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Nuclear structure with regularized EDF generators
Mean-field and effective interactions

Mean-field methods and nuclear structure

Mean-field methods and nuclear structure

▸ Time-independent Schrödinger equation for A particles

ĤΨ = (T̂ + V̂2 + V̂3 + ...)Ψ = E0Ψ

▸ Mean-field approximation, Hartree-Fock(-Bogolyubov) equations

E = ⟨Φ∣Ĥeff ∣Φ⟩ ≃ E0 = ⟨Ψ∣Ĥ ∣Ψ⟩

▸ Effective interaction Ĥeff = T̂ + V̂eff

V̂eff = V̂eff(p) , p ∈ Rn , n ≲ 10



Nuclear structure with regularized EDF generators
Mean-field and effective interactions

Skyme effective interactions and functionals

Standard form of the Skyrme interaction V̂eff = V̂2 + V̂3

▸ Two-body term (with x ≡ r, s,q) ≃ SV interaction

V̂2(x1, x2; x3, x4) =[t0 (δs
+ x0 Ps

)

+ 1
2 t1 (δs

+ x1 Ps
) (k̂∗212 + k̂234)

+ t2 (δs
+ x2 Ps

) k̂∗12 ⋅ k̂34

+ iW0 δs
(σ̂13 + σ̂24) ⋅ (k̂∗12 × k̂34)]

× δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, / m∗/m, / K∞
▸ Three-body term

V̂3(x1, x2, x3; x4, x5, x6) = t3 δx1x4δx2x5δx3x6δ(r1 − r2)δ(r1 − r3)

, ρsat, , E/A, , m∗/m, / K∞
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Mean-field and effective interactions

Skyme effective interactions and functionals

Standard form of the Skyrme interaction V̂eff = V̂2 + V̂3

▸ Two-body term (with x ≡ r, s,q) ≃ SV interaction

V̂2(x1, x2; x3, x4) =[t0 (δs
+ x0 Ps

)

+ 1
2 t1 (δs

+ x1 Ps
) (k̂∗212 + k̂234)

+ t2 (δs
+ x2 Ps

) k̂∗12 ⋅ k̂34

+ iW0 δs
(σ̂13 + σ̂24) ⋅ (k̂∗12 × k̂34)]

× δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, / m∗/m, / K∞
▸ Two-body density dependent term ≃ SIII interaction

V̂3(x1, x2; x3, x4) = 1
6 t3 (δs

+ x3 Ps
)ρ0(r1)δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, , m∗/m, / K∞
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Mean-field and effective interactions

Skyme effective interactions and functionals

Standard form of the Skyrme interaction V̂eff = V̂2 + V̂3

▸ Two-body term (with x ≡ r, s,q) ≃ SV interaction

V̂2(x1, x2; x3, x4) =[t0 (δs
+ x0 Ps

)

+ 1
2 t1 (δs

+ x1 Ps
) (k̂∗212 + k̂234)

+ t2 (δs
+ x2 Ps

) k̂∗12 ⋅ k̂34

+ iW0 δs
(σ̂13 + σ̂24) ⋅ (k̂∗12 × k̂34)]

× δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, / m∗/m, / K∞
▸ Two-body term depending on a fractional power of the density ≃ SLy

V̂3(x1, x2; x3, x4) = 1
6 t3 (δs

+ x3 Ps
)ρα0 (r1)δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, , m∗/m, , K∞
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Mean-field and effective interactions

Gogny effective interaction

Gogny effective interaction

J. Dechargé and D. Gogny, Phys. Rev. C 21 (1980) 1568

▸ Two-body finite-range term

V̂2(x1, x2; x3, x4) =[∑
i=1,2

(Wi δsδq
+Bi Psδq

−Hi δqPq
−Mi PsPq

) e−
(r1−r2)

2

µi 2

+ iW0 δs
(σ̂13 + σ̂24) ⋅ (k̂∗12 × k̂34) δ(r1 − r2)]

× δ(r1 − r3)δ(r2 − r4)

▸ Two-body zero-range term depending on ρ1/30

V̂3(x1, x2; x3, x4) = t3 (δs
+Ps

)ρ
1/3
0 (r1)δ(r1 − r3)δ(r2 − r4)δ(r1 − r2)

, ρsat, , E/A, , m∗/m, , K∞
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Mean-field and effective interactions

Effective interaction and functionals

Functional derived from an effective (Skyrme) interaction

For a spherical nucleus at the HF approximation

E = ⟨T̂ + V̂eff⟩ = ∫
h̵2

2m
τ0 d3r + ∑

t=0,1
∫ Et d3r

with

Et = Cρ
t [ρ0]ρ

2
t + Cτ

t ρtτt + C∆ρ
t ρt∆ρt + C∇J

t ρt∇ ⋅ Jt +
1
2 C J

t J2t

The coupling constants of the functional Cρ
t [ρ0], Cτ

t , etc., are entirely
determined by the parameters p of the interaction
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Mean-field and effective interactions

Effective interaction and functionals

Skyrme interaction and Skyrme functional: E ≠ ⟨T̂ + V̂eff⟩
▸ Interaction:

▸ All the terms of the functional determined by the parameters of the
interaction

▸ Tricky to obtain satisfactory properties in all channels
▸ Some terms of the functional are difficult to constrain

▸ Functional: more versatile
▸ Complicated, poorly determined or “dangerous” terms, i.e. J2,
ρ1∆ρ1, s0∆s0, s1∆s1, ... omitted or separately adjusted

▸ A different interaction can be used in the pairing channel
▸ Slater approximation can be used for the Coulomb exhange term

⇒ Very efficient at the mean-field level
▸ SLyn (n = 4, 5, 6, 7),
Nucl. Phys. A 627 (1997) 710 et A 635 (1998) 231

▸ UNEDFn′ (n′ = 0, 1, 2)
Phys. Rev. C 82, 024313, C 85, 024304 et C 89, 054314
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Constraints on the effective interactions

Constraints on the effective interactions

▸ Mean-field approximation
▸ sometimes inadequate to describe the ground states of nuclei
▸ does not provide excited states energies and good quantum numbers

▸ Beyond mean-field approaches
▸ Use of symmetry breaking / symmetry restoration mecanisms
▸ Configuration mixing along collective coordinates (GCM)
▸ Need to calculate energy E[q,q′] and overlap N [q,q′] kernels to
evaluate E with correlations

▸ For example
EN
= ∫

2π

0
dϕE[0, ϕ]N [0, ϕ]

depends on transition densities between an HFB state ∣Φ0⟩ and a
rotated state ∣Φϕ⟩: ρ0ϕ, κ0ϕ et κϕ0∗
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Constraints on the effective interactions

Pitfalls with functionals not derived from an interaction

▸ Skyrme functional are (most of the time) not strictly derived from
an interaction

▸ EN will show divergences each time a single particle state goes
through the Fermi energy

Cf. M. Anguiano et al., NPA 696, 467
J. Dobaczewski et al., PRC 76, 054315

D. Lacroix et al., PRC 79, 044318

▸ Even if the functional is derived from an interaction, the density
dependent term ρα0 requires a particular treatment

▸ transition (or mixed) density: ρ0ϕ = ⟨Φ0∣ρ̂∣Φϕ⟩
▸ average density: ρ̄α = 1

2 (⟨Φ0∣ρ̂∣Φ0⟩
α
+ ⟨Φϕ∣ρ̂∣Φϕ⟩α)

▸ correlated density: ρN
= ∫ dϕρ0ϕN [0, ϕ]
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Constraints on the effective interactions

Pitfalls with functionals not derived from an interaction

▸ Skyrme functional are (most of the time) not strictly derived from
an interaction

▸ EN will show divergences each time a single particle state goes
through the Fermi energy

Cf. M. Anguiano et al., NPA 696, 467
J. Dobaczewski et al., PRC 76, 054315

D. Lacroix et al., PRC 79, 044318

▸ Even if the functional is derived from an interaction, the density
dependent term ρα0 requires a particular treatment

▸ transition (or mixed) density: ρ0ϕ = ⟨Φ0∣ρ̂∣Φϕ⟩ ∈C
▸ average density: ρ̄α = 1

2 (⟨Φ0∣ρ̂∣Φ0⟩
α
⟨Φϕ∣ρ̂∣Φϕ⟩α)

▸ correlated density: ρN
= ∫ dϕρ0ϕN [0, ϕ]

L. M. Robledo, JPG 37, 064020



Nuclear structure with regularized EDF generators
Constraints on the effective interactions

Fractional power of the density1

▸ The energy kermel E[q,q′] must be extented in C
▸ ρα0 ⇒ E[q,q′] is a multivalued function in the complexe plane

Problem analyzed by J. Dobaczewski et al., PRC 76, 054315:
... with solutions that might not be usable with all symmetry restorations

1T. Duguet, M. Bender, K.B., D. Lacroix, T. Lesinski, PRC 79, 044320
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Constraints on the effective interactions

Functional for beyond mean-field calculations
▸ Functional not derived from an effective interaction
→ Divergences of the energie
▸ The considered regularization methods might be difficult to
implement, seem to be ad hoc and are not proven to be usable in all
circumstances

▸ Effective interaction with density dependent term ρα0
→ Steps in the energy
▸ No solution proven to be usable in all situations (yet)

Drastic solution
The functional has to be strictly derived from an interaction with no

density dependent term
(what we call a pseudopotentiel)
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Finite-range pseudopotentials

Finite-range two-body pseudopotentials2
▸ In a nutshell:
take a Skyrme interaction and replace δ(r) with ga(r) = e−

r2
a2

(a√π)3
▸ Pseudopotential at “NLO”

v = ṽ0(r1, r2; r3, r4) t0 (1σq + x01qP̂σ − y01σP̂q
− z0P̂σP̂q

)

+ ṽ1(r1, r2; r3, r4) t1 (1σq + x11qP̂σ − y11σP̂q
− z1P̂σP̂q

)

+ ṽ2(r1, r2; r3, r4) t2 (1σq + x21qP̂σ − y21σP̂q
− z2P̂σP̂q

)

with ṽ0(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)

ṽ1(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)
1
2
[k∗212 + k2

34]

ṽ2(r1, r2; r3, r4) = δ(r1 − r3)δ(r2 − r4)ga(r1 − r2)k∗12 ⋅ k34

▸ Thanks to the finite range: P̂σP̂q ≡ −P̂x /≡ ± 1
▸ Can be generalized at N2LO, N3LO, ...

2F. Raimondi, K.B., J. Dobaczewski, J. Phys. G 41, 055112
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Finite-range pseudopotentials

Finite-range local pseudopotentials

Finite-range two-body local pseudopotentials

▸ The conditions

t1 = −t2 , x1 = x2 , y1 = y2 , z1 = z2

(and same for higher order terms) make the pseudopotential local

▸ This is a severe restriction on the flexibility of the functional

▸ ... but it greatly simplifies the implementation in computer codes
▸ and it limits the number of free parameters
(and that’s all we have so far anyway...)

▸ Use of a standard two-body zero-range spin-orbit interaction
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Finite-range local pseudopotentials

Preliminary fits of the parameters
▸ Two-body finite-range local pseudopotentials at NLO and N2LO

Details on the fits:
K.B., A. Idini, J. Dobaczewski, P. Dobaczewski, M. Kortelainen, F. Raimondi, J. Phys. G 44, 045106 (2017)
A. Idini, K.B., J. Dobaczewski, J. Phys. G 44, 064004 (2017)
K.B., J. Dobaczewski, Y. Gao, arXiv:1701.08062

▸ Infinite nuclear matter properties
ρsat B K∞ m∗/m J L
(fm−3

) (MeV) (MeV) (MeV) (MeV)

NLO 0.1599 -16.17 229.8 0.4076 31.96 64.04
N2LO 0.1601 -16.09 230.0 0.4061 31.95 64.68

▸ Binding energies of semi-magic nuclei
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Finite-range pseudopotentials

Finite-range local pseudopotentials

Single particle energies with a low effective mass...
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Finite-range local pseudopotentials

How to increase the effective mass ?

A three-body interaction seems to be the only way...

▸ Finite-range three-body: not doable in 3D codes
▸ Semi-contact three-body: not doable either in 3D codes /

D. Lacroix, K.B., Phys. Rev. C 91, 011302(R) (2015)

▸ Zero-range contact interaction: too repulsive in the pairing channel
▸ Non-local zero-range contact 3-body interaction
(i.e. Finite-range 2-body and 3-body with grandients):
Original idea:
N. Onishi and J. Negele, Nuclear Physics A 301 (1978) 336
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Finite-range local pseudopotentials

Three-body terms with grandients
Same as in J. Sadoudi et al., Phys. Rev. C 88 (2013) 064326

▸ Symmetrized expression built from

v3(x1, x2, x3; x4, x5, x6) = [v30 +v31 + v32] δ(r1 − r2)δ(r1 − r3)
× δ(r1 − r4)δ(r2 − r5)δ(r3 − r6)δq1q4δq2q5δq3q6

with

v30 = u0 δs1s4δs2s5δs3s6

v31 =
u1
2

(δs1s4δs2s5 + y1 δs1s5δs2s4) δs3s6 (k̂∗212 + k̂245)

v32 = u2 [δs1s4δs2s5δs3s6 + y21 δs1s5δs2s4δs3s6

+ y22 (δs1s6δs2s5δs3s4 + δs1s4δs2s6δs3s5)] k̂∗12 ⋅ k̂45

▸ 6 additional parameters...
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Finite-range local pseudopotentials

Fit of the parameters and infinite nuclear matter properties

▸ Finite-range local terms + spin-orbit + 3-body → 19 parameters...

▸ Setting ρsat, m∗/m and J to the empirical values leaves 16 free
parameters

▸ Infinite nuclear matter
ρsat B K∞ m∗/m J L
(fm−3

) (MeV) (MeV) (MeV) (MeV)

NLO 0.1599 -16.17 229.8 0.4076 31.96 64.04
N2LO 0.1601 -16.09 230.0 0.4061 31.95 64.68
N2LO + 3B 0.1600 -16.02 258.6 0.7000 32.00 35.94

▸ The three-body terms with gradients allows to increase the effective
mass and seems to give attractive pairing
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Finite-range local pseudopotentials

Results

▸ Equations of states are OK...
▸ Pairing strong enough...
▸ Binding energies of spherical nuclei
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Very encouraging results, but...
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Finite-range local pseudopotentials

Yet another illustration of Murphy’s law

▸ Calculations of spherical nuclei with a spherical code give nice results
▸ Calculations for the same spherical nuclei with a code allowing
deformation give calamitous results

▸ Collapse of the local part of the pairing density ρ̃(r, r) = 0
▸ Huge pairing energies
▸ Unphysical binding energies
▸ Although nuclei are perfectly spherical...

▸ No bug found so far...
▸ So what ?
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Finite-range local pseudopotentials

The culprit
The contact (local) 3-body term (mainly added to increase the effective
mass) is always too repulsive in the pairing channel.

So, if it hurts, don’t do it...

v3(x1, x2, x3; x4, x5, x6) = [v30 +v31 + v32] δ(r1 − r2)δ(r1 − r3)
× δ(r1 − r4)δ(r2 − r5)δ(r3 − r6)δq1q4δq2q5δq3q6

with

v30 = 0

v31 =
u1
2

(δs1s4δs2s5 + y1 δs1s5δs2s4) δs3s6 (k̂∗212 + k̂245)

v32 = u2 [δs1s4δs2s5δs3s6 + y21 δs1s5δs2s4δs3s6

+ y22 (δs1s6δs2s5δs3s4 + δs1s4δs2s6δs3s5)] k̂∗12 ⋅ k̂45

, One less parameter to fit !
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Finite-range local pseudopotentials

Fit of the parameters and infinite nuclear matter properties

▸ Preliminary fit with 4 spherical nuclei
▸ Saturation density ρsat, symmetry energy coefficient J and effective
mass m∗/m fixed

▸ Pairing adjusted by tuning the contribution of the finite-range
interaction in the pairing channel

▸ Empirical constraints to avoid finite-size instabilities

ρsat B K∞ m∗/m J L
(fm−3

) (MeV) (MeV) (MeV) (MeV)

NLO 0.1599 -16.17 229.8 0.4076 31.96 64.04
N2LO 0.1601 -16.09 230.0 0.4061 31.95 64.68
N2LO + 3B 0.1600 -16.02 258.6 0.7000 32.00 35.94
N2LO + 3B (U0 = 0) 0.1600 -16.42 276.3 0.5500 35.00 44.99
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Finite-range local pseudopotentials

Sherical nuclei
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Results are not too bad but it’s easy to find examples with less
encouraging agreement...
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Finite-range local pseudopotentials

Single particle energies in 208Pb

Density of state scales as expected
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Finite-range local pseudopotentials

Deformed nuclei
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Conclusion and outlooks

Conclusion

▸ The two-body finite-range pseudopotential complemented with a
non-local three-body contact term gives acceptable results but not
competitive yet with other existing effective interactions

▸ It does not contain density dependent terms and is used consistently
in all channels: usable with no technical difficulties in beyond
mean-field calculations

▸ The local version of the two-body terms give encouraging results,
the non local version will not hurt

▸ Local version implemented in FINRES4 (spherical solver), under
construction in 3D codes HFBTEMP (M. Kortelainen) and HFODD
(J. Dobaczewski et al.)
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Open questions

Open questions: Different “flavors” of spherical results
▸ Calculations of spherical nuclei with a spherical code give nice results
▸ Calculations for the same spherical nuclei with a code allowing
deformation give calamitous results

▸ Collapse of the local part of the pairing density ρ̃(r, r) = 0
▸ Huge pairing energies
▸ Unphysical binding energies
▸ Although nuclei are perfectly spherical...

▸ No bug found so far...
▸ So what ?
▸ On a deformed basis, non local densities might not fulfill

ρq(r1, r2) = ∑
`jm`

ρq(r1, r2)Y (`)∗m` (r̂1)Y (`)m` (r̂2)

even for a spherical nucleus ?
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Open questions

Open questions: Effective mass, how large should it be ?

ρsat B K∞ m∗/m J L
(fm−3

) (MeV) (MeV) (MeV) (MeV)

NLO 0.1599 -16.17 229.8 0.4076 31.96 64.04
N2LO 0.1601 -16.09 230.0 0.4061 31.95 64.68
N2LO + 3B 0.1600 -16.02 258.6 0.7000 32.00 35.94
N2LO + 3B (U0 = 0) 0.1600 -16.42 276.3 0.5500 35.00 44.99

▸ For mean-field calculations ?
▸ For beyond mean-field calculations ?
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Open questions

Open questions: What drives the parameters to regions
with finite-size instabilities ?

▸ Several Skyrme interactions are plaged with finite-size instabilities

▸ Isovector instabilities are more likely to occur when the interaction is
tuned to give attractive pairing

▸ Can it be avoided ?

▸ Does a finite-range help ?
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