of d (in case of h⃗) and

the off-⃗h p; and the same will be true if you think that they’re just as good as each other, or if you

think that ph⃗ is actually worse than d. In no event should your past self, who has less information
than you, be screaming from the sidelines disagreeing with your choices.

Definition 5.25. Let r : H̃→ [0, 1] be a reward function, and γ < 1 be a time-discount parameter.

Then we call the utility function Uγ : Hω → [0, 1] that takes h⃗ to Uγ (⃗h) := (1− γ)
∑∞

n=0 γ
nr(⃗h≤n)

the γ-discounted utility function.

We provide the definition of classical regret, classical learnability, and bayes-optimality of policies
for completeness and self-containedness:

Definition 5.26. Let p̂ be a policy, ě an environment, and U a utility function. Then we define
the (classical) regret of p̂ as R(p̂, ě, U) := maxq̂∈Π̂(Eq̂·ě(U)− Ep̂·ě(U)).

That is - the regret value of a policy is the difference between what you could have scored, and
what you did score.

Definition 5.27. We say that a set of environments ěi is (classically) learnable with respect to
some γ-parametrized family of utility functions Uγ exactly when there exists some γ-indexed family
of policies p̂γ such that ∀i : limγ→1 R(p̂γ , ěi,Uγ) = 0.

Definition 5.28. Let ζ be a prior over a family of environments ěi assigning probability 0 to no
outcome; we will treat this as a single environment ěζ . Then we call a γ-indexed family of policies
p̂∗γ bayes-optimal if for all γ < 1, p̂∗γ ∈ argmaxp̂∈Π̂Ep̂·ěζ (Uγ).

Alright, enough of the classical stuff, on to infrabayesianism!

Definition 5.29. The regret function R is defined by its taking ordered triples (p, η, U) of policies,
hypotheses, and utility functions to R(p, η, U) := maxp̂(Eη(p̂)(U)−Eη(p)(U)), where p̂ is the optimal
policy.

Definition 5.30. Let U be a family of utility functions. A family of hypotheses ηi is learnable if
there exists some γ-indexed family of policies pγ such that for all i, limγ→1 R(pγ , ηi, Uγ) = 0.

That is: a family of hypotheses is learnable precisely when as we limit time-discounting towards
0, we still have some paired family of policies where the regret also tends to 0.

Definition 5.31. Suppose we have finitely many world-states S, possible observations O, and possi-
ble actions A, along with an observe function ob : S → ∆O taking states to probability distributions
over observations and a payoff function P : S ×A → [0, 1]. In this setting, a policy p : O → A can
be thought of as the same thing as its induced function fp : S → [0, 1]; more generally, for such a
policy q, we have fq(s) = Eob(s)(P (s, q(o))).

Two policies p, q are indistinguishable exactly when fp = fq; we also say that they share an
equivalence class.

Definition 5.32. We call a γ-indexed family of policies pγ infrabayes-optimal with respect to
some specified unitalized prior Eζηi if for all γ < 1, we have p∗,γ ∈ argmaxpEEζηi(p)(Uγ).
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Proposition 5.33. Let ηi be a family of learnable hypotheses. Then any infrabayes-optimal family
for a prior on the hypotheses can also learn the collection of hypotheses.

Definition 5.34. A total order ≻ on equivalence classes of policies is convex if when we interpret
the fp as points in [0, 1]S, we get that whenever fq ∈ c.h({fr|r ≻ p})+ [0,∞)

S
, we also have q ≻ p.

That is: whenever q is in the set of policies outperforming a specific policy p, we always get that
q ≻ p.

Conjecture. (The Complete Class Conjecture) Suppose ≻ is a complete ordering over equivalence
classes of plans, and that it fulfills the convexity property. Then there exists an infradistribution D
over states S such that q ≻ p → ED(fq) > ED(fp).

Proposition 5.35. (The Weak Complete Class Theorem) Let p be a Pareto-optimal policy. Then
for all q ∈ Π with fp ̸= fq, there is some infradistribution D over states S so that ED(fp) > ED(q).
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