Nuclear structure with regularized EDF generators

Why one more effective interaction ?!

$\label{eq:K.Bennaceur} \frac{\text{K.Bennaceur}^{1,2,3}}{\text{A. Idini}^{2,6}, \text{ F. Raimondi}^6} \text{ M. Kortelainen}^{2,3},$

¹IPNL, CNRS/IN2P3, Université Claude Bernard Lyon 1, France,
 ²Department of Physics, University of Jyväskylä, Finland,
 ³Helsinki Institute of Physics, Finland,
 ⁴Faculty of Physics, University of Warsaw, Poland,
 ⁵Department of Physics, University of Surrey, Guilford, UK

October 2^{nd} , 2017

Outline

Mean-field and effective interactions

Constraints on the effective interactions

Finite-range pseudopotentials

Conclusion and outlooks

Open questions

Mean-field methods and nuclear structure

Time-independent Schrödinger equation for A particles

$$\hat{H}\Psi = \left(\hat{T} + \hat{V}_2 + \hat{V}_3 + \ldots\right)\Psi = E_0\Psi$$

Mean-field approximation, Hartree-Fock(-Bogolyubov) equations

$$E = \big< \Phi \big| \hat{H}_{\rm eff} \big| \Phi \big> \simeq E_0 = \big< \Psi \big| \hat{H} \big| \Psi \big>$$

• Effective interaction \hat{H}_{eff} = \hat{T} + \hat{V}_{eff}

$$\hat{V}_{\text{eff}} = \hat{V}_{\text{eff}}(\mathbf{p}), \quad \mathbf{p} \in \mathbb{R}^{n}, \quad n \lesssim 10$$

Nuclear structure with regularized EDF generators Mean-field and effective interactions Skyme effective interactions and functionals

Standard form of the Skyrme interaction $\hat{V}_{\text{eff}} = \hat{V}_2 + \hat{V}_3$

• Two-body term (with $x \equiv \mathbf{r}, s, q$) \simeq SV interaction

$$\hat{V}_{2}(x_{1}, x_{2}; x_{3}, x_{4}) = \begin{bmatrix} t_{0} (\delta^{s} + x_{0} \mathbf{P}^{s}) \\ + \frac{1}{2} t_{1} (\delta^{s} + x_{1} \mathbf{P}^{s}) (\hat{\mathbf{k}}_{12}^{*2} + \hat{\mathbf{k}}_{34}^{2}) \\ + t_{2} (\delta^{s} + x_{2} \mathbf{P}^{s}) \hat{\mathbf{k}}_{12}^{*} \cdot \hat{\mathbf{k}}_{34} \\ + i W_{0} \delta^{s} (\hat{\sigma}_{13} + \hat{\sigma}_{24}) \cdot (\hat{\mathbf{k}}_{12}^{*} \times \hat{\mathbf{k}}_{34}) \end{bmatrix} \\ \times \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \delta(\mathbf{r}_{2} - \mathbf{r}_{4}) \delta(\mathbf{r}_{1} - \mathbf{r}_{2})$$

$$\bigcirc$$
 $ho_{
m sat}$, \bigcirc E/A , \bigcirc m^*/m , \bigcirc K_{∞}

Three-body term

$$\hat{V}_{3}(x_{1}, x_{2}, x_{3}; x_{4}, x_{5}, x_{6}) = t_{3} \,\delta_{x_{1}x_{4}} \delta_{x_{2}x_{5}} \delta_{x_{3}x_{6}} \delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \delta(\mathbf{r}_{1} - \mathbf{r}_{3})$$

$$\odot \,\rho_{\text{sat}}, \quad \odot \, E/A, \quad \odot \, m^{*}/m, \quad \odot \, K_{\infty}$$

Nuclear structure with regularized EDF generators Mean-field and effective interactions Skyme effective interactions and functionals

Standard form of the Skyrme interaction $\hat{V}_{eff} = \hat{V}_2 + \hat{V}_3$

• Two-body term (with $x \equiv \mathbf{r}, s, q$) \simeq SV interaction

$$\begin{split} \hat{V}_{2}(x_{1}, x_{2}; x_{3}, x_{4}) = & \left[t_{0} \left(\boldsymbol{\delta}^{s} + x_{0} \, \boldsymbol{\mathsf{P}}^{s} \right) \right. \\ & \left. + \frac{1}{2} t_{1} \left(\boldsymbol{\delta}^{s} + x_{1} \, \boldsymbol{\mathsf{P}}^{s} \right) \left(\hat{\boldsymbol{\mathsf{k}}}_{12}^{*2} + \hat{\boldsymbol{\mathsf{k}}}_{34}^{2} \right) \right. \\ & \left. + t_{2} \left(\boldsymbol{\delta}^{s} + x_{2} \, \boldsymbol{\mathsf{P}}^{s} \right) \hat{\boldsymbol{\mathsf{k}}}_{12}^{*} \cdot \hat{\boldsymbol{\mathsf{k}}}_{34} \\ & \left. + i \, W_{0} \, \boldsymbol{\delta}^{s} \left(\hat{\boldsymbol{\sigma}}_{13} + \hat{\boldsymbol{\sigma}}_{24} \right) \cdot \left(\hat{\boldsymbol{\mathsf{k}}}_{12}^{*} \times \hat{\boldsymbol{\mathsf{k}}}_{34} \right) \right] \\ & \left. \times \delta(\boldsymbol{\mathsf{r}}_{1} - \boldsymbol{\mathsf{r}}_{3}) \delta(\boldsymbol{\mathsf{r}}_{2} - \boldsymbol{\mathsf{r}}_{4}) \delta(\boldsymbol{\mathsf{r}}_{1} - \boldsymbol{\mathsf{r}}_{2}) \end{split}$$

$$\bigcirc \rho_{\mathrm{sat}}, \bigcirc E/A, \odot m^*/m, \odot K_{\infty}$$

• Two-body density dependent term \simeq SIII interaction

$$\hat{V}_3(x_1, x_2; x_3, x_4) = \frac{1}{6} t_3 \left(\boldsymbol{\delta}^s + x_3 \, \mathbf{P}^s \right) \rho_0(\mathbf{r}_1) \delta(\mathbf{r}_1 - \mathbf{r}_3) \delta(\mathbf{r}_2 - \mathbf{r}_4) \delta(\mathbf{r}_1 - \mathbf{r}_2)$$

$$\bigcirc \rho_{\text{sat}}, \quad \bigcirc E/A, \quad \bigcirc m^*/m, \quad \bigodot K_{\infty}$$

Nuclear structure with regularized EDF generators Mean-field and effective interactions Skyme effective interactions and functionals

Standard form of the Skyrme interaction $\hat{V}_{eff} = \hat{V}_2 + \hat{V}_3$

• Two-body term (with $x \equiv \mathbf{r}, s, q$) \simeq SV interaction

$$\begin{aligned} \hat{V}_{2}(x_{1}, x_{2}; x_{3}, x_{4}) = & \left[t_{0} \left(\delta^{s} + x_{0} \mathbf{P}^{s} \right) \\ & + \frac{1}{2} t_{1} \left(\delta^{s} + x_{1} \mathbf{P}^{s} \right) \left(\hat{\mathbf{k}}_{12}^{*2} + \hat{\mathbf{k}}_{34}^{2} \right) \\ & + t_{2} \left(\delta^{s} + x_{2} \mathbf{P}^{s} \right) \hat{\mathbf{k}}_{12}^{*} \cdot \hat{\mathbf{k}}_{34} \\ & + i W_{0} \, \delta^{s} \left(\hat{\sigma}_{13} + \hat{\sigma}_{24} \right) \cdot \left(\hat{\mathbf{k}}_{12}^{*} \times \hat{\mathbf{k}}_{34} \right) \right] \\ & \times \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \delta(\mathbf{r}_{2} - \mathbf{r}_{4}) \delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \end{aligned}$$

$$\bigcirc
ho_{\mathrm{sat}}, \ \bigcirc E/A, \ \odot m^*/m, \ \odot K_{\infty}$$

• Two-body term depending on a fractional power of the density \simeq SLy

Nuclear structure with regularized EDF generators Mean-field and effective interactions Gogny effective interaction

Gogny effective interaction

J. Dechargé and D. Gogny, Phys. Rev. C 21 (1980) 1568

2

Two-body finite-range term

$$\begin{split} \hat{V}_{2}(x_{1}, x_{2}; x_{3}, x_{4}) = & \left[\sum_{i=1,2} \left(W_{i} \, \delta^{s} \delta^{q} + B_{i} \, \mathbf{P}^{s} \delta^{q} - H_{i} \, \delta^{q} \mathbf{P}^{q} - M_{i} \, \mathbf{P}^{s} \mathbf{P}^{q} \right) \mathrm{e}^{-\frac{(\mathbf{r}_{1} - \mathbf{r}_{2})^{2}}{\mu_{i}^{2}}} \\ & + \mathrm{i} \, W_{0} \, \delta^{s} \left(\hat{\sigma}_{13} + \hat{\sigma}_{24} \right) \cdot \left(\hat{\mathbf{k}}_{12}^{*} \times \hat{\mathbf{k}}_{34} \right) \delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \right] \\ & \times \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \delta(\mathbf{r}_{2} - \mathbf{r}_{4}) \end{split}$$

• Two-body zero-range term depending on $\rho_0^{1/3}$

$$\hat{V}_3(x_1, x_2; x_3, x_4) = t_3 \left(\delta^s + \mathbf{P}^s \right) \rho_0^{1/3}(\mathbf{r}_1) \delta(\mathbf{r}_1 - \mathbf{r}_3) \delta(\mathbf{r}_2 - \mathbf{r}_4) \delta(\mathbf{r}_1 - \mathbf{r}_2)$$

$$\bigcirc \rho_{\text{sat}}, \quad \bigcirc E/A, \quad \bigcirc m^*/m, \quad \bigcirc K_{\infty}$$

Functional derived from an effective (Skyrme) interaction

For a spherical nucleus at the HF approximation

$$E = \langle \hat{T} + \hat{V}_{\text{eff}} \rangle = \int \frac{\hbar^2}{2m} \tau_0 \, \mathrm{d}^3 r + \sum_{t=0,1} \int \mathcal{E}_t \, \mathrm{d}^3 r$$

with

$$\mathcal{E}_t = C_t^{\rho} [\rho_0] \rho_t^2 + C_t^{\tau} \rho_t \tau_t + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\nabla J} \rho_t \nabla \cdot \mathbf{J}_t + \frac{1}{2} C_t^J \mathbf{J}_t^2$$

The coupling constants of the functional $C_t^{\rho}[\rho_0]$, C_t^{τ} , etc., are entirely determined by the parameters **p** of the interaction

Skyrme interaction and Skyrme functional: $E \neq \langle \hat{T} + \hat{V}_{eff} \rangle$

- Interaction:
 - All the terms of the functional determined by the parameters of the interaction
 - Tricky to obtain satisfactory properties in all channels
 - Some terms of the functional are difficult to constrain
- Functional: more versatile
 - Complicated, poorly determined or "dangerous" terms, *i.e.* \mathbb{J}^2 , $\rho_1 \Delta \rho_1$, $\mathbf{s}_0 \Delta \mathbf{s}_0$, $\mathbf{s}_1 \Delta \mathbf{s}_1$, ... omitted or separately adjusted
 - A different interaction can be used in the pairing channel
 - Slater approximation can be used for the Coulomb exhange term
- \Rightarrow Very efficient at the mean-field level
 - SLyn (n = 4, 5, 6, 7), Nucl. Phys. A 627 (1997) 710 et A 635 (1998) 231
 - UNEDFn' (n' = 0, 1, 2)
 Phys. Rev. C 82, 024313, C 85, 024304 et C 89, 054314

Constraints on the effective interactions

- Mean-field approximation
 - sometimes inadequate to describe the ground states of nuclei
 - does not provide excited states energies and good quantum numbers
- Beyond mean-field approaches
 - Use of symmetry breaking / symmetry restoration mecanisms
 - Configuration mixing along collective coordinates (GCM)
 - Need to calculate energy $\mathcal{E}[q,q']$ and overlap $\mathcal{N}[q,q']$ kernels to evaluate E with correlations
 - For example

$$E^N = \int_0^{2\pi} \mathrm{d}\varphi \, \mathcal{E} \big[0, \varphi \big] \mathcal{N} \big[0, \varphi \big]$$

depends on transition densities between an HFB state $|\Phi_0\rangle$ and a rotated state $|\Phi_{\varphi}\rangle$: $\rho^{0\varphi}$, $\kappa^{0\varphi}$ et $\kappa^{\varphi 0*}$

Pitfalls with functionals not derived from an interaction

- Skyrme functional are (most of the time) not strictly derived from an interaction
- ► E^N will show divergences each time a single particle state goes through the Fermi energy

Cf. M. Anguiano *et al.*, NPA 696, 467
 J. Dobaczewski *et al.*, PRC 76, 054315
 D. Lacroix *et al.*, PRC 79, 044318

- Even if the functional is derived from an interaction, the density dependent term ρ_0^{α} requires a particular treatment
 - transition (or mixed) density: $\rho^{0\varphi} = \langle \Phi_0 | \hat{\rho} | \Phi \varphi \rangle$
 - average density: $\bar{\rho}^{\alpha} = \frac{1}{2} \left(\langle \Phi_0 | \hat{\rho} | \Phi_0 \rangle^{\alpha} + \langle \Phi_{\varphi} | \hat{\rho} | \Phi_{\varphi} \rangle^{\alpha} \right)$
 - correlated density: $\rho^{N} = \int d\varphi \rho^{0\varphi} \mathcal{N}[0,\varphi]$

Pitfalls with functionals not derived from an interaction

- Skyrme functional are (most of the time) not strictly derived from an interaction
- ► E^N will show divergences each time a single particle state goes through the Fermi energy

Cf. M. Anguiano *et al.*, NPA 696, 467
 J. Dobaczewski *et al.*, PRC 76, 054315
 D. Lacroix *et al.*, PRC 79, 044318

- Even if the functional is derived from an interaction, the density dependent term ρ_0^{α} requires a particular treatment
 - transition (or mixed) density: $\rho^{0\varphi} = \langle \Phi_0 | \hat{\rho} | \Phi \varphi \rangle \in \mathbb{C}$
 - average density: $\bar{\rho}^{\alpha} = \frac{1}{2} \left(\langle \Phi_0 | \hat{\rho} | \Phi_0 \rangle^{\alpha} \langle \Phi_{\varphi} | \hat{\rho} | \Phi_{\varphi} \rangle^{\alpha} \right)$
 - correlated density: $p^N = \int d\varphi \, \rho^{0\varphi} \, \mathcal{N}[0,\varphi]$

L. M. Robledo, JPG 37, 064020

Fractional power of the density¹

- The energy kermel $\mathcal{E}[q,q']$ must be extented in $\mathbb C$
- $\rho_0^{lpha} \Rightarrow \mathcal{E}[q,q']$ is a multivalued function in the complexe plane

Problem analyzed by J. Dobaczewski et al., PRC 76, 054315:

... with solutions that might not be usable with all symmetry restorations

¹T. Duguet, M. Bender, K.B., D. Lacroix, T. Lesinski, PRC 79, 044320

Functional for beyond mean-field calculations

- Functional not derived from an effective interaction
 - → Divergences of the energie
 - The considered regularization methods might be difficult to implement, seem to be *ad hoc* and are not proven to be usable in all circumstances
- Effective interaction with density dependent term ho_0^{lpha}
 - \rightarrow Steps in the energy
 - No solution proven to be usable in all situations (yet)

Drastic solution

The functional has to be strictly derived from an interaction with no density dependent term (what we call a *pseudopotentiel*)

Finite-range two-body pseudopotentials²

In a nutshell:

take a Skyrme interaction and replace $\delta(\mathbf{r})$ with $g_a(\mathbf{r}) = \frac{e^{-\frac{r^2}{a^2}}}{(a\sqrt{\pi})^3}$

Pseudopotential at "NLO"

$$\begin{aligned} \mathbf{v} &= \tilde{v}_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}; \mathbf{r}_{3}, \mathbf{r}_{4}) t_{0} \left(\mathbf{1}_{\sigma q} + x_{0} \mathbf{1}_{q} \hat{P}^{\sigma} - y_{0} \mathbf{1}_{\sigma} \hat{P}^{q} - z_{0} \hat{P}^{\sigma} \hat{P}^{q} \right) \\ &+ \tilde{v}_{1}(\mathbf{r}_{1}, \mathbf{r}_{2}; \mathbf{r}_{3}, \mathbf{r}_{4}) t_{1} \left(\mathbf{1}_{\sigma q} + x_{1} \mathbf{1}_{q} \hat{P}^{\sigma} - y_{1} \mathbf{1}_{\sigma} \hat{P}^{q} - z_{1} \hat{P}^{\sigma} \hat{P}^{q} \right) \\ &+ \tilde{v}_{2}(\mathbf{r}_{1}, \mathbf{r}_{2}; \mathbf{r}_{3}, \mathbf{r}_{4}) t_{2} \left(\mathbf{1}_{\sigma q} + x_{2} \mathbf{1}_{q} \hat{P}^{\sigma} - y_{2} \mathbf{1}_{\sigma} \hat{P}^{q} - z_{2} \hat{P}^{\sigma} \hat{P}^{q} \right) \end{aligned}$$

with
$$\tilde{v}_0(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_3, \mathbf{r}_4) = \delta(\mathbf{r}_1 - \mathbf{r}_3)\delta(\mathbf{r}_2 - \mathbf{r}_4)g_a(\mathbf{r}_1 - \mathbf{r}_2)$$

 $\tilde{v}_1(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_3, \mathbf{r}_4) = \delta(\mathbf{r}_1 - \mathbf{r}_3)\delta(\mathbf{r}_2 - \mathbf{r}_4)g_a(\mathbf{r}_1 - \mathbf{r}_2)\frac{1}{2}\left[\mathbf{k}_{12}^{*2} + \mathbf{k}_{34}^2\right]$
 $\tilde{v}_2(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_3, \mathbf{r}_4) = \delta(\mathbf{r}_1 - \mathbf{r}_3)\delta(\mathbf{r}_2 - \mathbf{r}_4)g_a(\mathbf{r}_1 - \mathbf{r}_2)\mathbf{k}_{12}^* \cdot \mathbf{k}_{34}$

• Thanks to the finite range: $\hat{P}^{\sigma}\hat{P}^{q} \equiv -\hat{P}^{\times} \neq \pm 1$

▶ Can be generalized at N²LO, N³LO, ...

²F. Raimondi, K.B., J. Dobaczewski, J. Phys. G 41, 055112

Nuclear structure with regularized EDF generators Finite-range pseudopotentials Finite-range local pseudopotentials

Finite-range two-body local pseudopotentials

The conditions

$$t_1 = -t_2$$
, $x_1 = x_2$, $y_1 = y_2$, $z_1 = z_2$

(and same for higher order terms) make the pseudopotential local

- This is a severe restriction on the flexibility of the functional
- ... but it greatly simplifies the implementation in computer codes
- and it limits the number of free parameters (and that's all we have so far anyway...)
- Use of a standard two-body zero-range spin-orbit interaction

Nuclear structure with regularized EDF generators

Finite-range pseudopotentials

Finite-range local pseudopotentials

Preliminary fits of the parameters

Two-body finite-range local pseudopotentials at NLO and N²LO

Details on the fits:

K.B., A. Idini, J. Dobaczewski, P. Dobaczewski, M. Kortelainen, F. Raimondi, J. Phys. G 44, 045106 (2017) A. Idini, K.B., J. Dobaczewski, J. Phys. G 44, 064004 (2017) K.B., J. Dobaczewski, Y. Gao, arXiv:1701.08062

Infinite nuclear matter properties

	$ ho_{ m sat}$	В	K_{∞}	m*/m	J	L
	(fm ⁻³)	(MeV)	(MeV)		(MeV)	(MeV)
NLO	0.1599	-16.17	229.8	0.4076	31.96	64.04
N ² LO	0.1601	-16.09	230.0	0.4061	31.95	64.68

Binding energies of semi-magic nuclei

Finite-range pseudopotentials

Finite-range local pseudopotentials

Single particle energies with a low effective mass...

How to increase the effective mass ?

A three-body interaction seems to be the only way...

- Finite-range three-body: not doable in 3D codes
- Semi-contact three-body: not doable either in 3D codes D. Lacroix, K.B., Phys. Rev. C 91, 011302(R) (2015)
- Zero-range contact interaction: too repulsive in the pairing channel
- Non-local zero-range contact 3-body interaction (*i.e.* Finite-range 2-body and 3-body with grandients): Original idea:
 - N. Onishi and J. Negele, Nuclear Physics A 301 (1978) 336

Nuclear structure with regularized EDF generators Finite-range pseudopotentials Finite-range local pseudopotentials

Three-body terms with grandients

Same as in J. Sadoudi et al., Phys. Rev. C 88 (2013) 064326

Symmetrized expression built from

$$v_{3}(x_{1}, x_{2}, x_{3}; x_{4}, x_{5}, x_{6}) = [v_{30} + v_{31} + v_{32}] \delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \\ \times \delta(\mathbf{r}_{1} - \mathbf{r}_{4}) \delta(\mathbf{r}_{2} - \mathbf{r}_{5}) \delta(\mathbf{r}_{3} - \mathbf{r}_{6}) \delta_{q_{1}q_{4}} \delta_{q_{2}q_{5}} \delta_{q_{3}q_{6}}$$

with

6 additional parameters...

Fit of the parameters and infinite nuclear matter properties

- Finite-range local terms + spin-orbit + 3-body \rightarrow 19 parameters...
- \blacktriangleright Setting $\rho_{\rm sat},~m^*/m$ and J to the empirical values leaves 16 free parameters
- Infinite nuclear matter

	$ ho_{ m sat}$	В	K_{∞}	m*/m	J	L
	(fm ⁻³)	(MeV)	(MeV)		(MeV)	(MeV)
NLO	0.1599	-16.17	229.8	0.4076	31.96	64.04
N ² LO	0.1601	-16.09	230.0	0.4061	31.95	64.68
$N^2LO + 3B$	0.1600	-16.02	258.6	0.7000	32.00	35.94

 The three-body terms with gradients allows to increase the effective mass and *seems* to give attractive pairing Nuclear structure with regularized EDF generators

Finite-range pseudopotentials

Finite-range local pseudopotentials

Results

- Equations of states are OK...
- Pairing strong enough...
- Binding energies of spherical nuclei

Very encouraging results, but...

Yet another illustration of Murphy's law

- Calculations of spherical nuclei with a spherical code give nice results
- Calculations for the same spherical nuclei with a code allowing deformation give calamitous results
 - Collapse of the local part of the pairing density $\tilde{\rho}(\mathbf{r},\mathbf{r}) = \mathbf{0}$
 - Huge pairing energies
 - Unphysical binding energies
 - Although nuclei are perfectly spherical...
- No bug found so far...
- So what ?

The culprit

The contact (local) 3-body term (mainly added to increase the effective mass) is always too repulsive in the pairing channel.

So, if it hurts, don't do it ...

$$v_{3}(x_{1}, x_{2}, x_{3}; x_{4}, x_{5}, x_{6}) = [v_{30} + v_{31} + v_{32}] \delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \\ \times \delta(\mathbf{r}_{1} - \mathbf{r}_{4}) \delta(\mathbf{r}_{2} - \mathbf{r}_{5}) \delta(\mathbf{r}_{3} - \mathbf{r}_{6}) \delta_{q_{1}q_{4}} \delta_{q_{2}q_{5}} \delta_{q_{3}q_{6}}$$

with

One less parameter to fit !

Fit of the parameters and infinite nuclear matter properties

- Preliminary fit with 4 spherical nuclei
- \blacktriangleright Saturation density $\rho_{\rm sat},$ symmetry energy coefficient J and effective mass m^*/m fixed
- Pairing adjusted by tuning the contribution of the finite-range interaction in the pairing channel
- Empirical constraints to avoid finite-size instabilities

	$ ho_{ m sat}$	В	K_{∞}	m*/m	J	L
	(fm ⁻³)	(MeV)	(MeV)		(MeV)	(MeV)
NLO	0.1599	-16.17	229.8	0.4076	31.96	64.04
N ² LO	0.1601	-16.09	230.0	0.4061	31.95	64.68
$N^{2}LO + 3B$	0.1600	-16.02	258.6	0.7000	32.00	35.94
$N^{2}LO + 3B (U_{0} = 0)$	0.1600	-16.42	276.3	0.5500	35.00	44.99

Nuclear structure with regularized EDF generators

Finite-range pseudopotentials

Finite-range local pseudopotentials

Sherical nuclei

Results are not too bad but it's easy to find examples with less encouraging agreement...

Nuclear structure with regularized EDF generators

Finite-range pseudopotentials

Finite-range local pseudopotentials

Single particle energies in ²⁰⁸Pb

Density of state scales as expected

Finite-range pseudopotentials

Finite-range local pseudopotentials

Deformed nuclei

Conclusion

- The two-body finite-range pseudopotential complemented with a non-local three-body contact term gives acceptable results but not competitive yet with other existing effective interactions
- It does not contain density dependent terms and is used consistently in all channels: usable with no technical difficulties in beyond mean-field calculations
- The local version of the two-body terms give encouraging results, the non local version will not hurt
- Local version implemented in FINRES₄ (spherical solver), under construction in 3D codes HFBTEMP (M. Kortelainen) and HFODD (J. Dobaczewski *et al.*)

Open questions: Different "flavors" of spherical results

- Calculations of spherical nuclei with a spherical code give nice results
- Calculations for the same spherical nuclei with a code allowing deformation give calamitous results
 - Collapse of the local part of the pairing density $\tilde{\rho}(\mathbf{r},\mathbf{r}) = 0$
 - Huge pairing energies
 - Unphysical binding energies
 - Although nuclei are perfectly spherical...
- No bug found so far...
- So what ?
- · On a deformed basis, non local densities might not fulfill

$$\rho_q(\mathbf{r}_1, \mathbf{r}_2) = \sum_{\ell j m_\ell} \rho_q(r_1, r_2) Y_{m_\ell}^{(\ell)*}(\hat{r}_1) Y_{m_\ell}^{(\ell)}(\hat{r}_2)$$

even for a spherical nucleus ?

Open questions: Effective mass, how large should it be ?

	$ ho_{\rm sat}$	В	K_{∞}	m*/m	J	L
	$({\rm fm}^{-3})$	(MeV)	(MeV)		(MeV)	(MeV)
NLO	0.1599	-16.17	229.8	0.4076	31.96	64.04
N ² LO	0.1601	-16.09	230.0	0.4061	31.95	64.68
$N^{2}LO + 3B$	0.1600	-16.02	258.6	0.7000	32.00	35.94
$N^{2}LO + 3B (U_{0} = 0)$	0.1600	-16.42	276.3	0.5500	35.00	44.99

- For mean-field calculations ?
- For beyond mean-field calculations ?

Open questions: What drives the parameters to regions with finite-size instabilities ?

- Several Skyrme interactions are plaged with finite-size instabilities
- Isovector instabilities are more likely to occur when the interaction is tuned to give attractive pairing
- Can it be avoided ?
- Does a finite-range help ?