
Lecture 26

Load Balancing

October 19 2016

1 John and the job-processor problem

Suppose John has a system in which m jobs arrive in a stream and need to be
processed immediately. John has a collection of n identical processors that
are capable of performing the jobs. One way of which John thinks to achieve
this is to give job to each processor in a round robin fashion. But here is a catch
say John’s system lacks in coordination so this round robin idea don’t serve his
purpose. John being a student of Probability and Computing class thought of a
randomized way to solve his problem. John simply assign each job to one of the
processors uniformly at random. John has a very simple intuition that it will
balance the jobs evenly, since each processor is equally likely to get each job. He
understands that at the same time, since the assignment is completely random,
he does not expect everything to end up perfectly balanced. The big question
in his mind is that How well does this simple randomized approach work?

2 John and his claims

John being a smart student of Probability and Computing class quickly did the
analysis of his problem and made few claims and also gave proof for the same.

Claim 1 : Consider the equation xx = n. Let x = γ(n) be the solution of
this equation then γ(n) = Θ(logn

log logn)

Proof :
xx = n (1)

Taking logarithm on both sides of equation 1

x log x = log n (2)

Taking logarithm on both sides of equation 2

log x+ log log x = log log n (3)

Since,
log x > log log x (4)

1

Adding log x on both sides of equation 4

2 log x > + log log x (5)

From equation 3 and 5
2 log x > log log n (6)

From equation 2

log x =
log n

x
(7)

From equation 6 and 7
2 log n

x
> log log n

Therefore,
log n

log log n
>
x

2
(8)

From equation 3
log n

log log n
=

log n

log x+ log log x
(9)

Since,
log x < log x+ log log x

Therefore,
1

log x+ log log x
<

1

log x
(10)

Multiplying log n on both the sides of equation 10,

log n

log x+ log log x
<

log n

log x
(11)

From equation 9 and 11,
log n

log log n
<

log n

log x
(12)

From equation 2 and 12,
log n

log log n
< x (13)

From equation 8 and 13
x

2
<

log n

log log n
< x

Since,
x = γ(n)

Therfore,
γ(n)

2
<

log n

log log n
< γ(n)

2

Hence,

γ(n) = Θ(
log n

log log n
)

Claim 2 : When m = n, with probability at least 1−n−1 no processor receives
more than eγ(n) = Θ(logn

log logn) jobs.

Proof : Let Xi be the random variable equal to the number of jobs assigned
to processor i, for i = 1, 2, . . . , n. It is easy to determine the expected
value of Xi: We let Yij be the random variable equal to 1 if job j is assigned
to processor i, and 0 otherwise; then Xi =

∑n
i=1 Yij and E[Yij] = 1/n, So E[Xi]

=
∑n
i=1E[Yij] = 1. But our concern is with how far Xi can deviate above its

expectation: What is the probability that Xi ¿ c? To give an upper bound on
this, we can directly apply

Pr

(
X ≥ (1 + δ)µ

)
≤
(

eδ

(1 + δ)(1 + δ)

)µ
Therefore taking µ = 1 and 1 + δ = c,

Pr

(
X ≥ c

)
≤
(
ec−1

cc

)
Therfore,

Pr

(
X ≥ c

)
≤
(
ec

cc

)
Therfore,

Pr

(
X ≥ c

)
≤
(
e

c

)c
Taking c = eγ(n),

Pr

(
X ≥ c

)
≤
(

1

γ(n)

)eγ(n)
(14)

For 0 < a < 1,
ae < a2

Therefore from equation 14,

Pr

(
X ≥ c

)
<

(
1

γ(n)

)2γ(n)

Therefore,

Pr

(
X ≥ c

)
<

(
1

γ(n)γ(n)

)2

(15)

3

From definition γ(n)γ(n) = n,

Pr

(
X ≥ c

)
<

(
1

n

)2

Therefore for all n jobs to satisfy probability becomes

P = nPr

(
X ≥ c

)
< n

(
1

n

)2

=
1

n

Hence,

P <
1

n

Claim 3 : When there are n processors and Ω(n log n) jobs, then with high
probability every processor will have a load between half and twice the average.

Proof : Taking m = tn log n, where t > 1
Therfore,

µ = m/n = t log n

Since,

Pr

(
X < c

)
<

(
ec−1

cc

)µ
Where c = 2,

Pr

(
X > 2µ

)
<

(
e

4

)t logn
(16)

Since

Pr

(
X < (1 − δ)µ

)
< e

−1
2 µδ2

Therefore,

Pr

(
X <

1

2
µ

)
< e

−1
2 t logn(1

2)
2

=

(
1

n

) t
8

(17)

Since John’s proof is complete for all functions of form tn log n. In this analysis
John took t because it can be even replaced with any function of n as long as
t = T (n) > 1 is satisfied. Hence John’s proof holds good for m = Ω(n log n) as
well.

4

